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Pulmonary diseases are a major category of diseases that pose a threat to human
health. The most common drugs currently used to treat lung diseases are still
chemical drugs, but this may lead to drug resistance and damage to healthy
organs in the body. Therefore, developing new drugs is an urgent task. Lipid
peroxidation is caused by the disruption of redox homeostasis, accumulation of
reactive oxygen species (ROS), depletion of glutathione (GSH), and inactivation of
glutathione peroxidase 4 (GPX4). Lipid peroxidation is closely related to the
occurrence and progression of respiratory diseases, including acute lung
injury, asthma, pulmonary fibrosis, pulmonary hypertension, chronic
obstructive pulmonary disease, and lung cancer. Natural ingredients have high
safety, high availability, and low cost, and can regulate lipid peroxidation through
multiple pathways and targets, making them valuable new drugs. This article aims
to summarize the pharmacology and mechanism of natural ingredients targeting
lipid peroxidation in the treatment of lung diseases. The reviewed data indicate
that natural ingredients are a promising anti-lipid peroxidation drug, mainly
alleviating lipid peroxidation through the cystine/glutamate antiporter (System
Xc

−)/GSH/GPX4 axis, Nrf2 pathway, and ROS pathway. In the future, it will still be
necessary to further study the mechanisms of natural products in treating
pulmonary diseases through lipid peroxidation and conduct multi-center,
large-sample clinical trials to promote the development of new drugs.
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1 Introduction

Pulmonary diseases are a large group of diseases that endanger human health, mainly
including acute lung injury (ALI), asthma, chronic obstructive pulmonary disease (COPD),
pulmonary hypertension, pulmonary fibrosis, and lung cancer. Chronic pulmonary disease
is one of five non-communicable disease areas that contribute to the highest mortality and
morbidity globally (Soriano et al., 2020). Statistically, asthma which is a part of chronic
pulmonary disease, affected an estimated 262 million people in 2019 and caused
455,000 deaths (Wang et al., 2023b). COPD is the third leading cause of death globally,
causing around 3 million deaths annually which also poses a serious risk to life and health
(Venkatesan, 2024). Lung cancer is a significant public health concern, and it was the most
frequently diagnosed cancer in 2022, which was also the leading cause of cancer death, with
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an estimated 1.8 million deaths (Bray et al., 2024). However, the
current pharmacological treatment of respiratory diseases still fails
to meet the existing needs, and the development of novel drugs is an
urgent task nowadays (Cheong et al., 2020).

Current research indicates that oxidative stress is a significant
pathogenesis for respiratory diseases (Luo et al., 2023). Under
normal circumstances, low concentrations of oxygen free radicals
in lung tissue participate in resisting exogenous pathogens and
immune function (Junod, 1989). However, when lung tissue
undergoes pathological changes and generates a large amount of
oxygen free radicals due to physical conditions, oxygen free radicals
become an important factor in the damage of lung tissue cells in the
body. Oxygen free radicals have an initiating effect on the membrane
lipid peroxidation chain reaction, which can alter membrane
permeability and fluidity, produce lipid peroxides, and cause lipid
metabolism disorders (Ryrfeldt et al., 1993). In recent years, lipid
peroxidation has been discussed in atherosclerosis, brain tumors,
gynecological, obstetric diseases, and lung diseases (Gianazza et al.,
2020; Jaganjac et al., 2021; Lu et al., 2024). A study indicates that the
parameters of lipid peroxidation malondialdehyde (MDA) were
significantly associated with variables reflecting lipid disturbances.
In lung cancer patients, parameters related to lipid alterations are
associated with oxidative stress (Zabłocka-Słowińska et al., 2019). In
COPD patients, increased levels of lipid peroxidation and its final
product 4-hydroxynonenal (4-HNE) can be detected, indicating a
correlation between lipid peroxidation and the pathogenesis of
COPD (Lakshmi et al., 2020). In addition, lipid peroxidation also
plays an important role in the development of pulmonary fibrosis.
Increased concentrations of lipid peroxidation products, oxidized
proteins, and an altered antioxidant enzyme status have often been
reported in epithelial lining fluid of idiopathic pulmonary fibrosis
patients (Cameli et al., 2020). Moreover, the study indicates that the
lungs may be more resistant to the initiation and/or spread of lipid
peroxidation processes than the liver (Schweich et al., 1994).
Therefore, lipid peroxidation, as an important process of
oxidative stress, plays a crucial role in the occurrence and
development of lung diseases (Gęgotek et al., 2016). Treating
pulmonary diseases by regulating lipid peroxidation is a potential
therapeutic tool.

A study indicates that anti-lipid peroxidation drugs may be
divided into three categories: ①Inhibiting enzymatic lipid
peroxidation by inhibiting enzyme activation or reaction, such as
fullerenols (Chen et al., 2024b). ②Inhibition of free radical
mediated-lipid peroxidation may be achieved by inhibiting chain
initiation, chain propagation, and/or chain termination, including
carotenoids.③Lipid peroxidation induced by singlet oxygen may be
inhibited by the inhibition of singlet oxygen formation, including
Vitamin E and Vitamin C (Niki et al., 2005). However, the types of
drugs on the market that can regulate lipid peroxidation to treat lung
diseases are still limited, making it difficult to meet the growing
medical demand. In this context, natural ingredients, as an untapped
treasure trove of new drug resources in nature, provide
unprecedented possibilities for the development of novel anti-
lipid peroxidation drugs. Numerous studies have shown that
botanical drugs contain abundant bioactive components that
exhibit significant regulatory effects on lipid peroxidation
processes. For example, chlorogenic acid can enhance the activity
of antioxidant enzymes, thereby reducing lipid peroxidation levels

and ultimately delaying paraquat-induced lung injury and fibrosis
progression (Larki-Harchegani et al., 2023). Ellagic acid can improve
lipid peroxidation in elastase induced emphysema model in rat, also
achieved by enhancing the activity of antioxidant enzymes
(Mansouri et al., 2020). Therefore, natural ingredients are
gradually receiving widespread attention from researchers and
the medical community in the treatment of lung diseases
(Lalsangpuii et al., 2024). Natural ingredients not only provide
new molecular frameworks and mechanisms of action for new
drug development, but may also bring therapeutic options with
fewer side effects and higher efficacy, which is of great significance
for improving the quality of life and prognosis of patients with lung
diseases. This paper summarises the current status of natural
ingredients for the treatment of pulmonary diseases through lipid
peroxidation, with the purpose of providing new insights into the
understanding of current research and the future direction of natural
ingredients in pulmonary diseases.

2 Materials and methods

An online literature search was carried out at PubMed, covering
2014 until September 2024. The following keywords were used:
“lipid peroxidation” and “natural ingredients”, or “active
ingredient”, or “herbal medicines”, or “Chinese herbal”, and
“acute lung injury”, or “asthma”, or “pulmonary fibrosis”, or
“pulmonary arterial hypertension”, or “COPD”, or “lung cancer”.
The references of all retrieved articles were also reviewed to include
relevant literature.

3 Mechanisms and hazards of lipid
peroxidation

3.1 Lipid peroxidation

Lipid peroxidation is a process under which oxidants such as
free radicals or non-radical species attack lipids containing carbon-
carbon double bond(s), especially polyunsaturated fatty acids
(PUFA) (Rochette et al., 2022). This process is influenced by
oxidative stress: Reactive oxygen species (ROS) is a key
component in mediating lipid peroxidation (Wang et al., 2023a).
Substances produced by oxidative stress can directly oxidize
membrane lipids, resulting in membrane lipid peroxidation (Pope
and Dixon, 2023). The increase in hydrogen peroxide (H2O2)
production and iron release from proteins in oxidative stress by
superoxide ion (O2·−) and peroxynitrite (ONOO−) causes a marked
elevation in the production of lipid peroxidation products, including
4-hydroxy-2-nonenal (Forman and Zhang, 2021). Lipid
peroxidation is broadly divided into three steps. Initiation: a
promoter such as a hydroxyl radical extracts allyl hydrogen to
form a carbon-centric lipid radical. Propagation: lipid radicals
react rapidly with oxygen to form lipid peroxy radicals, which
extract hydrogen from another lipid molecule to produce new
lipid radicals (continuous chain reaction) and lipid hydrogen
peroxide. Termination: antioxidants such as vitamin E provide
hydrogen atoms to lipid peroxy radicals to form the
corresponding vitamin E radicals, which react with another lipid
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peroxy radical to form non-free radical products (Wang et al.,
2023a). From the point of view of enzymatic reactions, PUFA-
CoA is generated by acyl coenzyme A synthetase long-chain family
member 4 (ACSL4) catalyzes the ligation of free PUFA (such as
arachidonic acid and adrenoic acid) to CoA to generate PUFA-CoA.
PUFA-CoA subsequently binds to phosphatidylethanolamine (PE)
to form PUFA-PE catalyzed by lysophosphatidylcholine
acyltransferase 3 (LPCAT3). PUFA-PE is susceptible to
lipoxygenase (LOX)-mediated free radical-induced oxidation
forming the peroxidation product PUFA-PL-OOH (Doll et al.,
2017; Stoyanovsky et al., 2019; Qiu et al., 2024). Figure 1
illustrates the mechanism of lipid peroxidation.

A direct product of lipid peroxidation is lipid hydroperoxides
(Gaschler and Stockwell, 2017), as their hydroperoxyyl chains
become more hydrophilic and tend to bind to the lipid-water
interface, resulting in changes in membrane permeability and
fluidity (Balakrishnan and Kenworthy, 2024). The secondary
products of lipid peroxidation include isoglutaraldehyde, MDA,
4-HNE (Valgimigli, 2023). These secondary products exhibit
additional cytotoxicity. They can bind to lipids, proteins,
deoxyribonucleic acid (DNA), disrupting their normal function,
causing cell necrosis (Hauck and Bernlohr, 2016). The process of
lipid peroxidation disrupts DNA, protein, and enzyme activity and
acts as a molecular activation signaling pathway that initiates cell
death (Łuczaj et al., 2017). Ferroptosis, as an iron dependent

programmed cell death mode, is closely related to lipid
peroxidation. Its essence is the depletion of glutathione (GSH)
and the decrease of glutathione peroxidase (GPx) activity, which
leads to the inability of lipid oxides to be metabolized through the
glutathione peroxidase 4 (GPX4) catalyzed glutathione reductase
reaction. Subsequently, divalent iron ions oxidize lipids to produce
ROS, thereby promoting the occurrence of ferroptosis (Jiang
et al., 2021).

3.2 The hazards of lipid peroxides

A rising body of research in the last several years has shown that
elevated lipid peroxidation is a significant risk factor for the onset of
pulmonary diseases. A redox status imbalance and elevated lung
lipid peroxidation products are commonly linked to the etiology of
idiopathic pulmonary fibrosis (Tsubouchi et al., 2019). Long-chain
acyl-CoA synthetase 4 (ACSL4) gene deletion inhibits lipid
peroxidation by lowering PUFA-containing membrane
phospholipids on cell membranes, thereby preventing pulmonary
toxicity and chemically induced lung injury (Tomitsuka et al., 2023).
Using a hypoxic pulmonary artery smooth muscle cell (PASMC)
model and a hypoxic mouse model, researcher clarified the role of G
protein-coupled receptor 146 (GPR146) in the regulation of lipid
peroxidation in pulmonary hypertension. Specifically, hypoxia

FIGURE 1
The mechanism of lipid peroxidation: When lipid peroxidation occurs, polyunsaturated fatty acids in phospholipid membranes generate lipid
hydroperoxides under the action of various enzymes. This process is accompanied by the formation ofmany secondary products, includingMDA, 4-HNE,
and ROS. These products can act as oxidizing agents with toxic effects on cells. Natural ingredients can protect cells from toxic effects by directly or
indirectly scavenging lipid peroxidation products. The antioxidant system in the organism is mainly through GPX4-related pathways. Natural
ingredients stimulate the downstream target HO-1 and enhance SLC7A11 protein expression by upregulating Nrf2 gene expression. Thus, GPX4 is directly
or indirectly activated to inhibit lipid peroxidation by converting lipid hydroperoxides to nontoxic lipids and alcohols. In addition, multiple targets are
involved in regulating the SLC7A11/GPX4 axis, including activation of the System Xc

−, which promotes GSH synthesis and GPX4 activation to regulate lipid
peroxidation. At the same time, natural ingredients can reduce the inhibitory effect on GPX4 by inhibiting certain signaling pathways such as MAPK, which
ultimately inhibits lipid peroxidation. Symbols: Black arrow (↓): indicates promotion. The bold red arrow (⊥): indicates inhibition.
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causes a significant amount of ROS to be released, upregulates
GPR146 expression in PASMCs, and induces the expression of 5-
lipoxygenase. This process increases the lipid peroxidation product
MDA and encourages PASMC proliferation and pulmonary
vascular remodeling, aggravating pulmonary hypertension
(Huang et al., 2023). Lipid peroxidation caused by severe
oxidative stress may contribute to tumor progression by inducing
oxidative damage of genetic material, lipids, and proteins, regulating
signaling molecules, affecting cell growth and chronic inflammation
(Prasad and Srivastava, 2020). However, new research suggests that
tumor progression linked to increased lipid peroxidation may
actually cause the tumor to decay through necrosis or even
apoptosis (Živković et al., 2017).

In China, people have been using traditional Chinese medicine
to treat respiratory system diseases for thousands of years. In
modern times, various active monomers (such as flavonoids,
alkaloids, terpenoids) have been extracted from Chinese herbal

medicine and have been proven to have various biological
activities such as antioxidant and anti-inflammatory properties
(Gu et al., 2014; Liu, 2019). Especially some studies have found
that natural ingredients can limit lipid peroxidation in the treatment
of lung diseases through multiple pathways and targets. The main
mechanism involved in this process is to regulate several critical
signaling pathways such as the cystine/glutamate antiporter (System
Xc

−)/GSH/GPX4 axis, ROS pathway, and nuclear factor erythroid 2-
related factor 2 (Nrf2) pathway. Figure 2 shows the relationship
between lipid peroxidation and various lung diseases.

3.2.1 System Xc
−/GSH/GPX4 axis

The System Xc
−/GSH/GPX4 axis is one of the keys to the

regulation of lipid peroxidation. Among them, System Xc
− is the

key upstream node, GSH is the main cofactor, and GPX4 is the
central regulator (Li et al., 2022). System Xc

− is a membrane-bound
amino acid antiporter composed of Solute Carrier Family 7 Member

FIGURE 2
Relationship between lipid peroxidation and various lung diseases: Since lipids are responsible for maintaining the integrity of cell membranes,
extensive peroxidation of lipids alters the assembly, composition, structure, and dynamics of lipid membranes. In addition to highly reactive compounds,
lipid peroxidation can further generate ROS or degrade into reactive compounds that can cross-link DNA and proteins, causing cellular, tissue, and organ
damage and ultimately impairing the body’s physiological mechanisms. Lung diseases such as ALI, asthma, pulmonary fibrosis, pulmonary
hypertension, COPD, and lung cancer can be caused by lipid peroxidation.
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11 (SLC7A11) and Solute Carrier Family 3 Member 2 (SLC3A2).
GSH synthesis depends on System Xc

− which inputs cysteine into
cells to exchange intracellular glutamate (Bridges et al., 2012). GPx
clears intracellular peroxides by catalyzing the reaction between
GSH and peroxides. It can convert hydroperoxides into non-toxic
lipid alcohols, thereby inhibiting lipid peroxidation and protecting
cells from oxidative damage (Zhang et al., 2024). In the GPx catalytic
reaction, a disulfide bond is formed between two GSH molecules to
form glutathione disulfide. Glutathione reductase (GR) recycles
glutathione disulfide to GSH while oxidizing β-nicotinamide
adenine dinucleotide phosphate (β - NADPH2), which maintains
the reduced state of GSH and ensures its normal antioxidant
function (Lu, 2013).

Therefore, GPX4 plays an important role in preventing lipid
peroxidation by using GSH as an essential cofactor. The decrease in
GSH levels can directly affect GPX4 activity, increase intracellular
lipid peroxidation, and ultimately promote ferroptosis, inducing a
series of diseases (Yang et al., 2014; Seibt et al., 2019).

3.2.2 Scavenging ROS
ROS is a general term for a large class of oxidants, including

superoxide anion radicals (O2
·−), hydroxyl radicals (·OH), and non-

radical oxidants such as H2O2 (Zorov et al., 2014). The main source
of ROS is mitochondrial respiratory chain and NADPH oxidase
(Brown and Griendling, 2015; Sarniak et al., 2016). ROS is a key
component in mediating lipid peroxidation (Wang et al., 2023a).
Chemical, physical, and biological factors can individually or
synergistically disrupt the balance of redox reactions in lung
tissue, leading to an increase in ROS levels produced in the
airways. This reaction is manifested in the body as an increase in
oxidative stress markers in sputum, respiration, lungs, and blood.
ROS, whether directly or through the formation of lipid
peroxidation products such as 4-hydroxy-2-nonanal, may play a
role in enhancing inflammation by activating stress kinases (JNK,
MAPK, p38) and redox-sensitive transcription factors such as NF-
κB and AP-1 (Rahman and MacNee, 2000). At the same time, the
increase of ROS will also lead to the increase of the expression of Bax,
caspase-3, caspase-7 and caspase-9, and the decrease of the
expression of Bcl-2, thereby directly activating apoptosis (Zhang
et al., 2023).

3.2.3 Nrf2 pathway
Nrf2 is expressed in all cell types and is the main transcription

factor regulating antioxidant enzyme expression mediated by
antioxidant response elements, but its baseline protein level is
usually low in a steady-state environment. Under basic
conditions, Nrf2 is isolated in the cytoplasm by actin binding
protein Keap1, which can bind to Nrf2 and target it for
ubiquitination dependent proteasome disruption (Nguyen et al.,
2009). When the lungs are stimulated by various factors and
experience oxidative stress, Nrf2 dissociates from Keap1,
translocates to the nucleus, binds to antioxidant response
elements, and activates antioxidant genes (Zhao et al., 2017).
Nrf2 can induce the expression of multiple cell protective genes,
for example, heme oxygenase-1 (HO-1), as an antioxidant and anti-
inflammatory enzyme, is mainly regulated by Nrf2 activation and
can play a protective role against oxidative stress (Paine et al., 2010).
Multiple studies have shown that this process has

pathophysiological effects on lung diseases such as ALI (Xu et al.,
2021) and allergic airway asthma (Jiang et al., 2024). In addition,
Nrf2 can indirectly regulate the expression of other antioxidant
enzymes such as superoxide dismutase (SOD), GSH, GPx, and
catalase (CAT). These enzymes regulate the redox homeostasis in
the body by reducing lipid peroxides, allowing the body to recover
from oxidative stress to a normal physiological state (McMahon
et al., 2006; Dodson et al., 2019; Chen et al., 2024a). Other studies
have shown that Nrf2-mediated inhibition of pro-inflammatory
cytokine gene induction is not affected by ROS level, and its role
in inflammatory inhibition needs to be further explored (Kobayashi
et al., 2016). In addition, due to the regulatory effect of Nrf2 on
interferon, it is generally believed that it also plays a special role in
antiviral immunity (Herengt et al., 2021). Therefore, the
Nrf2 pathway has become an important therapeutic molecular
target, and activation of the Nrf2 pathway may be a promising
way to ameliorate lipid peroxidation and inhibit inflammation in
pulmonary diseases.

4 Multi-mechanism regulation of lipid
peroxidation by natural ingredients in
lung diseases

In recent years, many researchers have studied natural
ingredients’ pharmacological effects and potential molecular
mechanisms in treating lung diseases through lipid peroxidation.
Abnormal lipid peroxidation can activate ferroptosis, leading to the
development and progression of ALI, asthma, pulmonary fibrosis,
pulmonary arterial hypertension, COPD, and other respiratory
diseases. However, lipid peroxidation also helps to inhibit the
growth and spread of tumor cells in lung cancer. Resistance to
ferroptosis may promote tumorigenesis and mediate tumor cell
resistance to therapeutic drugs. Table 1 provides a summary of
natural ingredients used in the treatment of pulmonary diseases,
highlighting their compound types, experimental models, relevant
test dose ranges, and mechanisms of lipid peroxidation regulation.
Figure 3 illustrates the general process by which natural ingredients
affect lipid peroxidation in lung diseases.

4.1 Acute lung injury

ALI and its more serious form, acute respiratory distress
syndrome (ARDS), as respiratory diseases with high mortality
rates, are manifested by acute hypoxemic respiratory failure,
increased alveolar permeability and severe alveolar edema with
normal cardiac filling pressures (Shaw et al., 2019). The clinical
therapies applied in ALI/ARDS mainly include pulmonary
protective ventilation and limited fluid management
supplemented by glucocorticoids, inhaled pulmonary vasodilators,
neuromuscular block, and extracorporeal membrane oxygenation
(Liu et al., 2022).

Many studies have found that in mouse models with ALI/ARDS,
an increase in lipid peroxidation marker MDA levels and a
significant decrease in antioxidant enzyme activities such as SOD,
CAT, and GPx have been observed (Yeh et al., 2014; Dianat et al.,
2018; Su et al., 2019). An increase in MDA levels indicates an
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TABLE 1 Natural ingredients regulating lipid peroxidation in pulmonary disease.

Disease Compound Classification Cell/animal
model

Dose/
Concentration

Control
group

Mechanisms Ref

Acute lung
injury

Myricetin Flavonoids Male C57BL/6 mice
induced by CLP

100 mg/kg, i.g - Restore the activity of
antioxidant enzymes;
Enhancing the Nrf2/
HO-1 signaling

Xu et al. (2021)

Astragalin Flavonoids BEAS-2B cells
induced by LPS or
PBS
Male SD rats induced
by LPS (10 mg/mL)

0–200 μM
50 mg/kg, p.o

Activate the Nrf2/HO-
1 pathway

Zheng et al. (2019)

Chrysin Flavonoids Rat pups induced by
hyperoxia (90%–

95% O2)

(20 mg/kg/day, i.p) for
10 days

- Restore antioxidant
levels

Ozdemir et al. (2021)

Rutin Flavonoids Adult male ICR mice
induced by LPS
(100 g/50 μL)

0, 1, 10, 100 mol/kg, i.p Dexamethasone
(1 mg/kg, i.p);
Desferrioxamine
(20 mg/kg, i.p)

Enhance the activity of
antioxidant enzymes;
Increase HO-1
expression

Yeh et al. (2014)

Acetovanillone Phenols Male Wistar rats
induced by CP
(200 mg/kg, i.p)

(100 mg/kg, p.o) for
10 days

- Reduce ROS; Regulate
Keap1-Nrf2/HO-
1 pathway; Activate the
PI3K/Akt/mTOR
signaling pathway

Abd El-Ghafar et al.
(2021)

Colchicine Alkaloids Male SD rats induced
by 5% sodium
taurocholate

(0.5 mg/kg/day, i.g) for
7 days

- Increase GSH content
and activity of SOD;
Restore Nrf2 and HO-1
expression

Zhang et al. (2022)

Crocin Terpenoids Male SD rats induced
by CS

(50 mg/kg/day, TIW, i.p)
for 2 months

- Increase GSH content
and activities of SOD,
CAT and GPX; Activate
Nrf2 pathway

Dianat et al. (2018)

Zerumbone Terpenoids Male ICR mice
induced by LPS
(100 μg/50 μL, IT)

0, 0.1, 1, 10 μmol/kg, i.p Dexamethasone
(1 mg/kg, i.p)

Enhance the activity of
antioxidant enzymes;
Upregulate of Nrf2/
HO-1 pathway

Leung et al. (2017)

Thymoquinone Quinones Male Swiss albino rats
induced by B(a)P
(50 mg/kg, p.o)

(50 mg/kg, TIW, i.p) for
8 weeks

- Enhance the activity of
antioxidant enzymes

Alzohairy et al.
(2021)

Panaxydol Saponins BEAS-2B cells
induced by LPS
(10 μg/mL)

10, 20, 40 μg/mL - Upregulate Keap1-
Nrf2/HO-1 pathway

Li et al. (2021)

Asthma Fisetin Flavonoids BEAS-2B cells
induced by TNF-
α (10 ng/mL)
Female BALB/c mice
induced by OVA
(50 μg)

0–30 μM
5, 10 mg/kg, i.p

- Reduce ROS
production; Activate the
Nrf2/HO-1 pathway;
Raise the level of GSH

Wu et al. (2022)

Tectorigenin Flavonoids Male BALB/c mice
induced by OVA

(10, 25 mg/kg, p.o) for
14 days

Dexamethasone
(1.5 mg/kg, p.o.)

Increase the level of
antioxidant; Activate
Keap1/Nrf2/HO-
1 pathway

Jiang et al. (2024)

Tectochrysin Flavonoids C57BL/6 mice
induced by ST (20 μg)

(2.5, 5 mg/kg, i.p) for
7 days

Dexamethasone
(2 mg/kg, i.p)

Enhance the activity of
CAT and GPX

Fang et al. (2021)

Sophoraflavanone G Flavonoids BEAS-2B cells
induced by TNF-
α (10 ng/mL)
Female BALB/c mice
induced by OVA

0–30 μM
5, 10 mg/kg, i.p

- Increase the expression
of SOD, CAT, and GSH

Wang et al. (2022b)

Licochalcone A Flavonoids BEAS-2B cells
induced by TNF-α
and IL-4 (10 ng/mL)
Female BALB/c mice
induced by OVA

0–20 μM
5 mg/kg, i.p

- Reduce the expression
of COX-2 and ROS;
Upregulate Nrf2/HO-
1 pathway

Huang et al. (2019)

Esculentoside A Glycosides A549 cells
Female BALB/c mice
induced by OVA

0, 5, 10, 20 mg/l
15 mg/kg/day, i.p

Dexamethasone
(2 mg/kg, i.p)

Upregulate Nrf2/HO-
1 pathway; Improve the
levels of antioxidants

Ci et al. (2015)

(Continued on following page)
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TABLE 1 (Continued) Natural ingredients regulating lipid peroxidation in pulmonary disease.

Disease Compound Classification Cell/animal
model

Dose/
Concentration

Control
group

Mechanisms Ref

Pulmonary
fibrosis

Rutin Flavonoids Male SD rats induced
by BLM (2 mg/kg)

(50, 100 mg/kg/day, i.g)
for 3 weeks

Dexamethasone
(0.5 mg/kg/day, i.g)
for 3 weeks

Restore the activity of
GSH and SOD

Bai et al. (2020)

Hyperoside Flavonoids Male C57BL/6 mice
induced by BLM
(2 mg/kg)

(50 mg/kg/day, i.p) for
14 days

Enhance the activity
of SOD

Huang et al. (2020)

Thymoquinone Quinones Male NMRI mice
induced by PQ
(20 mg/kg, i.p)

(20, 40 mg/kg) for 14 or
28 days

- Restore the activity of
SOD and CAT

Pourgholamhossein
et al. (2016)

Zingerone Phenols Male Wistar-albino
rats induced by BLM
(5 mg/kg)

(50, 100 mg/kg, p.o) for
14 days

- Enhance the activity of
SOD and GPX

Gungor et al. (2020)

Dihydroquercetin Flavonoids HBE cells induced
by SiO2 (50 ug/mL)
Male C57BL/6 mice
induced by SiO2

suspension for 1 week

40 μM; (10, 50 mg/kg, bid,
p.o) for 14 days

- Clear ROS; Raise the
level of GSH and GPX;
Activate Nrf2 pathway

Yuan et al. (2022)

Fraxetin Coumarins MLE-12 cells induced
by BLM (0.5 nM)
C57BL/6 mice
induced by BLM
(1.4 U/kg)

10, 20, 40 μM
10 mg/kg, qod, i.p

- Clear ROS; Restore the
level of GSH and GPX

Zhai et al. (2023)

Pulmonary
arterial
hypertension

Cyanidin-3-O-β-
glucoside

Flavonoids Male SD rats induced
by MCT (60 mg/kg)

(200/400 mg/kg, i.g) for
28 days

- Enhance the activity
of SOD

Ouyang et al. (2021)

Baicalein Flavonoids Male SD rats induced
by MCT (60 mg/kg)

(50/100 mg/kg/d, p.o) for
28 days

- Enhance the activity
of SOD

Shi et al. (2018)

Diosgenin Steroids Male Wistar rats
induced by MCT
(60 mg/kg)

(100 mg/kg/d, p.o) for
21 days

- Restore GSH and SOD;
Inhibit AKT and ERK
pathways

Parama et al. (2020)

Resveratrol Phenols SD rats induced by
hypoxia for 28 days

(40 mg/kg/d, i.g) for
28 days

- Restore GSH and SOD;
Inhibit AKT and ERK
pathways

Xu et al. (2016)

Arctigenin Terpenoids MCT (60 mg/kg)
treated SD rats

(50 mg/kg/d, i.p) for
28 days

- Restore the activity
of SOD

Jiang et al. (2018)

18β-Glycyrrhetinic
Acid

Terpenoids Male SD rats induced
by MCT (60 mg/kg)

(100, 50, 25 mg/kg/d, p.o)
for 21 days

- Restore the activity
of SOD

Zhang et al. (2019)

Free and
nanoemulsified β-
caryophyllene

Terpenoids Male Wistar rats
induced by MCT
(60 mg/kg)

(176 mg/kg/d, i.g) for
14 days

- Enhance the activity of
antioxidant enzymes;
Decrease the expression
of endothelin-1
receptors

Carraro et al. (2024)

Crocin Terpenoids Male SD rats induced
by MCT (60 mg/kg)

(7.5, 15, 30 mg/kg/d, i.p)
for 21 days

- Enhance the levels of
SOD and GSH

Dianat et al. (2020)

Berberine Alkaloids Male SD rats injected
with MCT (60 mg/kg)

(10, 20, 30, 40 mg/kg/d,
i.p) for 3 weeks

- Enhance the activity of
SOD, GPx, CAT

Beik et al. (2023)

Carvacrol Phenols PASMC cells
(incubated with a gas
mixture containing
3% O2, 5% CO2, and
92% N2 for 24 h)
Adult male Wistar
rats randomized to
9 days of hypoxic
environments
(FiO2 = 0.12)

600 μM, 24h; (25, 50,
100 mg/kg/d, i.p) for
9 days

- Enhance the activity of
SOD and GSH

Zhang et al. (2016)

COPD Luteolin Flavonoids A549 Cells induced by
CSE
Male C57BL/6J mice
induced by CS + LPS
exposure

15, 30 μM, 12 h (50,
100 mg/kg/d, i.g) for
15 weeks

- Enhance the activity of
SOD and GSH

Zhou et al. (2023)

Hesperidin Flavonoids C57BL/6 mice
injected with 100%

(25, 50 mg/kg/d, i.p) for
21 days

Budesonide (2 mg/kg) Enhance the activity of
SOD and CAT

Wang et al. (2020)

(Continued on following page)
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increase in lipid peroxidation levels, which can disrupt the integrity
of phospholipid membrane function, cause the release of large
amounts of H2O2, and toxicity to cells, ultimately resulting in
corresponding tissue injury (Gaschler and Stockwell, 2017). In
addition, the increase in lipid peroxidation levels can also induce
ferroptosis, leading to the occurrence of inflammation.
Inflammatory response is an important factor in lung tissue
injury. Results of an in vitro study showed that ferroptosis
mediated inflammation in LPS (lipopolysaccharide)-treated
BEAS-2B cells, and treatment with Panaxydol in the study
attenuated LPS-induced inflammation and ferroptosis by up-
regulating the Keap1-Nrf2/HO-1 pathway (Li et al., 2021).
Keap1-Nrf2/HO-1 signaling is considered one of the important
endogenous anti-oxidative stress pathways and a critical target in
inflammation-related diseases (Mills et al., 2018; Lu et al., 2019).

The natural ingredients therapy for ALI is mainly achieved by
enhancing the antioxidant system and alleviating lipid peroxidation
caused by oxidative stress, with the Nrf2/HO-1 pathway being its
core mechanism.

Myricetin is a flavonoid compound widely found in many
natural plants including bayberry, and was originally isolated
from the bark of the tree Myrica rubra (Myrica rubra (Lour.)
Siebold & Zucc.) (Song et al., 2021). Myricetin has multiple
biological characteristics, including anti-inflammatory (Hou et al.,
2018), antitumor (Stoll et al., 2019), antibacterial (Jiang et al., 2019),
and anti-obesity effects (Hu et al., 2018), especially against oxidative
stress. It has been shown that myricetin can target lipid peroxidation
to treat cecal ligation and puncture-induced ALI by decreasing
MDA and 4-HNE levels and up-regulating SOD, CAT, and GPx
activities. After establishing a mouse sepsis model with

TABLE 1 (Continued) Natural ingredients regulating lipid peroxidation in pulmonary disease.

Disease Compound Classification Cell/animal
model

Dose/
Concentration

Control
group

Mechanisms Ref

cigarette smoke
extract (0.3 mL)

Gallic acid Phenols Male Balb/c mice
induced by ET + LPS

(200 mg/kg/d, i.p) for
28 days

- Restore the activity
of SOD

Singla et al. (2021)

Betulin Terpenoids Male ICR mice
induced by CSE for
8 weeks

(20, 40 mg/kg/d, i.g) for
8 weeks

Dexamethasone
(2 mg/kg)

Enhance the activity of
SOD and CAT

Chunhua et al.
(2017)

Lung cancer Luteolin Flavonoids The human NSCLC
cell lines, NCI-H1299
and -H460
BALB/cAnNCrj-nu/
nu strain mice

10, 20, 30, 40, 50, 100 μM,
72 h (10 mg/kg/d, s.c) for
35 days

- Inhibit p38 MAPK Cho et al. (2015)

Formosanin C Steroids The NCI-
H1299(CRL-5803),
NCI-H1975(CRL-
5908), A549(CRM-
CCL-185),293T
(CRL-3216) cells
Male C57BL6/J mice
inoculated with 5 ×
105 LLC-1 cells after
1 week of acclimation

0–2 μM, 24 h/48 h; (0.5/
1 mg/kg, i.p, qod) for
16 days

Cisplatin (1 mg/kg) Influence myo-inositol
and related pyruvate
metabolism, glycolysis/
gluconeogenesis, and
citrate cycle; glutathione
metabolism

Li et al. (2023)

Sinapine Alkaloids Human NSCLC cell
lines (A549, SK,
H661, H460,
H460 p53−/−,
A549 p53−/−)
BALB/c mice (tumour
cells were implanted
(1x107 cells/mL) into
the left frontal axils)

2, 5, 10, 20 μM; (10, 20,
40 mg/kg/d, i.v) for
30 days

- Intensifier transferrin/
transferrin receptor
expression

Shao et al. (2022)

Dihydroartemisinin Terpenoids 16HBE cells, Lewis
mouse lung cancer
cell line
Female C57BL mice

30/60 μg/mL, 24 h; (5/
10 mg/kg/d, i.p) for 3 days

In vitro: Doxorubicin
(5 μM)
In vivo: Doxorubicin
(5 mg/kg b.w.)

Reduce GPX4; Intensify
expression of COX-2;
Enhance ferroptosis

Han et al. (2023)

Resveratrol Phenols Human lung
adenocarcinoma
A549 cell line

60 μM resveratrol and/or
10 μM As2O3 for 24 h

- Reduce the SOD
activity; Imbalance in
the chemical-
antioxidant system

Gu et al. (2015)

Purpurin Quinones Human lung
adenocarcinoma
A549 cell line, human
dermal fibroblasts

30 μM, 24 h/48 h - Enhance lipid
peroxidation mediated
by ROS

Bo et al. (2021)

MDCK, Madin-Darby Canine Kidney; SD, sprague dawley; PBS, Phosphate-Buffered Saline; ICR, institute of cancer research; CSE, cigarette smoke exposure; MCT, monocrotaline; CP,

cyclophosphamide; PAEC, Pulmonary Artery Endothelial Cell; PASMC, pulmonary artery smooth muscle cell; LPS, lipopolysaccharide; ET, elastase; NSCLC, Non-Small Cell Lung Cancer. (-:

blank control, no medication or treatment).
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Nrf2 knockout and a control group, it was found that the
knockdown of Nrf2 showed an inhibitory effect on myricetin
treatment for sepsis. This also indicates that myricetin exerts
protective effects on sepsis-associated lung injury dependent on
Nrf2. In addition, myricetin ameliorated lung mitochondrial
dysfunction and inhibited ROS production in septic mice (Xu
et al., 2021).

Astragalin (kaempferol 3-glucoside) is one of the naturally
occurring flavonoids, which can effectively inhibit lipid
peroxidation and treat pulmonary diseases (Riaz et al., 2018). In
vitro experiments, astragalin induced Nrf2 activation and HO-1
upregulation in BEAS-2B cells. When Nrf2 was silenced by siRNA,
the effect of astragalin on HO-1 upregulation was eliminated. This
suggests that astragalin also upregulates HO-1 in an Nrf2-dependent
manner. In addition, compared with the LPS treatment group,
astragalin treatment significantly reduced the levels of TNF-α and
MMP-9, inhibited LPS-induced lung histological changes, including
edema and inflammatory cell infiltration, which may be related to
the Nrf2/HO-1 pathway (Zheng et al., 2019).

The levels of endogenous antioxidants such as SOD, GSH and
GPx decreased significantly in rats with hyperoxia-induced lung
injury, and these changes returned to normal after chrysin
treatment, suggesting that chrysin can play a defensive role
against lipid peroxidation by enhancing the antioxidant defense
system. In addition, chrysin as a flavonoid itself has potential
antioxidant effects and can mitigate lipid peroxidation (Naz
et al., 2019; Ozdemir et al., 2021).

Rutin is a natural polyphenolic flavonoid found in fruits and
vegetables. In a positive control group of a study, dexamethasone
pretreatment reduced LPS-induced histopathological damage. Rutin
also attenuated LPS-induced pathological damage in mouse lung
tissue in a concentration-dependent manner, including bleeding,
interstitial edema, thickening of alveolar walls, and infiltration of
polymorphonuclear granulocytes into lung parenchyma and
alveolar spaces. This protective effect is related to the inhibition
of lipid peroxidation. Rutin can increase the activity of antioxidant
enzymes (SOD, CAT, and GPx) and increase the expression of HO-
1. In addition, other potential mechanisms involved include
reducing the secretion of pro-inflammatory cytokines such as
TNF, IL-1, and IL-6, and inhibiting MAPK phosphorylation. In
another positive control group, desferrioxamine not only reduced
LPS-induced polymorphonuclear granulocytes infiltration, but also
restored SOD and GPx activity. Rutin has been shown to improve
LPS-induced ALI more effectively than desferrioxamine. These
experimental results support the potential use of rutin as a
therapeutic agent to prevent ALI associated with direct infection
by Gram-negative bacteria (Yeh et al., 2014).

There is also a potent NADPH oxidase inhibitor, acetovanillone,
commonly known as apocynin. In the ALI rat model induced by
cyclophosphamide, GSH and antioxidant enzyme activities are
reduced, while lung lipid peroxidation and NADPH oxidase
activity are increased. After 10 days of oral administration,
acetovanillone reduced ROS generation by inhibiting the activity
and expression of NADPH oxidase. On the other hand, cytoglobin is
an intracellular respiratory globulin that can clear excess ROS and
maintain physiological ROS levels (Mathai et al., 2020; Zweier et al.,
2021). Acetovanillone can increase the expression of cytoglobin in
lung tissue of cyclophosphamide induced ALI rats, which may be

another mechanism by which acetovanillone alleviates lipid
peroxidation and ALI. More importantly, acetovanillone can
activate the Nrf2 pathway, increase the expression of downstream
HO-1 and glutamate cysteine ligase catalytic (GCLc), thereby
enhancing antioxidant capacity. In vitro studies have shown that
the combination of cyclophosphamide and acetovanillone is more
effective in inhibiting cancer cell growth compared to treatment
alone, demonstrating the synergistic effect between the two drugs.
This indicates that acetovanillone does not hinder the anti-tumor
activity of cyclophosphamide and is a promising drug that can be
used to prevent lung injury in chemotherapy patients without
affecting the efficacy of chemotherapy drugs (Abd El-Ghafar
et al., 2021).

Colchicine is a tricyclic, lipid-soluble alkaloid derived from the
plant of the Colchicum autumnale (Colchicum autumnale L.)
(Angelidis et al., 2018). In severe acute pancreatitis-associated
ALI rat plasma, colchicine can inhibit lipid peroxidation in rats
by restoring Nrf2/HO-1 signaling, while reducing the expression of
ROS and 4-HNE, helping to restore redox homeostasis and protect
tissue cells from oxidative stress-induced apoptosis. The
experimental results also confirmed that colchicine treatment
reduced caspase-3 cleavage and Bax expression in severe acute
pancreatitis-associated ALI rats, but increased Bcl-2 expression
significantly alleviated cell apoptosis. In addition, the treatment
with colchicine also weakened the activation of NF-κB, STAT3,
and AKT signals during ALI in rats, which may be related to the
ability of colchicine to directly or indirectly clear antioxidants
(Zhang et al., 2022).

Zerumbone is a monocyclic sesquiterpene and the major active
phytochemical compound extracted from rhizome of Zingiber
zerumbet (Zingiber zerumbet (L.) Roscoe ex Sm.) (Duñg et al.,
1993). Research has shown that zerumbone can reduce LPS-
induced ALI by increasing antioxidant enzyme activity (such as
SOD, CAT, and GPx) and upregulating the Nrf2/HO-1 pathway. In
addition, lung specimens treated with LPS showed significant
pathological changes, including neutrophils infiltration, increased
alveolar wall thickness, hemorrhage, and hyaline membrane
formation. In the positive control group, the glucocorticoid
dexamethasone reduced these pathological changes, while
zerumbone pre-treatment improved lung lesions in a
concentration dependent manner. This suggests the possibility of
using zerumbone as an alternative protective agent for ALI directly
associated with Gram-negative bacterial infections (Leung
et al., 2017).

Crocin is a water-soluble carotenoid, it is also the most
important active constituent of saffron (Crocus sativus L.). A
model of cigarette smoke-induced lung injury in rats given by
intraperitoneal injection crocin. According to the experimental
results, crocin treatment reduced MDA levels in lung tissues,
indicating a significant reduction in free radical-induced lipid
peroxidation. In addition, Nrf2 is a crucial regulator of cells
against oxidative stress. The experimental results showed that
crocin could stimulate Nrf2 by up-regulating the expression of
PKC, PI3K and MAPK mRNA, thus up-regulating the Nrf2-
GCLc-GSH pathway. Meanwhile, crocin also greatly increased its
downstream antioxidant enzyme activities, such as SOD, CAT and
GPX, to minimize lung damage caused by exposure to cigarette
smoke (Dianat et al., 2018).
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Thymoquinone is the main active ingredient of Nigella sativa
(Nigella sativa L.). Antioxidants slow autoxidation by scavenging
substances that trigger peroxidation to produce ROS. The balance
between controlled ROS formation and endogenous antioxidant
defense is important in inhibiting pathogenesis. The experimental
results showed that the oral administration of benzo (a) pyrene to
rats in the treated group resulted in a significant increase in MDA
concentration and a significant decrease in the levels of several
antioxidant enzyme markers, leading to an imbalance in the
antioxidant system. Whereas, thymoquinone treatment reversed
these changes and increased antioxidant enzyme activities (SOD,
CAT). In addition, thymoquinone decreased the expression of pro-
inflammatory markers (NF-κB, IL-6, and COX-2), showing
antioxidant and anti-inflammatory effects (Alzohairy et al., 2021).

4.2 Asthma

Asthma, one of the most common chronic, non-communicable
diseases in children and adults, is characterized by variable
respiratory symptoms and variable airflow limitation (Papi et al.,
2018). The pathogenesis of asthma is often related to factors such as
viral respiratory infections, allergy and defective anti-viral
immunity, bacterial infections, and allergen exposure (Castillo
et al., 2017). Anti-inflammatory and bronchodilator treatments
are the mainstay of asthma therapy and are used in a stepwise
approach (Papi et al., 2018). Natural ingredients have significant

antioxidant activity and can regulate lipid peroxidation levels to treat
asthma and alleviate airway hyperresponsiveness. It is generally
achieved by weakening the production of ROS, enhancing the
activities of GPx, GR, SOD, and CAT, and reducing toxic
metabolites such as MDA. In addition, in vitro studies have
found that IL-6 promotes ferroptosis in bronchial epithelial cells
by inducing ROS dependent lipid peroxidation (Han et al., 2021).
Therefore, targeting lipid peroxidation can prevent the occurrence
of ferroptosis and have a positive effect on asthma. The regulation of
lipid peroxidation by natural ingredients in the treatment of asthma
is mainly achieved by enhancing the antioxidant system and
reducing inflammation of tracheal epithelial cells. During this
process, it may also involve pathways such as PI3K/AKT,
ERK/JNK, Nrf2.

A common flavonoid found in a wide variety of fruits and
vegetables is called fisetin. In vitro experiments, BEAS-2B cells
treated with fisetin were stimulated with TNF-α/IL-4. The results
showed that TNF-α stimulation significantly promoted ROS
expression in BEAS-2B cells, while fisetin effectively reduced the
expression of pro-inflammatory cytokines (CCL5, MCP-1, IL-8, and
IL-6) in BEAS-2B cells, and effectively improved oxidative stress by
activating the Nrf2/HO-1 pathway. In addition, fisetin inhibited the
activation of the NF-κB signaling pathway in BEAS-2B cells
stimulated by TNF-α, reducing phosphorylation of IκB-α and
nuclear translocation of p65. Fisetin also inhibited the activation
of the MAPK signaling pathway in BEAS-2B cells stimulated by
TNF-α, including phosphorylation of p38, JNK, and ERK1/2. In vivo

FIGURE 3
The general process of natural ingredients acting on lung diseases by influencing lipid peroxidation was demonstrated. It can be divided into three
parts: Natural ingredients reduce oxidative stress and inhibit lipid peroxidation through Nrf2 and other pathways; For tumor cells, natural ingredients
promote lipid peroxidation and apoptosis by increasing the level of oxidative stress; Natural ingredients prevent lipid peroxidation-related diseases by
increasing the antioxidant capacity of cells.
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studies have shown that fisetin improves lung health in asthmatic
mice by increasing GSH levels, inhibiting COX-2 expression, and
reducing MDA levels, ultimately reducing lipid peroxidation in lung
cells (Wu et al., 2022).

A well-known natural flavonoid aglycone called tectorigenin
exists in numerous plants (Rong et al., 2023). Tectorigenin
significantly hindered the elevation of the levels of ROS and
MDA in the bronchoalveolar lavage fluid (BALF) of the asthma
group. It also increased the levels of antioxidants, such as SOD and
CAT, exerting its antioxidant capacity to counteract lipid
peroxidation and ameliorate asthma-associated oxidative stress.
In addition, tectorigenin can also exert antioxidant and anti-
inflammatory effects by activating the Keap1/Nrf2/HO-1 pathway
in the ovalbumin (OVA)-induced asthma mouse model to alleviate
allergic respiratory diseases, which has great potential to provide
additional drug options for allergy-related diseases (Jiang et al.,
2024). Tectochrysin is also a type of flavonoid compound that can be
isolated from propolis. Results demonstrated that tectochrysin could
enhance the activity of CAT and GPx in lung tissue, encourage the
breakdown of peroxides, and shield shrimp tropomyosin-induced
asthma mice from oxidative damage after tectochrysin was given
intraperitoneally to a mouse asthma model for 6 days. In addition,
treatment with tectochrysin or dexamethasone significantly reduced
the levels of IL-4 and IL-5 as well as the IL-4/IFN-γ ratio in BALF of
asthmatic mice, indicating the potential of tectochrysin as a
therapeutic agent for asthma (Fang et al., 2021).

Research has found that Sophoraflavanone G from Sophora
flavescens (Sophora flavescens Aiton) can reduce the production of
MDA in the lungs of OVA-sensitized asthmatic mice and increase
the expression of SOD, CAT, and GSH. This indicates that
Sophoraflavanone G can alleviate lipid peroxidation by regulating
the antioxidant system and protect against lung injury in asthmatic
mice. In addition, Sophoraflavanone G can regulate the expression
of cytokines and chemokines in BALF and lung tissue. In BALF,
compared with OVA-induced asthma mice, Sophoraflavanone G
significantly reduced the levels of IL-4, IL-5, IL-13, TNF-α, IL-6,
CCL11, and CCL24. In asthma patients, Th2 cells secrete more IL-4
to induce B cell activation, leading to excessive IgE secretion (Moran
and Pavord, 2020). The study found that the levels of IL-4, IL-5, and
IL-13 in spleen cells of asthmatic mice treated with
Sophoraflavanone G were significantly reduced, and the levels of
OVA-IgG1 and OVA IgE were also significantly reduced as a result
(Wang et al., 2022b).

Licochalcone A is a flavonoid compound isolated from
Glycyrrhiza uralensis (Glycyrrhiza uralensis Fisch. Ex DC.).
OVA-sensitized mice were treated with licochalcone A via
intraperitoneal injection. The experimental results showed that
licochalcone A can reduce the expression of MDA, increase the
synthesis of GSH, upregulate the Nrf2/HO-1 pathway, and reduce
the expression of COX-2 and intracellular ROS. This suggests that
licochalcone A may protect the lungs of asthmatic mice from
oxidative stress by regulating the antioxidant system. In addition,
compared with OVA-sensitized asthmatic mice, licochalcone A
reduced inflammation of tracheal epithelial cells by inhibiting the
expression of IL-6, COX-2, CCL11, CCL-24, and MUC5AC. These
experimental results indicate that licochalcone A has excellent
potential in improving asthma inflammation and oxidative stress
(Huang et al., 2019). Esculentoside A is a saponin isolated from the

root of Phytolacca esculenta (Phytolacca esculenta Van Houtte).
Research has found that both Esculentoside A and dexamethasone
(positive controls) significantly alleviate asthma reactions, including
airway inflammation, eosinophil migration to the lungs, excessive
mucus secretion, and a decrease in Th2 cytokines and IgE, while
enhancing antioxidant capacity by increasing the levels of SOD,
CAT, and GSH. In vitro experiments showed that Esculentoside A
upregulated the Nrf2/HO-1 pathway in a dose-dependent manner
after treating A549 cells with Esculentoside A (20 mg/L). Further
research has found that after inhibiting Nrf2 with Nrf2 siRNA, the
regulatory effects of Esculentoside A on inflammation and oxidative
stress are canceled, indicating that the effect of Esculentoside A
depends on the activation of the Nrf2 signaling pathway.
Esculentoside A also increased the mRNA expression of
antioxidant enzymes, such as HO-1 and glutathione
S-transferase, through the Nrf2 signaling pathway. These results
confirm that Esculentoside A inhibits the development of lipid
peroxidation by enhancing the antioxidant system and is a
potential new drug with anti-inflammatory and antioxidant
properties (Ci et al., 2015).

4.3 Pulmonary fibrosis

Pulmonary fibrosis involves a spectrum of chronic and often
progressive lung diseases that primarily affect the interstitium in the
lungs. A combination of inflammation and fibrosis in the
interstitial space leads to impaired gas exchange resulting in
dyspnea (Kim et al., 2015; Raghu et al., 2022), impaired
quality of life, and in many patients eventually respiratory
failure and death. At present, pulmonary fibrosis is still
incurable. Lung transplantation is a feasible treatment option,
but it still has limitations, such as not being suitable for elderly
populations with multiple coexisting diseases (Somogyi et al.,
2019). Our focus is on slowing the progression of pulmonary
fibrosis and finding effective therapeutic targets. According to
reports, H2O2, MDA levels, and aldehyde 4-HNE are elevated in
lung fibroblasts from patients with pulmonary fibrosis. This is
related to the reduction of enzymes such as GPX4 in pulmonary
fibrosis fibroblasts, which also contributes to the differentiation
of myofibroblasts during the fibrosis process (Tsubouchi et al.,
2019). On the other hand, peroxidation products have also been
shown to induce the expression of pro-fibrotic molecules such as
TGF-β and fibronectin (Tsukagoshi et al., 2002). TGF-β1 is one of
the most common cytokines that cause fibrosis and plays a critical
role in the development of the extracellular matrix. These
mechanisms include: activating Smad-dependent and non-
dependent signaling pathways, promoting transcription of
collagen genes; Regulating the expression of microRNAs (such
as miR-29, miR-326) to stabilize the translation and secretion of
collagen; As one of the main inducers of epithelial-mesenchymal
transition (EMT), it activates mesenchymal genes and inhibits
epithelial gene expression through Smad dependent pathways;
Induce the expression of EMT transcription factors such as
Snail1 and Twist (Kim et al., 2018).

In the experimental models of pulmonary fibrosis induced by
BLM (bleomycin), cigarette smoke, and paraquat, it was observed
that natural ingredients could reduce lipid peroxidation toxic
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products (such as MDA, 4-HNE), enhance antioxidant enzyme
activities such as SOD, GPx, CAT, regulate the Nrf2 pathway,
reduce lipid peroxidation induced lung tissue damage. More
importantly, natural ingredients can also reduce the expression of
pro-fibrotic factors such as TGF-β1, thereby alleviating the
progression of pulmonary fibrosis.

In a rat lung fibrosis model induced by BLM, dexamethasone
(positive control group) and rutin significantly reduced the protein
expression rates of fibrosis biomarkers (a-SMA, collagen I and
collagen III) and TGF-β1, improved bleeding, thickening of
alveolar septa, infiltration of alveolar wall cells, and necrosis of
alveolar tissue. This may be related to the enhanced antioxidant
system in rats, as experiments have also observed that rutin can
reduce the production of lipid peroxidation toxic products (such as
MDA, 4-HNE), enhance the activity of antioxidant enzymes such
as SOD, GPx, CAT, regulate the Nrf2 pathway, thereby
maintaining the balance of oxidants/antioxidants in rats and
reducing lipid peroxide induced lung tissue damage (Bai
et al., 2020).

Another type of flavonoid compound hyperoside, which is
extracted from Rhododendron brachycarpum (Rhododendron
brachycarpum D.Don ex G.Don) (Ye et al., 2017). Injecting
hyperside intraperitoneally into a BLM-induced pulmonary
fibrosis mouse model, it was found that hyperside
intervention significantly reduced MDA content and
increased SOD activity, indicating that hyperside significantly
inhibited oxidative stress and lipid peroxidation. In addition,
hyperoside inhibits the induction of EMT by BLM in vivo,
specifically by reducing the expression of a-SMA, collagen I,
and TGF-β1 compared to the BLM group. Hyperoside also
inhibits the AKT/GSK3β signaling pathway, which may also
have an inhibitory effect on EMT. These findings provide a
promising candidate drug for the treatment of pulmonary
fibrosis (Huang et al., 2020).

In addition, studies have measured oxidative stress markers in
lung tissue of mice stimulated by paraquat, and the results showed
that the level of lipid peroxidation in mice significantly increased,
while the activities of SOD and CAT enzymes decreased.
Administration of thymoquinone reversed these results in a dose-
dependent manner. In addition, compared with the paraquat group,
the mRNA expression of COL1A1, COL4A1 and α-SMA in mice
treated with thymoquinone decreased in a dose-dependent and
time-dependent manner, indicating that thymoquinone can
inhibit the activation of pro-fibrotic genes and extracellular
matrix deposition. Meanwhile, compared with the paraquat
group, dose-dependent thymoquinone treatment inhibited the
mRNA expression of TGF-β1 (Pourgholamhossein et al., 2016).

In a BLM-induced rat model of pulmonary fibrosis, it was
found that BLM disrupts the balance between oxidant/antioxidant
defense mechanisms and induces oxidative stress by decreasing the
activity of SOD and GPx, which leads to elevated levels of the lipid
peroxidation marker MDA, and zingerone treatment reversed
these changes. In addition, IL-1β promotes fibrosis development
by disrupting alveolar structure and enhancing collagen deposition
(Kolb et al., 2001), while zingerone (50 and 100 mg/kg)
significantly reduced TNF-α and IL-1β levels in BALF,
demonstrating strong anti-inflammatory and anti-fibrotic effects
(Gungor et al., 2020).

Dihydroquercetin, also known as paclitaxel, is a typical plant
flavonoid found in yew, larch, and cedrus brevifolia bark. Research
has found that dihydroquercetin can alleviate SiO2-induced
inflammation and fibrosis in lung tissue. Compared with the
SiO2 group, dihydroquercetin reduces the levels of pro-
inflammatory cytokines (including IL-1β, TNF-α, and TGF-β) in
serum and lung homogenate, and significantly decreases the
expression of α-SMA, collagen I, and fibronectin. In addition,
compared with the SiO2 group, dihydroquercetin treatment
significantly reduced iron, ROS, MDA, and 4-HNE levels, but
significantly increased GSH and GPX4 levels. More importantly,
dihydroquercetin treatment significantly reduced the expression of
α-SMA, collagen I, and fibronectin in HBE cells, and this effect was
significantly reversed by erastin. These results indicate that the
stimulation of ferroptosis impairs the anti-fibrotic effect of
dihydroquercetin in vitro (Yuan et al., 2022).

Fraxetin is a hydroxycoumarin compound extracted from the
natural medicinal plant Fraxinus rhynchophylla (Fraxinus chinensis
subsp. Rhynchophylla). In vitro experiments showed that
pretreatment with fraxetin upregulated the expression of
SLC7A11, and GPX4 in MLE-12 cells treated with BLM, thereby
reducing lipid peroxidation levels. In addition, in vivo experiments
showed that when treating BLM attacked pulmonary fibrosis mouse
models with fraxetin, the mRNA expression of fibronectin, as well as
the protein level of α-SMA, were significantly reduced. These results
indicate that fraxetin inhibits lipid peroxidation and has a protective
effect on pulmonary fibrosis (Zhai et al., 2023).

4.4 Pulmonary hypertension

Pulmonary hypertension is the term used to describe a group of
disorders characterized by abnormally high pressures in the
pulmonary arteries (Poch and Mandel, 2021). For pulmonary
hypertension, a low-salt diet, diuretics, and oxygen therapy are
general management strategies. Pharmacotherapy includes
calcium channel blockers or targeted prostacyclin, nitrate oxide,
and endothelin pathways. There are also surgical therapies such as
endarterectomy (Mocumbi et al., 2024). It has been demonstrated
that lipid peroxidation causes vascular remodeling and PASMC
proliferation, which in turn causes the onset and exacerbation of
pulmonary hypertension. The generation and buildup of ROS are
facilitated by hypoxia and pulmonary inflammatory factors, which
can result in oxidative stress, elevated levels of lipid peroxidation,
and the creation of hazardous metabolic chemicals, ultimately
leading to pulmonary hypertension (Sharma et al., 2016). The
main avenues for the use of natural ingredients in the treatment
of pulmonary hypertension include raising or restoring the level of
antioxidant enzymes, and inhibiting the pro-inflammatory NF-
κB pathway.

Baicalein is a flavonoid extracted from the root of Scutellaria
baicalensis (Scutellaria baicalensis Georgi). In previous studies,
baicalein was shown to promote ROS attenuation by activating
CAT (Liu et al., 2021). Rats were given 50 and 100 mg/kg/day of
baicalein for 28 days. Both dosages demonstrated antioxidant action.
The dosage of 100 mg/kg/day downregulated NF-κB expression,
decreased MDA levels, enhanced GPx and SOD antioxidant
activities (Shi et al., 2018).
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Cyanidin-3-O-β-glucoside is a classical anthocyanin. It is widely
found in numerous dark-colored foods, such as mulberry and black
rice. Experiment proof that in the oxidation of soybean
phosphatidylcholine liposomes, Cyanidin-3-O-β-glucoside
efficiently scavenged the peroxyl radicals generated in the
aqueous phase (Sousa et al., 2016). Pulmonary arterial
hypertension rats were orally administered Cyanidin-3-O-β-
glucoside, and it was found that ingestion of Cyanidin-3-O-β-
glucoside increased SOD levels, reduced oxidative stress, and
lipid peroxidation. Cyanidin-3-O-β-glucoside also plays a role in
reversing vascular remodeling caused by monocrotaline (MCT)
(Ouyang et al., 2021).

Resveratrol is a polyphenolic phytoalexin from the roots of
Veratrum grandiflorum (Veratrum grandiflorum (Maxim. ex
Miq.) O.Loes.), and it is particularly plentiful in fresh grape skin
(Singh et al., 2019). In the exploration of hypoxic pulmonary
hypertension treatment, rats were treated with resveratrol by
gavage for 28 days, and found that it could reduce the ROS and
H2O2 production, and decrease NF-κB expression (Xu et al., 2016).
Carvacrol is one of the main components of Origanum vulgare
(Origanum vulgare L.) and Thymus vulgaris (Thymus vulgaris L.)
essential oil. In vitro test found that after 600 μM carvacrol
treatment, the levels of antioxidant enzymes SOD and GSH were
restored, and the hypoxia-mediated lipid peroxidation was
significantly reduced. In vivo test found that 50 and 100 mg/kg
carvacrol prevents hypoxia-induced right ventricular hypertrophy
and pulmonary vascular remodeling. This indicates that carvacrol
has an inhibitory effect on the oxidative damage of PASMCs under
hypoxic conditions. In terms of related pathways, carvacrol
suppresses the expression of procaspase-3 and promotes the
activation of caspase-3, significantly inhibiting hypoxia-induced
ERK1/2 and Akt phosphorylation (Zhang et al., 2016).

Arctigenin is a lignan from traditional Chinese medicine
Arctium lappa (Arctium lappa L.). Rats were given arctigenin
50 mg/kg/day for 28 days intraperitoneally. The results
demonstrated that arctigenin treatment significantly decreased
MDA levels and elevated SOD activity, halted the progression of
MCT-induced pulmonary arterial hypertension in rats by blocking
oxidative stress and lipid peroxidation. In addition, arctigenin
inhibited the MCT-induced elevation of NLRP3, caspase-1, and
interleukin 1-β expression (Jiang et al., 2018).

Berberine is a yellow isoquinoline alkaloid present in various
plants such as Berberis vulgaris (Berberis vulgaris L.), and its
antioxidant activity in other tissues has been demonstrated.
After 3 weeks of intraperitoneal injection of berberine, the
antioxidant activity of SOD, GPx, and CAT in rats was
effectively restored, and MDA levels in lung tissue were
reduced. An optimal action concentration of 30 mg/kg was also
determined. No experimental animals died in the berberine
treatment group, while the mortality rate in the other groups
was 57%, indicating that the treatment with berberine has certain
efficacy and safety (Beik et al., 2023).

18β-Glycyrrhetinic Acid is a kind of pentacyclic triterpenes,
is the main bioactive ingredient of Glycyrrhiza uralensis (G.
uralensis Fisch. Ex DC.) root, and its antioxidant activity was
observed. Researchers gave 18β-Glycyrrhetinic Acid to rats by
oral administration at three doses for 21 days. MCT-treated rats
showed a significant reduction of SOD, CAT, and GPX

concentrations and increased MDA levels, which were
reversed by 18β-Glycyrrhetinic Acid, and experimental data
support the notion that 18β-Glycyrrhetinic Acid is beneficial
in the treatment of pulmonary arterial hypertension (Zhang
et al., 2019).

As a naturally occurring double cyclic sesquiterpene, free and
nanoemulsified β-caryophyllene is isolated from plant essential oils.
When administered β-caryophyllene to rats, researchers found that
it can improve pulmonary hypertension markers and attenuate
oxidative stress-induced lipid damage. It is thought to work by
replenishing antioxidant enzymes and avoiding GSH deficiency.
Crucially, it can reduce the production of ROS in vascular cells by
inhibiting NADPH oxidase activity and xanthine oxidase protein
expression (Carraro et al., 2024).

Crocin is the main pharmacologically active ingredient of
Saffron (C. sativus L.), which is a water-soluble carotenoid.
Crocin was administered intraperitoneally to MCT-induced
pulmonary arterial hypertension rats. The study revealed that
crocin affected the oxidation resistance 1 (OXR1) signal
pathway in rats by regulating SOD, GSH and CAT, and had a
protective effect on MCT-induced pulmonary hypertension
(Dianat et al., 2020).

Diosgenin is a kind of steroid compounds that exist in nature.
Rats were given diosgenin orally for 3 weeks, and the findings of the
experiment showed that diosgenin normalized GSH while
ameliorating myeloperoxidase activity and TNF-α levels.
Diosgenin caused a decrease in mortality percentage reaching
9.09%, which illustrates the positive effects it may have on
clinical application (Ahmed et al., 2014).

4.5 Chronic obstructive pulmonary disease

Through a number of processes, oxidative stress-lipid
peroxidation exacerbates airway inflammation and causes tissue
damage. Raised ROS levels and consequent lipid oxidative
damage are two processes caused by environmental variables and
lung inflammation (Dailah, 2022). MDA, a byproduct of lipid
peroxidation, is the one that has been investigated the most. In
2004, Aldehyde concentration was first used as a biomarker for
oxidative stress and lipid peroxidation in patients with chronic
airway inflammation (Corradi et al., 2004). It was demonstrated
that the MDA concentration in the sputum was further increased in
COPD aggravation (Antus, 2016). Exposure to particulate air
pollution in patients with COPD increases serum thromboxane
levels and the risk of concurrent cardiovascular disease (Wang
et al., 2022c). Currently, general treatments for COPD include
the use of bronchodilators to improve smooth muscle tone and
the improvement of airflow by suppressing inflammation. These
methods are used to alleviate symptoms, improve lung function, and
reduce the risk of exacerbations and death (Sandelowsky et al.,
2021). Natural ingredients affect the level of lipid peroxidation and
exert a therapeutic effect on COPD, mainly by regulating and
restoring the level of antioxidant enzymes, and then reducing the
production of toxic metabolites such as MDA, and there is a certain
dose correlation in this process. While regulating the level of lipid
peroxidation, natural ingredients also effectively inhibit
inflammatory pathways (such as NF-κB, Nrf2), effectively
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alleviate and control the development of COPD, and have a positive
effect on improving the quality of life of patients.

One of the natural sources of luteolin is an herb used in Chinese
medicine called honeysuckle (Lonicera japonica Thunb.).
Experiments proved that it could alleviate the oxidative stress in
A549 cells, manifested by enhancing SOD activity and inhibiting the
production of MDA and lactate dehydrogenase (Zhou et al., 2023).

Traditional Chinese medicine frequently uses citrus peel to treat
lung conditions. Citrus peels are a natural source of hesperidin, a
flavonoid that has anti-inflammatory and anti-oxidative stress
properties as well as the ability to efficiently lower lipid
peroxidation levels. Researchers intraperitoneally injected
hesperidin into mice for 21 days. The result proved that it
reduced the level of lipid peroxidation product MDA through
increased SOD and CAT levels, which is associated with the
SIRT1/PGC-1α/NF-κB signaling axis. In this experiment,
budesonide (2 mg/kg) was used as the control group. The
experimental results show that the number of dead cells in
hesperidin-h group (50 mg/kg/d) was significantly lower than in
budesonide group and hesperidin-l group. Hesperidin-h group’s
expression promotion effect of SIRT1 and PGC-1α was better than
that of hesperidin-l group. These results indicated that high-dose
hesperidin had a stronger regulatory effect on oxidative stress and
inflammatory response (Wang et al., 2020).

Gallic acid is a polyhydroxy phenolic compound, it extensively
consists in the roots, stems, leaves, fruits, skins, flowers and seeds of
many medicinal plants (Bai et al., 2021). The study found that for
COPD exacerbation model mice, daily administration of gallic acid
starting 7 days before elastase instillation through reduced
production of ROS, restored the level of SOD and GSH, and
reduced MDA. In the process of gallic acid action, it effectively
prevented NF-κB activation, increased Nrf2 protein levels, and
prevented COPD deterioration (Singla et al., 2021).

Mice were administered betulin, a triterpene substance
produced from birch (Betula lenta L.) bark, for 8 weeks at
20 mg/kg and 40 mg/kg. The results indicate that betulin had the
effect of raising blood SOD and CAT levels and decreasing MDA
content. Both positive control and betulinol (40 mg/kg) showed
good efficacy, but betulinol remained slightly worse for some
indicators than dexamethasone (2 mg/kg). In this process, betulin
inhibits the pro-inflammatory factors (such as TNF-α, IL-6, and IL-
1β) and the ROCK/NF-κB pathway (Chunhua et al., 2017).

4.6 Lung cancer

In lung cancer, lipid peroxidation has two different functions.
On the one hand, lowering lipid peroxidation and oxidative stress
levels helps stop cancer cells from growing in situations when there
is sporadic hypoxia. Conversely, aberrantly high levels of lipid
peroxidation in cancer cells contribute to the promotion of
cancer cell apoptosis. General treatments for lung cancer include
surgery, targeted drug therapy, radical radiotherapy, and stereotactic
ablative radiotherapy. In addition, immunotherapies are still under
development (Hirsch et al., 2017; Neal et al., 2019). At present,
promoting cancer cell death by increasing lipid peroxidation levels
has been a hot topic in recent years. Some well-studied natural
ingredients related to lung diseases have been shown to play a role in

promoting lung cancer cell death. These natural products are
diverse, including flavonoids, anthraquinones, phenolic
compounds, alkaloids, peptides. Natural ingredients can regulate
the level of lipid peroxidation and apoptosis-related signals such as
PI3K/AKT, thus playing a more effective role in the intervention of
lung cancer.

Luteolin is a flavonoid that plays a therapeutic role in a variety
of lung-lineage diseases. The study on NCI-H460 and
H1299 non-small cell lung cancer cells as well as xenograft
model mice showed that luteolin is a radiosensitizer for non-
small cell lung cancer. Luteolin enhances ROS damage and lipid
peroxidation by activating the p38/ROS/caspase cascade (Cho
et al., 2015).

Resveratrol is a polyphenolic compound considered as a strong
antioxidant (Parsamanesh et al., 2021). Resveratrol was found to
induce ROS production, impair SOD activity, disrupt the chemical-
antioxidant system, and cause apoptotic cell death in A549 cells
through oxidative stress (Gu et al., 2015).

Sinapine was shown to be selectively toxic to non-small cell lung
cancer cells in cellular experiments. Both cell and animal studies
have shown that sinapine treatment leads to abnormally elevated
ROS. Then lipid peroxidation levels increased, thus inducing the
death of lung cancer cells. During the experiment, there was no
significant weight loss in the treatment group, indicating that
sinapine has a certain safety (Shao et al., 2022).
Dihydroartemisinin is the first-generation derivative of
artemisinin, which is derived from the annual compositae family
member Artemisia annua (Artemisia annua L.). Preclinical and
clinical studies provide stronger evidence of its anticancer
potential (Dai et al., 2021). Vitro experiments demonstrated that
dihydroartemisinin deepens oxidative damage, in the process,
intensified expression of COX-2 and reduced expression of
GPX4 were observed. And then it induces lipid peroxidation
accumulation. These changes lead to DNA damage and
endoplasmic reticulum stress, and promote the immunogenic
death of lung cancer cells. In vivo experiments, it was found that
dihydroartemisinin (10 mg/kg b.w.) promoted the increase of ROS
production in tumor tissues, accompanied by significant apoptosis
of tumor cells. The use of doxorubicin in the positive control group
further demonstrated that dihydroartemisinin has the
characteristics of good inhibitory effect, selective inhibition of
malignant cells, and less toxicity (Han et al., 2023).

Formosanin C is a diosgenin saponin from Paris polyphylla
(Paris yunnanensis Franch.). Cellular experiments have shown that
it causes excessive ROS production and GSH depletion, leading to
oxidative stress, which in turn inhibits the growth of non-small cell
lung cancer cells. In vivo experiments on mice allograft tumor
models, Formosanin C exerted a good anti-tumor effect, and the
inhibitory effect of Formosanin C (1 mg/kg) was better than that of
the positive control ciplatin (1 mg/kg) (Li et al., 2023).

Purpurin is a naturally occurring anthraquinone identified from
Rubia cordifolia (Rubia cordifolia L.) roots (Singh et al., 2021).
Purpurin was tested on A549 cells, and it was found that purpurin
promotes cell death by promoting ROS-mediated oxidative stress
and lipid peroxidation. This is manifested by the elevation of MDA
and depletion of intracellular GSH in a time-dependent manner.
The PI3K/AKT cascade signaling pathway is also modulated in this
process (Bo et al., 2021).
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5 Discussion

Pulmonary diseases seriously endanger people’s health due to
high morbidity and mortality. Currently, most effective treatments
for pulmonary diseases have side effects that make it difficult to meet
existing treatment needs. For example, glucocorticoids such as
dexamethasone are commonly used in the respiratory system, but
they have many side effects that can cause headaches, vomiting,
gastrointestinal bleeding, osteoporosis, and more (RECOVERY
Collaborative Group et al., 2021; Nathan et al., 2023; Snow et al.,
2023). Therefore, there is an urgent need to develop effective, low-
side-effect, inexpensive drugs. Lipid peroxidation is a crucial feature
of the novel form of cell death-ferroptosis, which plays an important
role in the development of lung system diseases. Inhibiting lipid
peroxidation in normal cells can improve disease prognosis while
inducing lipid peroxidation in cancer cells can alleviate cell
proliferation and migration. To emphasize the importance of the
lipid peroxidation mechanism itself, this article reviews the relevant
literature on the treatment of pulmonary diseases by natural
ingredients interfering with lipid peroxidation, and briefly
introduces the experimental process and mechanism. Natural
ingredients regulate lipid peroxidation through various targets
and pathways, mainly including the System Xc

−, Nrf2/GPX4, and
Nrf2/HO-1. In addition, natural ingredients have antioxidant
properties, which can directly or indirectly eliminate ROS,
alleviate oxidative damage, and provide a promising approach for
preventing and treating respiratory diseases. In ALI, the Nrf2/HO-
1 pathway is the core mechanism of targeted lipid peroxidation
therapy. Natural ingredients can effectively alleviate changes related
to oxidative stress by upregulating the expression of the
Nrf2 pathway and promoting the expression of downstream
antioxidant enzymes, thereby reducing lung inflammation. The
treatment of asthma by regulating lipid peroxidation through
natural ingredients is mainly achieved by enhancing the
antioxidant system and reducing inflammation of tracheal
epithelial cells. In this process, it may also involve pathways such
as PI3K/AKT, ERK/JNK, Nrf2, etc. In pulmonary fibrosis, natural
ingredients can reduce the induction of pro-fibrotic factors such as
TGF-β and fibronectin by clearing lipid peroxides, thus delaying the
progression of pulmonary fibrosis. The main methods of using
natural ingredients to treat pulmonary arterial hypertension are
inhibiting the pro-inflammatory NF-κB pathway, and increasing or
restoring antioxidant enzyme levels, thereby reducing lipid
peroxidation levels. The therapeutic effect on COPD is mainly
achieved by effectively inhibiting inflammatory pathways such as
NF-κB and Nrf2, thus reducing the production of toxic metabolites
such as MDA. The treatment of lung tumors mainly involves
enhancing lipid peroxidation to promote cancer cell death, as
well as regulating apoptosis-related signals such as PI3K/AKT.

Although the use of natural ingredients for the prevention and
treatment of respiratory diseases has broad prospects, there are still
some limitations that need to be considered. Firstly, in the
pathogenesis of respiratory diseases, lipid peroxidation is one of
the important features of ferroptosis. Detailed studies are needed on
iron metabolism, lipid peroxidation, and subcellular structure to
distinguish the correlation between different stages of ferroptosis
and respiratory diseases. Lipid peroxidation, as an important
pathophysiological process, has also not been fully elucidated in

its detailed mechanisms (Hu et al., 2024). Multi-omics technologies,
including genomics, transcriptomics, proteomics, and
metabolomics, may provide us with the opportunity to deeply
understand these complex processes (Kong et al., 2024; Wang
et al., 2024). In addition, organoid modeling and spatial
transcriptomics techniques provide powerful tools to study the
spatial specificity of disease development. For example, human
lung organoids have been established as highly transferrable
three-dimensional in vitro model systems for lung research in
recent years, which have opened possibilities for precise in vitro
research and a deeper understanding of mechanisms underlying
lung injury and regeneration (Kühl et al., 2023; Thangam et al.,
2024). Through these tools, we can more precisely locate the key
links of lipid peroxidation in lung diseases and explore how natural
ingredients can act by regulating these links.

Secondly, botanical drugs, as an important part of traditional
medicine, have a long history and rich experience in treating lung
diseases (Yuhao et al., 2024). However, the active ingredients of
botanical drugs are often unclear, which may limit their
application and development in modern medicine. To fully
utilize the potential of natural ingredients, we need to further
explore their active ingredients and mechanisms of action,
determine the optimal administration method and frequency
of different drugs. Through modern separation and extraction
techniques and bioactivity screening techniques, we can
gradually clarify the active ingredients in botanical drugs and
reveal their molecular mechanisms in treating lung diseases by
regulating lipid peroxidation (Wawoczny and Gillner, 2023; Fan
et al., 2020).

Thirdly, some preliminary results have been achieved in the
experiments of natural ingredients in treating lung diseases by
regulating lipid peroxidation (Wang et al., 2021; Wang et al.,
2022d). For example, a number of antioxidant drugs (such as
nobiletin, green tea extract) have been shown to reduce lung
inflammation and injury and improve lung function in patients
(Qin et al., 2024; Veerman et al., 2022; Albrecht et al., 2023).
However, most of these studies are still in the early stages and
more clinical trials are needed to verify their efficacy and safety.
Meanwhile, the development of novel drugs targeting lipid
peroxidation is also underway (Azmi et al., 2019). For
example, a number of small-molecule drugs targeting lipid
metabolic pathways are being developed for the treatment of
lung diseases (Wang et al., 2022a; Ma et al., 2024). These novel
drugs are expected to provide new options for the treatment of
lung diseases.

This paper mainly summarises the mechanisms and results of
natural ingredients interfering with lipid peroxidation for the
treatment of respiratory diseases, with fewer studies on their
adverse reactions and side effects. Meanwhile, the results of
pharmacokinetic and clinical experimental studies are lacking.
Follow-up studies may be interpreted to address the above
issues. Besides, the extraction and processing of the drug and
its combination with modern nanotechnology and so on is also a
new direction (Lalsangpuii et al., 2024). Furthermore, natural
ingredients not only treat respiratory diseases by regulating
lipid peroxidation, but also include mechanisms such as
inflammation, apoptosis, and cell proliferation. Therefore, the
combined effect of multiple mechanisms is also worth studying
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(Dong et al., 2024; Irshad et al., 2022). As basic and clinical
research continues to progress, it is becoming increasingly
feasible to incorporate targeting lipid peroxidation modulation
into clinical practice for the prevention and treatment of
respiratory diseases.

6 Conclusion

In summary, many natural ingredients have shown
therapeutic effects on pulmonary diseases by interfering with
lipid peroxidation. However, there are many shortcomings in
the current research. Although natural ingredients are
empirically used in many areas for the treatment of
respiratory diseases, it is clear that the clinical promotion of
natural ingredients would benefit from more in-depth studies
on their mechanisms of action. It is believed that better use of
natural ingredients, which are highly practical, inexpensive,
and widely available, will add new and powerful tools to the
treatment of respiratory diseases.
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