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Background: Small cell lung cancer (SCLC) is an aggressive malignancy with
limited treatment options and poor prognosis, underscoring the need for new
therapeutic agents.

Methods: A library of 640 natural products was screened for anti-proliferative
activity in SCLC cells. The effects of Cepharanthine (CE) on SCLC cells were
assessed in vitro and in vivo. Network pharmacology and RNA sequencing (RNA-
seq) were used to elucidate the molecular mechanisms. Pathway enrichment
analysis was performed using Gene Set Enrichment Analysis (GSEA) with Hallmark
and Reactome gene sets. Protein-protein interaction (PPI) networks, along with
the Cytoscape cytoHubba plugin, were used to identify key hub genes. RT-PCR
and Western blotting were employed to validate mRNA and protein expression.
Molecular docking studies assessed the binding affinity of CE to potential targets.
Bioinformatics analyses, including expression profiling, prognostic evaluation,
and loss-of-function studies, were used to explore the role of specific genes
in SCLC.

Results: CE was identified as a promising SCLC inhibitor. In vitro, CE significantly
inhibited SCLC cell proliferation, colony formation, migration, and invasion, while
promoting apoptosis. In vivo, CE treatment notably reduced tumor volume in
xenograft models. Network pharmacology identified 60 potential target genes,
with enrichment analysis indicating their involvement in cholesterol metabolism
regulation. RNA-seq and experimental validation further confirmed that CE
inhibits cholesterol synthesis in SCLC cells by downregulating key enzymes,
including HMGCR, HMGCS1, IDI1, FDFT1, and SQLE. Molecular docking studies
confirmed the binding of CE to these enzymes. Additionally, these enzymes were
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found to be highly expressed in SCLC cells, with elevated levels of HMGCS1,
HMGCR, and IDI1 correlating with poor prognosis. Functional assays revealed
that silencing these genes significantly suppressed SCLC cell proliferation.

Conclusion: This study identifies CE as a potential therapeutic agent for SCLC,
acting through the suppression of cholesterol synthesis, and uncovers novel
therapeutic targets for the treatment of this aggressive cancer.

KEYWORDS

small cell lung cancer, cepharanthine, network pharmacology, cholesterol metabolism,
RNA sequencing

1 Introduction

Small cell lung cancer (SCLC) is a highly aggressive subtype of
lung cancer, accounting for approximately 15% of all cases (Yin
et al., 2022). Characterized by rapid growth, early metastasis, and
frequent recurrence, SCLC is associated with a poor prognosis
(Wang et al., 2023). Despite the availability of standard treatment
options such as chemotherapy and radiation therapy, the overall
survival rate remains low, with a median survival of less than 1 year
for most patients (Herzog et al., 2021). The limited effectiveness of
current therapies underscores the urgent need for novel treatment
strategies to improve patient outcomes.

Natural compounds have emerged as promising candidates for
developing novel anti-cancer agents. These compounds, derived
from various biological sources, present several advantages,
including broad availability, ease of extraction, and generally
lower toxicity compared to synthetic drugs (Scaria et al., 2020).
Numerous studies have reported their potential in inhibiting tumor
growth, promoting apoptosis, and enhancing the efficacy of existing
therapies (Naeem et al., 2022). Recent studies have highlighted the
therapeutic potential of several natural compounds in SCLC. For
instance, oridonin induces autophagy via the PERK/eIF2α/CHOP
signaling pathway, suggesting enhanced therapeutic responses when
combined with a PERK inhibitor (Xu et al., 2024). Screening of a
natural product library identified tubercidin and lycorine HCl as
promising anti-SCLC agents (Chen et al., 2022). Additionally, the
composite formulation Ocoxin® oral solution (OOS) displayed dose-
dependent anti-SCLC effects in vitro and in vivo, primarily through
inhibiting cell proliferation and inducing cell death via caspase
activation. OOS also enhances the efficacy of standard SCLC
therapies, highlighting its potential as a complementary treatment
strategy (Diaz-Rodriguez et al., 2018). Collectively, these studies
underscore the promise of natural compounds in developing more
effective treatments for SCLC. In this study, we screened a library of
640 natural compounds and identified Cepharanthine (CE) as a
promising candidate with significant inhibitory effects on SCLC cell
proliferation.

Previous research has demonstrated that Cepharanthine (CE)
possesses anti-inflammatory, antiviral, and anti-cancer activities in
various cancers (Liu et al., 2023a). It inhibits hepatocellular
carcinoma growth by modulating amino acid metabolism (Feng
et al., 2021), regulates osteoclastogenesis via NF-κB and NFAT
pathways (Lin et al., 2019), and alleviates titanium particle-
induced osteolysis by modulating the OPG/RANKL ratio in vivo
(Liao et al., 2019). As a regulator of the Keap1-Nrf2 pathway, CE
inhibits gastric cancer growth through oxidative stress and energy

metabolism (Lu et al., 2023a). Additionally, CE sensitizes triple-
negative breast cancer cells to epirubicin by promoting cofilin
oxidation and apoptosis (Shen et al., 2022), and induces
ferroptosis in Non-small cell lung cancer (NSCLC) by inhibiting
NRF2, leading to ER stress (Bai et al., 2024). Despite these diverse
anti-cancer effects, its specific impact on SCLC remains largely
unexplored.

Herein, we demonstrated that CE exhibits potent anti-SCLC
effect. In vitro, CE inhibits SCLC cell proliferation, migration, and
invasion, while promoting apoptosis in SCLC cells. In vivo, CE
significantly reduces tumor volume in xenograft models. Network
pharmacology and RNA-seq revealed that CE suppresses cholesterol
synthesis in SCLC cells by downregulating key rate-limiting
enzymes (HMGCS1, HMGCR, IDI1, FDFT1, and SQLE). It was
further established that these enzymes are highly expressed in SCLC
cell lines, with elevated levels of HMGCS1, HMGCR, and
IDI1 correlating with poor prognosis in SCLC patients.
Moreover, silencing these genes reduces SCLC cell proliferation.
Our findings position CE as a novel therapeutic agent targeting
cholesterol biosynthesis, offering potential new therapeutic targets
for improving patient outcomes in this aggressive cancer.

2 Materials and methods

2.1 Acquisition of relevant targets of CE and
SCLC-related genes

Structural information for CE was obtained from PubChem
(https://pubchem.ncbi.nlm.nih.gov/). The potential targets of CE
were obtained through Super-PRED (https://prediction.charite.de/
index.php), Similarity ensemble approach (SEA, https://sea.bkslab.
org/), ChEMBL (https://www.ebi.ac.uk/chembl/), PharmMapper
(http://www.lilab-ecust.cn/pharmmapper/), and Swiss Target
Prediction database (http://www.swisstargetprediction.ch/). After
compiling the identified targets and removing duplicates,
674 potential targets of CE were established. The SCLC-related
genes were identified by intersecting the genes associated with SCLC
from the CTD (https://ctdbase.org/) and GeneCards databases
(https://www.genecards.org/) with the differentially expressed
genes (DEGs) obtained from the analysis of SCLC datasets
(GSE149507, GSE40275, GSE60052) using the GEO2R tool of the
Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi). To determine the intersection of CE targets and
SCLC-related genes, a venn diagram was generated using the online
tool available at http://bioinformatics.psb.ugent.be/webtools/Venn/.
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This intersection highlights the potential targets for the anti-SCLC
effects of CE.

2.2 Protein-protein interaction (PPI) network
construction and analysis

Sixty potential targets of CE identified through network
pharmacology were imported into the STRING database (http://
string-db.org) to construct the PPI network. For this analysis, the
following parameters were set: the organism was selected as Homo
sapiens, which corresponds to human proteins; the minimum
required interaction score was set to 0.7 to ensure the inclusion
of interactions with high confidence; and the option to hide
disconnected nodes in the network was enabled to focus on the
most relevant protein interactions and reduce noise from isolated
proteins. After constructing the initial PPI network, the network
data was exported in tab-separated values (TSV) format for further
analysis in Cytoscape (version 3.10.1, https://cytoscape.org/).
Within Cytoscape, the CytoHubba plugin was utilized to identify
and analyze the hub genes in the PPI network. CytoHubba is a
powerful tool that uses various algorithms to determine the most
important nodes (hub genes) based on their interaction patterns in
the network. All parameters were set to their default values in
CytoHubba to maintain consistency and avoid bias in the analysis.

2.3 Pathway enrichment analysis

Gene Set Enrichment Analysis (GSEA) was performed to
identify enriched signaling pathways. Gene list was analyzed
using Metascape (www.metascape.org/) for Gene Ontology
Biological Process terms (GO BP). The resulting enrichment files
were imported into the Cytoscape using the EnrichmentMap app for
visualization. Parameters for visualization were set to default values,
unless otherwise specified.

2.4 Cell culture and reagents

Human SCLC cell lines NCI-H1688, NCI-H146, andNCI-H446, as
well as human lung bronchial epithelial cell line 16HBE and BEAS-2B,
were obtained and authenticated from the Shanghai Institute of Cell
Biology, Chinese Academy of Sciences (Shanghai, China). All cell lines
were maintained in either RPMI-1640 medium or DMEM medium
supplemented with 10% fetal bovine serum and 5% penicillin/
streptomycin. Cells were cultured at 37°C in a humidified incubator
with 5% CO2. The natural compound library and Cepharanthine were
purchased from TargetMol (Shanghai, China). CE was stored at −20°C
as a 10mM stock solution in dimethyl sulfoxide (DMSO) and diluted in
culture medium to achieve desired concentrations. The final DMSO
concentration was maintained below 0.1%, which is non-toxic to cells.

2.5 Cell proliferation assay

Cell proliferation was determined by using Cell Counting Kit-8
(CCK-8) (Dojindo Molecular Technologies, Inc.). Cells were seeded

at 3 × 103 cells/well in 96-well plates. After 24 h, cells were treated
with various concentrations of the compounds. Absorbance at
450 nm was measured at different time points to assess cell
viability. Each condition was tested in triplicate. The data were
normalized to the untreated control.

2.6 Colony formation assay

For the colony formation assay, 1 × 103 cells were seeded in six-
well plates. After 24 h, cells were treated without or with CE (1 μM).
The medium was replaced every 2 days. After 14 days of incubation,
colonies were fixed with 4% formaldehyde and stained with 0.1%
crystal violet. Colonies greater than 0.1 mm in diameter were
counted using an inverted microscope.

2.7 Cell apoptosis assay

Cells were plated in 6 cm dishes and treated without or with CE
(1 μM) for 24 h. Apoptosis was assessed using the FITC Annexin-V
Apoptosis Detection Kit (BD, catalog number 556547) according to
the manufacturer’s protocol. Cells were analyzed by flow cytometry
using the Accuri C6 flow cytometer (BD). Data analysis was
performed with FlowJo software.

2.8 Transwell cell migration and
invasion assay

For migration assays, 2 × 10⁴ cells were plated in the upper
chamber of a 24-well Transwell plate (Corning, catalog number
3422) with an 8 μm pore size. For invasion assays, the upper
membrane was coated with Matrigel (Corning, catalog number
354234). The lower chambers were filled with complete medium.
Cells were incubated for 24 h. Afterward, cells were fixed with 4%
formaldehyde, stained with 0.1% crystal violet and counted
under light microscope. The data are presented as the average
number of cells migrated or invaded from three independent
experiments.

2.9 Western blot

Cells were lysed with RIPA buffer (Cell Signaling Technology,
catalog number 9806), supplemented with protease inhibitor
cocktail (Thermo Fisher Scientific, catalog number 78429).
Protein concentrations were measured with a BCA Protein Assay
Kit (Thermo Fisher, catalog number 23227). Equal amounts of
protein (10 μg) were separated by 8%–12% SDS-PAGE and
transferred to a PVDF membrane (Millipore).

Membranes were blocked with 5% non-fat dry milk in TBST for
1 h, followed by overnight incubation with primary antibodies:
SQLE (A2428), FDFT1 (A4651), HMGCS1 (A3916), and HMGCR
(A1633) (Abclonal Technology, Wuhan, China); IDI1 (ab97448)
and GAPDH (ab9485) (Abcam, Cambridge, UK). The membranes
were incubated with secondary antibodies (HRP-conjugated anti-
rabbit or anti-mouse) and visualized using SuperSignal West Dura
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Chemiluminescent Substrate (Thermo Fisher Scientific, catalog
number 37071).

2.10 Quantitative real-time PCR (qRT-PCR)

Total RNA was isolated using the Direct-zol RNA Kit (Zymo
Research, catalog number R2050) according to the manufacturer’s
protocol. cDNA was reverse-transcribed with the StarScript II First-
strand cDNA Synthesis Kit (GenStar, catalog number A212-05).
Real-time PCR (RT-PCR) was performed using the 2 × RealStar
Green Fast Mixture (GenStar, catalog number A301-01), and
amplification was performed in a 96-well format in triplicate
using the CFX96 Real-Time PCR detection system (Bio-Rad).
The relative mRNA expression of each gene was normalized to
β-actin RNA levels and analyzed using the 2-△△Ct method. The
following primers were used to measure specific target genes. SQLE:
5′-CTCCAAGTTCAGGAAAAGCCTGG-3′ and 5′- GAGAAC
TGGACTCGGGTTAGCT-3′; FDFT1: 5′- TGTGACCTCTGA
ACAGGAGTGG-3′ and 5′- GCCCATAGAGTTGGCACGTTCT
-3′; IDI1: 5′- GCCGCAGACTGTGCTCAAAGC -3′ and 5′- CCT
GTTGCTTGTCGAGGTGGTT -3′; HMGCS1: 5′- AAGTCACAC
AAGATGCTACACCG-3′ and 5′- TCAGCGAAGACATCTGGT
GCCA-3′; HMGCR: 5′- GACGTGAACCTATGCTGGTCAG -3′
and 5′- GGTATCTGTTTCAGCCACTAAGG -3′; β-actin: 5′-
TCGTGCGTGACATTAAGGAG-3′ and 5′-ATGCCAGGGTAC
ATGGTGGT-3′.

2.11 Xenograft model

The animal care and procedures in this study were approved by
the Institutional Animal Care and Use Committee of Zhongshan
City People’s Hospital (Approval number: K2023-007). Six-week-
old BALB/C nude mice were used to investigate the in vivo anti-
SCLC effect of CE. All mice were kept under specific pathogen free
(SPF) conditions. 5 × 105 H1688 cells were subcutaneously into the
flank of each mouse. Tumor size was measured with calipers every
3 days after tumor cell implantation. Tumor volume was calculated
using the formula: (width2 × length)/2. When the tumor volume
reached approximately 30 mm³, mice were randomly assigned to
either a control group or the Cepharanthine treatment group
(10 mg/kg) (Feng et al., 2021; Lu et al., 2023b). Treatments were
carried out via intraperitoneal injection with either solvent or CE
every 2 days. After 3 weeks, the mice were sacrificed, and their blood
and tumor tissues were collected.

2.12 Cholesterol content measurement

The Amplex Red Cholesterol and Cholesteryl Ester Assay Kit
(Beyotime Biotechnology, Catalog number S0211S) was utilized to
quantify cholesterol levels according to the manufacturer’s
guidelines. In this assay, cholesteryl esters are hydrolyzed by
cholesterol esterase, releasing free cholesterol and fatty acids. The
free cholesterol is subsequently oxidized by cholesterol oxidase,
generating hydrogen peroxide (H₂O₂) and cholestenone. The
resulting H₂O₂ reacts with Amplex Red to produce resorufin,

whose fluorescence intensity or absorbance is directly
proportional to the cholesterol concentration. A standard curve
derived from the provided cholesterol standard solution was used to
calculation the concentration of cholesterol, cholesteryl ester, and
total cholesterol content in the samples. The fluorescence intensity
was measured at an excitation wavelength of 530 nm and an
emission wavelength of 590 nm.

2.13 Molecular docking

The molecular structure of CE (ZINC30726863) was
downloaded from the ZINC20 database (https://zinc20.docking.
org/). The 3D structure of the target protein was downloaded
from the PDB database (https://www.rcsb.org). Water molecules
and original ligands were removed from the protein structure using
PyMOL 2.0 (https://pymol.org/2/). Molecular docking simulations
were performed using the Maestro software (Schrödinger, LLC, New
York, NY), and the results were visualized using PyMOL 2.0. The
docking procedure involved preparation of both the ligand and
protein structures, followed by the docking process using the default
parameters. The binding energies of the ligand-protein complexes
were calculated, and the top-ranked binding modes were visualized
for further analysis.

2.14 RNA-sequencing

NCI-H1688 cells were treated with CE at a concentration of
1 μM for 24 h. Total RNA was extracted using the Direct-zol RNA
kit (Zymo Research, Catalog number R2050) according to the
manufacturer’s guidelines. The purity and quantification of RNA
were assessed using the NanoDrop 2000 spectrophotometer
(Thermo Scientific, Waltham, MA United States). RNA
sequencing was conducted by Novogene (Beijing, China) using
the Illumina HiSeq 4,000 platform. Raw sequencing reads were
subjected to quality control using FastQC (https://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Low-quality
reads were filtered out, and the remaining high-quality reads
were aligned to the Homo sapiens reference genome
GRCh38 using STAR aligner (https://github.com/alexdobin/STAR).

Differentially expressed genes (DEGs) were determined using
DESeq2 (https://bioconductor.org/packages/release/bioc/html/
DESeq2.html), with a cut-off of Log2|Fold change| ≥ 1 and P <
0.05. To control for false positives, P-values were adjusted for
multiple comparisons using the Benjamini-Hochberg method,
maintaining a false discovery rate (FDR) threshold of 0.05. All
analyses were conducted in R (version 4.2.1, https://www.r-
project.org/).

2.15 Plasmid construction and transfection

Short hairpin RNA (shRNA) sequences were inserted into psiF-
copGFP vectors (System Biosciences, Mountain View, CA, United
States). The following shRNA sequences were used: SQLE (5′-GCT
CAGGCTCTTTATGAATTA-3′), FDFT1 (5′-ACTTGCTACAAG
TATCTCAAT-3′), IDI1 (5′-GCCAGTGGTGAAATTAAGATA-
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3′), HMGCS1 (5′-CCTGATATGCTATCTGAATAT-3′), HMGCR
(5′-CCTGTATATTTACTTCCAGTT-3′). The sequence for the
negative control (shCtl) was 5′-GCTCAGGCTCTTTATGAA
TTA-3′. To generate stable cell lines, lentiviral particles were
produced by transfecting HEK-293T cells with second-generation
packaging vectors (pMD2. G and psPAX2, System Biosciences)
using Lipofectamine 2000 (Thermo Fisher Scientific, catalog
number 11668500). Lentiviral particles were harvested 48 h post-
transfection. SCLC cell lines were infected with lentivirus in the
presence of 8 μg/mL polybrene (Sigma-Aldrich,catalog number TR-
1003) and selected with puromycin (2 μg/mL) for 7 days. The
efficiency of transfection and stable expression was confirmed by
GFP fluorescence under a fluorescence microscope.

2.16 Statistical analysis

All experiments were performed in triplicate, and data are
presented as mean ± standard deviation (SD) unless otherwise
stated. The distribution of data normality was evaluated using the
D’Agostino-Pearson omnibus test. For comparisons between two
groups, unpaired two-tailed Student’s t-tests were used for normally
distributed data, while Mann-Whitney U tests were applied for data
that did not follow a normal distribution. When comparing more
than two groups, one-way analysis of variance (ANOVA) with
Tukey’s multiple comparisons was utilized for normally
distributed data, and the Kruskal-Wallis test with Dunn’s
multiple comparisons test was employed for non-normally
distributed data. In these cases, multiple comparisons were
controlled using Tukey’s or Dunn’s tests, respectively, to reduce
the likelihood of false positives. All statistical analyses were
performed using appropriate tests based on the distribution of
the data, and p-values <0.05 were considered statistically

significant. The statistical significance was set at *P < 0.05, **P <
0.01, ***P < 0.001.

3 Results

3.1 Screening of the natural compound
library revealed that cepharanthine
possesses inhibitory effects against SCLC

To identify novel compounds with activity against small cell lung
cancer (SCLC), a library of 640 natural products was screened for their
ability to inhibit SCLC cell proliferation (Supplementary Table S1;
Figure 1A). Initially, H1688 SCLC cells were exposed to each compound
at a concentration of 30 μM for 24 h, after which the inhibition ratio was
evaluated using the Cell Counting Kit-8 (CCK-8) assay. Compounds
demonstrating over 50% reduction in cell viability compared to the
control group were selected for further analysis, resulting in the
identification of 100 candidate compounds (Supplementary Table
S2). These compounds were then tested at a concentration of
10 μM on H1688 cells, and the same assay was performed, resulting
in the identification of 58 compounds for further evaluation
(Supplementary Table S3). These 58 candidates were subsequently
re-evaluated at a lower concentration of 5 μM, identifying
39 natural compounds that effectively inhibited H1688 cell
proliferation (Supplementary Table S4). Upon literature review of
these 39 compounds, Cepharanthine (CE) was identified as a
compound of particular interest (Figure 1B). Although CE is known
for its diverse medicinal properties, including antitumor activity, its role
in SCLC has not been documented. Consequently, CE was selected for
further investigation. The subsequent analysis focused on the effects of
lower concentrations of CE on SCLC cell proliferation. At 1 μM, CE
significantly inhibited the proliferation of H1688 cells (Figure 1C), while

FIGURE 1
Screening of the natural compounds library revealed that Cepharanthine possesses inhibitory effects against SCLC. (A) Process of screening SCLC
inhibitors using natural compounds library. (B) The chemical structure of Cepharanthine (CE, CAS: 481–49–2, Molecular Formula: C37H38N2O6;
FormulaWeight: 606.7 g/mol). (C) The inhibitory effects of CE on the proliferation of H1688 cells were evaluated. (D) The inhibitory effects of CE (1 µM) on
the cell proliferation of H1688, 16HBE, and BEAS-2B cells after 24 h, 48 h and 72 h were assessed. 16HBE, human bronchial epithelial cell. BEAS-2B,
human lung epithelial cell. (E)Cell proliferation wasmeasured in SCLC cells after 24 h of treatment with different concentrations of CE, and the IC50 of CE
in different SCLC cell lines was determined. Data are presented as means ± SD of three simultaneously performed experiments (C–E). *P < 0.05, **P <
0.01, ***P < 0.001.
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minimal effects were observed in normal human tissue cell lines
(16HBE and BEAS-2B) (Figure 1D). The half-maximal inhibitory
concentration (IC50) of CE in common SCLC cell lines was
determined to be 0.8 μM for H1688, 1.1 μM for H446, and 1.5 μM
for H146 cells (Figure 1E). These findings suggest that CE represents a
promising candidate compound for the treatment of SCLC.

3.2 Cepharanthine inhibited SCLC
cells in vitro

To further investigate the anti-SCLC effects of CE, we explored its
impact on several key aspects of SCLC cell behavior. Initially, the effect
of CE on SCLC cell colony formation was analyzed, demonstrating
significant inhibition of colony formation (Figure 2A). To determine
how CE induces cell death in SCLC cells, the number of apoptotic cells
was assessed using flow cytometry. The results indicated a significant
increase in apoptotic cells in the CE-treated group (Figure 2B).
Additionally, CE effectively suppressed the migration and invasion
capabilities of SCLC cells (Figures 2C,D). Collectively, these results
suggest that CE inhibits SCLC development in vitro, making it an ideal
candidate for further mechanistic studies.

3.3 Network pharmacology analysis of the
potential mechanism of CE against SCLC

To explore the underlying mechanism of CE’s anti-SCLC effects,
network pharmacology analysis was utilized. Initially, 1,000 SCLC-

related genes were identified from public databases, including GEO,
CTD, and GeneCards (Figure 3A; Supplementary Table S5). KEGG
pathway enrichment analysis revealed that these genes were primarily
enriched in pathways associated with DNA replication, the cell cycle,
and mismatch repair. Notably, these genes were also significantly
enriched in the small cell lung cancer gene set (Figure 3B). Next,
674 potential target genes of CE were identified and intersected with
the 1,000 SCLC-related genes, yielding 60 potential target genes of CE
against SCLC (Figure 3C; Supplementary Tables S6, S7). A protein-
protein interaction (PPI) network was constructed using the
60 identified genes. After eliminating unconnected nodes, the PPI
network included 56 nodes and 166 edges, revealing intricate
interconnections among the proteins (Figure 3D). Cluster
identification analysis indicated that these genes were primarily
involved in G2/M transition of the mitotic cell cycle, cholesterol
biosynthesis, VEGFR2-mediated cell proliferation, the renin-
angiotensin system, and serotonin clearance from the synaptic
cleft (Figure 3E). Furthermore, GSEA Hallmark and Reactome
analyses of these genes revealed significant enrichment in
cholesterol-related pathways (Figures 3F,G; Supplementary Tables
S8, S9). We further examined the core genes identified from the PPI
network using the Cytoscape cytoHubba plugin. Interestingly, genes
related to cholesterol metabolism, such as SQLE, FDFT1, and IDI1,
did not rank highly among the central nodes in the network
(Figure 3H). These results suggest that CE may influence SCLC
cells through various pathways, particularly by modulating
cholesterol metabolism. However, this hypothesis requires further
validation, prompting the use of additional techniques to analyze the
effects of CE on SCLC cells.

FIGURE 2
CE inhibited SCLC cells in vitro. (A) The colony formation assay was conducted to determine the inhibitory effect of CE on SCLC cells. The number of
colonies was counted under a microscope. (B) SCLC cells were treated with Ctl (DMSO) or CE (1 µM) for 24 h, followed by Annexin V-FITC and PI staining
and flow cytometry analysis. Both Annexin V-FITC and PI double-positive cells represent apoptotic cells. (C, D) The effect of CE (1 µM) on transwell
migration (C) and invasion (D) of SCLC cells was assessed. Data are presented as mean ± SD of three simultaneously performed experiments (A–D).
*P < 0.05, **P < 0.01, ***P < 0.001.
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FIGURE 3
Network pharmacology analysis of the potential mechanism of CE against SCLC. (A) A Venn diagram was used to obtain SCLC-related genes. (B)
KEGG analysis of the 1000 SCLC-related genes. (C) Venn diagram predicts potential targets for CE to exert anti-SCLC effects. The PPI network (D) of the
60 intersecting targets and subnetwork clusters (E) was identified. (F, G) GSEA related HALLMARKS (F) and Reactome (G) analysis of the 60 intersecting
targets. (H) The hub gene of the PPI network identified by Cytoscape cytoHubba plugin. The degree of gene interactions in the PPI network was
calculated by cytoHubba, and colored from yellow to red, indicating the degree from low to high.
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FIGURE 4
CE disrupts cholesterol metabolism. (A) Heatmap shows the expression of genes in RNA-seq data of H1688 cells treated with or without CE (1 µM).
(B) Volcano plot shows the DEGs identified from RNA-seq of H1688 cells treated with or without CE (1 µM). (C, D) Results of the GSEA Hallmark (C) and
Reactome (D) enrichment of pathways after CE exposure are shown. The X-axis coordinates represent the enrichment scores. (E) Pathway enrichment of
the DEGs in H1688 cells treated with or without CE (1 µM). Metascape was used to conduct pathway enrichment; the network was visualized using
Cytoscape. Network of enriched terms, circles are Gene Ontology (GO) terms, colored by P value, where terms containing more genes tend to have a
more significant P value. (F, G, H) Individual GSEA plots and gene expression changes within the corresponding gene sets: Hallmark_Cholesterol
Homeostasis (F), Reactome_Cholesterol Biosynthesis (G), and Reactome_Regulation of Cholesterol Biosynthesis (H) for H1688 cells treated with or
without CE. NES, normalized enrichment score.
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3.4 CE disrupts cholesterol metabolism

To gain deeper insight into the molecular mechanism
underlying CE’s anti-SCLC effects, RNA sequencing (RNA-seq)
was performed on H1688 cells treated with or without CE

(1 μM). This analysis identified 330 differentially expressed genes
(DEGs), comprising 227 downregulated and 103 upregulated genes.
Among the downregulated genes, HMGCS1, a key rate-limiting
enzyme in the cholesterol biosynthesis pathway, was the most
significantly affected (Figures 4A,B; Supplementary Table S10).

FIGURE 5
CE inhibits key cholesterol synthesis enzymes and lowers cholesterol levels in SCLC cells. (A) Intersection of the DEGs associated with cholesterol
metabolism from RNA-Seq data and 60 predicted target genes identified through network pharmacology. (B) Schematic representation of the
cholesterol biosynthesis pathway, highlighting critical rate-limiting enzymes. (C) RT-PCR analysis demonstratingmRNA levels of HMGCS1, HMGCR, IDI1,
FDFT1, and SQLE following CE treatment. (D) Western blot analysis showing protein levels of the five genes after CE treatment. (E) Cholesterol
content in H1688 cells treated with or without CE (1 µM) for 24 h. (F, G) Representative tumor image (F) and tumor weight (G) of H1688 cells-derived
xenografts treatedwith orwithout CE (10mg/kg), n = 3. (H, I)Measurement of cholesterol concentration in serum (H) and tumor tissues (I)of H1688 cells-
derived xenografts. (J) The binding energy between corresponding gene and CE. Data are presented as means ± SD of three simultaneously performed
experiments (C, E, H, I). *P < 0.05, **P < 0.01, ***P < 0.001.
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Subsequently, GSEA was utilized to explore the signaling pathways
associated with these DEGs. Hallmark enrichment analysis revealed
that cholesterol homeostasis, MTORC signaling, and hypoxia gene
sets were inhibited following CE treatment, while gene sets related to
KRAS signaling and inflammatory responses were activated in
response to CE (Figure 4C; Supplementary Table S11). Reactome
enrichment analysis further indicated that cholesterol synthesis and
the innate immune system were also inhibited post-CE treatment
(Figure 4D; Supplementary Table S12). Cytoscape Enrichment Map
analysis categorized these DEGs into six main functional groups:
cholesterol metabolic process, cell differentiation, cell migration,
regulation of synaptic plasticity, regulation of the immune system,
and response to chemokines (Figure 4E). Analysis of gene involved
in cholesterol metabolism revealed significant downregulation of
genes such as HMGCS1, IDI1, HMGCR, SQLE, and FDFT1,
following CE treatment (Figures 4F–H), supporting the
hypothesis that CE inhibits cholesterol biosynthesis in SCLC cells.

3.5 CE inhibits key cholesterol synthesis
enzymes and lowers cholesterol levels in
SCLC cells

Both network pharmacology and RNA-Seq data analyses
indicate that CE regulates cholesterol metabolism in SCLC cells.
To better understand the mechanisms underlying this regulation,
the DEGs associated with cholesterol metabolism from the RNA-Seq
data were intersected with the 60 predicted target genes identified
through network pharmacology, resulting in the identification of
four potential key targets: HMGCR, IDI1, FDFT1, and SQLE
(Figure 5A). These genes, which are rate-limiting enzymes in the
cholesterol biosynthesis pathway (Figure 5B), were prioritized for
further analysis. Interestingly, HMGCS1, another key rate-limiting
enzyme (Figure 5B), was not predicted by network pharmacology,
but it was found to be the most significantly downregulated in the
RNA-Seq data. Given the significant downregulation of HMGCS1 in
the RNA-Seq data and its crucial role in cholesterol metabolism,
HMGCS1 was included in the subsequent analyses, along with the
four predicted genes. This combined approach allowed for a
comprehensive examination of CE’s impact on cholesterol
metabolism in SCLC cells. RT-PCR and Western blot analyses
further confirmed that the mRNA and protein levels of all five
genes (HMGCS1, HMGCR, IDI1, FDFT1, and SQLE) were
significantly reduced following CE treatment (Figures 5C,D).
Additionally, the cholesterol content in H1688 cells was also
notably decreased after CE treatment (Figure 5E). To validate the
in vivo anti-SCLC effects of CE, xenograft mouse models were
established using H1688 cells. The results demonstrated a
significant reduction in tumor volumes (Figure 5F) and tumor
weight in the CE-treated group compared to the control group
(Figure 5G). Furthermore, cholesterol levels in both serum
(Figure 5H) and tumor tissues (Figure 5I) of the xenograft mice
were lower after CE treatment, reinforcing the link between CE
treatment and reduced cholesterol synthesis. Molecular docking
further verified that CE binds strongly to key enzymes in the
cholesterol biosynthesis pathway (Figure 5J). These findings
suggest that CE’s anti-SCLC effects are mediated by inhibition of
cholesterol biosynthesis.

3.6 High expression of key cholesterol
synthesis enzymes promotes SCLC cell
proliferation and correlates with
poor prognosis

The roles of the five key rate-limiting enzymes (HMGCS1,
HMGCR, IDI1, FDFT1, and SQLE) in the cholesterol synthesis
pathway in SCLC were further investigated. Analysis of data from
the Cancer Cell Line Encyclopedia (CCLE) revealed that the
expression levels of HMGCS1, HMGCR, IDI1, FDFT1, and SQLE
were significantly higher in SCLC cell lines compared to non-small
cell lung cancer (NSCLC) cell lines and other cancer cell lines
(Figure 6A). Survival analysis demonstrated that high expression
of HMGCS1, HMGCR, and IDI1 was associated with poor prognosis
in SCLC patients, while the expression of FDFT1 and SQLE did not
significantly impact patient outcomes (P > 0.05) (Figure 6B). To
confirm these findings, we assessed mRNA expression levels of these
five genes in SCLC cells, and the result was consistent with the CCLE
data, showing elevated levels of these genes (Figure 6C). To further
explore the effects of these genes on SCLC cell proliferation, shRNA
was utilized to knock down the expression of each gene in
H1688 cells (Figure 6D). Cell viability assays demonstrated that
silencing any of these genes significantly inhibited the proliferation
of H1688 cells (Figure 6E). In summary, these findings indicate that
high expression of key cholesterol synthesis enzymes is a hallmark of
SCLC and contributes to the proliferation of SCLC cells.

4 Discussion

Small cell lung cancer (SCLC) is characterized by its aggressive
nature and poor prognosis, often associated with limited treatment
options (Wang et al., 2023). Identifying new therapeutic agents is
critical to improving outcomes for SCLC patients. In this study,
Cepharanthine (CE) was identified as a promising anti-SCLC agent
from a natural compounds library. CE significantly inhibited SCLC
cell growth both in vitro and in vivo. In addition, CE promoted the
apoptosis of SCLC cells and inhibited their migration and invasion.
To investigate the specific molecular mechanisms underlying CE’s
anti-SCLC effects, we employed network pharmacology and RNA-
Seq methodologies.

Network pharmacology is a powerful tool in drug discovery,
providing insights into drug-biological system interactions (Zhao
et al., 2023). It integrates biological data to identify therapeutic
targets and pathways, supporting a systems biology approach to
drug discovery (Nogales et al., 2022). However, there are several
limitations to this approach. Network pharmacology depends on
existing databases, which may contain incomplete or inaccurate
data, affecting results (Zhang et al., 2023). Additionally, simplifying
complex biological systems into static models may also miss the
dynamic nature of tumor biology and signaling interactions (Zhao
et al., 2023). Furthermore, biases in target selection and challenges in
predicting molecular interactions complicate the interpretation of
findings (Zhang et al., 2023). In our study, we aimed to explore the
mechanisms underlying CE’s anti-SCLC effects using network
pharmacology methods. Network pharmacology analysis
identified 60 potential target genes related to CE’s anti-SCLC
effects. Enrichment analysis indicated that these genes play a
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FIGURE 6
High expression of key cholesterol synthesis enzymes promotes SCLC cell proliferation and correlateswith poor prognosis. (A) The expression levels
of corresponding gene’s mRNA in SCLC, NSCLC, and other cancer cell lines were obtained from the Cancer Cell Line Encyclopedia (CCLE). (B) Overall
survival analysis of human SCLC samples based on the corresponding gene expression. (C) RT-PCR was used to analyze the expression levels of key
cholesterol synthesis enzymes (HMGCS1, HMGCR, IDI1, FDFT1, and SQLE) in 16HBE (human bronchial epithelial cell) and SCLC cell lines. (D) Protein
expression analysis was conducted on the corresponding genes in H1688 cells transfected with either shCtl or shRNA targeting each specific gene. (E)
Cell proliferation was measured after silencing of HMGCS1, HMGCR, IDI1, FDFT1, and SQLE in H1688 cells. Data are presented as means ± SD of three
simultaneously performed experiments (C, E). *P < 0.05, **P < 0.01, ***P < 0.001.
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significant role in regulating cholesterol metabolism. Although
significant, cholesterol-related genes were not among the top hub
genes, highlighting a limitation in traditional network pharmacology
methods. The lower ranking of these genes may result from the
complexity of their regulatory networks and interactions with other
pathways, which static models cannot fully capture. This emphasizes
the need for complementary methods to better elucidate the
mechanisms by which CE exerts its effects.

RNA-seq is a powerful tool for profiling gene expression changes
and discovering novel targets and pathways in disease (Wang et al.,
2009). Its ability to capture both known and unknown transcripts,
quantify gene expression with high precision, and provide insights
into transcript structure makes it particularly valuable for complex
diseases like cancer (Stark et al., 2019). However, the large volume of
data generated can complicate the identification of the most relevant
biological insights, particularly when distinguishing true signals
from background noise (Mcdermaid et al., 2019). In this study,
we combined RNA-seq and network pharmacology to explore the
mechanisms underlying CE’s anti-SCLC activity. This integrative
approach allowed us to overcome the limitations of both methods:
RNA-seq offered a comprehensive view of potential gene expression
changes, while network pharmacology helped prioritize key targets
and pathways. Our analysis integrating network pharmacology and
RNA-seq data suggests that CE inhibits cholesterol synthesis in
SCLC cells by downregulating key enzymes in the cholesterol
biosynthesis pathway, including HMGCR, IDI1, FDFT1, and
SQLE. Despite not being predicted by network pharmacology,
HMGCS1, a key enzyme in the pathway, was included in our
analyses due to the reliability of the RNA-seq data. This
highlights the advantage of RNA-seq in uncovering biologically
relevant genes that may not be prioritized in network pharmacology.
Importantly, our results show that even genes not ranked as top hubs
in network pharmacology can have crucial roles in therapeutic
responses. This finding emphasizes the complementary nature of
network pharmacology and RNA-seq, offering a more robust
framework for identifying potential therapeutic targets.

Cholesterol metabolism is crucial in tumor progression,
influencing key aspects of cancer biology such as cell
proliferation, migration, and evasion of apoptosis (Xu et al.,
2020; Huang et al., 2020). Moreover, cholesterol metabolism
plays a key role in SCLC biology. For instance, low serum low-
density lipoprotein (LDL) levels and reduced LDL receptor (LDLR)
expression are associated with better overall survival in SCLC
patients (Zhou et al., 2017). Cholesterol is also crucial for
signaling pathways, like the Hedgehog pathway, that drive SCLC
progression (Chen et al., 2018). Depletion of cholesterol may disrupt
these pathways and impair cell survival, particularly through
changes in protein prenylation, which is vital for RAS signaling
and other pathways (Ahmadi et al., 2017; Kashiwagi et al., 2022).
Cholesterol synthesis is a complex process mainly occurring in the
liver and intestines. It begins with the conversion of acetyl-CoA to
mevalonate, catalyzed by two key enzymes: HMG-CoA synthase 1
(HMGCS1) and HMG-CoA reductase (HMGCR). Mevalonate is
then transformed into farnesyl pyrophosphate through the action of
isopentenyl-diphosphate delta-isomerase 1 (IDI1). Subsequent
reactions, involving enzymes such as farnesyl-diphosphate
farnesyltransferase 1 (FDFT1) and squalene epoxidase (SQLE),
lead to the final production of cholesterol (Liu et al., 2023b; Luo

et al., 2020). These enzymes play a crucial role in cholesterol
biosynthesis and are potential therapeutic targets in tumor
progression (Lu et al., 2023a). In our study, we found that CE
significantly inhibits the expression of key rate-limiting enzymes
(HMGCS1, HMGCR, IDI1, FDFT1, and SQLE), thereby reducing
cholesterol synthesis in SCLC cells. This finding supports previous
research showing that overexpression of these enzymes is linked to
enhanced tumor growth and poor prognosis in various cancers.
Validation using the public CCLE database confirmed high
expression of these five genes in SCLC cells. Notably, high levels
of HMGCS1, HMGCR, and IDI1 were associated with worse
prognosis. Furthermore, loss-of-function experiments revealed
that silencing these genes significantly inhibited SCLC cell
proliferation, highlighting their role as oncogenes.

In addition to its role in cholesterol metabolism, our network
pharmacology analysis identified several pathways that may contribute
to the anti-SCLC effects of CE, all of which are significant in SCLC
development and progression. For instance, the VEGFR2-mediated
pathway is crucial for tumor angiogenesis and cell proliferation,
promoting tumor growth and metastasis by enhancing blood supply
(Simons et al., 2016). The regulation of the G2/M transition in the cell
cycle is also critical for cellular proliferation, with dysregulation often
observed in cancers (Matthews et al., 2022). Furthermore, pathways
related to the renin-angiotensin system may influence the tumor
microenvironment, affecting cell signaling and tumor behavior
(Catarata et al., 2020). While our network pharmacology findings
highlight the importance of these pathways in CE’s anti-SCLC
effects, further experimental validation is needed. Investigating CE’s
interaction with these pathways will provide further insights into its
mechanisms and therapeutic potential.

Our study identifies CE as a potential therapeutic agent against
SCLC. It exerts this effect by inhibiting cholesterol synthesis through
downregulating key enzymes, including HMGCS1, HMGCR, IDI1,
FDFT1, and SQLE. However, several limitations should be addressed in
future research. The mechanisms by which cholesterol metabolism
contributes to CE’s anti-SCLC effects require further in vivo and in vitro
investigation. Additionally, the bioavailability and metabolic pathways
of CE should be better understood to optimize its clinical application.
Chemical modifications could also improve CE’s pharmacokinetics,
enhancing stability and bioavailability. Future studies should involve
larger sample sizes to evaluate CE’s in vivo effects, assess dose-
dependent outcomes, and compare its efficacy with current
chemotherapy agents. Investigating potential synergistic effects of CE
with other chemotherapies could further improve treatment strategies
for SCLC. Addressing these areas will maximize CE’s therapeutic
potential and improve outcomes for patients.

5 Conclusion

Our research demonstrates that CE disrupts cholesterol
metabolism by downregulating key rate-limiting enzymes
involved in cholesterol synthesis: HMGCS1, HMGCR, IDI1,
FDFT1, and SQLE. These findings provide a new treatment
option for SCLC patients and identify critical therapeutic targets
associated with cholesterol metabolism. These findings open new
avenues for research targeting these enzymes, which could enhance
treatment strategies and improve patient outcomes.
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