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Introduction:Melanoma (MM), the deadliest form of skin cancer, originates from
melanocytes. Despite advances in immunotherapy that have somewhat
improved the prognosis for MM patients, high levels of resistance to treatment
continue to result in poor clinical outcomes. Identifying novel biomarkers and
therapeutic targets is critical for improving the prognosis and treatment of MM.

Methods: In this study, we analyzed the expression patterns of WNT signaling
pathway genes in MM and explored their potential mechanisms. Using Cox
regression analysis, we identified 19 prognostic-related genes. Consistency
clustering was performed to evaluate the potential of these genes as
classifiers for prognosis. The Least Absolute Shrinkage and Selection Operator
(LASSO) algorithm was then applied to refine the gene set and construct a 13-
gene prognostic model. We validated the model at multiple time points to assess
its predictive performance. Additionally, correlation analyses were performed to
investigate the relationships between key genes and processes, including
epithelial-to-mesenchymal transition (EMT) and immune responses.

Results: We identified that CSNK1E and RAC3 were significantly positively
correlated with the EMT process, with CSNK1E showing a similar expression
trend to EMT-related genes. Both genes were also negatively correlated with
multiple immune cell types and immune checkpoint genes. The 13-gene
prognostic model demonstrated excellent predictive performance in MM
prognosis. Pan-cancer analysis further revealed heterogeneous expression
patterns and prognostic potential of CSNK1E across various cancers. Wet
experiments confirmed that CSNK1E promotes MM cell proliferation, invasion,
and migration, and enhances malignant progression through the TGF-β
signaling pathway.

Discussion: Our findings suggest that CSNK1E plays a crucial role in MM
progression and could serve as a potential therapeutic target. The WNT and
TGF-β pathways may work synergistically in regulating the EMT process in MM,
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highlighting their potential as novel therapeutic targets. These insights may
contribute to the development of more effective treatments for MM, particularly
for overcoming resistance to current therapies.

KEYWORDS

CSNK1E, TGF-β 1, epithelial mesenchymal transformationa, melanoma, LASSO

1 Introduction

Melanoma (MM) is the deadliest form of skin cancer (Guo et al.,
2021), accounting for over 75% of skin cancer-related deaths
(Rebecca et al., 2020) and approximately 0.7% of all cancer
mortality (Schadendorf et al., 2018). Moreover, MM is among
the few cancers whose incidence is currently on the rise
(Poklepovic and Luke, 2020).

Melanoma incidence and mortality are higher in men than in
women, and the underlying biological mechanisms responsible for
the sex differences in cutaneous melanoma are unknown and
complicated by clinical variables such as anatomical site, skin
light type, body mass index, and variability in immune response.
Therefore, we sought to investigate prognostic and immunological
differences in melanoma by sex.

Melanocytes originate from neural crest stem cells (NCSC), and
their malignant transformation leads to MM. Typically, MM arises
from nevus and/or intermediate lesions, undergoing progressive
dysplasia before becoming invasive and ultimately metastatic (Lin
and Fisher, 2007). The transformation of melanocytes into MM is
primarily driven by carcinogenic signaling pathways, which are
triggered by a combination of environmental and genetic factors.
Common environmental factors include ultraviolet (UV) exposure
in Caucasians, whereas in individuals of Asian and African descent,
trauma, chronic inflammation, and infections are more prevalent
triggers (Liu et al., 2016; Splendiani et al., 2024). Genetic factors
often involve a relevant family history (Splendiani et al., 2024).
Phenotypic heterogeneity exists within MM, which can significantly
affect diagnosis and prognosis (Grafanaki et al., 2023). Studies have
classified MM into four subtypes based on driving mutations:
BRAF-mutant, RAS-mutant, NF1-mutant, and wild-type BRAF/
RAS/NF1, with common mutations also including KIT or
GNAQ/GNA11 (Kiuru and Busam, 2017). Additionally,
transcriptomic analyses have categorized MM into:
undifferentiated (AXL-high, SOX10/NGFR/MITF-low), neural
crest-like (SOX10-high, NGFR-high, MITF-low), transitory
(SOX10-high, NGFR-medium, MITF-medium), and melanocytic
(SOX10-high, NGFR-low, MITF-high) (Comandante-Lou et al.,
2022). Histopathologically, MM is generally classified into
superficial spreading, nodular, malignant lentigo, and acral
lentiginous types, which may correspond to distinct pathogenic
mechanisms, thus influencing treatment approaches. For
instance, UV exposure may drive BRAF mutations, often
resulting in superficial spreading MM (Armstrong and Cust,
2017), while trauma and inflammation can elevate cytokines and
reactive oxygen species, significantly correlating with acral MM
(Zhang et al., 2014). A comprehensive grasp of the molecular
mechanisms driving MM has advanced the creation of targeted
therapies. Research indicates that immune checkpoint inhibitors are
effective in approximately one-third of patients (Sharma et al.,

2017). BRAF inhibitors (BRAFi), as well as combinations of
BRAFi and MEK inhibitors (MEKi), can benefit up to 50% of
BRAF-mutant patients with advanced MM (Flaherty et al., 2012).
Furthermore, combined checkpoint inhibitors, such as anti-PD-
1 and anti-CTLA-4 antibodies, can improve overall survival in
advanced patients (Rogiers et al., 2019). Talimogene
laherparepvec, as the first approved oncolytic virus therapy, has
also shown survival benefits. However, over 80% of patients
experience recurrence after BRAF/MEK inhibitor treatment, and
the efficacy of targeted therapies in wild-type BRAF patients is
limited (Johnpulle et al., 2016), with 60%–70% of patients not
responding to checkpoint inhibitor therapy (Jerby-Arnon et al.,
2018). Therefore, it is essential to further explore the molecular
mechanisms involved in MM development and to identify key target
genes to enhance treatment and prognostic evaluation.

TheWNT signaling pathway comprises 19 glycoproteins, including
β-catenin, Disheveled (DVL), Lrp6, and Axin (Bryja et al., 2017). This
pathway is involved in regulating the cell cycle and embryonic
development, and it plays significant roles in inflammation and
cancer progression (Clevers, 2006). Recent studies suggest that the
WNT pathway could serve as a biomarker and a potential therapeutic
target in cancer (Miete et al., 2022). There are two main classes into
which theWNT pathway is categorized: the canonical pathway and the
non-canonical pathway (Akoumianakis et al., 2022; Liu et al., 2022;
Zhao et al., 2022). The canonical WNT/β-catenin pathway is linked to
the nuclear translocation of β-catenin and usually plays a role in the
proliferation and maintenance of stem and progenitor cells (Tai et al.,
2015). In contrast, the non-canonical WNT pathways may relate to β-
catenin-independent mechanisms (Zimmerman et al., 2012) and
participate in regulating planar cell polarity (PCP) signaling and
WNT/Ca2+ signaling pathways (Anastas and Moon, 2013). The PCP
signaling pathway modulates cytoskeletal remodeling, cell polarity
regulation, and cell migration (Logan and Nusse, 2004; Semenov
et al., 2007), whereas the WNT/Ca2+ signaling pathway influences
cancer progression and intercellular communication (Liang et al.,
2003; Vargas et al., 2019). Alterations in the WNT signaling
pathway are observed in many cancers. Studies suggest that in
breast cancer, the composition of WNT signaling proteins is
modified, with alterations observed at the DNA level, in mRNA
post-transcriptional modifications, and in protein post-translational
modifications. Nevertheless, the activation of WNT signaling is
mainly driven by epigenetic changes (Xu et al., 2020). In colorectal
cancer (CRC), the WNT/β-catenin pathway is crucial for both the
initiation and sustenance of the disease, with suppression of WNT
pathway expression demonstrating therapeutic potential against CRC
(Zhao et al., 2022). Additionally, the abnormal activation of WNT/β-
catenin signaling may be associated with the development of prostate,
breast, ovarian, and pancreatic cancers (Jung and Park, 2020). Many
surface markers of cancer stem cells serve as targets for the WNT
pathway, and when this pathway is dysregulated, it can result in
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resistance to tumor treatment (Ring et al., 2014). These factors suggest
that the WNT pathway significantly influences the occurrence,
development, and prognosis of various tumors. Currently, multiple
studies have elucidated the role of the WNT/β-catenin pathway in
malignant melanoma (MM), but consensus has not been reached.
Activated canonical WNT/β-catenin signaling has been associated with
reducedmelanoma proliferation, acting as a negative regulator of tumor
growth in both patient-derived tissues and mouse models of melanoma
(Kim et al., 2020). However, other studies have shown that WNT
signaling is reactivated during the malignant transformation of
melanoma (Sinnberg et al., 2018). Aberrant activation of the WNT/
β-catenin pathway has been observed in nearly one-third of human
melanoma cases (Vaid et al., 2016). Despite the conflicting findings
regarding the WNT pathway in MM, its diverse roles in cancer
underscore the necessity for further investigation into its specific
functions in MM. Such research could provide valuable insights for
developing novel therapeutic strategies.

In this study, we aimed to explore potential therapeutic targets of the
WNT pathway in MM through bioinformatics analysis. Initially, we
performed a Cox regression analysis on the WNT pathway gene set,
identifying 19 genes. Subsequently, we conducted consistent clustering
analysis on these 19 genes, resulting in the identification of two subtypes.
We then constructed amodel using these genes and selected 13 that were
prognostically relevant. Using the model, we predicted risk scores for
high-risk and low-risk groups and analyzed the expression levels of the
13 genes within both groups, leading to the identification of two
epithelial-mesenchymal transition (EMT) -related genes, CSNK1E and
RAC3.We conducted a further analysis of the relationship between these
genes and immune cells, particularly noting the relationship between
CSNK1E and immune checkpoints. Finally, we performed a pan-cancer
analysis of the CSNK1E gene, investigating its expression across various
cancers and its prognostic implications, as well as its co-expression with
EMT-related genes. Our work offers new targets for MM research and
provides robust support for both scientific and clinical studies. What’s
more, We conducted three phenotypic experiments following the
knockdown of CSNK1E in human melanoma cell lines to enhance
the credibility of our bioinformatics conclusions.

2 Materials and methods

2.1 Data acquisition and preprocessing

We downloaded the dataset GSE91061 from the Gene Expression
Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) website. After
integrating the data, we converted it into Transcripts Per Million
(TPM) format and applied log2 transformation to mitigate excessive
data dispersion. GEO is an open-access database that does not require
additional ethical approval. We adhered to relevant guidelines for data
collection and utilization.

2.2 Gene screening and consistency
clustering

We conducted a Cox regression analysis on 5,917 genes related
to the WNT pathway in MM. Genes were deemed significant if they
met the criteria of p < 0.05 and a hazard ratio (HR) not equal to 1,

indicating their impact on survival in MM patients. A forest plot was
generated using the “forestplot” package to visualize these results,
allowing us to identify genes influencing prognosis based on their
HR. For comparative analysis, we performed consistency clustering
on the selected genes using the R package “ConsensusClusterPlus”.
The optimal number of clusters (k) was established by identifying
the value where the cumulative distribution function (CDF) curve
levels off, signifying maximum stability without any significant
increases. We further validated this k value using a Delta Area
Plot, typically choosing the last inflection point as the optimal cluster
number. Visualization of the results was accomplished with
“ggplot2,” revealing a consistency heatmap that illustrated the
“high cohesion, low coupling” characteristics of the clusters.
Finally, we utilized the R package “survival” to conduct survival
analyses on the identified clusters, employing the “ggsurvplot”
function from the “survminer” package to visualize survival
outcomes between different clusters.

2.3 Model construction and risk assessment

To further identify Wnt pathway genes associated with
prognosis, we employed the Least Absolute Shrinkage and
Selection Operator (LASSO) method to screen and construct a
relevant prognostic model. The optimal model fit is established
by identifying the minimum likelihood deviation on the y-axis of the
cross-validation curve, which signifies the best log(λ) value.
Following this, we included the variables related to this optimal
log(λ) value in the equation. The risk score for each patient was
calculated by summing the products of the coefficients and
expression levels of the respective variables (genes). The
GSE91061 cohort data was divided into high-risk and low-risk
groups based on the median score for risk assessment. Utilizing
the R package “ggrisk”, we demonstrate how patients’ survival times
and the expression levels of the model genes change as the risk score
increases. Following that, survival analysis was performed on both
risk groups, utilizing the “ggsurvplot” package to visualize the
survival curves. Additionally, we assessed the prognostic
prediction efficacy of the model for two risk groups using
receiver operating characteristic curve (ROC), where an area
under the curve (AUC) value greater than 0.6 indicates better
performance. Finally, we visualized the correlation between the
model genes and EMT-related physiological processes using the
“ggplot2” package.

2.4 Survival analysis and immune-
related analysis

Firstly, we conducted survival analyses on the model genes. The
“ggsurvplot” function from the R package “survminer” was
employed to visualize the survival curves. To explore the
connection between gene expression levels and immune cell
infiltration, we utilized “ggplot2,” creating lollipop plots that
demonstrated the correlation between the two selected genes and
immune cells. A significant and strong correlation between the two
variables is considered when p < 0.05 and the |R| > 0.2. A positive R
value indicated a positive regulatory relationship between the gene
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and immune cells, while a negative R value suggested a negative
regulatory relationship.

Subsequently, we selected the four types of immune cells most
strongly correlated with these two genes and visualized the
relationships using scatter plots. The statistical significance was
established at p < 0.05, with the magnitude of R reflecting the
strength of correlation. Based on the outcomes of these correlation
analyses, we further explored immune checkpoint genes related to
CNSK1E using the “IOBR” package for correlation analysis of gene
expression data. This yielded several immune checkpoint genes
significantly correlated with CNSK1E expression, which were
visualized as boxplots using the “ggpubr” package.

2.5 Pan-cancer analysis

We analyzed the expression levels of CSNK1E across 33 cancer
types and compared them with normal control groups, utilizing the
“ggpubr” package for visualization to elucidate the potential role of
CSNK1E in cancer development. We then investigated the effect of
the CSNK1E gene on overall survival (OS) in these cancers, treating
results as statistically significant when p < 0.05. Prognostic relevance
was assessed based on the log10 (HR) values: a log10 (HR) >
0 indicated that abnormal CSNK1E expression may correlate
with poorer survival rates, while log10(HR) < 0 suggested a
potential association with better survival rates. Further, we
analyzed the co-expression of CSNK1E with nine genes related to
EMT to investigate the relationship between CSNK1E and EMT,
hypothesizing potential functions of CSNK1E that could accelerate
the discovery and functional analysis of new genes. Finally, we
conducted a dry analysis on 37 different cancer types, identifying
statistical significance at p < 0.05. To assess the strength of the
association with stem cells, the Pearson correlation coefficient was
used, where higher coefficients reflect stronger correlations. This
was visualized using “ggplot2” to examine the similarities between
tumor cells and stem cells.

2.6 Tissue acquisition from patients

We selected melanoma and normal tissue samples from six
patients diagnosed with melanoma at Southern Hospital. All
selected patients received a definitive diagnosis of melanoma,
with other diseases excluded, and none had undergone any
treatment prior to sampling. Informed consent was secured from
all patients to safeguard their privacy and rights. The ethics
committee of Southern Hospital approved our experimental
ethics documents.

2.7 Cell culture and transfection

For the wet lab validation of our results, we utilized human
melanoma cell lines COLO 792, COLO 829, SK-MEL-3, Hs 939. T,
and A-375, along with the normal human skin cell line TE353. sk, all
sourced from the Chinese Academy of Sciences Cell Bank. COLO
792 and COLO 829 were cultured in Roswell Park Memorial
Institute 1,640 (RPMI-1640, HyClone, United States), while SK-

MEL-3, Hs 939. T, A-375, and TE353.sk were cultured in Dulbecco’s
Modified Eagle Medium (DMEM, HyClone, United States). All
media contained 10% fetal bovine serum (FBS, KeyGEN, China)
and 1% penicillin-streptomycin mix (Procell, China), with cell
culture flasks incubated at 37°C in 5% CO2. The medium was
replaced every 36 h to maintain the cells in a good logarithmic
growth phase.

We conducted transfection experiments for the cell lines COLO
792 and COLO 829. To inhibit the expression of the gene CSNK1E
in the cell lines, we commissioned a biotech company to design and
produce siRNA and shRNA (Sangon Biotech, China) for knocking
down CSNK1E, using a negative control (NC) as a comparison.
Trypsin (KeyGEN, China) was used to digest the cells, which were
then thoroughly resuspended in the culture medium. Following this,
the cells were evenly distributed into a 6-well plate at a density of 3 ×
104 cells per well, with each well adjusted to a total volume of 2 mL
using the medium. After observing cell adhesion under the
microscope, siRNA was mixed with the transfection reagent
LipofectamineTM 3,000 (Thermo, United States) in a specified
ratio and allowed to sit at room temperature for 10 min as per
the instructions. The mixture was then added to the wells using a
micropipette. During transfection, the medium was replaced every
5 h, and experiments were carried out 48 h after the transfection was
completed. The sequences of the shRNAs used in our study are as
follows (5′-3′):

sh-Negative control: UUCUCCGAACGUGUCACGU
sh- CSNK1E-1: CUUAGUGUCUUCAUGUAU
sh- CSNK1E-2: AGCGGGUCCUUCGGAGAU.

2.8 Western blot assay

First, we extracted protein from both tissue and cell samples. For
patient and normal control tissues, we added protein lysis buffer
(Beyotime, China, RIPA lysis buffer: protease inhibitor = 100:1) to
the pre-weighed tissues, minced them on ice, and subjected them to
ultrasonic disruption. For the cell lines, the cells in the 6-well plate
were digested and transferred to centrifuge tubes, centrifuged at
800 rpm for 5 min, and the supernatant was discarded. The protein
lysis buffer was added to the cell pellet, and the mixture was
thoroughly mixed using a pipette. Both the disrupted tissue and
cell mixtures were lysed on ice for 30 min, with gentle mixing every
10 min. Subsequently, they were centrifuged at 12,000 rpm at 4°C for
15 min, and the supernatant was retained. Next, we determined the
protein concentration using the BCA method, performed in a 96-
well plate with three replicates for each sample group. Each well
received 2 µL of the protein sample, 18 µL of PBS, varying
concentrations of protein standard solutions, and 200 µL of BCA
working solution (Beyotime, China), followed by incubation at 37°C
for 30 min. Absorbance at 562 nm was then measured using a
microplate reader to determine the concentrations of the protein
samples and to estimate the loading amounts for electrophoresis.
Each lane was prepared by mixing the sample with loading buffer
(Beyotime, China) and PBS in a specified ratio, heated in a 95°C
water bath for 5 min to denature the proteins, and then cooled on
ice. The sample proteins were subjected to SDS-PAGE
electrophoresis at 150V, which was stopped after approximately
1 h. The membrane transfer was subsequently carried out by
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assembling the apparatus and adding the transfer buffer, followed by
setting a current of 200 mA to transfer the proteins onto a PVDF
membrane. The PVDF membrane was placed in an incubation box,
where blocking solution was added and the membrane was
incubated on a shaker at room temperature for 15 min. Dilute
the primary antibody (Polyclonal antibody, Proteintech,
United States) and add it to the incubation box, then shake
overnight at 4°C. Subsequently, introduce the diluted secondary
antibody (HRP-conjugated Goat Anti-Rabbit IgG (H + L), Cat No:
SA00001-2, Proteintech, United States) and incubate at room
temperature for 1.5 h. Prior to the addition of the blocking
solution, primary antibody, and secondary antibody, as well as
after the incubation, wash the PVDF membrane three times with
TBST (KeyGEN, China), allowing 5 min between each wash. Finally,
apply chemiluminescent substrate to the PVDFmembrane, expose it
using a luminescence imaging system, and quantify the protein band
intensity using ImageJ software.

2.9 Colony formation assay

After 48 h of transfection, we performed a colony formation
assay on the cell lines COLO 792 and COLO 829. The cells from
the original six-well plate were digested with trypsin and seeded
into a new six-well plate, with 700 cells per well. The new six-well
plate was placed in a 37°C incubator with 5% CO2 to continue cell
culture, with media changes and cell observations every 72 h.
Cultivation was stopped and images were taken when it was
observed under a microscope that the majority of individual
clones contained more than 50 cells. After washing with PBS,
1 mL of paraformaldehyde (Solarbio, China) was added to each
well to fix the cells for 30 min, followed by the addition of 1 mL of
crystal violet staining solution (Solarbio, China) to each well for
cell staining. After 40 min, the cells were rinsed multiple times
with PBS and then left to dry. Finally, photographs were taken of
the entire six-well plate and each individual well, and the cells
were counted.

2.10 Wound healing assay

We conducted a scratch assay on the COLO 792 and COLO
829 cell lines 48 h post-transfection. Cells were placed in a 24-
well plate, with the culture medium being changed every 6 h. A
200 µL pipette tip was used to gently and uniformly create a linear
scratch in each well, assisted by a ruler, followed by PBS washing
to remove floating cells. Images of the wells were captured at this
point (designated as time zero) to record the wound area. A basic
medium without FBS was then added, and the plate was
incubated at 37°C. After an additional 48 h, we captured
images again to assess wound healing and document the
wound area at the 48-h mark. Furthermore, for the COLO
792 cell line, we also investigated the effects of varying
concentrations of TGF-β1 (0 ng/mL, 10 ng/mL, and 20 ng/
mL) on cell migration capabilities, as well as the impact of
knocking down CSNK1E on high-concentration TGF-β1
(20 ng/mL) induced cell migration.

2.11 Transwell assay

To assess the invasion and migration capabilities of the cells
before and after CSNK1E knockdown, we conducted a transwell
assay on the COLO 792 and COLO 829 cell lines, 48 h following
transfection. The cells were digested with trypsin and resuspended in
serum-free medium. Chambers (Corning, United States) were
placed in each well of a 24-well plate, and the cells were evenly
seeded into the chambers at a density of 4 × 104 cells per well. Each
chamber was filled with a total volume of 200 µL of serum-free
medium, while 600 µL of FBS-rich medium was added outside the
chambers. The 24-well plate was then incubated at 37°C for 24 h.
Following this, the media inside and outside the chambers were
discarded, and the chambers were washed with PBS. After adding
paraformaldehyde to the wells, the chambers were fixed at room
temperature for 20 min. Crystal violet staining was performed in the
dark for 20 min, followed by PBS washing, and any remaining cells
inside the chambers were scraped off using moist cotton swabs.
High-power fields (200× magnification) of the chambers and wells
were captured under a microscope, and cell counts were facilitated
using ImageJ software. We evaluated the cells’ migration and
invasion capabilities in succession through the transwell assay. n
preparation for the invasion assay, the chambers were pre-coated
with Matrigel (Corning, United States) before seeding the cells;
however, this step was omitted for the migration assay. Additionally,
for the COLO 792 cell line, we investigated the effects of different
concentrations (0 ng/mL, 10 ng/mL, and 20 ng/mL) of TGF-β1 on
cell invasion and migration, as well as the impact of high-
concentration TGF-β1 (20 ng/mL) following CSNK1E knockdown.

2.12 Immunofluorescence assay

To examine the alterations in protein levels of CSNK1E,
Vimentin, and ZO1 after CSNK1E knockdown, we conducted
an immunofluorescence assay on the COLO 792 cell line. After
48 h of transfection, the cells were digested with trypsin and
seeded into a 12-well plate, replenishing the well volume with
culture medium to allow for adhesion. Following a wash with
PBS, the cells were fixed with formaldehyde for 30 min and then
washed three times with PBS. Subsequently, 0.2% Triton X-100
(Gibco, United States) was added to permeabilize the cell
membrane at room temperature for 5 min. Afterward, a
blocking solution (Gibco, United States) was added, which was
removed after 60 min using a pipette. The diluted primary
antibody (Proteintech, United States) was then introduced to
the wells, and the 12-well plate was incubated overnight at 4°C on
a shaker. After washing with PBS to remove unbound primary
antibody, the diluted secondary antibody (CoraLite488-
conjugated Goat Anti-Rabbit IgG (H + L), Cat No: SA00013-
2, Proteintech, United States) was added and incubated at room
temperature for 40 min, with unbound secondary antibody also
washed away with PBS. Finally, DAPI fluorescent dye
(SINOPHARM, China) was applied to the wells and incubated
in the dark for 5 min to label the cell nuclei. The results were
examined, and images were taken with a fluorescence
microscope.
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2.13 Statistical analysis

All statistical analyses were conducted using R software (version
4.1.3). Unless otherwise specified, our figures were generated using
the “ggplot2” package. A p-value less than 0.05 was considered
statistically significant (*p < 0.05; **p < 0.01; ***p < 0.001;
****p < 0.0001).

3 Result

3.1 Gene screening and consistency
clustering

We initially conducted a Cox analysis on 5,917 genes involved in
the WNT pathway, identifying 19 genes including PRKCG and
WNT1. Among these, 10 genes, such as PRKCG and WNT1,
exhibited HR less than 1, indicating they may serve as protective
factors against MM, suggesting their expression is associated with a
lower risk of disease or better prognosis. Conversely, 9 genes,
including RAC3 and VANGL1, had HR values greater than 1,
categorizing them as risk factors for MM, where their expression
could indicate a higher risk of disease or poorer prognosis (p < 0.05,
HR ≠ 1, Figure 1A). Subsequently, we performed consistency
clustering on the selected 19 genes. The CDF curve plateaued
when k reached the optimal number of clusters, verified by the
Delta area, resulting in k = 2 (Figure 1B). Thus, we categorized all
samples into two subtypes: C1 and C2, which exhibited
characteristics of “high cohesion, low coupling” in the
consistency heatmap (Figures 1C, D). We then conducted
survival analysis on subtypes C1 and C2. The OS prediction for
C1 was significantly higher than that for C2 (p < 0.05, Figure 1E).

3.2 Model construction and risk assessment

We constructed a LASSO regression model using 19 selected
genes. The cross-validation curve indicated that the optimal fitting
effect was achieved when the variable corresponding to log (λ) was
13, as evidenced by the lowest point on the y-axis (Figure 2A). Basing
on the median risk score, we stratified the GSE91061 dataset into
high-risk and low-risk groups. Over time, both groups exhibited a
significant decline in survival counts and an increase in mortality;
however, the survival count in the high-risk group was markedly
lower than that in the low-risk group. In the low-risk group, there’s
an increase in the expression levels of SFRP1, FZD6, RAC2, PLCB2,
PRKACB, CAMK2B, WNT1, and PRKCG, while in the high-risk
group, PPP2RIA, CSNK1E, WNT11, VANGL1, and RAC3 showed
higher expression levels (Figure 2B). Subsequently, we conducted
survival analysis for both risk groups. As time progressed, the OS
predictions for both groups declined, while cumulative risk
increased. It is important to highlight that the overall survival
predictions for the high-risk group were markedly lower than
those for the low-risk group, which also showed a significantly
lower cumulative risk. In order to evaluate the model’s predictive
performance, we employed ROC curves, which revealed AUC values
exceeding 0.6 for 1-year, 3-year, and 5-year predictions, indicating
satisfactory predictive performance (Figure 2C). Furthermore, we

analyzed the correlation between the model genes and physiological
processes associated with EMT. Our findings demonstrated a
negative correlation between the physiological process of positive
regulation of epithelial cell migration and the genes CSNK1E and
RAC3, while a positive correlation was observed between the
epithelial-to-mesenchymal transition process and CSNK1E and
RAC3 (p < 0.01, Figure 2D).

3.3 Survival analysis and immune
correlation analysis

We conducted survival analyses on the 13 genes identified in our
model, assessing the variations in survival rates associated with high
versus low expression levels. Among these, the high expression group of
CAMK2B, FZD6, PLCB2, PRKACB, RAC2, SFRP1, and
WNT1 exhibited significantly better survival rates than the low
expression group. In contrast, the low expression group of PLAAT1,
RAC3, PPP2R1A, CSNK1E, VANGL1, and WNT11 was associated
with significantly better survival rates (p < 0.05, Figure 3). Additionally,
we conducted an analysis of the correlation between CSNK1E and
RAC3 across 24 different immune cell types. CSNK1E demonstrated
negative regulatory relationships with 21 immune cells, notably the
strongest with T cells, while RAC3 showed similar negative correlations
with 18 immune cells, particularly with Macrophages and activated
dendritic cells (p < 0.05, R < 0, Figures 4A, B). We chose the four
immune cell types that exhibited the strongest correlations with these
genes for scatter plot analysis. This analysis revealed a negative
correlation between CSNK1E expression and T cells, cytotoxic cells,
activated dendritic cells, and dendritic cells (p < 0.001, R < −0.3,
Figure 4C), as well as a similar relationship for RAC3 with
Macrophages, activated dendritic cells, TFH, and T cells (p < 0.001,
R < −0.3, Figure 4D). Notably, both genes exhibit a significant negative
correlation with T cells. Subsequently, the relationship between
CSNK1E expression and ten immune checkpoint genes was
analyzed. Fluctuations in CSNK1E expression correlated with
elevated levels of six immune checkpoints: CD274, CTLA4,
HAVCR2, LAG3, PDCD1, and TIGIT, particularly pronounced in
CNSK1E low expression group. In contrast, IGSF8, ITPRIPL1, and
SIGLEC15 showed no significant differences between the high and low
expression groups of CSNK1E; however, the expression levels in both
groups were higher than those in the normal group. Elevated immune
checkpoint expression suggests a stronger suppression of immune
function, potentially linked to poorer prognoses in MM (p <
0.05, Figure 4E).

3.4 Pan-cancer analysis

We conducted a pan-cancer analysis of CSNK1E across
33 different cancer types, comparing its expression levels in
tumor versus normal groups. Notably, in 15 cancers, including
bladder cancer (BLCA), cholangiocarcinoma (CHOL), colorectal
cancer (COAD), esophageal cancer (ESCA), head and neck
squamous cell carcinoma (HNSC), kidney renal clear cell
carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP),
liver hepatocellular carcinoma (LIHC), lung adenocarcinoma
(LUAD), lung squamous cell carcinoma (LUSC), pan-cancer
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(PCPG), prostate cancer (PRAD), rectum adenocarcinoma (READ),
stomach adenocarcinoma (STAD), and thyroid carcinoma (THCA),
the tumor group exhibited significantly higher expression levels

compared to the normal group (p < 0.05, Figure 5A). Subsequently,
we performed a prognostic analysis across these 33 cancers,
identifying CSNK1E as a risk factor in 12 cancer types, including

FIGURE 1
Gene Screening and Consistency Clustering. (A) Forest plot of Cox regression analysis for WNT pathway gene set; (B) Consistency cumulative
distribution function and Delta area plot; (C)Consistency heatmapwith two clusters; (D)Heatmap of differentially expressed genes; (E) Survival curves for
patient groups C1 and C2.
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FIGURE 2
Model Construction and Risk Assessment. (A) Path plot of regression coefficients and cross-validation curve; (B) Triplet plot of risk scores for high
and low-risk groups in the GSE91061 cohort; (C) Survival curves and ROC curves for high and low-risk groups in the GSE91061 cohort; (D) Heatmap
showing the correlation between 13 genes and EMT.
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adrenocortical carcinoma (ACC), BLCA, HNSC, KIRC, lower grade
glioma (LGG), LIHC, LUAD, mesothelioma (MESO), ovarian
cancer (OV), sarcoma (SARC), skin cutaneous melanoma
(SKCM), and uveal melanoma (UVM), with a correlation to
poorer prognosis (p < 0.05, log10(HR) > 0, Figure 5B). We
further analyzed the co-expression of CSNK1E with genes related
to EMT. In the low expression group, the levels of nine EMT-
regulating genes—TRIM28, GSK3B, NOTCH1, SMAD4, CUL7,
SNAI1, TGFBR1, CTNNB1, and HIF1A—were significantly
diminished compared to those in the high expression group. This
finding suggests a potential association between increased CSNK1E
expression and enhanced EMT activity (Figure 5C). Finally, we
assessed gene stemness across 37 cancers, observing a significant
negative correlation in brain cancer (GBMLGG), acute myeloid
leukemia (AML), and LGG, while a noteworthy positive
correlation was found in both testicular cancer (TGCT) and
thymoma (p < 0.05, Figure 5D).

3.5 CSNK1E plays a pro-cancer role
in melanoma

According to the results from Western blot assays, CSNK1E is
expressed in both normal and tumor tissues, with significantly

higher levels in tumor samples. In six cell lines—COLO 792,
COLO 829, TE353. sk, SK-MEL-3, Hs 939. T, and A-
375—CSNK1E expression was notably greater in cancer cell lines
in comparison to normal skin cells. The bar graph depicting the
relative expression levels of proteins indicates that the silencing of
CSNK1E resulted in a marked decrease in protein levels, dropping
below 50% of the NC group, indicating effective transfection (p <
0.001, Figure 6A). Images and corresponding bar graphs from the
colony formation assays for COLO 792 and COLO 829 reveal that
silencing CSNK1E significantly decreased the number of colonies
formed, indicating reduced cell proliferation (p < 0.001, Figure 6B).
Results from wound healing assays demonstrated a significant
decrease in wound healing percentage after CSNK1E silencing,
reflecting diminished cell migration capabilities (p < 0.001,
Figure 6C). Transwell assays demonstrated that the number of
invasive and migratory cells in the CSNK1E knockdown groups
was significantly reduced compared to the NC group. Further
indicating reduced invasive and migratory abilities (p < 0.01,
Figure 7A). After silencing CSNK1E, there was a notable rise in
the protein levels of E-Cadherin and ZO1, while levels of
N-Cadherin, Vimentin, and MMP9 significantly decreased (p <
0.001, Figure 7B). Immunofluorescence results indicated that
following shRNA-mediated CSNK1E knockdown, intracellular
levels of CSNK1E and Vimentin decreased, while ZO1 levels

FIGURE 3
Survival curves for the 13 genes.
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FIGURE 4
Immune-Related Analysis. (A) Lollipop plot depicting the correlation between CSNK1E and 24 immune cell types; (B) Lollipop plot depicting the
correlation between RAC3 and 24 immune cell types; (C) Scatter plot illustrating the correlation between CSNK1E and four immune cell types; (D) Scatter
plot illustrating the correlation between RAC3 and four immune cell types; (E) Boxplot of expression differences for 10 immune checkpoint genes
associated with CSNK1E across high, low, and normal expression groups.
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increased (Figure 7C). Additionally, TGF-β1 was found to enhance
cell migration, with varying effects at different doses. Specifically, as
TGF-β1 concentration increased from 0 ng/mL to 10 ng/mL and
20 ng/mL, wound healing percentage significantly improved (p <
0.05). However, following CSNK1E knockdown, the migratory
enhancement effect of TGF-β1 was diminished, showing no
statistical difference in wound healing percentage at 20 ng/mL

TGF-β1 compared to controls. This suggests that silencing
CSNK1E can reverse the TGF-β1-induced migration in cancer
cells, implying a potential synergistic role of CSNK1E in TGF-
β1-related pathways (Figure 8A). Transwell experiments yielded
similar results: increased TGF-β1 concentrations significantly
enhanced cell invasion and migration, but the effects were
attenuated following CSNK1E silencing, although the number of

FIGURE 5
Pan-Cancer Analysis. (A) Violin plot of differential expression of CSNK1E across 33 cancer types; (B) Heatmap of survival analysis for CSNK1E in
33 cancer types; (C) Co-expression heatmap of CSNK1E with EMT-related genes across high and low expression groups; (D)Graphical representation of
stemness analysis across 37 cancer types.
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FIGURE 6
Expression of CSNK1E in various tissues and cell lines, and its impact on proliferation and migration. (A)Western blot images and corresponding bar
graphs of relative protein expression levels of CSNK1E in different tissues and cell lines, as well as following knockdown; (B) Images from the colony
formation assay along with the corresponding bar graph of colony numbers; (C) Images from the wound healing assay and bar graph showing the
percentage of wound healing.
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FIGURE 7
Effects of CSNK1E on invasion andmigration, along with its influence on related protein expression. (A) Images from the transwell assay stained with
crystal violet and bar graph of relative cell numbers; (B) Western blot images and corresponding bar graph of relative expression levels; (C)
Immunofluorescence images.
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FIGURE 8
Investigation of the interaction betweenCSNK1E and TGF-β1. (A) Images from thewound healing assay and bar graph of wound healing percentages
after CSNK1E knockdown at different concentrations of TGF-β1; (B) Images from the transwell assay stained with crystal violet and bar graph of relative
cell numbers at varying concentrations of TGF-β1; (C)Western blot images and bar graph of relative expression levels of proteins in the COLO 792 cell line
under different doses of TGF-β1; (D) Western blot images and bar graph of relative expression levels after CSNK1E knockdown at a fixed
concentration of TGF-β1 in the COLO 792 cell line.
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invasive and migratory cells at 20 ng/mL TGF-β1 remained higher
than controls, indicating partial reversal of TGF-β1’s effects by
CSNK1E knockdown (p < 0.001, Figure 8B). Finally, protein
band and expression level bar graphs indicated that following
TGF-β1 addition, E-Cadherin levels significantly decreased, while
Smad2, N-Cadherin, Vimentin, and MMP9 levels increased.
Notably, when TGF-β1 concentration increased from 10 ng/mL
to 20 ng/mL, the levels of Smad2 and MMP9 decreased. Post-
CSNK1E knockdown, only E-Cadherin levels significantly increased
compared to controls, while the other four proteins showed
significant reductions, further supporting the notion of CSNK1E’s
synergistic role in TGF-β1-related pathways at the molecular level
(p < 0.001, Figure 8C).

4 Discussion

Melanoma (MM) is the most lethal type of skin cancer and
presents significant treatment challenges among solid tumors
(Wolchok and Saenger, 2007). Its onset is linked to the
malignant transformation of melanocytes (Lo and Fisher, 2014),
and it exhibits a high level of immunogenicity, making
immunotherapy a significant treatment modality. However, early
immunotherapy approaches have shown substantial cytotoxicity
(Ozbay Kurt et al., 2023). Data indicate that 40%–80% of
patients may possess innate resistance to immune checkpoint
inhibitors (ICIs), and the therapy combining CTLA-4 and PD-1
has been associated with severe adverse effects (Ballotti et al., 2020).
Consequently, investigating the mechanisms underlying resistance
in MM, identifying key biomarkers and exploring pivotal target
genes are of great importance, as these factors are essential for
diagnosis, treatment, and prognosis. There’s a close association
between the WNT signaling pathway’s abnormal activation and
the development and progression of several cancers (Zhang et al.,
2018), including its role in promoting tumor dissemination and the
development of resistance. Several proteins within the WNT
pathway have been identified as potential therapeutic targets and
biomarkers. However, research on the WNT pathway in MM
remains limited. This study investigates the potential roles of
WNT-related genes in MM and develops a prognostic model,
thereby offering constructive insights and directions for
discovering new therapeutic targets and enhancing
prognosis in MM.

We conducted a Cox regression analysis on the gene set
associated with the WNT pathway, identifying 19 genes linked to
the occurrence and prognosis of malignant melanoma.
Subsequently, these 19 genes underwent consistent clustering,
resulting in two distinct subtypes. The consistency heatmap
demonstrated characteristics of “high cohesion and low
coupling”. The survival differences between clusters C1 and
C2 were statistically significant, indicating the reliability of the
classification and establishing that k = 2 is the optimal number
of clusters. Next, we developed a LASSO regression model
incorporating 13 of the identified genes, including PPR2R1A,
CSNK1E, and WNT11. Using the risk scores generated by this
model, we classified the samples into high-risk and low-risk groups.
The high-risk group exhibited poorer survival outcomes,
characterized by elevated expression of five genes, including

CSNK1E and RAC3, suggesting their potential influence on
prognosis. There was a statistically significant difference in
survival between the high- and low-risk groups, with the low-risk
group exhibiting a substantially higher survival rate. The ROC curve
analysis revealed that the model demonstrated strong predictive
performance, indicating that the results might be widely applicable.
Additionally, we examined the relationship between the 13 genes
and the EMT process. Notably, CSNK1E and RAC3 demonstrated a
significant correlation with EMT, indicating their potential
involvement in mediating the metastatic process of MM cells, as
EMT facilitates tumor cell invasion through the basement
membrane into the bloodstream. Survival analysis of the 13 genes
revealed that high expression levels of CAMK2B, FZD6, PLCB2,
PRKACB, RAC2, SFRP1, andWNT1 were associated with improved
survival rates, suggesting that the activation of these genes may
positively influence MM prognosis. Conversely, the activation of
PLAAT1, RAC3, PPP2R1A, CSNK1E, VANGL1, and
WNT11 correlated with poorer prognostic outcomes.

We assessed the relationship between CSNK1E and
RAC3 across 24 immune cell types, discovering that CSNK1E
had the strongest correlation with T cells, whereas RAC3 was
most closely linked to macrophages and also showed a notable
association with T cells. Considering the crucial impact of immune
checkpoint expression on T cell functionality, we further explored
the connection between CSNK1E and ten immune checkpoints.

We then performed a pan-cancer analysis of CSNK1E across
33 different cancer types. Remarkably, in 15 of these cancers,
including BLCA, CSNK1E expression levels in tumor samples
were significantly elevated compared to normal tissues. This
finding implies that CSNK1E might have a comparable role in
various cancers, leading us to propose that it could act as a
potential biomarker for early diagnosis and treatment across
multiple cancer types. Additionally, we investigated the
relationship between CSNK1E expression and prognosis across
the 33 cancer types, identifying it as a risk factor in 12 of them,
including ACC and BLCA. Following this, we analyzed the co-
expression patterns of CSNK1E with genes linked to EMT. The
high-expression group of CSNK1E exhibited more active expression
of EMT-related genes, leading us to speculate that CSNK1E may
influence the invasiveness and metastatic capabilities of MM cells
through its regulatory role in EMT. This could potentially provide
new therapeutic targets for MM treatment and prognosis
assessment. Finally, we explored the relationship between stem
cells and 37 cancer types. Our findings may offer a novel target
for MM therapy and provide theoretical support for advancements
in biotechnology.

Using the LASSO machine learning algorithm, we identified
19 genes associated with the WNT signaling pathway and
constructed a regression model comprising 13 genes, including
PRR2R1A, CSNK1E, WNT11, VANGL1, and RAC3. The CSNK1E
gene encodes casein kinase 1 epsilon (CK1ε), which primarily regulates
circadian rhythms by phosphorylating clock gene products
(Knippschild et al., 2005). Additionally, CK1ε influences cell
differentiation and proliferation through protein phosphorylation
(Meng et al., 2010). Moreover, CK1ε is capable of phosphorylating
other critical proteins within the WNT signaling pathway, so that it
can regulate cell division and tumor growth in pancreatic cancer,
salivary gland cancer, and colorectal adenocarcinoma (Brockschmidt
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et al., 2008; Frierson et al., 2002). For example, CK1ε is involved in
phosphorylating low-density lipoprotein receptor-related proteins
5 and 6 (LRP5/6) as well as Dvl (Price, 2006), which subsequently
promotes the recognition of the Axin and glycogen synthase kinase
3 beta (GSK-3β) complex (Mao et al., 2001). The phosphorylation of β-
catenin by GSK-3β is inhibited by the LRP5/6 complex subsequently
(Piao et al., 2008), thereby extending the half-life of β-catenin (Del
Valle-Pérez et al., 2011). Additionally, CK1ε collaborates with GSK3β
to phosphorylate adenomatous polyposis coli (APC), thereby
facilitating the binding of β-catenin to APC (Rubinfeld et al.,
2001). In the p53 signaling pathway, DNA damage facilitates the
interaction between CK1ε and its binding partner, MDM2, resulting in
multivalent phosphorylation of MDM2 and enhancing p53 activity
(Schittek and Sinnberg, 2014). Nonetheless, there is a notable absence
of literature on the role of CSNK1E inMM at present, highlighting the
need for further research into its functions in tumor biology. RAC,
belonging to the Rho GTPase subfamily (Hodge and Ridley, 2016),
encompasses three isoforms: RAC1, RAC2, and RAC3 (Haataja et al.,
1997). These proteins, along with their closely related homolog Cdc42,
play multifaceted roles in cellular processes such as cytoskeletal
regulation, EMT, transcription, proliferation, cell polarity, apoptosis,
phagocytosis, and vesicular transport. They serve as central regulatory
factors in the metastasis and invasion of cancer cells (Maldonado et al.,
2020). Notably, overexpression of RAC3 has been implicated in the
development of various cancers. In typical circumstances, RAC3 is
mainly found in brain tissue and neuronal cells (Corbetta et al., 2009),
yet its expression is upregulated in breast cancer, prostate cancer, and
brain tumors. In aggressive breast cancer, RAC3’s specific binding
partner CIB1 facilitates the recruitment of RAC3, promoting integrin
activation at invasive pseudopodia, thereby regulating adhesion and
degradation of the extracellular matrix (ECM) (Wang et al., 2022).
With its ectopic expression allowing cells to avoid excessive autophagy
and cell death caused by the inhibition of isoprenylcysteine carboxyl
methyltransferase (Icmt) (Zhu et al., 2011). Nevertheless, the precise
function of RAC3 in MM is still not well defined, highlighting the
necessity for further research into its roles.

5 Conclusion

In this study, we first conducted Cox regression analysis on a gene
set associated with the WNT signaling pathway, followed by consistent
clustering. We then employed the LASSO algorithm to construct a
model and assessed risk within the GSE91061 cohort. Additionally, we
examined the relationship between 13 genes and EMT, conducting
immune analysis on the two genes that showed the strongest
correlations. Finally, a pan-cancer analysis of CSNK1E was
conducted, and we explored the co-expression of EMT-related
genes. Our findings offer new targets for MM research, providing
theoretical support for both scientific inquiry and clinical investigation.
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