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In this study, we delve into the intrinsic mechanisms of cell communication in
hepatocellular carcinoma (HCC). Initially, employing single-cell sequencing, we
analyze multiple malignant cell subpopulations and cancer-associated fibroblast
(CAF) subpopulations, revealing their interplay through receptor-ligand
interactions, with a particular focus on SPP1. Subsequently, employing
unsupervised clustering analysis, we delineate two clusters, C1 and C2, and
compare their infiltration characteristics using various tools and metrics,
uncovering heightened cytotoxicity and overall invasion abundance in C1.
Furthermore, our gene risk scoring model indicates heightened activity of the
immune therapeutic pathway in C1. Lastly, employing a formulated scoring
system, we stratify patients into high and low-risk groups, revealing notably
poorer outcomes in the high-risk cohort on Kaplan-Meier curves. Risk scores
exhibit a negative correlation with model genes and immune cell infiltration
scores, indicating poor prognosis in the high-risk group. Further characterization
elucidates the regulatory landscape of the high and low-risk groups across
various signaling pathways. In addition, we used wet lab experiments to prove
that ABCA1 plays a pro-oncogenic role in hepatocellular carcinoma cells by
promoting proliferation, invasion, migration, and reducing apoptosis. In
summary, these findings provide crucial insights, offering valuable clues and
references for understanding HCC pathogenesis and patient prognosis.
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1 Introduction

While hepatocellular carcinoma (HCC) ranks as the fifth most common malignancy
globally, it stands as the second leading cause of cancer-related mortality worldwide (Chen
K. et al., 2023). In 2020, there were approximately 906,000 new cases and 830,000 deaths
attributed to HCC, with an incidence of 4.7% and amortality rate of 8.3% (Sung et al., 2021).
In China, there were an estimated 431,383 new cases and 412,216 deaths fromHCC in 2022,
representing roughly half of the global increase in HCC cases and deaths (Fu et al., 2023).
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The incidence of HCC is rapidly increasing among both males and
females (Islami et al., 2017; Jeong et al., 2018), notably serving as a
primary cause of cancer-related mortality in transitional countries
such as Mongolia, Thailand, Cambodia, Egypt, and Guatemala
(Sung et al., 2021; Tong et al., 2020). HCC constitutes 80%–90%
of primary liver cancers, with cholangiocarcinoma (CCA)
accounting for 10%–15%, while vascular sarcomas and
hepatoblastomas represent a smaller proportion (Li et al., 2021).
Chronic inflammatory etiologies, including hepatitis B virus (HBV),
hepatitis C virus (HCV) infections, alcoholic steatohepatitis (ASH),
non-alcoholic steatohepatitis (NASH), aflatoxin exposure, cirrhosis,
smoking, obesity, diabetes, iron overload, various dietary habits, and
sedentary lifestyle, are major risk factors for HCC (Li et al., 2021;
Anwanwan et al., 2020; Li and Wang, 2016; Duan et al., 2014). HCC
may present without evident signs or symptoms, with nonspecific
manifestations including right upper quadrant pain, abdominal
distension, jaundice, poor appetite, persistent fatigue, and weight
loss (Mokdad et al., 2015). Histologically, HCCs are classified by the
World Health Organization (WHO) into well-differentiated,
moderately differentiated, poorly differentiated, and
undifferentiated subtypes, with growth patterns including capsule
invasion, infiltration into adjacent liver parenchyma, satellite nodule
formation, tumor thrombus formation, and intrahepatic metastasis
(Li and Wang, 2016). The incidence of metastatic liver cancer is
18–40 times higher than that of primary hepatic malignancies,
owing to the unique anatomical microenvironment of the liver
facilitating colonization by extrahepatic cancer cells (including
colorectal, pancreatic, breast, melanoma, and lung cancers) (Liu
et al., 2023). Liver metastasis significantly impacts both the 5-year
survival rate and quality of life (Li et al., 2021), with only
approximately 20% of patients with extrahepatic metastases being
suitable for surgery (Zhou et al., 2016). Early-stage HCCmay benefit
from partial hepatectomy, ablation therapy, or liver transplantation,
with varying prognostic outcomes. However, the local failure rate of
ablation therapy is significantly higher than that of surgical
resection, and percutaneous ablation in the pre-transplant setting
carries a risk of tumor dissemination, potentially rendering initially
transplant-eligible patients ineligible (Bruix et al., 2015). Liver
transplantation is limited by donor scarcity and delays between
transplant indications and surgery (Soulen and García-Mónaco,
2021), with a median 5-year survival rate of approximately 70%.
Nevertheless, 15% of liver transplant recipients experience
recurrence post-treatment, with a median 5-year survival rate
ranging from 20% to 35%, complicated by the anatomical
challenges of early cancer detection (Li and Wang, 2016; Gao
et al., 2021; Cheng et al., 2016). For nearly half of HCC patients
diagnosed in advanced stages, conventional treatments such as
curative resection and ablation therapy may be precluded,
although options such as targeted drug therapy or
immunotherapy remain available (Zhou et al., 2016; Chen Y.
et al., 2023). Sorafenib, an orally administered kinase inhibitor
targeting tumor cells, represents a relatively novel therapeutic
option for HCC patients with advanced or metastatic disease.
However, fewer than one-third of eligible patients benefit from
sorafenib, with associated adverse events and a median time to
resistance of less than 6 months from initiation of treatment
(Anwanwan et al., 2020; Hao et al., 2023). Therefore,
comprehensive research into the mechanisms underlying HCC

development and progression is imperative, particularly for
identifying more effective treatment modalities and elucidating
the role of key genetic factors, which are crucial for the
diagnosis, treatment, and prognosis of HCC.

As the culmination of our introduction, this study aims to
unravel the intricate mechanisms of cell communication within
HCC. Utilizing single-cell sequencing, we dissect the interplay
between multiple malignant cell subpopulations and cancer-
associated fibroblasts (CAFs), with a special emphasis on SPP1-
mediated receptor-ligand interactions. Through unsupervised
clustering, we identify two distinct clusters, C1 and C2, and
characterize their infiltration patterns, revealing elevated
cytotoxicity and invasion in C1. Our gene risk scoring model
further highlights heightened immune therapeutic pathway
activity in C1. Moreover, patient stratification based on a
formulated scoring system demonstrates poorer outcomes in the
high-risk group. Wet lab experiments validate the oncogenic role of
ABCA1 in promoting HCC cell proliferation, invasion, migration,
and reducing apoptosis. Collectively, our findings offer novel
insights into HCC pathogenesis and patient prognosis, laying the
groundwork for future research and therapeutic strategies.

2 Material and methods

2.1 Data collection and preprocessing

Firstly, we retrieved bulk transcriptomic data and corresponding
clinical information for HCC from The Cancer Genome Atlas
(TCGA, https://portal.gdc.cancer.gov/) database. Additionally, we
obtained two bulk RNA-seq datasets, GSE14520 and GSE76427,
from The Gene Expression Omnibus (GEO, https://www.ncbi.nlm.
nih.gov/geo/) database. Furthermore, we downloaded the ICGC-JP
dataset from the International Cancer Genome Consortium (ICGC,
https://dcc.icgc.org/) database. Finally, three single-cell sequencing
datasets for HCC, namely, GSE146115, GSE146409, and
GSE166635, were obtained from TISCH2 (http://tisch.comp-
genomics.org/home/) database. All publicly available databases
utilized in this study permit unrestricted access and utilization
without additional ethical approval. Our data retrieval and
analysis procedures adhere to relevant guidelines. We
standardized all sequencing data into Transcripts per million
(TPM) format. Records with missing information were excluded,
and in cases where a gene had multiple entries, the mean value was
calculated across all entries.

2.2 Single-cell sequencing data analysis

Utilizing the “Seurat” package and the SCP pipeline (https://
github.com/zhanghao-njmu/SCP), we conducted analysis on the
single-cell sequencing data. To ensure the accuracy and reliability
of subsequent research, we initially performed quality control on the
acquired data. Our criteria were as follows: percent. mt <25,
nFeature_RNA <9,000. Additionally, we employed the
“harmony” package to integrate and batch-correct the quality-
controlled single-cell data. Subsequently, we employed Uniform
Manifold Approximation and Projection (UMAP) for
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dimensionality reduction and clustering of the single-cell data. We
annotated and visualized several major cell types based on relevant
information provided by the TISCH database. Concurrent with cell
annotation, we validated the subclasses by cross-referencing the
gene expression profiles with established cell type annotations.

To investigate the interaction and communication between
malignant cell clusters and Cancer-Associated Fibroblasts (CAFs)
clusters, we performed UMAP dimensionality reduction again for
both cell types based on the EPCAM expression levels of malignant
cell clusters (n = 7,186) and the expression levels of COL1A1 and
COL1A2 for CAFs clusters (n = 698). We further subdivided them
into several cell subclusters and visualized the results. Next, we
utilized RunSlingshot to construct developmental trajectories of
malignant and CAFs cell subclusters and predicted their
developmental paths.

Subsequently, we conducted Differentially Expressed Genes
(DEGs) analysis for each cell subcluster, with parameters set as
follows: fc.threshold = 1, only.pos = FALSE. Finally, we performed
Gene Ontology Biological Process (GO_BP) enrichment analysis for
each cell subcluster and selected the top six statistically significant
GO_BP enrichment terms for visualization. Parameters were set as
follows: db = “GO_BP,” species = “Homo_sapiens,”DE_threshold =
“avg_log2FC > log2 (1.5) & p_val_adj <0.05.”

2.3 Analysis of cell communication

We conducted an analysis of cell communication by using the
CellChat and NicheNet algorithms on various cell subpopulations.
Firstly, we presented an interaction network in the form of a chord
diagram, demonstrating the frequency and strength of interactions
among different subpopulations of malignant and CAFs cells.
Subsequently, we visualized the ligand-receptor relationships and
pairings between different cell pathways within each subpopulation.
Additionally, we focused on the expression patterns of SPP1 as a
ligand and its various receptors in the malignant and CAFs
subpopulations, using a violin plot. Furthermore, we analyzed the
significance of different subpopulations in the SPP1 signaling
pathway. To explore the interaction network within each cell
subpopulation, we created scatter plots to display the outward
and inward interaction strengths of each subpopulation. Finally,
by using certain genes in the CAFs subpopulation as ligands and
genes in the malignant subpopulation as receptors, we analyzed the
binding potential and biological effects of these ligand-receptor
interactions, which were visualized using a heat map.

2.4 Constructing gene regulatory networks

We utilized the “SCENIC” R package to construct GRNs for
HCC. Leveraging the single-cell dataset of HCC and relevant
algorithms, we particularly focused on the distribution and
expression patterns of five regulatory factors associated with
HCC (BRF1_extended_29g, ARNTL_extended_39g, ARNTL_24g,
BCLAF1_extended_22g, ATF3_extended_16g) across various cell
subpopulations, visualized using UMAP. Additionally, we generated
a heatmap illustrating the differential activity levels of these five
regulatory factors between malignant and CAFs cells. Subsequently,

we amalgamated all target genes regulated by these five factors into a
signature and proceeded with further analysis based on
this signature.

2.5 Unsupervised clustering and
correlation analysis

Utilizing the aforementioned signature, we conducted
unsupervised clustering analysis using the
“ConsensusClusterPlus” R package with the following parameters:
maxK = 9, reps = 1,000, pItem = 0.8, pFeature = 1, tmyPal = color,
title = “ConsensusCluster/,” clusterAlg = “km,” distance =
“euclidean,” seed = 123,456. By subjecting tumor tissue samples
to hierarchical clustering, we attempted sample grouping.
Subsequently, leveraging Cumulative Distribution Function
(CDF) curves and Proportion of Ambiguous Clustering (PAC)
scores, we selected the most appropriate k value for grouping,
resulting in two distinct clusters (C1 and C2). Furthermore, we
employed the TCGA-LIHC dataset and conducted log-rank testing
to plot Kaplan-Meier (KM) curves, demonstrating survival
disparities between the different clusters.

2.6 Differential analysis of HCC tumor
microenvironment

To gain insight into the disparities within the HCC TME across
distinct clusters, we leveraged the clustering results to conduct
comparative analyses of the TME in clusters C1 and C2. Initially,
employing Single-sample Gene Set Enrichment Analysis (ssGSEA),
we evaluated the relative infiltration abundance of diverse immune
cell subtypes within the two clusters. Subsequently, we depicted the
disparities in the activity levels of CYT (cytotoxic activity), GFP
(T cell inflamed gene expression profile), IFNG (INF-γ), and TMB
(tumor mutation burden) between the two clusters using box plots.
Additionally, we assessed the infiltration abundance of immune cell
subtypes in both clusters using five TME deconvolution algorithms
(CIBERSORT, MCP-counter, quanTIseq, EPIC, and TIMER) from
the “IOBR” R package (https://github.com/IOBR/IOBR), scoring the
results accordingly. Furthermore, we downloaded
150 immunomodulators and chemokines from the TISIDB
database (http://cis.hku.hk/TISIDB/), including 41 chemokines,
24 immunoinhibitors, 46 immunostimulators, 21 Major
Histocompatibility Complex (MHC), and 18 receptors. Based on
this data, we constructed a heatmap illustrating the expression
profiles of relevant immune regulatory molecules across different
clusters. Finally, employing Gene Set Variation Analysis (GSVA), we
enriched scores for the anti-cancer immunity cycle and
immunotherapy-predicted pathways in the two clusters, followed
by an analysis of the disparities between the clusters.

2.7 Gene set enrichment analysis

Initially, we utilized the “limma” package to identify
differentially expressed genes between clusters C1 and C2.
Subsequently, employing the “clusterprofiler” R package, we
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conducted GSEA to delineate the signaling pathways enriched and
discovered the upregulated cancer signatures within both clusters.
Concurrently, data visualization was performed using the “GseaVis”
R package to generate bubble plots illustrating the results.
Additionally, GSEA was employed to identify both upregulated
and downregulated signaling pathways within the C1 cluster.

2.8 Construction of prognostic models

Based on the communication signature between malignant and
CAFs cellular subgroups, we employed the Least Absolute Shrinkage
and Selection Operator (LASSO) method to screen prognostic
marker genes within the TCGA-LIHC dataset. Subsequently,
utilizing the multiCOX analysis approach, we constructed a
prognostic model for HCC. Employing the model formula, each
patient was assigned a score, yielding a RiskScore for every sample.
The RiskScore is defined by summing the product of gene expression
levels and their corresponding coefficients, as demonstrated below:

Risk score � ∑n
i�1

Expgenei*βi[ ⎤⎦

Here, Expgenei represents the expression level of the model gene,
and βi represents the corresponding coefficient of the model gene.
Additionally, we visualized the coefficients of the prognostic model
through a lollipop plot of feature gene coefficients. Based on the
median score, patients were divided into high-risk and low-risk
groups. Using the TCGA dataset (n = 329), we plotted KM curves to
analyze the prognosis of the two risk groups and constructed
Receiver Operating Characteristic (ROC) curves to analyze the
model’s performance at 1, 3, and 5 years. We define a model as
having good diagnostic performance in this dataset when the area
under the curve (AUC) exceeds 0.6. Subsequently, we validated the
prognostic model in external validation sets GSE76427 (n = 115),
GSE14520 (n = 242), and ICGC-JP (n = 240).We utilized KM curves
and ROC curves to validate the predictive ability of the model in
different datasets. Next, we conducted correlation analysis,
demonstrating the correlation between RiskScore and various
immune checkpoint levels and immune cell infiltration levels
through a correlation heatmap. Using the “limma” package, we
performed DEGs analysis between the high-risk and low-risk
groups, identifying differentially expressed genes between the two
groups. Finally, through GSEA, we analyzed the abnormal signaling
pathways that were upregulated and downregulated in the high-
risk group.

2.9 Cell culture and transfection

We used human liver cancer cell lines HepG2 and Huh7 (Cell
Bank of the Chinese Academy of Sciences). Huh7 cells were cultured
in DMEM (HyClone, United States), and HepG2 cells in MEM
(HyClone, United States), both supplemented with 10% FBS (BI,
Israel) and 100 U/mL penicillin/100 μg/mL streptomycin (HyClone,
United States). Cells were maintained in a humidified
CO2 incubator at 37°C.

For transfection, Huh7 cells were treated with ABCA1 shRNA
(Sangon, China) to knock down expression, while HepG2 cells were
transfected with an ABCA1 overexpression plasmid (with a negative
control). Cells were resuspended in complete medium and seeded
into 6-well plates at 1 × 104 cells/well with 2 mL of medium.
Transfection was performed using PolyFast reagent (MCE,
United States, catalog number HY-K1014) according to the
manufacturer’s instructions. After a 15-min incubation at room
temperature, the cells were re-incubated. The medium was refreshed
6 h post-transfection, and subsequent experiments were conducted
48 h later.

2.10 RT-qPCR and total RNA extraction

We used RT-qPCR to measure ABCA1 mRNA expression in
different cell groups. Cells in 6-well plates were trypsinized
(KeyGEN, China), washed with PBS, and centrifuged at 4°C
(800–2,000 rpm). RNA was extracted using 800–1,000 μL Trizol
(Takara, Japan), followed by chloroform precipitation and ethanol/
isopropanol purification (SINOPHARM, China). The RNA was
resuspended in 20 μL DEPC-treated water and quantified using a
Nanodrop 2000 spectrophotometer (Thermo, United States).
Reverse transcription was performed with the PrimeScript RT
reagent kit (TaKaRa, Japan), and RT-qPCR was conducted using
SYBR GreenER Supermix (TaKaRa, Japan) on a 7,500 Real-Time
PCR System (Thermo Fisher Scientific, United States) according to
the manufacturer’s protocols. ABCA1 expression was quantified
using the 2−ΔΔCT method, normalized to β-actin.

2.11 Colony formation assay

Colony Formation Assay was employed to determine differences
in colony numbers among different cell lines. Cells were initially
seeded at a density of 1 × 103 cells per well in a 6-well plate, gently
agitated, and subsequently cultured in a cell culture incubator for
approximately 14 days. Following removal of the culture medium,
the cells underwent three washes with PBS. Colonies underwent
fixation using formaldehyde for 15 min, followed by staining with
1 mL of 0.5% crystal violet (Solarbio, China), three subsequent PBS
washes, air-drying, and subsequent imaging and quantification.

2.12 CCK8 assay

After 48 h post-transfection, Huh7 and HepG2 cell lines were
plated into 96-well plates at a density of 6,000 cells per well and
returned to the incubator for adherence. Each experimental group
was replicated three times. The CCK-8 reagent (KeyGEN, China)
was reconstituted as per the manufacturer’s instructions by diluting
it with complete culture medium to achieve a final volume of 200 μL
per well. Using a pipette, the prepared solution was swiftly aliquoted
into the wells of the 96-well plates. The plates were shielded from
light exposure by covering them with aluminum foil, and
absorbance readings at 450 nm were taken using a
spectrophotometer following a 2-h incubation period. Subsequent
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measurements were taken at 24, 48, 72, and 96-h time points,
repeating the aforementioned steps.

2.13 EDU assay

We used the EdU assay to assess proliferation level differences
among different groups of Huh7 and HepG2 cells. Following a 48-h
transfection period, the culture mediumwas removed, and cells were
washed three times with PBS. As per the protocol, cells were
permeabilized with 0.3% Triton X-100 (Beyotime, China) for
25 min at room temperature. After permeabilization, cells were
incubated with EdU reaction mixture to allow EdU incorporation
into newly synthesized DNA. Subsequently, cells were washed again
with PBS and fixed with a fixing solution. Following fixation, cells
were stained with a fluorescent azide to visualize EdU incorporation.
After washing to remove excess stain, cells were counterstained with
DAPI for 10 min to visualize nuclei. Finally, each well was washed
with PBS, and anti-fluorescence quenching reagent (Beyotime,
China) was added to preserve the fluorescence signal. The plates
were then examined, and images were captured using a fluorescent
microscope.

2.14 Wound healing assay

Following 48 h of transfection, the medium was aspirated, and
PBS was introduced. Using a precise ruler for guidance, a deliberate
single straight scratch was introduced into each well using a 200 μL
pipette. The pipette tip was substituted after each well, and cells
underwent three PBS washes. Subsequently, each well received basic
culture medium lacking FBS. At this point, microscopic images were
captured to document the initial scratch, measure the wound area,
and define this moment as time point zero. After incubating the cells
in a cell culture incubator for 48 h, images were taken again to
measure the healed wound area and calculate the percentage of
scratch closure.

2.15 Total protein extraction and Western
blot analysis

Western blotting was used to assess protein expression of
ZO-1, E-cadherin, Vimentin, Slug, ABCA1, and β-actin in
Huh7 and HepG2 cells. Cells were lysed using RIPA buffer
with protease inhibitors (100:1), sonicated (40% amplitude, 1s
pulses, 3 cycles), and incubated on ice for 30 min with shaking.
Lysates were centrifuged (10,000 rpm, 15 min, 4°C), and
supernatants were collected for protein quantification.
Samples were prepared with loading buffer, heated (95°C,
5 min), and subjected to electrophoresis (20 μg/lane, 10%
SDS-PAGE, 100V). Proteins were transferred to a PVDF
membrane (0.45 μm), blocked (10 min), and incubated with
primary antibodies overnight at low temperature. After washing,
membranes were incubated with HRP-conjugated secondary
antibodies (1.5 h, RT) and visualized using an ECL kit.
Antibodies were sourced from Proteintech.

2.16 Transwell assay

Transwell chambers (Thermo, United States) were coated with
extracellular matrix gel (1:8 dilution, 40 μL/chamber) and dried for
24 h. Cells (20,000/chamber) were seeded in serum-free medium
(200 μL/chamber) on a 24-well plate with 500 μL complete medium
per well. After 20-h incubation in a CO2 incubator, non-invading
cells were removed, and chambers were fixed with 4%
paraformaldehyde, washed, and stained with 0.1% crystal violet.
Microscopic images were then captured.

2.17 Flow cytometry for detecting
cell apoptosis

Flow cytometry was employed to assess apoptosis in Huh7 and
HepG2 cells. Following reagent centrifugation, cells were washed,
digested with trypsin (without EDTA, with 3-min interval checks),
and centrifuged at 2,000 rpm for 5 min. After two additional PBS
washes, cells were suspended in 400 μL of binding buffer. Annexin V
FITC/PI staining solution was added, followed by a 15-min
incubation at 37°C. Cells were then transferred to flow cytometry
tubes and filtered through a nylon mesh. The FL1 channel (for FITC
green fluorescence) and FL3 channel (for PI red fluorescence, Ex =
488 nm, Em ≥ 630 nm) were used for analysis. Voltage and
compensation settings on the flow cytometer were adjusted to
ensure that 99% of cells occupied the lower left quadrant.

2.18 Statistical analysis

All statistical analyses were conducted using R software (version
4.1.3). Differential gene expression analysis was performed using the
“limma” package. The “ggplot2” package was employed as the
primary tool for visualization. A threshold of p < 0.05 was
considered statistically significant (*p < 0.05; **p < 0.01; ***p <
0.001; ****p < 0.0001).

3 Results

3.1 Single-cell data analysis of malignant cell
populations

Utilizing integrated single-cell sequencing data, UMAP
dimensionality reduction clustering identified 28 clusters,
subsequently annotated into 12 major cell types based on
information provided by the TISCH database (Figures 1A, B).
Further analysis of the target malignant cell population
delineated it into 6 cellular subgroups: Malignant_Epi_0,
Malignant_Epi_1, Malignant_Epi_2, Malignant_Epi_3,
Malignant_Epi_4, and Malignant_Epi_5 (Figures 1C, D).
Developmental trajectory prediction revealed two trajectories:
Lineages1 (Malignant_Epi_0- Malignant_Epi_4- Malignant_Epi_
1) and Lineages2 (Malignant_Epi_0- Malignant_Epi_2-
Malignant_Epi_3), all originating from Malignant_Epi_0
(Figures 1E, F).
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In differential gene expression analysis, genes associated with
metabolism, immune inflammation, neuroregulation, and cell
signaling pathways were upregulated across the 6 cellular
subgroups, while genes related to mitochondria, ribosomes,
long non-coding RNA, lipoproteins, and plasma proteins were
downregulated (Figure 1G). GO_BP enrichment analysis

revealed statistically significant enrichment of the top
6 pathways across the 6 cellular subgroups, including cellular
mitochondrial functions, mobility and migration, metabolic
processes, lipid metabolism regulation and transport processes,
ATP synthesis and metabolism, protein synthesis, and energy
metabolism (Figure 1H).

FIGURE 1
scRNA-seq analysis unravels the heterogeneity of in malignant cells in HCC. (A) 28 clusters were identified in the integrated scRNA-seq dataset. (B)
12 major cell types were annotated. (C) UMAP visualization of the expression levels of EPCAM in the integrated scRNA-seq dataset. (D) Malignant cell
subpopulations were identified from the major malignant cell set. (E, F) The predicted developmental trajectories of malignant epithelial cell subsets. (G)
The differentially expressed genes of each malignant cell subset. (H) Top six enriched GO_BP terms of each malignant cell subset.
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3.2 Single-cell data analysis of CAF cell
population

Furthermore, we conducted a detailed analysis of the CAF cell
population, reducing its dimensionality into 3 groups using UMAP:
CAF_0, CAF_1, and CAF_2 (Figures 2A, B). Predicted
developmental trajectories revealed a single trajectory: Lineages1
(CAF_1, CAF_0, CAF_2) (Figures 2C, D). In the analysis of
Differentially Expressed Genes (DEGs), genes related to cell
structure and signaling transduction, protein synthesis, and
nucleic acid metabolism were found to be upregulated across the
3 cellular subgroups, while genes associated with mitochondria,
ribosomes, mitochondrial and nuclear-encoded RNA, extracellular
matrix proteins, and receptors were downregulated (Figure 2E).
GO_BP enrichment analysis indicated statistically significant
enrichment of the top 6 pathways across the 3 cellular

subgroups, including maintenance of normal biological functions
and homeostasis, extracellular matrix, and the muscular
system (Figure 2F).

3.3 Cellular communication analysis and
construction of gene regulatory networks

The figure demonstrates that the interactions and strengths
among Malignant_Epi_0, Malignant_Epi_1, Malignant_Epi_4,
CAF_0, and other cellular subgroups are relatively strong, while
Malignant_Epi_2, Malignant_Epi_3, Malignant_Epi_5, CAF_1, and
CAF_2 exhibit weaker interactions (Figure 3A). We investigated the
receptor communication relationships within different cellular
subgroups, focusing particularly on the SPP1 receptor
relationships. SPP1 expression levels are notably higher in CAF_0,

FIGURE 2
scRNA-seq analysis unravels the heterogeneity of CAFs in HCC. (A) UMAP visualization of the expression levels of COL1A1 and COL1A2 in the
integrated scRNA-seq dataset. (B) UMAP visualization of the 698 CAFs. (C, D) The predicted developmental trajectories of CAF subsets. (E) The
differentially expressed genes of each CAF subset. (F) Top six enriched GO_BP terms of each CAF subset.
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FIGURE 3
Intercellular communications between CAFs and malignant cells. (A) The intercellular interactions between subsets of CAFs and malignant cells. (B)
The ligand-receptor pairs between CAFs and malignant cells. (C) Expression profiles of SPP1 signaling pathway in CAFs and malignant cells. (D) The
importance of each subset of CAFs and malignant cells in the SPP1 signaling pathway. (E) The incoming/outgoing strength of each subset of CAFs and
malignant cells in the SPP1 signaling pathway (left) and the whole signaling pathways (right). (F) Top ligands in the communication network. Ligand-
target gene matrix denoting the potential regulatory relationships between ligands and target genes among CAFs andmalignant cells. The color intensity
represented the regulatory potentials.
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CAF_1, Malignant Epi 0, Malignant Epi 2, and Malignant Epi
4 subgroups. Among the potential targets of SPP1, ITGB1 is
actively expressed in all cellular subgroups, whereas ITGA4,
ITGA8, and ITGB6 are inactive in most cellular subgroups
(Figures 3B, C). Analysis of the SPP1 signaling pathway network
reveals that Malignant_Epi_0 exhibits higher importance in Sender,
Receiver, Mediator, and Influencer aspects, while Malignant_Epi_
3 demonstrates lower importance (Figure 3D). Both CAF cellular
subgroups and malignant cell populations exhibit weaker outward
and inward interaction strengths in the SPP1 pathway compared to
the entire signaling pathway (Figure 3E). The ligand-receptor gene
matrix indicates binding potential and biological effects only when
IL1B serves as the ligand and IL1RAP, IL1R1, IL1R2 serve as
receptors (Figure 3F). Additionally, using the “SCENIC” package,
we focused on five regulatory factors at the single-cell level in HCC
(BRF1 _extended _29g, ARNTL_extended _39g, ARNTL _24g,
BCLAF1_extended _22g, ATF3_extended _16g). We found that
ATF3_extended _16g is expressed at higher levels in three CAF
cellular subgroups and six Malignant cellular subgroups
compared to the other four factors (Figure 4A). Heatmap
results indicate that, except for ATF3_extended _16g, the
remaining regulatory factors exhibit high expression in the
Malignant_Epi_5, Malignant_Epi_4, Malignant_Epi_3, and
Malignant_Epi_2 cellular subgroups (Figure 4B).

3.4 Unsupervised clustering and survival
disparity analysis

In this section, we explore unsupervised clustering of tumor tissue
samples and investigate survival disparities. Utilizing hierarchical
clustering, we identified k = 2 as the optimal grouping based on

CDF curve analysis and PAC scores. Notably, the consensus matrix
plot exhibited robust intra-cluster cohesion and inter-cluster
distinctiveness (Figures 5A–C). Kaplan-Meier survival curves
unveiled significant survival discrepancies between the two clusters,
with cluster 1(C1) displaying inferior prognosis (p = 0.031, Figure 5D).

3.5 Analysis of HCC tumor
microenvironment disparities

We commenced our investigation by analyzing the relative
infiltration of immune cell subtypes within C1 and Cluster 2(C2).
C1 exhibited higher relative infiltration rates in Activated
CD4 T cells, Central memory CD4 T cells, Central memory
CD8 T cells, and Effector memory CD4 T cells compared to C2,
while C2 demonstrated higher relative infiltration rates in
CD56bright natural killer cells, eosinophils, Regulatory T cells,
and T follicular helper cells compared to C1 (Figure 5E).
Moreover, C1 surpassed C2 in CYT indicators, indicating
heightened cytotoxic activity within C1, which may confer a
favorable anti-tumor response (Figure 5F). In the analysis of
immune cell infiltration, C1 showed elevated levels compared to
C2 in Activated CD4 T cells, Central memory CD4 T cells, Central
memory CD8 T cells, Effector memory CD4 T cells, Regulatory
T cells, T follicular helper cells, and Type 2 T helper cells, while
C2 exhibited higher levels in CD56bright natural killer cells and
eosinophils. Overall, C1 displayed higher infiltration levels
compared to C2 in the MCPcounter, quanTlseq, EPIC, and
TIMER analyses, except for the “Other” category, where C2 was
higher (Figure 6A). Furthermore, in the immune modulator
expression profile, we categorized 150 factors into 5 classes
(chemokine, Immunoinhibitor, Immunostimulator, MHC,

FIGURE 4
The gene regulatory networks (GRNs) in HCC. (A) UMAP visualization of the five regulons at single-cell level of HCC. (B)Heatmap demonstrated the
activity of each regulon in CAFs and malignant cells.
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receptor). Notably, C1 and C2 exhibited significant disparities in
immune infiltration, with C1 displaying markedly higher overall
abundance than C2 (Figure 6B). In the anti-cancer immunity cycle,

Enrichment Scores (ES) of C1 consistently exceeded those of C2,
with the majority of pathways in the immunotherapy-predicted
pathway graph favoring C1 (Figures 7A, B).

FIGURE 5
Signature stratifiesHCC TME into two subclusters with distinct prognosis and biological features. (A) The consensus scorematrix of all sampleswhen
k = 2. A higher consensus score denotes higher similarity. (B) The CDF curves of the consensus matrix for each k (indicated by colors). (C) The PAC score
for each k. (D) KM survival curves with log-rank test demonstrate survival discrepancies between two clusters. (E) Relative infiltration abundances of
28 immune cell subsets in two clusters. p values are determined by the Wilcoxon test. ns: non-significant; *p < 0.05; ***p < 0.001. The activities of
CYT (F), GFP (G), IFNG (H), and TMB (I) between two clusters.
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3.6 Gene set enrichment analysis
enrichment analysis

We conducted Gene Set Enrichment Analysis (GSEA) to identify
the pathways enriched in C1 and C2. Notably, C1 exhibited significant
enrichment in HALLMARK EPITHELIAL-MESENCHYMAL

TRANSITION, HALLMARK E2F TARGETS, and HALLMARK
G2M CHECKPOINT, while C2 showed prominent enrichment in
HALLMARK XENOBIOTIC METABOLISM. Additionally, we
observed that C1 cluster harmoniously upregulated pathways
related to Cell cycle, Hippo signaling pathway, MAPK signaling
pathway, PI3K-Akt signaling pathway, and Protein digestion and

FIGURE 6
Signature stratifies HCC TME into two subclusters with distinct TME landscapes. (A) The infiltration abundance of immune cell subsets evaluated by
CIBERSORT, MCP-counter, quanTIseq, EPIC, and TIMER for two clusters. (B) The expression abundances of immunoregulators for two clusters.
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absorption, while concurrently downregulating pathways
associated with Carbon metabolism, Cholesterol metabolism,
Complement and coagulation cascades, Glycine, serine, and
threonine metabolism, and Oxidative phosphorylation
(Figures 7C, D). Our findings are similar to those obtained from
the differential gene enrichment pathway analysis of malignant tumor
cell subpopulations and CAF-related subpopulations in single-cell
sequencing. Our analytical results demonstrate certain enriched
pathway characteristics of tumors from different data dimensions,
indicating a degree of universality.

3.7 Construction and validation of
prognostic model

The final set of 19 genes was obtained through stepwise Cox
proportional hazards regression, with nonzero coefficients (Figures
8A, B). Subsequently, patients were scored using the model formula
to derive individual RiskScores. Based on the median of RiskScore
calculations, patients were stratified into high-risk and low-risk
groups. As depicted in Figure 8C, patients in the high-risk group
exhibited significantly poorer overall performance compared to

FIGURE 7
Signature stratifies HCC TME into two subclusters with distinct dysregulated pathways. (A) The activities of anti-cancer immunity between two
clusters by GSVA. (B) The activities of immunotherapy-predicted pathways between two clusters by GSVA. *p < 0.05, **p < 0.01, ****p < 0.0001. (C)
Upregulated cancer hallmarks in the two clusters by GSEA. (D) Upregulated (left panel) and downregulated (right panel) pathways in C1.
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those in the low-risk group across all four datasets (p < 0.01)
according to the Kaplan-Meier curves. Our model demonstrated
robust validation performance across the four datasets (AUC > 0.6).
A multiple correlation analysis was conducted, revealing mostly
negative correlations between Riskscore and model genes
(Figure 9A). Additionally, Riskscore exhibited negative
correlations with immune cell infiltration scores (Figure 9B).
Differential expression gene analysis was performed using the
“limma” package to compare high- and low-risk groups, followed
by Gene Set Enrichment Analysis (GSEA) on the selected
differentially expressed genes. Finally, GSEA was employed to
identify pathways upregulated (three on the left) and
downregulated (three on the right) in the high-risk group

(Figure 9C). The above results are analogous to those obtained
from the enrichment analysis of single-cell subpopulations.

3.8 ABCA1 plays a pro-oncogenic role in
HCC cells

RT-qPCR analysis revealed that knockdown of
ABCA1 significantly reduced ABCA1 mRNA expression in
Huh7 cells compared to controls. Conversely, overexpression of
ABCA1 markedly increased ABCA1 mRNA expression in
HepG2 cells (p < 0.001, Figures 10A, B). Colony formation
assays demonstrated fewer colonies in the ABCA1 knockdown

FIGURE 8
Signature-based model demonstrates high accuracy and robust performance in predicting prognosis. (A) The selection of prognostic signature
genes based on the optimal parameter λ that was obtained in the LASSO regression analysis. (B) Lollipop chart of the coefficients of signature genes. (C)
KM curves displayed survival outcomes of patients in two risk groups. Time-dependent ROC curves were drawn to assess survival rate at 1-year, 3-year,
and 5-year.
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group of Huh7 cells and more colonies in the ABCA1-
overexpressing group of HepG2 cells, indicating a role for
ABCA1 in promoting HCC cell proliferation (p < 0.001, Figures
10C, D). CCK8 assays showed decreased cell viability in Huh7 cells
following ABCA1 knockdown, whereas increased viability was
observed in HepG2 cells upon ABCA1 overexpression (p < 0.001,
Figures 10E, F). EDU assays indicated reduced proliferation in
Huh7 cells with ABCA1 knockdown compared to controls (p <
0.001), and increased proliferation in HepG2 cells with
ABCA1 overexpression (p < 0.01, Figure 10G). Wound healing
assays demonstrated reduced cell migration capability following
ABCA1 knockdown (p < 0.001), and enhanced migration upon
ABCA1 overexpression in HepG2 cells (p < 0.01, Figure 11A).
Western blot analysis revealed significant expression differences
of ZO-1, E-cadherin, Vimentin, and Slug proteins between
normal and overexpressing ABCA1 conditions in both Huh7 and
HepG2 cells (Figure 11B). Transwell assays showed increased

invasive cell counts in both control groups, with significantly
higher invasion in cells expressing higher levels of ABCA1 (p <
0.001, Figure 11C). Flow cytometry analysis indicated a higher
apoptotic percentage in cells with lower ABCA1 expression,
suggesting a role for ABCA1 in reducing apoptosis in HCC cells
(p < 0.001, Figure 11D). In summary, ABCA1 plays a pro-oncogenic
role in HCC cells by promoting proliferation, invasion, migration,
and reducing apoptosis.

4 Discussion

HCC represents a major histological subtype of liver cancer and
ranks among the deadliest malignancies. According to relevant data,
the global number of new HCC cases reached 905,677 in 2020, with
830,180 new deaths reported (Foerster et al., 2022). Despite
advancements in therapeutic strategies, the mortality rate of HCC

FIGURE 9
Correlation analysis and enrichment analysis. (A)Correlations between RiskScore and immune checkpoints. (B)Correlations between RiskScore and
infiltration levels of 28 immune cell subsets. (C) Dysregulated pathways in high-risk LIHC patients.
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FIGURE 10
Efficiency validation of ABCA1 knockdown and overexpression and their impact on cancer cell proliferation. (A) RT-qPCR experiment validating the
knockdown efficiency of sh-ABCA1 in Huh7 cell line. (B) RT-qPCR experiment validating the overexpression efficiency of oe-ABCA1 in HepG2 cell line. (C)
Colony formation assay reflecting differences in proliferation levels between ABCA1 knockdown group and control group cells. (D) Colony formation
assay reflecting differences in proliferation levels between ABCA1 overexpression group and control group cells. (E) CCK8 assay reflecting
differences in proliferation levels between ABCA1 knockdown group and control group cells. (F) CCK8 assay reflecting differences in proliferation levels
between ABCA1 overexpression group and control group cells. (G) EDU assay reflecting differences in proliferation levels between ABCA1 knockdown
group, ABCA1 overexpression group, and control group cells.
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FIGURE 11
Effects of ABCA1 knockdown and overexpression on cell migration, invasion, and apoptosis capabilities. (A) Wound healing assay validating
differences in migration levels between ABCA1 knockdown group, ABCA1 overexpression group, and control group cells. (B) Western blot validating
differences in migration-related protein expression levels between ABCA1 knockdown group, ABCA1 overexpression group, and control group cells. (C)
Transwell assay validating differences in invasion levels between ABCA1 knockdown group, ABCA1 overexpression group, and control group cells.
(D) Flow cytometry validating differences in apoptosis levels between ABCA1 knockdown group, ABCA1 overexpression group, and control group cells.
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remains high, primarily due to its late-stage diagnosis. Once HCC
progresses to an advanced stage, it becomes highly invasive with a
dismal prognosis, resulting in a 5-year survival rate of around 20%
for patients (Chen et al., 2022).

The optimal treatment for HCC is liver resection or
transplantation, yet the surgical cure rate is only about 20%, and
surgical indications are stringent, leaving most patients with
conservative treatment options (Llovet et al., 2024). Concurrently,
CAFs have been implicated in HCC’s tumor proliferation,
angiogenesis, metastasis, and chemotherapy resistance (Biffi and
Tuveson, 2021). Therefore, investigating the correlation between
malignant cells in HCC and CAFs using bioinformatics techniques,
analyzing the role of HCC-related genes and signaling pathways in
the TME, and constructing prognostic models are of significant
importance. Furthermore, the screening and analysis of
differentially expressed genes contribute to early diagnosis and
precision treatment of HCC.

We downloaded bulk transcriptomic data and corresponding
clinical data of HCC from the public database TCGA, datasets
GSE14520 and GSE76427 from the GEO database, ICGC-JP dataset
from the ICGC database, and three single-cell sequencing datasets
GSE146115, GSE146409, and GSE166635 from the
TISCH2 database. These datasets hold immense research and
application potential in the diagnosis, treatment, and prognostic
assessment of patients.

After quality control, we performed UMAP dimensionality
reduction on the single-cell sequencing data, resulting in
28 clusters, annotated into 12 major cell types. Further UMAP
dimensionality reduction was conducted on 2 cell types—malignant
cell clusters based on EPCAM expression levels and CAFs cell
clusters based on COL1A1 and COL1A2 expression
levels—yielding 6 malignant cell subgroups and 3 CAFs cell
subgroups. By constructing developmental lineages and
trajectories for each cell subgroup, we observed that each
malignant cell subgroup generally exhibited two developmental
trajectories, with the Malignant_Epi_0 cell subgroup likely being
their common developmental origin. In contrast, each CAFs cell
subgroup had only one developmental trajectory, with an unknown
developmental origin. We conducted DEGs analysis for each cell
subgroup. Among the 6 malignant cell subgroups, MT-ND3, MT-
CYB, MT-ATP6, MT-CO2, and MT-CO1 were identified as
differentially expressed genes in the Malignant_Epi_2,
Malignant_Epi_3, and Malignant_Epi_4 cell subgroups, while
ALB, AHSG, and APOE were also identified as differentially
expressed genes in the Malignant_Epi_1 and Malignant_Epi_
5 subgroups, exhibiting a consistent downregulation trend across
all subgroups. We infer that the downregulation of these genes may
promote tumor proliferation and metastasis, leading to unfavorable
prognosis. Among the 3 CAFs cell subgroups, RPL17-C18orf32,
AC135178.2, and MTRNR2L8 were identified as differentially
downregulated genes in CAF_0 and CAF_2, but exhibited an
upregulation trend in CAF_1. Finally, we conducted GO_BP
enrichment analysis and extracted the top six statistically
significant signaling pathways for each cell subgroup.

To delve deeper into the correlation between malignant cells and
CAFs, we conducted cell communication analysis on various cell
subpopulations using the CellChat and NicheNet algorithms.
Beyond examining the frequency and strength of interactions

between each cell subpopulation, we also investigated the
receptor relationships of different pathways within these
subpopulations. Specifically, we focused on the SPP1 signaling
pathway to elucidate the ligand-receptor pairing status. Through
detailed analysis of various components of the SPP1 signaling
pathway, we observed that the Malignant_Epi_0 cell
subpopulation is crucial in all four aspects—Sender, Receiver,
Mediator, and Influencer—while the Malignant_Epi_
3 subpopulation exhibits the opposite pattern, indicating
divergent modes of action concerning SPP1. We also studied the
outward and inward interaction strengths of each cell
subpopulation. Finally, by pairing genes expressed by CAFs as
ligands with genes expressed by malignant cells as receptors, we
analyzed their binding potential and biological efficacy. We found
that only when IL1B acts as the ligand and IL1RAP, IL1R1, and
IL1R2 act as receptors, both binding potential and biological effects
are evident. Furthermore, we constructed GRNs based on single-cell
data from HCC. During this process, we focused on the distribution
and expression of five regulatory factors associated with HCC across
different cell subpopulations: BRF1_extended_29g, ARNTL_
extended_39g, ARNTL_24g, BCLAF1_extended_22g, and ATF3_
extended_16g. BRF1 encodes one of the three subunits of RNA
polymerase Ⅲ transcription factor complex, which plays a core role
in initiating transcription of genes encoding tRNA, 5S rRNA, and
other small structural RNAs. Studies have shown that BRF1 is highly
expressed in human tumor tissues of HCC patients, and inhibiting
its expression can suppress HCC development (Lin et al., 2020).
ARNTL encodes a protein with a basic helix-loop-helix structure
and has been shown to exert anti-tumor effects in many human
cancers. Downregulation of ARNTL in HCC patients promotes
growth and metastasis of HCC cells both in vitro and in vivo,
significantly correlating with low survival rates (Yang et al., 2022).
BCLAF1 interacts with members of the Bcl2 family of anti-apoptotic
proteins and enhances HIF1α expression in HCC tissues under
hypoxic conditions, thereby promoting HCC-related angiogenesis
and disease progression. Therefore, BCLAF1 is likely to be a
therapeutic target for anti-proliferation and anti-angiogenesis
treatment in HCC (Wen et al., 2019). ATF3, a member of the
cAMP responsive element-binding protein (CREB) family, has been
found to be a tumor suppressor that inhibits proliferation and
metastasis of HCC cells. It also significantly correlates with
intrahepatic metastasis and overall survival (OS) of HCC patients
(Chen et al., 2018). For these five regulatory factors, we also explored
differences in their activity levels between malignant and CAF cells.
Subsequently, we merged the target genes of these five regulatory
factors to obtain a signature for unsupervised clustering analysis.

We applied unsupervised clustering analysis to hierarchically
cluster tumor tissue samples, aiming to categorize the samples. By
selecting the most suitable value for (k) [where (k = 2)], we
partitioned the samples into two distinct clusters, denoted as
C1 and C2. Subsequently, we performed KM survival analysis on
each cluster, which showed that the survival rates for both clusters
decreased over time. Following this, we compared the TMEs of the
two clusters.

First, we utilized ssGSEA to score 28 immune cell subsets to
measure their relative infiltration abundance. Comparing the
statistically significant data, we found that in cluster C1, there
were higher levels of immune cell infiltration for Activated
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CD4 T cells, Effector Memory CD4 T cells, Regulatory T cells, and
Type 2 T helper cells. Conversely, in cluster C2, Eosinophils
exhibited higher levels of infiltration compared to cluster C1.
These findings suggest that each cluster may play distinct and
significant roles in different immune response regulations.

Next, we analyzed the expression levels of CYT, GFP, IFNG, and
TMB between clusters C1 and C2, finding that only CYT showed
statistically significant differences, with cluster C1 exhibiting
significantly higher activity than cluster C2. To further
understand the TMEs, we used five different
algorithms—CIBERSORT, MCP-counter, quanTIseq, EPIC, and
TIMER—to assess the infiltration levels of immune cell subsets in
the two clusters. The results aligned with our earlier findings.

We then extracted data for 150 immunomodulators and
chemokines from the TISIDB database, including chemokines,
Immunoinhibitors, Immunostimulators, MHC, and receptors. We
analyzed their expression patterns in both clusters. The results
indicated that these five types of substances were generally highly
expressed in cluster C1 and under-expressed in cluster C2. This
could suggest that cluster C1 is more closely associated with immune
regulation and immune response, while cluster C2might be involved
in the inhibition and regulation of immune activity.

Finally, we used GSVA to measure the enrichment scores for the
anti-cancer immunity cycle and immunotherapy-predicted
pathways in the two clusters. Upon observation, we noted that
the C1 cluster exhibited higher Enrichment Scores in both the anti-
cancer immunity cycle and immunotherapy-predicted pathway.
Therefore, we reasonably infer that target genes within the
C1 cluster play a pivotal role in the regulation and treatment of
anti-cancer immunity. This finding contributes to a better
understanding of the mechanisms underlying different cell
clusters in immunotherapy, while also providing significant
guidance for the formulation of cancer treatment strategies.

We utilized the “limma” package to identify differential genes
between the C1 and C2 clusters and performed GSEA. This revealed
upregulated cancer signatures in both clusters. Specifically, in the
C1 cluster, upregulated cancer signatures were closely associated
with various aspects of tumor initiation, progression, immune
microenvironment, metastasis, and cell cycle regulation.
Conversely, upregulated cancer signatures in the C2 cluster
implicated multiple metabolic pathways, suggesting that
modulating aberrant metabolic pathways might be a crucial
therapeutic strategy in HCC treatment. Additionally, GSEA
helped identify upregulated and downregulated signaling
pathways in the C1 cluster. Analysis revealed that upregulated
signaling pathways were linked to tumor cell proliferation and
signal transduction, while downregulated pathways involved
fundamental metabolic processes such as the complement and
coagulation cascade, energy metabolism, and protein synthesis.
Overall, the abnormal proliferation of cells in the C1 cluster,
coupled with suppressed metabolic processes, exacerbates tumor
growth, dissemination, and metastasis. Furthermore, the
downregulation of the complement and coagulation cascade
pathway may be associated with the abnormal coagulation status
observed in HCC patients.

Utilizing the TCGA-LIHC dataset, we employed LASSO and
multiCOX analysis methods to construct a HCC prognostic model
and assigned scores to model factors, yielding a RiskScore for each

sample. Based on the median score, we stratified samples into high
and low-risk groups. Subsequently, KM curves were plotted to
predict prognosis for both high and low-risk groups, revealing a
progressive decrease in survival rates over time for both groups, with
notably poorer prognosis observed in the high-risk group. We
assessed the model’s diagnostic performance at 1, 3, and 5-year
time points through ROC curve analysis, demonstrating good
performance. Furthermore, we validated the prognostic model in
three external datasets (GSE76427, GSE14520, ICGC-JP) using KM
and ROC curve analyses, showing excellent accuracy and predictive
ability across different datasets.

We then examined the correlation between RiskScore and
various immune checkpoint levels and immune cell infiltration
levels. Differential gene expression analysis was performed to
identify DEGs between high and low-risk groups. Subsequently,
GSEA revealed dysregulated signaling pathways in high-risk group
patients. Analysis indicated that upregulated signaling pathways in
the high-risk group were associated with tumor cell proliferation
and cell cycle regulation, promoting malignant tumor growth and
development. Conversely, downregulated signaling pathways were
linked to anti-tumor immune responses and immune regulation,
likely facilitating tumor immune evasion and affecting the regulation
of the TME, thus exerting significant adverse effects on HCC
prognosis. These inferences also corroborated the accuracy of our
prognostic model.

Single-cell sequencing, with its outstanding resolution,
demonstrates significant advantages over bulk sequencing in
elucidating disease mechanisms. However, considering cost-
effectiveness and the convenience of large-scale application, bulk
sequencing still holds its ground. Therefore, combining these two
technologies for comparative analysis can fully leverage their
respective strengths. In this study, we conducted in-depth
differential expression and enrichment analyses on malignant cell
subpopulations and CAF subpopulations at the single-cell level,
while exploring differential gene enrichment among different
clusters and model risk groups at the bulk sequencing level.

The comparative analysis revealed that both single-cell
sequencing and bulk sequencing identified the universal
upregulation of metabolic pathways in the tumor
microenvironment, suggesting that metabolic reprogramming
may be a common feature in tumor development. Furthermore,
both technologies observed the activation of cell signaling
transduction-related pathways, which are closely related to the
proliferation and migration of tumor cells. Notably, single-cell
sequencing uniquely captured the upregulation of immune
inflammation and neuroregulatory-related pathways in malignant
cell subpopulations, which were not explicitly identified in bulk
sequencing, highlighting the powerful ability of single-cell
sequencing in resolving cell subpopulation-specific characteristics.
On the other hand, bulk sequencing detected the upregulation of
pathways related to epithelial-mesenchymal transition (EMT), a
finding not directly reflected in single-cell sequencing. Given that
EMT is a complex process involving multiple cell subpopulations
and pathway interactions, it may be implicitly manifested in single-
cell sequencing as differential expression patterns among different
subpopulations. Furthermore, we speculate that the upregulation of
metabolic and signal transduction pathways observed in single-cell
sequencing may be intrinsically linked to the activation of cell cycle
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regulation, Hippo signaling pathway, MAPK signaling pathway, and
PI3K-Akt signaling pathway observed in bulk sequencing, all of
which jointly contribute to the proliferation and survival of
tumor cells.

Despite the differences in pathway analysis between single-cell
sequencing and bulk sequencing, they both emphasize the
complexity and heterogeneity of the tumor microenvironment.
This heterogeneity may arise from interactions among different
cell subpopulations and the diversity of pathway regulation. By
integrating the results of these two sequencing technologies, we hope
to gain a deeper understanding of the molecular mechanisms
underlying tumor development and progression, and provide new
perspectives and ideas for the formulation of future therapeutic
strategies.

We conducted knockdown and overexpression experiments of
ABCA1 in two HCC cell lines. Subsequent phenotypic assays
confirmed that ABCA1 exerts a pro-oncogenic effect in HCC
cells by promoting proliferation, invasion, migration, and
reducing apoptosis. Our wet lab experiments corroborate the
bioinformatic findings, providing robust evidence for the role of
ABCA1 in liver cancer. This study not only reinforces the
computational results but also lays a foundation for future research.

However, our study still has certain limitations. We are acutely
aware that relying solely on in vitro experimental results poses
significant constraints when directly translating to clinical
applications. To bridge the gap in clinical translation, we plan to
initially utilize animal models, particularly patient-derived xenograft
(PDX) models and humanized mouse models that closely mimic the
tumor characteristics of patients, to simulate a more authentic in
vivo environment and further explore the functions and
mechanisms of ABCA1. This will include, but is not limited to,
assessing the specific effects of ABCA1 on tumor growth, metastasis,
and the tumor immunemicroenvironment in vivo. Subsequently, we
will employ high-throughput screening and precision medicine
strategies to identify potential therapeutic targets for ABCA1 and
develop corresponding therapeutic interventions. Furthermore, we
will closely monitor changes in relevant biomarkers, with the aim of
establishing a biomarker system that can predict treatment efficacy
and patient prognosis. Our objective is to build a solid evidence base
through advanced preclinical research to guide future clinical trials
and facilitate the clinical translation of ABCA1-related research.

5 Conclusion

Through comprehensive integration of TCGA, GEO, ICGC, and
TISCH2 databases, we conducted single-cell sequencing analysis and
cell communication analysis on multiple malignant and CAFs cell
subpopulations, revealing the functional characteristics and receptor
relationships of each cell subgroup. Additionally, we constructed GRNs,
delving into the regulatory factors associated with HCC and their target
genes. Utilizing an unsupervised clustering analysis based on target
genes, we identified two clusters, C1 and C2, and analyzed their TME
differences. Furthermore, through GSEA, we identified upregulated
cancer features in two clusters and signaling pathways that were both
upregulated and downregulated in the C1 cluster.

We constructed a prognostic model and assigned scores,
grouping patients based on RiskScore and predicting their

prognosis accordingly. The results demonstrated the excellent
accuracy and clinical utility of our model. Additionally, we
discovered a correlation between RiskScore, immune checkpoint
expression, and immune cell infiltration levels. GSEA analysis
revealed dysregulated signaling pathways in the high-risk group,
adversely affecting HCC prognosis. Our study provides important
insights for the prognostic evaluation and formulation of treatment
strategies for HCC.
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