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Background: The scarcity and preciousness of plateau characteristic medicinal
plants pose a significant challenge in obtaining sufficient quantities of
experimental samples for quality evaluation. Insufficient sample sizes often
lead to ambiguous and questionable quality assessments and suboptimal
performance in pattern recognition. Shilajit, a popular Tibetan medicine, is
harvested from high altitudes above 2000 m, making it difficult to obtain.
Additionally, the complex geographical environment results in low uniformity
of Shilajit quality.

Methods: To address these challenges, this study employed a deep learning
model, time vector quantization variational auto- encoder (TimeVQVAE), to
generate data matrices based on chromatographic and spectral for different
grades of Shilajit, thereby increasing in the amount of data. Partial least squares
discriminant analysis (PLS-DA) was used to identify three grades of Shilajit
samples based on original, generated, and combined data.

Results: Compared with the originally generated high performance liquid
chromatography (HPLC) and Fourier transform infrared spectroscopy (FTIR)
data, the data generated by TimeVQVAE effectively preserved the chemical
profile. In the test set, the average matrices for HPLC, FTIR, and combined
data increased by 32.2%, 15.9%, and 23.0%, respectively. On the real test data,
the PLS-DA model’s classification accuracy initially reached a maximum of
0.7905. However, after incorporating TimeVQVAE-generated data, the
accuracy significantly improved, reaching 0.9442 in the test set. Additionally,
the PLS-DA model trained with the fused data showed enhanced stability.

Conclusion: This study offers a novel and effective approach for researching
medicinal materials with small sample sizes, and addresses the limitations of
improving model performance through data augmentation strategies.
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1 Introduction

Shilajit (Zhaxun), as a traditional folk medicine, has been used
for over 3,000 years and is widely used in countries such as Russia,
India, Nepal, Egypt, Norway, Pakistan, and others (Agarwal et al.,
2007). In China, Shilajit is an ancient traditional Tibetan medicine
and is mainly distributed in the Tibetan regions of Tibet, Qinghai,
and Sichuan, including Aba, Ganzi, and Liangshan at altitude of
2000 to 4,000 m (Ding et al., 2020). Previous studies have shown that
Shilajit is primarily composed of animal feces, soil, impurities and
organic matter (Kamgar et al., 2023). The unique geographical
environment of Shilajit leads to variations in its chemical
composition. Most researchers have indicated that humus
components may be the dominant constituent, followed by
amino acids, proteins, fatty acids, caffeic acid, gallic acid, and
other bioactive compounds (Kamgar et al., 2023). Modern
pharmacological studies have systematically validated various
therapeutic properties of Shilajit, including anti-inflammatory,
antioxidant, immunomodulatory, anti-tumor, anti-ulcer, and
anti-viral effects (Bhavsar et al., 2016). Clinical trials have shown
that Shilajit’s water extracts are safe and can serve as dietary
supplements to enhance and regulate collagen levels in various
tissues of healthy adults (Das et al., 2016; Cesur et al., 2019).
Therefore, the consumption of Shilajit is increasing. Traditionally,
Shilajit was classified into three grades based on the appearance
(Kamgar et al., 2023). The first grade is considered to be of high
quality, characterized by a black color, heavy texture, and minimal
feces content. The third grade usually contains more fecal grains,
and its quality is lower. Those between grades I and III are classified
as the second degree.

Until now, the quality control standard for Shilajit has not been
established due to its complex chemical composition and multiple
sources (Wilson et al., 2011). However, with the development of
analytical techniques and statistical approaches, spectral and
chromatographic techniques have been employed to reveal the
chemical profile of Shilajit (Tong et al., 2014; Cao et al., 2015). For
example, X-ray fluorescence (XRF) has been used to reveal the
elemental differences between raw Shilajit and Shilajatu Vatik
(Shakya and Mohapatra, 2020). While XRF is highly effective for
identifying elemental compositions and quantifying metal content, it
lacks the ability to provide molecular information. In contrast, infrared
spectroscopy, though it is less effective for detecting individual elements,
excels in analyzing molecular structures and functional groups, making
it suitable for distinguishing organic compounds and detecting
impurities. Lee et al. (2021) utilized HPLC-UV to simultaneously
evaluate the phenolic compound content in Shilajit, the isolated
compounds showed promising bioactivity, and the validated HPLC
method was used to quantify these compounds, suggesting that they are
standard markers for Shilajit quality control. In our previous studies,
Fourier transform infrared spectroscopy (FTIR) and near-infrared
spectroscopy (NIR) combined with statistical methods have been
used to classify different grades of Shilajit due to their outstanding
advantages of being green, rapid, and non-destructive (Zhao et al., 2018;
Li et al., 2023). Both results showed the same conclusion that substitutes
could be distinguished from other grades, while the difference among
grades I, II, and III was not significant. Therefore, the unique analytical
methods used to evaluate the quality of Shilajit exhibited limitations in
revealing the chemical profile.

In recent years, the emergence of data fusion strategies has
significantly addressed the limitations of single analytical methods
for quality evaluation, and has been widely employed in food quality
authentication (Borràs et al., 2015). In the field of traditional
Chinese medicine (TCM), multiple-level data fusion technologies
have been used in quality assessment, enhancing pattern recognition
and property parameters estimation (Ding et al., 2023). For instance,
Wu et al. (2018) classified samples of Paris polyphylla using pattern
recognition models integrated with a mid-level data fusion strategy,
achieving accuracies of 96% and 100% in training and testing sets,
respectively. In the authentication of TCM, multiple data from
electronic nose, electronic tongue, electronic eye sensors, and
NIR were used to accurately determine the authentic species of
Fritillariae cirrhosae using mid-level data fusion strategies, the
accuracy of the authenticity and species identification models
reached 98.75% and 97.50%, respectively. (Gui et al., 2023).
Additionally, data fusion strategies are widely used in research to
identify the origins, years, and harvesting periods of TCM (Wu et al.,
2019; Zhang et al., 2021; Li et al., 2024). It is noteworthy that the
performance of chemometric models based on data fusion strategies
is influenced by data pre-processing methods, algorithm types,
feature extraction methods, and especially the number of
samples. Specifically, the robustness of models established with
few samples is difficult to assess due to insufficient elucidation of
the similarities and differences among samples (Zhou et al., 2020).

The time series generation (TSG) model has been developed and
widely used to generate difficult and limited data, such as
electrocardiographs and financial stocks. (Koivisto et al., 2019; Wiese
et al., 2020; Adib et al., 2023). Currently, mainstream TSG data are
generated with the architectural combination of Recurrent Neural
Network (RNN) and Generative Adversarial Network (GAN)
(Esteban et al., 2017; Yoon et al., 2019; Liao et al., 2020). However,
these methods cannot effectively generate long time series (TS) data
because RNN models have limitations in processing inputs that are
widely separated in time (Vaswani et al., 2017; Han et al., 2021). To
address this, a time series data processing method using a variational
autoencoder (VAE) model combined with vector quantization (VQ)
(TimeVQVAE) has been proposed as a suitable alternative to overcome
the limitations of TSG (Lee et al., 2023). In this model, VQ modeling is
separated into low-frequency (LF) and high-frequency (HF)
components. The LF component first defines the overall shape, and
the HF component then fills in the details. In other words, using
TimeVQVAE method to increase the experimental sample size can
amplify information differences among samples. Therefore, adopting
this method to expand the number of experimental samples can
enhance the robustness of the classification model.

In this study, 137 batches of Shilajit samples from three grades
were analyzed using FTIR and high performance liquid
chromatography (HPLC). Subsequently, the unsupervised
learning method of PCA was used to roughly assess the
differences among the samples from different grades. Partial least
squares discriminant analysis (PLS-DA) was employed to
differentiate the Shilajit samples of three grades based on initial
FTIR and HPLC data, generated data obtained through
TimeVQVAE, and a low-level data fusion strategy. This study
aimed to develop a rapid identification method for Shilajit, which
is difficult to identify, by employing a data generation technique
combined with pattern recognition and data fusion strategy.
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2 Materials and methods

2.1 Sample preparation and pre-treatment

A total of 137 batches of Shilajit samples were collected from
three sources: self-collection, Tibetan hospitals, and herbal markets.
The detailed information on samples was provided in
Supplementary Table S1. After collection, the samples were
graded based on traditional methods and clinical experience in
Tibetan medicine. The grading criteria included the darkness of
the Shilajit, its density, and the presence of fecal particles, with
higher quality indicated by a darker color, greater weight, and fewer
fecal particles. Each criterion was scored out of 10, with a total score
above 20 classified as high quality (H), scores between 10 and
20 classified as medium quality (M), and scores below
10 classified as low quality (L). The grading was conducted by
Dr. Jiang Yong Silang and Professor Gu Rui from the Institute of
Ethnic Medicine, Chengdu University of Traditional Chinese
Medicine. The final grading resulted in 44 batches of H-grade,
60 batches of M-grade, and 33 batches of L-grade samples
(Supplementary Table S1).

After grading, 100 g of Shilajit medicinal material was dissolved
in 800 mL of boiling water, filtered, and this process was repeated
three times. The supernatants were combined, concentrated into an
extract, freeze-dried, and ground into a fine powder for further use.

2.2 Multi-source information acquisition

2.2.1 FTIR spectra
0.02 g of each sample extract powder was accurately weighed by

electronic analytical balance and blended with 2.0 g KBr crystal
evenly before pressing into tablets (Jingtong Instrument Technology
Co., Ltd., Tianjin, China). The FTIR data collection conditions were
as follows: (1) a scanning range of 4,000–400 cm−1, (2) 32 cumulative
scans, and (3) each sample was continuously scanned three times. To
minimize the influence of CO2 and H2O, air spectra were collected
every half hour as a blank background to reduce interference. The
laboratory environment was maintained at a constant temperature
of 25°C and a humidity of 30% RH.

In this study, the raw FTIR spectra were pretreated using
OMNIC 8.2 (Thermo Fisher Scientific, United States), which
included automatic baseline correction and ordinate
normalization. Then, the processed spectra were input into
Python 3.9 for further pretreatment.

2.2.2 HPLC fingerprint
Using the electronic analytical balance (Sartorius BP211D,

Germany), 0.5 g of sample powder was precisely weighed and
then dissolved in 25 mL of 50% methanol. Ultrasonic extraction
was performed for 30 min, after which the solvent lost due to
volatilization was supplemented. The solution was then filtered to
obtain the test solution and subsequently stored at 4°C for
subsequent analysis. Samples were analyzed using an Agilent
1,260 Infinity HPLC system (Agilent Technologies Inc.,
United States) equipped with a diode array detector. Agilent
ZORBAZSB-C18 (5 μm, 4.6 × 150 mm) was used to separate the
samples at a column temperature of 30°C during system operation.

The organic phase used in this procedure was acetonitrile (A), and
the aqueous phase was 0.1% formic acid in water (B). The injection
volume was 8 µL and the elution current velocity was 0.8 mL/min.
Gradient elution was conducted according to the following
conditions: 0.0–5.0 min (2.0%–7.0% A), 5.0–14.0 min (7.0%–

10.0% A), 14.0–27.0 min (10.0%–15.0% A), 27.0–39.0 (15.0%–

20.0% A), 39.0–49.0 min (20.0%–30.0% A), 49.0–59.0 min
(30.0%–45.0% A), 59.0–60.0 min (45.0%–47.0% A). The detection
wavelength was 280 nm.

In this study, both methanol and acetonitrile were
chromatographically pure, provided by Thermo Fisher Scientific
(Massachusetts, United States). Similarly, formic acid was also
chromatographically pure, and the manufacturer was Shanghai
Eon Chemical Technology Co. (Shanghai, China). Purified water
was produced from Hangzhou Wahaha Group Co., Ltd.
(Hangzhou, China).

2.3 TimeVQVAE model building

2.3.1 Data set production
The dataset for this study included HPLC, FTIR, and low-level

data fusion HPLC-FTIR from 137 batches of Shilajit samples. In this
study, no preprocessing methods were applied; raw data was used to
generate the data and the pattern recognition model. To prevent
data leakage, 35 batches were reserved as the validation dataset for
the classification model. The remaining 102 batches were divided
into training and test datasets in a proportion of 7:3.

The model used in this study was a supervised model designed to
generate data corresponding to the specific labels of the samples.
Therefore, data were generated for each of the three grades of Shilajit
according to their respective classifications.

2.3.2 Model structure
In this study, the TimeVQVAEmodel (Lee et al., 2023) was used

to generate HPLC, FTIR, and fused HPLC-FTIR data for Shilajit
extract. This model is the first to use Vector Quantization (VQ)
technology to address the problem of Time Series Generation (TSG).
The VQ-VAE framework forms the foundational structure of the
model. Compared to Autoencoders (AE) and Variational
Autoencoders (VAE), VQ-VAE produce clearer reconstructed
images (Van Den Oord and Vinyals, 2017).

The TimeVQVAE data generation process involves two main
stages. The network architecture for the first stage of the model is
shown in Figure 1. Initially, the time series data is augmented to the
spatio-temporal frequency domain and split into two branches: one
with zero padding in the high-frequency (HF) region and the other
in the low-frequency (LF) region. The ELF and EHF encoders then
project the time-frequency domain data into a continuous latent
space. During this process, each continuous label was compared to
the discrete labels in the codebook using the Euclidean distance and
replaced with the nearest discrete label. The decoder subsequently
project the discrete latent space back into the time-frequency
domain with the corresponding zero padding and maps it to the
time domain via ISTFT. Finally, the two branches generate the LF
and HF components of the time series.

In the second stage, the encoder, decoder, and codebook are
frozen, while the model was trained on the pre-trained discrete
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tokens to learn the prior, as shown in Figure 2A. Inspired by
MaskGIT, a bidirectional Transformer is used as the prior model.
The structure of MaskGIT within the TimeVQVAE model is shown
in Figure 2B.

2.3.3 Loss function
The loss function used in this study consists of two parts. The

first part is the codebook loss that obtained by Equation 1:

Lcodebook � ‖ sg ELF PLF STFT x( )( )( )[ ] − ZLF
q ‖2

2

+ ‖ sg EHF PHF STFT x( )( )( )[ ] − ZHF
q ‖2

2

+ β‖ ELF PLF STFT x( )( )( )[ ] − sg ZLF
q[ ] ‖2

2

+ β‖ EHF PHF STFT x( )( )( )[ ] − sg ZHF
q[ ] ‖2

2
(1)

Here, x represents the time series, sg [·] denotes the stop-
gradient operation, P[·] indicates the zero-padding operation for

LF or HF regions, Z[·]
q represents the discrete tokens for LF or HF

regions, and β is the parameter for the loss term weight. Gradients
are simply propagated from the decoder to the encoder through the
non-differentiable quantization process.

The VQ loss also includes a reconstruction loss. In this study, the
reconstruction task is performed in both the time domain and the
time-frequency domain. Therefore, the formula for the
reconstruction loss is shown in Equation 2:

Lrecons � ‖ xLF − x̂LF ‖22 + ‖ xHF − x̂HF ‖2 + ‖ uLF − ûLF ‖22
+ ‖ uHF − ûHF ‖22 (2)

Here, u[·] = P[·](STFT(x)), where μ represents the zero-padded
STFT of the original time series x, and û is the reconstruction of μ,
The x[·] and x̂[·] are obtained by applying ISTFT to u[·] and û[·],
respectively. Therefore, the final VQ loss is shown in Equation 3:

LVQ � Lcodebook + Lrecons (3)

FIGURE 1
Overview of our proposed VQ (i.e., tokenization) (stage 1, The encoder and the decoder are denoted by E and D respectively. STFT and ISTFT stand
for Short-time Fourier Transform and Inverse Short-time Fourier Transform, respectively.).

FIGURE 2
(A)Overview of the prior model training (stage 2). (B)Overview of MaskGIT’s iterative decoding. The TopK operation is equivalent to torch.topk from
PyTorch. (The dark green block represents the [MASK] token.).
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2.3.4 TimeVQVAE model evaluation
In this experiment, two primary evaluation metrics were used:

Inception Score (IS) (Salimans et al., 2016) and Fr´echet Inception
Distance (FID) (Heusel et al., 2017). The IS ranges from 1 to the
number of categories (3 in this experiment), with higher IS values
indicating better quality of the generated samples. Unlike the IS, the
FID score measures the quality of the generated data by comparing
the distribution of generated samples to that of real samples. The
FID score ranges from 0 to infinity, with lower values indicating
better quality of the generated data. The formula for IS is shown in
Equation 4:

IS G( ) � exp Ex~pgDKL p y
∣∣∣∣x( )����p y( )( )( ) (4)

Here, x denotes the generated samples, pg is the distribution of
the generator, p(y|x) is the conditional distribution of labels given
the sample x, and p(y) is the marginal distribution of labels. DKL
represents the Kullback-Leibler divergence, and E denotes the
expectation. Higher IS values indicate that the generated samples
are more diverse and of higher quality. The formula for FID is shown
in Equation 5:

FID x, g( ) � μx − μg
∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣

∣∣∣∣∣22 + Tr ∑x +∑ g − 2 ∑x∑g( )0.5( ) (5)

Here, x represents the real data distribution and g represents the
generated data distribution. The vectors μx and μg are the mean
feature vectors of the real and generated data, respectively, extracted
from the Inception v3 model. The covariance matrices of the real
and generated data are denoted as ∑x and ∑ g, respectively. The
FID assesses the statistical differences between the real and
generated data distributions in the feature space. A lower FID
score indicates that the generated samples are closer to the real
data distribution, suggesting higher quality and more realistic
generated samples.

2.4 Classification model and data analysis

2.4.1 Classification model
The PLS-DA model used in this study was a classic machine

learning classification model commonly used in the research of
traditional Chinese medicine and food (Borràs et al., 2016; Hong
et al., 2023; Deng et al., 2025). Before establishing the PLS-DA
model, the TimeVQVAE generated a large number of data based on
the original HPLC, FTIR, and low-level data fusion HPLC-FTIR
data. The study included six types of data: (1) HPLC, (2) FTIR, (3)
HPLC-FTIR (LLDF), (4) HPLC-TimeVQVAE, (5) FTIR-
TimeVQVAE, (6) HPLC-FTIR- TimeVQVAE. The dataset was
split using the “train_test_split” function from Python’s scikit-
learn library, dividing the dataset twice, as shown in Figure 3. In
this study, we employed one-hot-encoding for multi-class
classification within the PLS-DA framework. This method
ensured that each class was treated independently without
implying any ordinal relationship (Karthiga et al., 2021; Perotti
et al., 2023).

Before data generation, the training and test set for the
classification model consisted of 102 and 35 samples, respectively.
After data generation, the training and test set contained 732 and

305 samples, respectively. The results of data set division were
shown in Supplementary Table S2.

2.4.2 Classification model evaluation
In this study, the model was evaluated using four metrics:

Sensitivity, Specificity, Precision, Accuracy, and F1 score (Hong
et al., 2023; Szabó et al., 2024). Sensitivity, also known as the true
positive rate, measures the proportion of actual positive samples
correctly identified. Specificity, also known as the true negative rate,
measured the proportion of actual negative samples correctly
identified. Precision is defined as the number of true positive
samples divided by the number of samples predicted to be
positive. Higher precision indicates fewer false positives. F1 score
is the harmonic mean of precision and recall, providing a balanced
evaluation between these twometrics. It is used to combine precision
and recall into a single measure that accounts for both metrics
simultaneously. These metrics can be obtained by Equations 6–10:

Sensitivity SEN( ) � Recall � TP

TP + FN
(6)

Specificity SPE( ) � TN

TN + FP
(7)

Precision � TP

TP + FP
(8)

Accuracy ACC( ) � TN + TP

TN + TP + FN + FP
(9)

F1 score � 2 ×
Precision × Recall

Precision + Recall
(10)

Here, TN, TP, FN, and FP represent true negative, true positive,
false negative, and false positive, respectively. TP represents the
number of samples correctly classified into specific categories; TN is
the number of non-specific category samples correctly assigned to
non-specific categories; FP is the number of non-specific category
samples belonging to specific categories; FN is the number of specific
category samples incorrectly classified as non-specific categories.

2.5 Experimental environment and software

The experiments were conducted on a computer with the
following specifications: Windows 10 operating system, Intel i9-
10900X CPU, NVIDIA RTX 3090 GPU, and 96 GB of RAM. Python
3.9, PyTorch 1.8.0, and CUDA 11.8 were used for coding and
executing all models. These computational resources provided
sufficient power for efficient model training and evaluation.

3 Results and discussion

3.1 HPLC and FTIR fingerprints analysis

Supplementary Figure S1 displayed the HPLC fingerprint
chromatograms for the three grades. Principal Component
Analysis (PCA) was used to analyze the HPLC data, with results
shown in Supplementary Figure S2A. The figure showed overlap
between the high and medium grades, as well as between the
medium and low grades, suggesting that the liquid
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chromatographic analysis data revealed a high degree of chemical
similarity among samples with minimal differences.

Similarly, PCA analysis of the FTIR data, shown in
Supplementary Figure S2B, also indicated minimal differences
between the three grades, demonstrating that the grades could
not be distinctly separated based on the FTIR analysis.

Figure 4 displayed the average second derivative FTIR spectra for
different grades. High spectral absorption between 1,390–1770 cm−1 is
primarily attributed to the stretching vibrations of the benzene ring
skeleton, carbonyl (C=O) vibrations, and C-N vibrations (Xiao et al.,
2014). Peaks at 472, 588, and 631 cm−1 are associated with the
vibrations of certain oxides or metal elements coordinated with -O
or similar compounds (Justi et al., 2021). Peaks at 721 and 750 cm−1

are likely related to the vibrations of alkyl or alkoxy groups. Peaks at
1,080 and 1,200 cm−1 may be associated with C-O vibrations (e.g.,
carboxyl, ether), and the peak at 1,330 cm−1 might relate to C-N
vibrations or vibrations of aliphatic aldehydes or alcohols. This
suggested that Shilajit may contain conjugated benzene ring
compounds and trace metal elements.

3.2 Data generation by TimeVQVAE model

3.2.1 TimeVQVAE model training
The hyperparameters of the network were set as follows:

learning rate (LR) = 0.001, weight decay = 0.00001, and the
model was iterated 5,000 in total.

Figure 5 illustrated the changes in loss during the training
process. It could be observed that the loss stabilized around
4,000 iterations, with FTIR data converging the fastest. Detailed
results were presented in Table 1. In the training set, losses for all
three types of data were relatively low. In the test set, losses for HPLC
and HPLC-FTIR were higher, with HPLC loss at 2.79325 and FTIR
at 0.06987. This trend was consistent across other metrics, likely due
to the higher number of features in the HPLC data, which has
9,000 feature values. After LLDF, the number of feature values
increased to 10,869, resulting in higher generated data loss
compared to the FTIR data.

Figure 6 showed the visual comparison of the original and
generated data at three randomly selected epochs (13, 623, and

FIGURE 3
Principles of dataset partitioning.
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FIGURE 4
The second-order guide spectrogram of the infrared spectrum of medicinal materials, H is high quality, M is medium quality, and L is low quality.

FIGURE 5
Loss variation for training and validation sets with different data sources.
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1989) during the training process. The blue lines represent the
original input data, while the yellow lines represent the model’s
predictions. As training progressed, the generated data became
increasingly similar to the original data, demonstrated that the
model effectively learned the key features of the original data and
used this knowledge to generate new samples.

3.2.2 Generated sample assessment
To fairly evaluate the generated data, robust evaluation metrics

and diverse benchmark datasets are required. After training, the
trained model was used to evaluate performance on the test set, with
the results were presented in Table 2.

Table 2 showed that lower FID values and IS values closer to
3 indicate better performance. Overall, FTIR data had the smallest
FID value of 0.1413 and an IS value of 1.0, indicating high quality.
HPLC data also showed good performance, with an IS value of
1.4345 and an FID value of 1.5949. However, the generated data
from low-level data fusion performed poorly compared to the
individual datasets.

3.2.3 Generate samples to visualize the assessment
PCA and t-SNE were used for visual comparisons to evaluate the

generated and original data, as shown in Figure 7. Figures 7A, C
depicted the direct mappings of PCA and t-SNE for the original and
generated data, respectively, showing that the generated data had a
distribution model similar to the real data, indicating that the
generation model performed well in producing samples
resembling the real data. Figures 7B, D displayed the
dimensionality-reduced mappings obtained by applying PCA and
t-SNE in the latent space, specifically from the feature vectors
extracted from a pre-trained Fully Convolutional Network (FCN)
model. Here, the generated data for Figure 7E HPLC and Figure 7F
FTIR exhibited distributions in the latent space that aligned closely
with those of the real data, demonstrating that the model effectively
captures the underlying structures and features of the data.
However, Figure 7G HPLC_FTIR showed a poorer performance
in the latent space, with more noticeable differences in feature
distribution compared to the original data, indicating room for
further optimization in capturing the combined characteristics of
both datasets.

3.2.4 Comparison between the generated HPLC
fingerprints and the original fingerprints

To better reflect the reliability of the generated data, the
fingerprint chromatograms of the generated data were compared
with those of the original samples. As shown in Figures 8A, B, the H
grade Shilajit exhibited the highest number of peaks, followed by M
and L grades. The HPLC data generated by the TimeVQVAE model
showed variations in peak areas compared to the real HPLC data,
with no changes in peak positions. Some individual peaks had
smaller areas or were absent, which is consistent with the varying
peak shapes caused by instrumental or experimental errors in
traditional HPLC experiments. Moreover, the standard deviation
of the generated data is much smaller than that of the real data,
reducing the generation of other noise. The results demonstrate that
the generated data accurately replicates the characteristics of the
original data, validating the reliability and effectiveness of the
TimeVQVAE model in producing high-quality HPLC data.T
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FIGURE 6
Visualization of generated results at three epochs (13, 623, and 1989) during the training process. The blue line represents the original time-series
data, the yellow line represents the predicted data. x_l refers to the low-frequency component of the time-series signal, x_h refers to the high-frequency
component of the time-series signal, x represents the time series data generated or predicted. (A) HPLC. (B) FTIR. (C) HPLC_FTIR.
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3.2.5 Comparison between generated FTIR average
spectra and the real average spectra

Supplementary Figure S3 showed the generated FTIR fingerprints
spectra alongside the real spectra. It was observed from the generated
and true average spectra (Figures 8C, D) that there were differences
between the three grades, particularly in the range of 1,000–1,500 cm−1.
Additionally, the average FTIR spectra generated by the TimeVQVAE
model aligned closely with the true FTIR spectra for the three grades,
showing a small standard deviation. This consistency indicates that the
TimeVQVAE model effectively captures the characteristics of the
original FTIR data, accurately reproducing the differences between
the three grades.

3.2.6 Generate HPLC and FTIR data
In this study, the trained TimeVQVAE model generated a total

of 900 batches of data, comprising 298 batches for H grade,
311 batches for M grade, and 291 batches for L grade. The
results of generated fingerprint chromatograms for the three data
types were shown in Supplementary Figure S4.

3.3 Discriminant analyses by PLS-DA model

Before establishing the PLS-DA models, we performed 10-
fold cross-validation to determine the optimal number of latent
variables. The results of the selection of the number of latent
variables were shown in Figure 9. Using the optimal number of
latent variables determined through 10-fold cross-validation, we
plotted the explained variance for both the X and Y blocks
(Figure 10). The results indicated that as the number of latent
variables increases, the cumulative explained variance in both
blocks also increases. This suggests that the model effectively
captures the variance in both the predictors (X) and the responses
(Y), with a higher number of latent variables leading to better

TABLE 2 Results of the evaluation of the three data samples.

Data type FID IS mean IS std

HPLC 1.5949 1.4345 0.0731

FTIR 0.1413 1.0000 0.0000

HPLC-FTIR 3.5326 1.0791 0.0817

FIGURE 7
PCA and T-SNE visual mapping of test samples (blue points) and generated samples (yellow points). (A) PCA original data direct mapping. (B) PCA
mapping of data in latent space. (C) T-SNE original data direct mapping. (D) T-SNE mapping of data in latent space. (E) HPLC. (F) FTIR. (G) HPLC_FTIR.
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FIGURE 8
The mean and standard deviation of the generated data and the real data, H is high quality, M is medium quality, and L is low quality. (A) HPLC. (B)
Generated HPLC. (C) FTIR. (D) Generated FTIR.

FIGURE 9
Selection of the number of latent variables through 10-Fold cross-validation, the red line and the blue line are the accuracy of the model on the
training set and the average accuracy on the cross-validation set under different numbers of latent variables. (A)HPLC. (B) FTIR. (C)HPLC-FTIR. (D)HPLC-
TimeVQVAE. (E) FTIR-TimeVQVAE. (F) HPLC_FTIR-TimeVQVAE.

Frontiers in Pharmacology frontiersin.org11

Ding et al. 10.3389/fphar.2024.1503508

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1503508


data representation. However, the rate of increase in explained
variance diminishes as more latent variables are added,
indicating a point of diminishing returns, beyond which
additional latent variables contribute less to the model’s
explanatory power.

Subsequently, the optimal number of latent variables was used
to build the models. The results of the confusion matrix and ROC
curves were shown in Figure 11. The results showed that before
data generation, the best classification performance was observed
for the M grade, with significant differences in classification
performance across the three grades. After virtual data
generation using the TimeVQVAE model, the best classification
performance shifted to the L grade. Detailed evaluation metrics are
provided in Table 3.

Table 3 showed that the performance of PLS-DA models built
with single and fused data sources was unsatisfactory before
generating data using the TimeVQVAE model. The PLS-DA
model could not differentiate between the three grades of Shilajit,
and there were variations in discriminatory ability and evaluation
metrics among the grades. The average accuracy metrics for the
three grades ranged from 0.7143 to 0.7905.

After generating data using TimeVQVAE, all performance
metrics in the training set were above 0.9. In the test set, except
for FTIR, the PLS-DA model performance was strong, with all
metrics above 0.8. In the training set, the HPLC-TimeVQVAE
model achieved the highest overall accuracy (0.9700) and
F1 scores across all classes, indicating strong model
performance with minimal overfitting. However, when tested
on unseen data, the performance slightly declined, particularly in
the H grade, suggesting some degree of overfitting to the training
data. Comparatively, the FTIR-TimeVQVAE model also showed
robust results, particularly in the L grade, maintaining high
sensitivity and specificity in both the training and test sets.
The HPLC-FTIR-TimeVQVAE combination provided
balanced results across all metrics, maintaining a good trade-
off between sensitivity and specificity, especially in the L grade on
the test set, indicating better generalization. In summary, while
all models performed well on the training data, their
generalization to the test set varied. The combined HPLC-
FTIR-TimeVQVAE model demonstrated the most consistent
performance across both datasets, suggesting it was the most
robust model for this classification task.

FIGURE 10
Analysis of Explained variance in X and Y Blocks in PLS-DA model. (A) HPLC. (B) FTIR. (C) HPLC-FTIR. (D) HPLC-TimeVQVAE. (E) FTIR-TimeVQVAE.
(F) HPLC-FTIR-TimeVQVAE.
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The PLS-DA model confirmed that the HPLC and FTIR
data generated by the TimeVQVAE model significantly
improved classification model performance. Compared to

data fusion, which enhances the chemical information
between samples, increasing the experimental sample size
resulted in better classification accuracy and performance.

FIGURE 11
Confusion matrix and ROC curves on the test set, H is high quality, M is medium quality, and L is low quality. (A) HPLC. (B) FTIR; (C) HPLC-FTIR; (D)
HPLC-TimeVQVAE; (E) FTIR-TimeVQVAE; (F) HPLC-FTIR-TimeVQVAE.

Frontiers in Pharmacology frontiersin.org13

Ding et al. 10.3389/fphar.2024.1503508

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1503508


Additionally, high performance was achieved using a single
data source.

4 Conclusion

This study employs deep learning models of time series
generation to generate virtual chromatographic (HPLC) and
spectroscopic (FTIR) data, which were then used in traditional
machine learning methods for classifying Tibetan medicinal
Shilajit. This model not only generates a large amount of
virtual data that closely resemble the original chromatographic
and spectroscopic profiles but also enhances the performance and
accuracy of classification models. Furthermore, for PLS-DA
model trained on real samples, the average performance
metrics for the PLS-DA model range from 0.5 to 0.9,

therefore, both classification models struggle to distinguish
among the three grades of Shilajit before using the
TimeVQVAE model. However, after generating data using
TimeVQVAE, the performance of the classification model
significantly improved, with average classification accuracy
above 0.9 for both the training and testing sets. Compared to
data fusion, increasing the experimental sample size is more
effective in enhancing classification model performance.

This study contributes to advances in the application of time
series generation model for generating chromatographic and
spectroscopic data in traditional Chinese medicine. It
addresses the challenge of limited data samples and reduces
the need for extensive chemical experiments by generating a
large number of data that closely resemble the original data.
These generated data can be considered results of instrument
errors or human-induced variations during experiments. The

TABLE 3 PLS-DA model results are based on different data types and Shilajit grades.

Data type LVs Grade Train set Test set

SEN SPE PRE ACC F1 score SEN SPE PRE ACC F1 score

HPLC 5 H 0.5862 0.9863 0.9444 0.8725 0.7234 0.2667 0.9000 0.6667 0.6286 0.3810

M 0.6667 0.9615 0.8421 0.8922 0.7441 0.7778 0.9615 0.8750 0.9143 0.8235

L 0.9184 0.6226 0.6923 0.7647 0.7895 0.8182 0.5000 0.4286 0.6000 0.5625

Average 0.7237 0.8568 0.8263 0.8431 0.7523 0.6209 0.7872 0.6567 0.7143 0.5890

FTIR 11 H 0.7241 0.9315 0.8077 0.8725 0.7636 0.4667 0.9000 0.7778 0.7143 0.5833

M 0.7500 0.9872 0.9474 0.9314 0.8372 0.8889 1.0000 1.0000 0.9714 0.9412

L 0.8980 0.7547 0.7719 0.8235 0.8302 0.8182 0.6250 0.5000 0.6857 0.6207

Average 0.7907 0.8911 0.8423 0.8758 0.8103 0.7246 0.8417 0.7593 0.7905 0.7151

HPLC-FTIR 5 H 0.7586 0.9178 0.7857 0.8725 0.7719 0.4000 0.8500 0.6667 0.6571 0.5000

M 0.7083 0.9487 0.8095 0.8922 0.7556 0.8889 1.0000 1.0000 0.9714 0.9412

L 0.8367 0.7736 0.7736 0.8039 0.8039 0.7273 0.5833 0.5833 0.6286 0.5517

Average 0.7679 0.8800 0.7896 0.8562 0.7771 0.6721 0.8111 0.7500 0.7524 0.6643

HPLC-TimeVQVAE 7 H 0.9319 0.9963 0.9924 0.9745 0.9612 0.8219 0.9930 0.9836 0.9349 0.8955

M 0.9605 0.9537 0.9241 0.9562 0.9419 0.9571 0.9034 0.8272 0.9209 0.8874

L 0.9749 0.9811 0.9549 0.9793 0.9648 0.9722 0.9790 0.9589 0.9767 0.9655

Average 0.9558 0.9770 0.9571 0.9700 0.9560 0.9171 0.9585 0.9232 0.9442 0.9161

FTIR-TimeVQVAE 15 H 0.9157 0.9822 0.9598 0.9611 0.9373 0.7901 0.9701 0.9412 0.9023 0.8591

M 0.9530 0.9332 0.8903 0.9404 0.9206 0.9315 0.8592 0.7727 0.8837 0.8447

L 0.9506 0.9928 0.9843 0.9793 0.9671 0.9180 0.9805 0.9492 0.9628 0.9333

Average 0.9398 0.9694 0.9448 0.9603 0.9417 0.8799 0.9366 0.8877 0.9163 0.8790

HPLC-FTIR-TimeVQVAE 15 H 0.9738 0.9820 0.9630 0.9793 0.9683 0.8267 0.9643 0.9254 0.9163 0.8732

M 0.9178 0.9768 0.9588 0.9550 0.9378 0.8657 0.9122 0.8169 0.8977 0.8406

L 0.9761 0.9720 0.9387 0.9732 0.9570 0.9726 0.9577 0.9221 0.9628 0.9467

Average 0.9559 0.9769 0.9535 0.9692 0.9544 0.8883 0.9447 0.8881 0.9256 0.8868

Bold indicates the best classification result after data enhancement.
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abundance of experimental data improve the model’s robustness
and accuracy.
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