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Morphine has a crucial role in treating both moderate to severe pain and chronic
pain. However, prolonged administration of morphine can lead to tolerance of
analgesia, resulting in increased doses and poor treatment of pain. Many patients,
such as those with terminal cancer, require high doses of morphine for long
periods. Addressing morphine tolerance can help this group of patients to escape
pain, and the mechanisms behind this need to be investigated. Microglia are the
key cells involved in morphine tolerance and chronic morphine administration
leads tomicroglia activation, which in turn leads to activation of internal microglia
signalling pathways and protein transcription, ultimately leading to the release of
inflammatory factors. Inhibiting the activation of microglia internal signalling
pathways can reduce morphine tolerance. However, the exact mechanism of
how morphine acts on microglia and ultimately leads to tolerance is unknown.
This article discusses the mechanisms of morphine induced microglia activation,
reviews the signalling pathways within microglia and the associated therapeutic
targets and possible drugs, and provides possible directions for clinical prevention
or retardation of morphine induced analgesic tolerance.
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1 Introduction

Opioid analgesics are irreplaceable drugs for the clinical treatment of chronic pain,
cancer pain, intraoperative analgesia and postoperative analgesia. However, long-term use
of opioids can trigger opioid tolerance, which in turn leads to increased doses, leading to
more serious side effects such as respiratory depression, sedation, constipation, dependence,
and addiction (Ing Lorenzini et al., 2022). The search for mechanisms for the development
of tolerance and clinically alternative dosing regimens has therefore become particularly
urgent. Morphine is the classic opioid. Numerous studies have shown that morphine
activates the neuroinflammatory response, activating glial cells and promoting the release of
inflammatory cytokines such as interleukin (IL)-1β, IL-6, IL-18, and tumour necrosis factor
(TNF)-α (Cai et al., 2016; Pan et al., 2016; Wang et al., 2009; Zhang et al., 2017; Zhou et al.,
2010). Microglia, differentiated from haematopoietic stem cells, are the outpost cells of
infection and injury. They account for approximately 5% of human neuroglia and 5%–20%
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of all rodent glial cells (Saijo and Glass, 2011). Microglia are key cells
involved in morphine tolerance, and morphine activates internal
microglia signalling pathways and increases the expression of
inflammatory factors. Inhibitors of microglia can alleviate
morphine tolerance (Cui et al., 2008), however, the molecular
mechanisms involved are not yet clear.

In this paper, we explore the signalling pathways involved in
microglia associated with morphine tolerance based on existing
research, and summarise the basic research available, including
possible combination regimens and potential targets, in the hope
of providing new ideas for clinical pain management and future
research on morphine tolerance.

2 Microglia activation and
morphine tolerance

Microglia are derived from mesodermal bone marrow
haematopoietic stem cells, which are specialised “macrophages”
of the central nervous system (CNS) (Saijo and Glass, 2011).
Although it was realised early on that there were significant
differences in the analgesic effects of morphine across sexes and
in the tolerance of long-term morphine administration (Craft et al.,
1999), the mechanisms underlying such differences remained
unclear. It has been shown that minocycline, a microglia
inhibitor, enhances the analgesic effect of morphine in male rats
but does not affect the outcome in female rats (Posillico et al., 2015),
suggesting that there may be a sex difference in the activation of
microglia in morphine analgesia, but the influence of the different
effects of minocycline in different sexes cannot be ruled out. Reiss
et al. (2022) found that knockout of μ-opioid receptors in microglia
did not result in sex differences in tolerance, but did result in sex
differences in nociceptive hypersensitivity (OIH): OIH disappeared
in knockout male mice but persisted in females. A recent study
showed gender differences in LPS-induced activation of microglia in
rats (Nikodemova et al., 2024), and it is not clear whether the same
difference exists for activation of microglia by morphine. It may be
precisely because morphine has better analgesic effect and tolerance
in males (Craft et al., 1999), which most of the previous studies on
morphine tolerance have selected only male rats/mice as the study
subjects, and we believe that there is value in having a study on
morphine tolerance and gender dimorphism in microglia.

Microglia can respond rapidly to stimuli of infection and injury,
rapidly changing their morphology to an activated state of “amoeba”.
They are transformed into different forms by different stimuli, themore
common being M1 “classical activation” and M2 “selective activation”,
with M1 releasing large amounts of proinflammatory cytokines and
M2 releasing anti-inflammatory cytokines (Xu et al., 2020). Different
microglia predominate at different times after injury (Li et al., 2022),
whereas during morphine tolerance, microglia are activated and
transformed towards M1 and M2 phenotypes, with M1 releasing
large amounts of inflammatory factors that promote the
development of morphine tolerance (Tu et al., 2021), in contrast,
the anti-inflammatory effect of M2 microglia inhibits the
development of morphine tolerance to some extent (Jokinen et al.,
2018) (Figure 1). In fact, M2 microglia were subdivided into three
different subtypes in the study, and there was crosstalk between the
different subtypes of microglia (Li et al., 2022), whereas the roles played

by the different subtypes ofM2microglia inmorphine tolerance are still
not fully understood, and further studies are needed in the future. Thus,
in conclusion, the above results suggest that promoting the
transformation of M1-type microglia to M2-type may be able to
inhibit the development of morphine tolerance.

Previous studies have suggested that morphine activates
microglia and initiates downstream signalling by acting on toll-
like receptor 4 (TLR4) (Eidson and Murphy, 2013), calcitonin gene-
related peptide (CGRP) (Wang et al., 2010a; 2010b; 2009), P2X7Rs
(Chen et al., 2012; Zhou et al., 2010) and μ-opioid receptors (MOR)
(Merighi et al., 2013; 2012). However, the controversial point
remains whether microglia can express MOR (Cataldo et al.,
2019; Corder et al., 2017; Kao et al., 2012; Maduna et al., 2019).
Opioids such as morphine exerts pharmacological effects and side
effects by acting directly on MOR (Günther et al., 2018). Some
studies have suggested that microglia do not express MOR (Corder
et al., 2017; Kao et al., 2012). Corder et al. (2017) demonstrated by
gene sequencing, selective knockdown of MOR and the use of
peripheral antagonists of MOR that microglia do not express
MOR, but rather that MOR on peripheral primary afferent injury
receptors is involved in the development of morphine tolerance. In
contrast, other studies have suggested that microglia express MOR
(Cataldo et al., 2019; Maduna et al., 2019), as Maduna et al. (2019).
demonstrated that microglia express MOR and its associated
proteins through analysis of the microglia gene transcriptome
from humans and rodents. Similarly, Reiss et al. demonstrated
this by comparing MOR expression levels in microglia from
MOR knockout (cKO) and control groups of mice (Reiss et al.,
2022). We suggest that the differences in the results of these studies
may be related to the different phenotypes of microglia and may also
result from the different experimental methods and the different
experimental environments.

In recent years, several new targets have been identified, such as the
platelet-derived growth factor receptor β subunit (PDGFRβ), and
continuous intrathecal injection of the PDGFRβ inhibitor imatinib
prior to morphine administration attenuates morphine tolerance and
reduces the expression of Iba1, a marker of microglia activation, in the
rat spinal cord (Li et al., 2020). In addition, the results of another in vivo
experiment showed that the microglia marker CD11b colocalization
with epidermal growth factor receptor (EGFR) in the rat spinal cord,
and that intrathecal injection of the EGFR antagonist AG1478 reduced
the expression of CD11b and increased the analgesic effect of morphine
(Yang et al., 2021b). Another study based on a mouse model of
neuropathic pain (NCP) found that morphine was able to activate
the aplin receptor (APLNR) to palmitoylate it and, through its
downstream ERK1/2 signalling, to activate microglia, and that
inhibition of the APLNR was able to reverse the morphine-induced
increase in Iba-1 expression (Fan et al., 2024). It has also been found that
microglia activation associated with morphine tolerance occurs at the
spinal cord level (Jokinen et al., 2018). Chronic morphine
administration upregulated the expression of the microglial cell
marker Iba1 as well as CD11b in the spinal cord (Horvath and
DeLeo, 2009; Zhou et al., 2010), which are barely expressed in the
resting state of microglia. Activation ofmicroglia in the spinal cord or in
the cerebral cortex leads to the release of different inflammatory or anti-
inflammatory factors (Nikodemova et al., 2024). Therefore, if microglia
activation in the spinal cord can be selectively inhibited, it may be
possible to reduce morphine tolerance.
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3 Signaling pathways in microglia and
morphine tolerance

3.1 TLR signalling pathway

Toll-like receptors (TLRs) belong to the TIR receptor
superfamily, which consists of two subgroups: Toll-like receptors
and interleukin (IL)-1 receptors (Liew et al., 2005). The different
TLRs are distributed in different cells and they play an influential
role in immunity (McGuire and Arthur, 2015). Among them,
TLR4 serves as an important signal involved in morphine
tolerance (Liang et al., 2016; Wang et al., 2021; Zhang et al.,
2017). It has been previously demonstrated that TLR4, mainly in
microglia, is involved in the development of morphine tolerance and
that the use of TLR4 antagonists can reduce morphine tolerance in a
dose-dependent manner (Eidson and Murphy, 2013; Wang et al.,
2021). Some studies have shown that morphine is able to bind
specifically to the LPS-binding pocket of myeloid differentiation
protein 2 (MD-2), a TLR4 accessory protein, and induces an
inflammatory response in microglia via the TLR4/MD-2 complex
(Hutchinson et al., 2010;Wang et al., 2012). This may be themode of
action of TLR4 in morphine tolerance. Currently known upstream
signals of TLR4 in morphine tolerance include the transcription
factor TCF7L2, the cannabinoid receptor CB2 and the high mobility

group box-1 (HMGB1) (Chen et al., 2021; Lin et al., 2023; Ma et al.,
2021). TCF7L2 is an important transcription factor that is
upregulated in models of neuropathic pain (Xu Z. et al., 2015;
Zheng et al., 2019). Chronic morphine administration increases the
expression of TCF7L2, which is able to transcriptionally regulate the
expression of TLR4 receptors and influence TLR4 downstream
signalling (Chen et al., 2021). The low-dose cannabinoid receptor
CB2 agonist AM1241 was able to regulate TLR4 mRNA expression
in morphine-tolerant mice, which in turn regulated TLR4 and its
downstream p38 MAPK signalling pathway (Ma et al., 2021).
HMGB1 is a heat shock protein, and both in vivo and in vitro
experiments, morphine increased the expression of HMGB1, while
in vitro experiments demonstrated that HMGB1 released from
neurons activated TLR4 on microglia and activated its
downstream signalling (Lin et al., 2023). Next, TLR4 activation
activates microglia and initiates downstream signalling pathways,
such as NF-κB, MAPK and NLRP3 (Lehnardt et al., 2003; Lin et al.,
2023; Olson and Miller, 2004). Studies have demonstrated that
morphine is able to increase the phosphorylation of p65 and
p38 by activating TLR4 signalling (Chen et al., 2021; Pan et al.,
2016). Moreover, activation of TLR4 in microglia also promotes
phosphorylation of TGF-β-activated kinase 1 (TAK1), and
inhibition of increased phosphorylation of TAK1 attenuates
morphine tolerance and does not affect TLR4 expression (Wang

FIGURE 1
Different phenotypes ofmicroglia activation andmorphine tolerance. Duringmorphine tolerance, microglia transform from a resting to an activated
phenotype, with different activation phenotypes releasing different cytokines; M1 microglia release pro-inflammatory cytokines, whereas M2 microglia
release anti-inflammatory cytokines, which enhance tolerance, and anti-inflammatory cytokines, which delay tolerance. Therefore, inducingmicroglia to
transform from M1 to the M2 phenotype may be able to attenuate morphine tolerance.
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et al., 2021), suggesting that TLR4 and its downstream signal
TAK1 are involved in morphine tolerance. TAK1 is a MAPK
kinase kinase family, the most common upstream kinase of
MAPK (Chen et al., 2015), and one of the upstream signals of
NF-κB (Liew et al., 2005). Therefore, in morphine tolerance,
TLR4 may regulate p38 MAPK and NF-κB signalling indirectly
by activating TAK1. Furthermore, TLR4 in microglia is also able to
regulate receptor transporter protein 4 (RTP4) expression in the
hypothalamus, and knockdown of RTP4 attenuates tolerance (Fujita
et al., 2022).

Recently, another study showed that TLR2 expression is
increased during morphine tolerance and that inhibition of
microglia using minocycline was able to reduce TLR2 expression
and attenuate morphine tolerance (Peng et al., 2023). However, due
to the limitations of this study, the cellular localisation of TLR2 is
unknown and whether it is TLR2 onmicroglia that is involved in this
process remains unclear and requires further investigation. But this
result suggests that TLRs in addition to TLR4 signalling, TLR2 is also
involved in morphine tolerance and is associated with microglia
activation.

Briefly, among the Toll-like receptor family, TLR4 in microglia
plays an important role in the development of morphine tolerance,
which is an essential signal for microglia activation as well as for
triggering the cascade reaction (Eidson and Murphy, 2013; Wang
et al., 2021), while TLR2 is in turn involved in the signalling circuit of
morphine tolerance and microglia activation (Peng et al., 2023), and
morphine tolerance in rats with selective knockout of TLR2/
4 attenuated (Derangula et al., 2022), thus TLRs are expected to
be new targets for delaying morphine tolerance and pain diagnosis
and treatment.

3.2 p38 MAPK and NF-κB
signalling pathways

Mitogen-activated protein kinases (MAPK) are a group of
serine-threonine protein kinases that can be activated by a
variety of stimuli, such as cytokines, growth factors,
neurotransmitters, and hormones (Widmann et al., 1999).
P38 MAPK is one of five families of mammalian MAPKs; the

FIGURE 2
Morphine tolerance-related signaling pathways insidemicroglia. This figure is a speculation of some of the signaling pathways insidemicroglia based
on current research. P2X4R and P2X7R activate different downstream signals upon ATP stimulation. P2X4R releases BDNF, while P2X7R activates
mitochondria and p38MAPK to increase inflammatory cytokine release. Some receptors onmicroglia such as PDGFRβ, TLR4, and EGFR activate different
signals downstream after some upstream stimulus. The TLR4/p38 MAPK/NF-κB signaling pathway was demonstrated early on in morphine
tolerance, and p38 MAPK in this pathway is crosstalk, which has various upstream signals, not only under the regulation of TLR4. Both PDGFRβ and EGFR
activate NF-κB through the MAPKs family and initiate transcription to increase the expression of inflammatory cytokines.
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other families include extracellular signal-regulated kinases 1/2
(ERK1/2), c-Jun N-terminal Kinase (JNK), ERK3/4, and ERK5
(Widmann et al., 1999). Among these, the p38 MAPK pathway
in spinal microglia is involved in the development of morphine
tolerance (Cui et al., 2006; Liu W. et al., 2006), and pharmacological
blockade of p38 MAPK attenuates morphine tolerance (Gong et al.,
2021). In addition to TLR4, there are many other signals upstream of
p38 MAPK during the development of morphine tolerance:
PDGFRβ mediates cellular autophagy via p38 (Jia et al., 2021),
calcitonin gene-related peptide (CGRP) (Wang et al., 2009) and
P2X7 (Zhou et al., 2010) all regulate the activation of p38 MAPK in
microglia. Interestingly, Cui et al. found that the administration of
minocycline to rats starting on day 8 after morphine administration
reduced the activation of p38 in spinal microglia but did not reverse
the established morphine tolerance, suggesting that the p38 MAPK
pathway may be more involved in the development than in the
maintenance of morphine tolerance (Cui et al., 2008). At the same
time, it was shown that gene silencing of E3 ubiquitin ligase Pellino1
(Peli1) in the spinal cord delays the development of morphine
tolerance but does not reverse the tolerance that has already been

established, a suggestion supported by the fact that Peli1 is involved
in morphine tolerance via theMAPK pathway (Wang L. et al., 2020).
In addition, morphine activates Nuclear factor-kappaB (NF-κB), an
important transcription factor responsible for the transcription of
inflammatory factors in neurons and microglia, and translocates it
from the cytoplasm to the nucleus (Chen et al., 2006; Pan et al.,
2016). NF-κB is involved in several intracellular signalling pathways,
such as the cAMP/protein kinase A (PKA)/cAMP reaction (CREB)
pathway, the PI3K/Akt/IκB kinase complex inhibitor (IKK)
pathway, and the TLRs pathway (McGuire and Arthur, 2015;
Ye, 2001).

Calcitonin gene-related peptide (CGRP) is a neuropeptide
widely distributed in the peripheral and central nervous system,
including the dorsal root ganglion (DRG) and its primary afferent
terminals in the spinal cord, and is involved in the regulation of
injury perception (Rosenfeld et al., 1984; Tomas et al., 1992). It has
been shown in numerous studies that CGRP signalling activates
p38 and NF-κB signalling in microglia and is involved in morphine
tolerance, while the mu-opioid receptor (MOR) is involved in the
regulation of CGRP as an upstream signal (Jokinen et al., 2018;

TABLE 1 Drugs that target microglia to delay morphine tolerance.

Therapeutic drugs Administration Targets Ref.

Teneligliptin in vivo: rats, morphine (15 μg/μL, h, i.t.) and Teneligliptin (2 μg/μL, h,
i.t), 7 d

Nrf2, HO-1 Kuthati et al. (2023)

Corilagin in vitro: BV2 cells, Corilagin (0.1, 1 or 10 μM)18 h, then Corilagin (0.1, 1 or
10 μM) &morphine (200 μM) 6 h

TLR2 Guan et al. (2023)

Melatonin in vivo: rats, morphine (10 μg/5 μL, i.t., b.i.d.), 7 d, melatonin (60 μg/5 μL,
i.t.), 30 min before morphine administration (Peng et al., 2023)

TLR2/NLRP3 Chen et al. (2020), Lin et al. (2016), Liu
et al. (2020), Peng et al. (2023)

in vivo: mice, morphine (10 mg/kg, s.c., q.d.)7/14/21 d, melatonin
(0.5 mg/kg, i.p.), 30 min before morphine administration, 7/14/21 d
in vitro: BV2 cells, melatonin (ethanol solution, 200 μM) 30 min, then
morphine (200 μM, 6 h) or LPS(1 μg/mL, 6 h) (Liu et al., 2020).

NLRP3

in vivo: rats, morphine (15 μg/h, i.t.) and melatonin (3, 6 or 12 g/h, i.t.), 5 d
(Chen et al., 2020)

Antioxidative
Enzymes

in vivo: rats, morphine (15 μg/h, s.c.), 7 d, then 3 hours later melatonin
(10 μg/h, s.c., 30 min) (Lin et al., 2016)

HSP27

Bulleyaconitine A (BAA) in vivo: rats, morphine (10 mg/kg, s.c., b.i.d.), 10 d, BAA (0.4 mg/kg, i.g.),
30 min before morphine administration, 10 d (Mai et al., 2020)

PKCγ Li et al. (2016), Mai et al. (2020)

in vivo: rats, morphine (20 mg i.t., b.i.d.) and BAA (300 ng, i.t., bid), 7 d (Li
et al., 2016)

dynorphin A

Glucosamine in vivo: mice, morphine (20 mg/kg, s.c., b.i.d.), 9 d, glucosamine(500,
1,000 and 2000 mg/kg, i.g.) 30 min before morphine administration, 9 d

iNOS, TLR4 Basiri et al. (2019)

Extracts of Hericium
erinaceus (EHE)

in vitro: BV2 cells, EHE (1 ng-1 μg/mL) 30 min, then morphine
(10–100 μM, 2 h)

HDAC 6/HSP90 Yeh et al. (2019)

Lidocaine in vivo: mice, morphine (10 μg/10 μL, i.t., q.d.)and lidocaine (100, 200 and
400 μg/10 μL, i.t., q.d.), 7 d;
in vitro: BV2 cells, morphine (200 μM)and lidocaine (10 μM), 12 h

AMPK-SOCS3 Zhang et al. (2017)

Atorvastatin in vivo: mice, morphine (20 mg/kg, s.c., b.i.d.), 9d, atorvastatin (5, 10,
20 mg/kg, i.p., b.i.d.), 30 min before morphine administration, 9d

iNOS, TLR4,
TNF-α

Pajohanfar et al. (2017)

Procyanidine in vivo: mice, morphine (10 mg/kg, s.c., b.i.d.), Q12 h, 7 d, procyanidine (20,
40 or 80 mg/kg, i.g., b.i.d.)15 min before morphine administration, 7 d
in vitro: BV2 cells, morphine (200 μM) or LPS(1 μg/mL) and procyanidine
(1‰ DMSO), 12 h

p38 MAPK-
NLRP3

Cai et al. (2016)

a.c.: subcutaneous injection; i. t.: intrathecal injection; i. g.: intragastric administration; i. p.: intraperitoneal injection; q. d.: quake die (once a day); b. i.d.: bis in die (twice a day); Q12 h: Quaque

12 hora (Once every 12 h).
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Wang et al., 2010a; 2010b; 2009; Zadina et al., 2016). Furthermore,
elevated expression of the neuronal activation marker c-fos has been
suggested as an indicator of morphine tolerance in recent studies
(Pan et al., 2016; Wang L. et al., 2020), and application of exogenous
CGRP also increased c-fos expression in microglia (Wang et al.,
2010b). Adrenomedullin (AM) belongs to the calcitonin gene-
related peptide (CGRP) family. AM is involved in the activation
of microglia in the morphine tolerance process and affects the
expression of inflammatory factors (Zeng et al., 2014).

Activation of p38 MAPK and NF-κB signalling by upstream
signals, including TLR4, increases the expression of
inflammatory factors such as IL-1, IL-6, IL-18 and TNF-α (Cai
et al., 2016; He et al., 2014; Wang L. et al., 2020), while some
inflammatory factors such as IL-1β and TNF-α, in turn, activate
p38 and NF-κB signalling in microglia through their correlated
receptors (Oeckinghaus et al., 2011; Skaug et al., 2009), which
may accelerate the establishment of tolerance in the early stages
of morphine tolerance (Lin et al., 2015). Besides,
NLRP3 inflammasome are another important signal
downstream (Cai et al., 2016; Chen et al., 2021; Wang et al.,
2021; Zhang et al., 2017). Knockdown of NLRP3 reduces
microglial activation, attenuates morphine tolerance and
affects pain thresholds in mice (Liu et al., 2020; Wang H.
et al., 2020). NLRP3 inflammasome, which consists of the
apoptosis-associated particulate protein ASC, caspase-1 and
NLRP3, is able to activate caspase-1 and promote the
conversion of pro-IL-1β and pro-IL-18 to IL-1β and IL-18
(O’Neill, 2008). Whereas Ac-YVAD-cmk (YVAD), a selective
irreversible inhibitor of caspase-1, delays morphine tolerance
(Hutchinson et al., 2008), it reduces the expression of IL-1β in
microglia in vitro (Liang et al., 2019). Phosphorylation of TAK1,
the upstream signal of p38, can increase NLRP3 expression, while
knockdown of NLRP3 does not affect TAK1 expression (Wang
et al., 2021). The current study shows that upstream signals of
NLRP3 inflammasome include P2X7R (Cai et al., 2016; Wang H.

et al., 2020) and ROS (Juliana et al., 2012) signals in addition to
p38 MAPK/NF-κB, which are involved in NLRP3 inflammasome
activation during the onset of morphine tolerance. In addition,
melatonin is able to alleviate morphine tolerance by reducing
levels of NLRP3, TLR2 (Peng et al., 2023) and ROS(Chen et al.,
2020; Liu et al., 2020). Zingerone delayed morphine tolerance by
inhibiting NLRP3 inflammasome and oxidative stress, and it was
experimentally demonstrated that zingerone was able to reduce
morphine-induced protein of IL1β, NLRP3, caspase-1, and ASC
expression increases (Molavinia et al., 2024). Taken together,
these studies illustrate the potential role of NLRP3 signalling in
the progression of morphine tolerance.

A recent study demonstrated that metformin attenuated
morphine tolerance by inhibiting the activity of the TLR4/
p38 MAPK/NF-κB pathway. Morphine was able to induce
translocation of p65 NF-κB from the cytoplasm to the nucleus
and enhance phosphorylation of p38 MAPK, and TLR4 expression,
but both were inhibited by metformin (Pan et al., 2016).
Procyanidins (an NLRP3 inhibitor) inhibited morphine-induced
NF-κB translocation and increased phosphorylation of
p38 MAPK (Cai et al., 2016).

In conclusion, p38 MAPK/NF-κB signalling in microglia is
involved in the development of morphine tolerance, where
positive inflammatory factor-receptor-transcription factor
feedback signalling may be a key factor influencing the
establishment of morphine tolerance. Drugs targeting this
signalling pathway and its associated regulatory signals may be
able to alleviate morphine tolerance.

3.3 P2X4 and P2X7 signaling pathways

P2X4 is involved in the activation and migration of microglia
and the formation of morphine tolerance, and inhibitors of the
P2X4 receptor (P2X4R) can reduce morphine tolerance (Horvath

TABLE 2 Potential targets to inhibit morphine tolerance.

Therapeutic targets Methods Related mechanisms Ref.

RTP4 in the Hypothalamus RTP4 condition knockdown upstream: TLR4/MAPK Fujita et al.
(2022)

VGluT2 Inhibits or knockdown spinal
VGluT2

upstream: BDNF/TrkB
downstream: Inhibits glutamate release; Inhibits the release of
inflammatory factors; Inhibits microglial activation

He et al. (2022)

TCF7L2 TCF7L2 knockdown downstream: Inhibition of TLR4 expression; Inhibits the expression of
inflammatory factors; Inhibits microglial activation

Chen et al.
(2021)

Peli1 Peli1 knockdown downstream: Inhibits K63-linked ubiquitination of TRAF6 in the spinal
cord; Inhibits MAPKs signal activation; Inhibits microglial activation

(Wang L. et al.,
2020)

CatS Inhibits CatS upstream: P2X7R
downstream: CX3CL1-CXCR1
Inhibits microglial activation; Inhibits phosphorylation of p38 MAPK

Xiao et al.
(2019)

Mice: MrgC receptors human:
MrgX1 receptors (Dong et al., 2001)

Activate MrgC upstream: BAM8-22
downstream: Inhibits the activation of microglia; Inhibits the expression of
P2X4R; Inhibits the expression of TLR4

Zhang et al.
(2019)

BK channel Inhibits BK channel downstream: P2X4Rs/SOCE Hayashi et al.
(2016)

RTP4, Receptor transporter protein 4; VGluT2, vesicle glutamate transporter; TCF7L2, a risk gene for schizophrenia and autism; Peli1, E3 ubiquitin ligase Pellino1; CatS, Cathepsin S; Mrg

receptors, Mas-related gene receptors; BK, channel, Ca2+ activated K+ channel; SOCE, store operated calcium entry.
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et al., 2010; Zeng et al., 2021). Morphine activates P2X4Rs in
microglia via ATP, which in turn causes the release of brain-
derived neurotrophic factor (BDNF) (Ferrini et al., 2013). In
turn, BDNF is involved in the regulation of vesicular glutamate
transporter protein (VGluT2) expression during morphine
tolerance, causing an increase in glutamate release (He et al.,
2022), which may contribute to P2X7 receptor activation (see
below for the specific mechanism). In addition, μ opioid
receptors may be involved in the upregulation of P2X4Rs in
microglia (Ferrini et al., 2013). In contrast, in another study, the
inhibitor antisense oligonucleotide (asODN), which inhibits the
function and expression of P2X4R, suppressed the morphine-
induced increase in mu-opioid receptor protein expression
(Horvath et al., 2010). It can therefore be hypothesized that μ

receptors and P2X4 receptors promote one another’s activation
during morphine tolerance formation, facilitating the
upregulation of the other’s expression on the cell membrane surface.

The purinergic P2X7 receptor (P2X7R) is involved in the acute
analgesia of morphine (Zeng et al., 2021). It has been shown inmany
studies that P2X7 is involved in the development of morphine
tolerance and that morphine tolerance can be attenuated by
inhibiting P2X7R activity (Chen et al., 2012; Wang H. et al.,
2020; Zadina et al., 2016; Zhou et al., 2010). Morphine tolerance
leads to increased glutamate concentrations in rat cerebrospinal
fluid (Wen et al., 2004), which in turn may lead to excessive ATP
release from spinal glial cells in an AMPA receptor-mediated
calcium-dependent manner (Liu G. J. et al., 2006; Zhou et al.,
2010), which ultimately activates spinal P2X7R via ATP.
Additionally, activation of P2X7R will in turn cause ATP and
glutamate release, and this positive feedback may contribute to
morphine tolerance in sustained activation of P2X7R (Ye et al.,
2003). In turn, glutamate transporter proteins are critical for the
analgesic effects of morphine (Zhou et al., 2010). In an in vitro
experiment based on primary microglia from rat spinal cord,

FIGURE 3
Crosstalk amongmicroglia and astrocytes with neurons. During chronic morphine administration, there is crosstalk between neurons and glial cells
(e.g., astrocytes, microglia). Substances such as ATP and glutamate released by neurons stimulate glial cell activation: activation of microglia activates
signalling pathways (e.g., p38, NF-kB, ERK, etc.) and triggers the release of pro-inflammatory substances, which in turn act on neurons and glial cells; also,
when astrocytes are activated, the activation of signalling pathways (e.g., JNK, ERK, etc.) also triggers the release of pro-inflammatory mediators,
which together act on glial cells and neurons. These pro-inflammatory substances further exacerbate this response, leading to more glial cell activation
and inflammatory response, and ultimately morphine tolerance.
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experiments suggest that Src kinase may be involved in morphine-
induced activation of P2X7R (Leduc-Pessah et al., 2017). The site of
action may be the P2X7R located at the intracellular C-terminal
Y382–384 site, which contains three tyrosine residues (Leduc-Pessah
et al., 2017). P2X7R activation and Ca2+ influx promote activation of
the p38 MAPK, IL-1β or IL-18 pathways in microglia, followed by
IL-18 activation of IL-18R, leading to activation of astrocytes and
triggering a series of inflammatory responses (Chen et al., 2012;
Wang H. et al., 2020). In addition, inhibition of P2X7R in the spinal
cord reduces the activation of NLRP3 inflammasome during
morphine tolerance (Wang H. et al., 2020).

In conclusion, P2X4 and P2X7 are involved in the establishment
of morphine tolerance and may have a reciprocal regulatory role,
however, the mechanisms involved need to be further investigated.
Notably, the regulatory role of P2X7 signalling on the p38 MAPK/
NLRP3 inflammasome signalling pathway also plays a role in
morphine tolerance. This suggests that the establishment and
maintenance of morphine tolerance is a complex process in
which multiple signalling pathways are involved in regulating
and promoting each other. Therapeutic agents targeting P2X4R
or P2X7R could be a new approach to alleviate morphine tolerance.
In turn, the series of signalling pathways they trigger may become
new therapeutic targets for reducing morphine tolerance.

3.4 PTK family signalling pathways

Protein tyrosine kinases (PTKs) are a large family of receptor-
and non-receptor-type tyrosine kinases. Epidermal growth factor
receptor (EGFR) and platelet-derived growth factor receptor
(PDGFR) are two very common members of the receptor-type
tyrosine kinase family (Dr et al., 2000; Hubbard and Till, 2000).
Yang et al. demonstrated through in vivo experiments based on rats
and in vitro experiments based on BV2 cell lines that morphine
activates EGFR and its downstream ERK signalling and activates
microglia, and that EGFR inhibitors reduce morphine tolerance and
inhibit the expression of inflammatory factors (Yang et al., 2021b;
Yang et al., 2021a). In another study, the EGFR antagonist gefitinib
was able to prevent morphine tolerance but had no analgesic effect
by itself (Puig et al., 2020). Chronic administration of morphine
increases the phosphorylation of PDGFRβ and p38 MAPK in
microglia (Jia et al., 2021), while the study found that PDGFRβ is
involved in microglia activation and that JNK may be an upstream
signal in this pathway (Li et al., 2020). Moreover, there is a reciprocal
regulation of EGFR and PDGFRβ in the regulation of mechanical
abnormal pain (Puig et al., 2020), and this mechanism may also be
involved in morphine tolerance. tropomycin receptor kinase B
(TrkB) is a receptor for BDNF, which belongs to the nerve
growth factor receptor family, a subfamily of the receptor-type
tyrosine kinase family (Ségaliny et al., 2015). The involvement of
TrkB in morphine tolerance is controversial; Ferrini et al. found that
antibodies to TrkB did not reduce morphine tolerance (Ferrini et al.,
2013), whereas He et al. successfully reduced morphine tolerance
using the tyrosine kinase inhibitor K252a (He et al., 2022). The same
morphine concentrations were used in both studies, but it is possible
that different blocking mechanisms of TrkB/BDNF signalling or
different rodents (rat/mouse) contributed to the different results.
Notably, in Ferrini et al.’s experiments, TrkB antibodies were able to

inhibit morphine-induced nociceptive hypersensitivity (OIH)
(Ferrini et al., 2013), suggesting a different mechanism for the
development of OIH and tolerance.

In conclusion, EGFR, PDGFRβ and TrkB of the PTK family are
important players in microglia activation and morphine tolerance
(Puig et al., 2020; Puig and Gutstein, 2023; Yang et al., 2021b; Yang
et al., 2021a). Also, MAPKs signalling is a key crossroads, but the
exact mechanisms need to be further investigated and whether other
protein tyrosine kinases are involved in morphine tolerance remains
to be determined. EGFR and PDGFRβ are expected to be new targets
for improving morphine analgesia (Figure 2).

3.5 Other pathways

Morphine activates PKCε and activates the downstream Akt/
ERK signalling pathway, resulting in increased release of nitric oxide
and inflammatory factors Morphine increased CXCL10 expression
in microglia, which acts on CXCR3 on neurons, and inhibition of
CXCR3 was able to reduce tolerance (Wang et al., 2017). This
suggests that this signal is involved in the interaction between
microglia and neurons during tolerance, however, the exact
mechanism remains unclear. Microparticles (MPs) are
extracellular vesicles, and once synthesised in cells, inflammatory
factors need to be released via vesicle encapsulation. Recent studies
have shown that blood-derived MPs are involved in the activation of
microglia and the formation of morphine tolerance and have
confirmed that inflammatory factors such as IL-1β are
encapsulated in MPs (Ruhela et al., 2020). The vesicular
glutamate transporter protein VGluT2 is involved in microglia
activation and the BDNF/TrkB pathway is an upstream pathway
for its expression regulation (He et al., 2022). As previously
mentioned, P2X4Rs are able to elicit the release of BDNF, and it
is speculated that P2X4 may also be involved in the regulation of
VGluT2 expression. Knockdown of VGluT2 can inhibit the
development of morphine tolerance (He et al., 2022).

4 Treatment strategy

In a previous study, the microglia inhibitor minocycline was able
to reduce morphine tolerance by inhibiting p38 MAPK in microglia
(Cui et al., 2008). Many of the signalling pathways mentioned above
could be used as new targets to improve morphine tolerance. In
addition, several drug combination regimens have been shown to
serve as new strategies for clinical opioid analgesia.

4.1 Drugs

Candesartan is a commonly used angiotensin II receptor type
1 blocker that inhibits morphine-induced activation of microglia,
thereby reducing morphine tolerance (Zhao et al., 2022).
Candesartan increases the expression of peroxisome proliferator-
activated receptor (PPAR)γ and 5′-adenosine monophosphate-
activated protein kinase (AMPK) in morphine-induced BV2 cells
and reduces the expression of inflammatory factors in morphine-
induced BV2 cells by activating the PPARγ/AMPK signalling
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pathway (Zhao et al., 2022). While metformin is an AMPK agonist,
it has been shown in recent studies to reduce morphine tolerance
without affecting basal analgesia (Pan et al., 2016; Shirooie et al.,
2020; Wan et al., 2022). Metformin inhibits morphine-induced
microglia activation by activating AMPK (Pan et al., 2016), it
increases the expression of suppressor of cytokine signalling
pathway 3 (SOCS3) in microglia, and silencing
SOCS3 significantly inhibits the anti-inflammatory effects of
metformin (Wan et al., 2022). Glibenclamide is a KATP pathway
inhibitor and also a commonly used drug in diabetic patients. It has
been shown in recent studies to attenuate morphine tolerance and
inhibit morphine-induced microglial activation. Also, glibenclamide
inhibited morphine-induced activation of NLRP3 inflammasome
(Qu et al., 2017).We summarise some of the drugs that have targeted
microglia activation-related targets in recent animal studies
(Table 1), which may provide some new directions for the
clinical use of opioids and subsequent studies on microglia and
opioid tolerance.

4.2 Potential therapeutic targets

4.2.1 AMPK signal
5′-adenosine monophosphate-activated protein kinase

(AMPK), an AMP-dependent protein kinase, is a heterotrimeric
Ser/Thr protein kinase that regulates energy homeostasis and
metabolic stress by altering the cellular AMP: ATP ratio and is a
key molecule in the regulation of biological energy metabolism
(Zhang et al., 2009). AMPK, when activated, functions on its
own primarily by inhibiting mammalian targets of rapamycin
(mTOR)signalling (Melemedjian et al., 2011; Wang et al., 2024).
Activation of AMPK inhibits the morphine induced activation of
microglia (Han et al., 2014; Pan et al., 2016; Wan et al., 2022; Zhang
et al., 2017) and suppresses neuroinflammation and reduces
morphine tolerance by inhibiting MAPK signalling as well as
increasing the suppressor of cytokine signalling 3(SOCS3) in
microglia (Pan et al., 2016; Shirooie et al., 2020; Wan et al., 2022;
Zhang et al., 2017). It has been shown that activation of AMPK
promotes the conversion of microglia to the M2 type, thereby
reducing neuroinflammation (Xu Y. et al., 2015). In recent
studies, metformin was able to reduce morphine tolerance by
activating AMPK, and some other AMPK agonists such as
resveratrol/AICAR have also been shown to inhibit the
development of morphine tolerance (Gabriel and Streicher, 2023;
Han et al., 2014). In addition, lidocaine also indirectly activates
AMPK, decreasing levels of pro-inflammatory cytokines and
reducing morphine tolerance (Zhang et al., 2017). Therefore,
these studies reveal the promise of AMPK as a new therapeutic
target for morphine tolerance.

4.2.2 Additional targets
Several other signals have been shown in recent studies to be

involved in the process of morphine tolerance. The microglia-
specific subtype of Ca2+-activated K+ (BK) channels is a potential
therapeutic target. Paxillin, a selective inhibitor of BK channels,
attenuates morphine tolerance by inhibiting BK channels in
microglia. Activation of BK channels promotes the expression of
P2X4Rs on the cell membrane, thereby regulating the release of

BDNF (Hayashi et al., 2016). Mrg receptors are Mas-related gene
receptors that belong to the G protein-coupled receptor family and
are found in both humans and rodents. Previous studies have shown
that the rat MrgC receptor is partially homogeneous with the human
MrgX1 receptor (Dong et al., 2001). Whereas, recent studies have
found that BAM8-22, an analogue of the endogenous opioid peptide
BAM22, has a high affinity for the MrgC receptor and it is a highly
specific agonist of the MrgC receptor. Intrathecal injection of
BAM8-22 reduces morphine tolerance and enhances the
analgesic effect of morphine (Zhang et al., 2019). Accordingly,
the human MrgX1 receptor is expected to be a new target for
treatment. In addition, we summarized potential targets that may
inhibit morphine tolerance (Table 2).

5 Summary

The molecular mechanisms of morphine tolerance are
complicated and multiple, in addition to the inflammatory
response caused by glial cells, some classical theories include
receptor desensitisation, phosphorylation and receptor
endocytosis, etc. Opioid receptor (OR) plays an important role as
a target of direct action of morphine, therefore, the study of opioid
receptor is also one of the crucial for the study of morphine
tolerance. The current study shows that OR receptor
desensitisation can lead to morphine tolerance, which may be
related to the uncoupling of G proteins from OR receptors
(Badshah et al., 2024). And phosphorylation of some OR targets
may also contribute to tolerance, but it is still controversial
(Allouche et al., 2014). Moreover, Downregulation is not
necessary for tolerance (Gomes et al., 2002; Polastron et al.,
1994). Whereas, MOR internalisation mitigates tolerance
(Allouche et al., 2014). Indeed, there are more pathways
involved, such as oxidative stress and nitric oxide pathways
(Badshah et al., 2024), but these are beyond the scope of this
review. We focus more on the activation associated with
microglia, the signalling pathways that follow activation and the
release of pro-inflammatory mediators that are triggered.

There is growing evidence that long-term morphine
administration leads to tolerance and microglia activation. More
research has focused on the mechanisms of morphine-induced
microglial activation. P38 MAPK plays an important role in
microglia activation. P38 MAPK acts as the centre of the
signalling pathway within microglia and is regulated by a variety
of signalling pathways. This includes upstream TLR4,
phosphorylated TAK1, CGRP and P2X7R (Lehnardt et al., 2003;
Olson and Miller, 2004). P38 MAPK signalling, when activated,
regulates the release of cytokines such as IL-1β, IL-6 and IL-18 (Liu
et al., 2019; Wang et al., 2009), further exacerbating morphine
tolerance. One of its upstream signals is EGFR, and inhibition of
EGFR inhibits morphine-induced activation of ERK1/2 signalling in
a mouse model of cancer pain (Yang et al., 2021a; Yang et al., 2021b).
In addition, JNK, a downstream signal of MOR, is able to regulate
the activation of PDGFRβ, which in turn regulates the activation of
microglia (Li et al., 2020). Several studies have demonstrated that the
JNK signalling pathway in astrocytes regulates MOR expression and
morphine tolerance (Hu et al., 2021; Sanna et al., 2020), suggesting
that JNK signalling also plays an important role in tolerance.
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Glutamate, one of the more important excitatory neurotransmitters
in the CNS, is involved in the morphine-induced intermodulation of
P2X7 and P2X4 receptors. Briefly, P2X4R promotes glutamate
expression through BDNF regulation of VGluT2, and increased
glutamate concentrations in the cerebrospinal fluid lead to the
release of excess ATP from glial cells which in turn activates
P2X7R (Liu G. J. et al., 2006; Wen et al., 2004; Zhou et al.,
2010). Once activated, this in turn causes the release of ATP and
glutamate (Ye et al., 2003). A recent study found that P2X7R is an
important signal regulating mitochondrial energy metabolism (Sarti
et al., 2021). Combined with previous studies that ROS is associated
with the activation of the NLRP3 inflammasome during morphine
tolerance (Juliana et al., 2012), we speculate that P2X7Rmay activate
the NLRP3 inflammasome by regulating mitochondrial production
of ROS, although this speculation needs to be confirmed
experimentally.

In addition to signalling pathways within microglia, actions
between microglia and neurons also influence the course of
morphine tolerance. Wang W et al. found that microglia, when
activated, release CXCL10 and act on CXCR3 in neurons, and that
minocycline or CXCR3 inhibitors were able to attenuate tolerance
(Wang et al., 2017). Interestingly, chronic morphine administration
causes increased expression of Monocyte chemoattractant protein
(MCP-1) on neurons, and intrathecal injection of neutralizing
antibodies to MCP-1 inhibits morphine-induced microglia
activation and suppresses tolerance (Liu et al., 2017; Zhao et al.,
2012). This suggests that there is a crosstalk between neurons and
glial cells in this process. Some progress has beenmade regarding the
mechanisms of morphine tolerance and these studies have provided
new targets for delaying morphine tolerance, but further research is
still needed.

In addition to tolerance, opioids have another common and
troubling side effect - opioid induced hyperalgesia (OIH). Dose
increases caused by tolerance can exacerbate nociceptive
hypersensitivity and put patients at greater risk. Therefore,
reducing morphine tolerance could prevent dose increases and
more severe OIH. The exact mechanism still requires further
research, and addressing this issue could help many patients
suffering from pain in the clinic.

Some drugs have been used in combination with morphine with
some success in animal studies, for example, some drugs for diabetic
patients: metformin, glibenclamide, the lipid-lowering drug
atorvastatin, and the hypertensive drug candesartan (Table 1). In
clinical practice, neuralgia in diabetic patients is notorious, and most
often the analgesic drugs are ineffective. Therefore, it is still
unknown whether these drugs can play a role in reducing
morphine analgesic tolerance in the clinic, and more experiments
are needed to see whether these drugs can be promoted for use in
combination with other opioids.What is certain, however, is that the
development of drugs that can be used in combination with opioids
for these therapeutic targets is one of the future directions. In
addition, researchers have found that endomorphin analogues
can produce the same antinociceptive sensations as morphine
without activating glial cells (Zadina et al., 2016; Zhang et al.,
2019). This suggests that similar alternative drugs that have the
same analgesic effect without side effects or with minimal side effects
are also one of the future directions for opioid analgesics.

6 Conclusion

This review details the links between morphine tolerance and
microglia, including microglia activation and specific signalling
pathways. We suggest that the mechanisms involved in morphine
tolerance are complex, with crosstalk between neurons and glial
cells as well as between different glial cells (Figure 3). Therefore,
it is equally important to study neurons with astrocytes and
oligodendrocytes. Currently, relevant studies have focused on
animal experiments, and more clinical studies will likely be
needed in the future to address this issue. In addition, this
review summarises the drugs that have achieved success in
animal studies so far, and these results provide directions for
future research.
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