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Introduction: Recent advances in 3D structure-based deep learning approaches
demonstrate improved accuracy in predicting protein-ligand binding affinity in
drug discovery. These methods complement physics-based computational
modeling such as molecular docking for virtual high-throughput screening.
Despite recent advances and improved predictive performance, most
methods in this category primarily rely on utilizing co-crystal complex
structures and experimentally measured binding affinities as both input and
output data for model training. Nevertheless, co-crystal complex structures
are not readily available and the inaccurate predicted structures from
molecular docking can degrade the accuracy of the machine learning methods.

Methods: We introduce a novel structure-based inference method utilizing
multiple molecular docking poses for each complex entity. Our proposed
method employs multi-instance learning with an attention network to predict
binding affinity from a collection of docking poses.

Results: We validate our method using multiple datasets, including PDBbind and
compounds targeting the main protease of SARS-CoV-2. The results
demonstrate that our method leveraging docking poses is competitive with
other state-of-the-art inference models that depend on co-crystal structures.

Discussion: This method offers binding affinity prediction without requiring co-
crystal structures, thereby increasing its applicability to protein targets lacking
such data.
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1 Introduction

Given the vast number of drug-like chemical compounds and the rapid growth of compound
library databases, it is crucial to develop an effective tool for large-scale virtual high-throughput
screening to identify hit molecules. To address this need, recent studies have employed various
machine learning and deep learning-based inference models to enhance traditional
computational modeling techniques such as molecular docking and molecular dynamics
simulations for accurately predicting protein-ligand interactions and binding affinities.
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One major application utilizing machine learning techniques in
drug discovery involves the use of SMILES strings and their
associated features such as molecular descriptors (RDKit, 2024;
Moriwaki et al., 2018) and fingerprints (Rogers and Hahn, 2010),
to predict compound properties and target-specific interactions.
This includes predicting toxicity, solubility, membrane
permeability, binding affinity, and other compound
characteristics associated with the target receptors. The
approaches in this category use a variety of machine learning
methods, ranging from random forest algorithms to various
neural network architectures (Minnich et al., 2020; Ramsundar
et al., 2019).

Recent studies use advanced architectures and techniques with
atomic graph representations such as graph neural networks
(Duvenaud et al., 2015; Stärk et al., 2022a), graph transformers
and attention mechanisms (Rong et al., 2020) in unsupervised or
self-supervised settings. These approaches show the advantages of
utilizing pretrained models on unlabeled large-volume compound
databases. Furthermore, large language model-based approaches
have been proposed to address pretrainng and finetuning with
the unlabeled compound data (Chithrananda et al., 2020; Mazuz
et al., 2023).

Another direction in leveraging deep learning techniques uses 3D
atomic representations of the protein-ligand structures to predict the
interaction and binding affinities. These structure-based methods use
3D convolutional neural networks (3DCNNs) utilizing voxelized
atomic representations of co-crystal complex structures to predict
binding affinities (Gomes et al., 2017; Ragoza et al., 2017; Jiménez
et al., 2018; Zhang et al., 2019) and to predict protein-binding sites
(Jiménez et al., 2017). Furthermore, graph neural networks (GNNs),
graph convolutional networks (GCNs), and spatial graph
convolutional neural networks (SGCNNs) have been introduced for
binding affinity prediction. These models utilize graph representations
of atomic data from co-crystal complex structures, capturing atoms
and their connectivity through nodes and edges (Feinberg et al., 2018;
2019; Zhang et al., 2023). Recently, equivariant attention networks
have received attention for representing 3D point cloud or graph data
under rotations such as SE(3)-transformers (Fuchs et al., 2020).
Satorras et al. developed light-weight E(n) equivariant graph neural
networks (EGNNs) equivariant to rotations, translations, reflections
and permutations without the need for higher-order representations
(Satorras et al., 2021). Powers et al. proposed to use data-efficient E(3)
equivariant networks with point cloud data to guide how to attach new
molecular fragments in molecule optimization (Powers et al., 2022).
Scantlebury et al. proposed a lightweight E(n)-equivariant graph neural
network for machine learning-based scoring functions (Scantlebury
et al., 2023).

An additional recent trend involves using hybrid neural network
architectures or fusion networks to capture diverse input
representations and interactions. Jones et al. proposed a fusion
method to complement 3DCNN and SGCNN architectures to
effectively capture both spatial information and atom
connectivities (Jones et al., 2021). Jiang et al. proposed the use of
two independent graph network modules to capture intra- and
intermolecular interactions (Jiang et al., 2021). Kyro et al.
proposed the use of hybrid attentions with 3DCNN and GCN
(Kyro et al., 2023). Mqawass et al. proposed a fusion method of
different input representations (Mqawass and Popov, 2024).

Most methods in this category rely on co-crystal complex
structures of protein-ligand data to train the neural network
models. However, crystal structures are not readily available in
the early stages of most drug discovery applications. The
PDBbind dataset (Su et al., 2019), a meticulously curated subset
of the Protein Data Bank (PDB) (Burley et al., 2019) containing
experimental binding affinity data, is virtually the sole dataset
accessible for structure-based protein-ligand learning tasks. For
that reason, we often utilize simulated docking poses of protein-
ligand complex structures for structure-based deep learning
inference models. The docking poses can be generated using
molecular docking tools such as AutoDock VINA (Trott and
Olson, 2010; Eberhardt et al., 2021), and GLIDE (Friesner et al.,
2004; Halgren et al., 2004). Recent studies have proposed the use of
deep neural network approaches to serve as docking scoring
functions (McNutt et al., 2021), or to generate docking poses
including DeepDock (Méndez-Lucio et al., 2021), EquiBind
(Stärk et al., 2022b), TankBind (Lu et al., 2022), DiffDock (Corso
et al., 2023), and UniMol (Zhou et al., 2023).

While generating docking poses is feasible and practical, training or
evaluating deep neural network models on these poses results in
inaccurate predictions, as the docking poses are considered “noisy”
data. To identify inaccurate docking poses, Shim et al. proposed a pose
classification approach using two different neural network methods,
3DCNN and point cloud network (PCN) (Shim et al., 2022). While the
method filters out inaccurate docking poses; it requires an additional
computational or inference method for binding affinity estimation.
Another study developed a pose classification method without using
crystal structures to improve the correlation between docking scores
and experimental data (Shim et al., 2024). However, their method relies
on the docking poses and their scoring functions. A recently proposed
method leverages an E(3)-invariant graph neural network, combined
with docking and binding affinity data, to address binding affinity
prediction for kinase compounds (Backenköhler et al., 2024). Although
this approach utilizes template docking to achieve more accurate poses,
it does not explicitly address the distinction between accurate and
inaccurate docking data, particularly in scenarios where a significant
amount of inaccurate docking data is present.

In this paper, we present a novel inference method based on
multi-instance learning (MIL) that utilizes a set of docking poses for
each protein-ligand entity to predict binding affinity. Multi-instance
learning is a type of weakly supervised learning used to predict a
label for a group (bag) of instances, where the individual labels of the
instances within the bag are not available (Carbonneau et al., 2018).
In the standard MIL setup for classification, it is assumed that
negative bags exclusively contain negative instances, while positive
bags contain at least one positive instance. This technique offers
flexibility by mitigating the potential problems associated with
ambiguous and time-consuming labeling, compared to the
traditional supervised learning. For more detail about MIL
methods in various computer vision and machine learning
applications, refer to the following review papers (Carbonneau
et al., 2018; Fatima et al., 2023).

We leverage MIL-based regression to predict binding affinities
when only molecular docking data is available, as there are no
accessible co-crystal structures. Our method begins with graph
neural networks, specifically SGCNN and EGNN, representing
each ligand pose alongside its associated target receptor instance
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as a graph embedding. We then extract latent features frommultiple
pose instances per complex entity using these graph networks.
Finally, we integrate these features into our pose-wise attention
network, which functions as a MIL framework to predict binding
affinities for each complex entity. We train and evaluate our models
on molecular docking structures that may contain inaccurate poses.
We demonstrate our method using the PDBbind and SARS-CoV-
2 main protease datasets. The primary contribution of our method is
as follows:

• Our method does not rely on co-crystal structures, which
increases applicability across various drug target
applications.

• Multiple docking poses per complex structure entity can be
utilized together, without the need to filter out inaccurate ones.

• Our pose-wise attention mechanism, which can be integrated
with various backbone network architectures, enhances
binding affinity prediction even with docking pose data
only, compared to existing scoring methods including top-
pose-based and non-weighted average scores.

2 Methods

2.1 Problem definition

Most high-throughput screening and 3D structure-based neural
network approaches utilize co-crystal complex structures or the
“best” poses with the highest docking scores (lowest binding energy).
Instead, we consider all generated poses with the target receptor as a
bag for each complex structure entity. We formulate this problem as
multi-instance learning (MIL) regression to predict a single real-
value label for a bag (Dooly et al., 2002). Each bag represents a single
protein-ligand structure entity consisting of multiple docking poses,
X � {x1, . . . , xK}, with at least one instance being close to the target
label y. It is assumed that the sequence of docking pose instances can
be random. The real-value labels represent the binding affinities.
Each instance xi ∈ RD represents the atomic representation of the
docking pose with the protein receptor, including the 3D
coordinates of the atoms and their atomic features. The number
of docking poses K can vary depending on the molecular docking
methods, generally ranging from 10 to 20 in our applications. Our
goal is to predict the binding affinity y by leveraging our proposed
MIL network framework M together with the backbone graph
network G to interpret a set of docking pose and the receptor
instances X.

2.2 Input data and featurization

For input ligand docking poses and protein receptors, we extract
atomic features presented by Pafnucy (Stepniewska-Dziubinska
et al., 2018). This atomic feature set was widely used in various
structure-based machine learning methods (Jones et al., 2021; Kyro
et al., 2023; Shim et al., 2022; 2024). Each atom feature consists of 3D
coordinates (x,y,z) of the atom position and its features comprising a
19 dimension feature vector, which includes element type, atom
hybridization, number of heavy atom bonds, bond properties

(hydrophobic, aromatic, acceptor, donor, ring), partial charge,
and Van der Waals radii. All atomic coordinates within each
protein-ligand structure are normalized, aligning them with the
center of the ligand. We used Open Babel (O’Boyle et al., 2011) for
format conversion and partial charge calculation, and utilized the
tfbio package (tfbio, 2018) to extract protein, ligand, and binding co-
complex features.

2.3 Model architecture

We utilize graph neural network architectures capable of
leveraging graph representations of protein-ligand structures to
capture both atomic features and their interconnections, which
serves as a backbone model. The backbone networks provide
low-dimensional K embedding representation H � {h1, . . . , hK}
for a bag of multiple docking pose instances. Thus, hk � Gψ(xk),
where Gψ(·) is a graph neural network with parameters ψ. The low-
dimensional embedding H is used as input features in the MIL-
based attention network for final prediction.

For the backbone graph neural networks, we use atomic-level
graph representations, where nodes represent protein or ligand
atoms, and edges are connectivity (bonds) between these atoms.
Each node encapsulates its corresponding atomic features
described earlier. We incorporate both covalent and
noncovalent bonds with the Euclidean distances between the
atoms. For this graph neural network, we use two network
architectures: 1) a variant of spatial-graph convolutional neural
network (SGCNN) used in the potential net (Feinberg et al., 2018)
and the fusion methods (Jones et al., 2021), and 2) a type of
equivariant graph network architectures, E(n) equivariant graph
neural networks (EGNN) (Satorras et al., 2021). Note that although
we incorporate SGCNN and EGNN into our MIL framework, any
graph neural network architectures can be utilized as a backbone
model. We utilize multiple graph neural networks, each of which
interprets a single instance containing a docking pose with the
protein receptor. We incorporate multiple graph networks into an
attention network to capture the docking poses close to the
target label.

Given a bag of multiple docking pose instances in a low-
dimensional embedding, we propose to use attention-network
pooling to predict its single binding affinity. Although docking
pose instances are generally ordered by docking scores (with the
lowest energy pose listed first), the “best” docking poses (closest to
the crystal structures or with the highest correlation to experimental
binding affinities) are not necessarily the first ones in the set,
according to the pose classification studies (Shim et al., 2022;
2024). To address this and to enable permutation-invariant MIL
pooling, we use an attention-based weighted average pooling
approach, similar to Luong et al. (2015), Ilse et al. (2018). In this
model, the weights for each pose instance are determined by the
proposed attention network, allowing for order-independent
predictions.

The attention network consists of an attention layer, followed by
three fully-connected layers. The attention layer serves as the MIL
pooling mechanism: z � ∑K

k�1akhk where ak � σ(tanh(WhTk )). It
uses weight parameters (matrix) W, which are learned during
training, and applies the hyperbolic tangent function tanh(·)
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element-wise. Then it applies the softmax function σ(z) � ezi

∑
K

j�1e
zj
to

ensure that attention scores are interpretable and well-normalized.
Note that we also experimented with a multi-head attention-based
mechanism (Vaswani et al., 2017). However, no obvious change in
prediction accuracy was observed. Figure 1 illustrates our
proposed approach.

3 Experiment setup

In this section, we describe the experimental setup to
demonstrate the effectiveness of our proposed approach. We first
detail the datasets and the process for generating molecular docking
poses. We provide comprehensive details on the training and
evaluation procedures, together with the metrics for quantitative
assessment.

3.1 Data

The PDBbind database (Su et al., 2019) is the most widely used
dataset in structure-based machine learning studies. It combines
experimental binding affinity data (−logKi or −logKd) with curated
co-crystal complex structures, originally derived from the Protein Data
Bank (PDB) (Burley et al., 2019). Among several versions of the
PDBbind database, we use the PDBbind 2020 release, which
comprises 19,443 protein-ligand co-crystal structures. The PDBbind
database is divided into three subsets: general, refined, and core. The
general set is the largest collection of the database with a broad range of
complexes. The refined set comprises co-crystal complexes of better
quality, curated based on resolution, binding data, and the nature of the
complexes. The core set, referred to as CASF-2016, represents a smaller
group of high-quality complexes meant to be representative of different
protein families and serves as a benchmark for validating docking
scoring and machine learning prediction methods. While the general
and refined sets are used to train our proposed models, the CASF-2016
(core set) is used to evaluate our methods.

The PDBbind database provides co-crystal complex structures.
Thus, we generate molecular docking poses for each of these crystal
structures to demonstrate our MIL-based approach. We employed
AutoDock VINA (Trott and Olson, 2010; Eberhardt et al., 2021) to
generate docking poses by utilizing the ligand and receptor data with
the corresponding binding site. Particularly, we used ConveyorLC
(Zhang et al., 2014), a VINA docking pipeline for high-performance
computing (HPC) clusters. We generated up to 10 poses for each
docking ligand. We also computed the root mean square deviation
(RMSD) of atomic positions between each docking pose and its
corresponding crystal ligand structure using Open Drug Discovery
Toolkit (ODDT) (Wójcikowski et al., 2015). Note that AutoDock
VINA computes two RMSD values (lower and upper bounds)
relative to the first pose, which is the top-ranked pose with the
lowest score, rather than using the crystal structure as a reference.
Therefore, we used the ODDT software to independently calculate
RMSD values based on the crystal structures. The RMSD values
serve as metrics for assessing prediction performance across various
structural conformations and poses. Figure 2 shows several
examples of docking poses and their RMSDs. In docking poses
for the PDBbind dataset, there are cases where all poses are close to
the crystal structure (poses with RMSDs below 2 Å), as shown in the
top example (“1sqa”) of Figure 2. In contrast, sometimes all poses are
inaccurate (poses with RMSDs exceeding 4 Å) (“1pxn”). Another
case is that the majority of poses are inaccurate whereas a few pose
instances are accurate (“3g0w”). Figure 3 shows the overall RMSD
errors of the docking poses in the PDBbind dataset.

To evaluate our method on cases where co-crystal structures
were not available, we applied our method to an additional
compound dataset with molecular docking poses. We selected
compound collections targeting the SARS-CoV-2 main protease
receptor (“Mpro”) curated by Shim et al. (2024), aimed at identifying
potential antiviral agents against the virus. The ligand SMILES data
with experimental binding affinities were originally sourced from
POSTERA (Morris et al., 2021) and GOSTAR (GoStar, 2023). The
receptor structure was obtained from the protein data bank (pdbid:
6LU7) (Burley et al., 2019). This dataset does not provide complex
crystal structures. Instead, molecular docking poses were generated

FIGURE 1
Overview of the proposed approach.
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using ConveyorLC (Zhang et al., 2014) for AutoDock VINA (Trott
and Olson, 2010; Eberhardt et al., 2021). For each compound, we
generated up to 10 docking poses. For more detail about the docking
process of the Mpro dataset, refer to the original paper (Shim
et al., 2024).

We used two different splitting methods to divide the entire
Mpro compound set into training and test data: random split and

scaffold-based split. The scaffold split ensures that similar
compound structures are not present in both the training and
test sets by grouping the same Bemis-Murckold scaffolds into
either the training or testing set. We utilized the scaffold-based
method in the ATOM Modeling PipeLine (AMPL) (Minnich et al.,
2020) to generate the training and test split. The number of training
and test compounds is 2,135, 1,281, respectively.

FIGURE 2
Examples of crystal structures and their docking poses of PDBbind CASF-2016 (core set). Autodock VINA (Trott and Olson, 2010; Eberhardt et al.,
2021) with ConveyorLC (Zhang et al., 2014) was used for molecular docking. (·) indicates the RMSD error between the crystal structure and the
docking pose.

FIGURE 3
Statistics of the docking poses for training and evaluation. The plots represent the RMSD histograms between the docking poses and original crystal
ligands in PDBbind 2020 general (left), refined (middle), and CASF-2016 (right) sets. Each histogram bin represents the number of poses within the specific
RMSD range.
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3.2 Training and evaluation details

We trained and evaluated our proposed models using PyTorch
and PyTorch Geometric. Leveraging their distributed data parallel
features, we utilized a cluster of 4 NVIDIA Titan Xp GPUs, each of
which has 12 GB of memory. There are two options to train our MIL
models: 1) simultaneous training: train both the backbone graph
neural network and the MIL attention network together in a unified
process, 2) separate training: first, train the backbone models
independently and freeze the model parameters to extract
features (low-dimensional embedding for 3D complexed pose
structures). These features are then used to train the MIL
attention network separately. For simultaneous training, we used
a mini-batch size of 1 due to GPU memory constraints. While this
approach can offer slightly improved predictions for some data, it is
computationally expensive because it processes multiple docking
pose instances (around 10 poses) with the backbone graph networks
simultaneously. In contrast, the separate training option is more
computationally efficient. By training the MIL attention network
independently, we significantly reduced GPU resource usage and
achieved more efficient computation. We used option 2 (separate
training) for our experiments.

We used the RMSprop optimizer with the multi-step learning
rate scheduler. The total number of epochs is 100-200, depending on
the convergence of the loss function. The mini-batch size is 20.
Starting with an initial learning rate of 0.001, it decreases by a factor
of 0.9 at epoch intervals of 5, 10, 20, 30, 50, 70, and 90. We chose not
to utilize checkpoint selection based on the validation split. Instead,
we simply opted for the latest checkpoint available for our
evaluation.

The hyperparameters for the SGCNN model are as follows: the
thresholds for covalent and non-covalent neighbors are set to
1.5 and 4.5 Å, respectively. The size of the gated graph sequence
for both covalent and non-covalent bonds is 2. The “gather” widths
for covalent and non-covalent bonds are 16 and 12, respectively. We
used the following hyperparameters for the EGNN model: the
number of edge features is 1, and the model has 6 layers. The
distance cut-off is set to 5 Å. Residual connections are used together
with attention layers.

4 Results

We performed experiments to demonstrate the effectiveness of
the proposed MIL approach using the molecular docking pose
structures. Our evaluation report on the performance of our
proposed approach with other existing methods used two
datasets with their Autodock VINA docking poses. We present
the following quantitative metrics: root mean square error (RMSE),
mean absolute error (MAE), coefficient of determination (r2),
Pearson correlation coefficient (r), and Spearman rank
correlation coefficient (ρ).

We benchmarked our results with those from other recent 3D
structure-based methods: 1) SGCNN, a variant of Potential Net
(Feinberg et al., 2018; Jones et al., 2021), 2) EGNN, equivariant
graph neural network, and 3) HACNET (Kyro et al., 2023), which
incorporates hybrid attentions through 3DCNN and GCN. We
chose SGCNN and EGNN for comparative analysis because our

method integrates the architecture into the MIL framework as
backbone models. This choice allows us to analyze the behavior of
our proposed MIL mechanism. Additionally, we utilized the
model checkpoint for HACNET trained on crystal structures
in the PDBbind 2016 general and refined sets, due to
unavailability of model re-training using the PDBbind
2020 dataset. These comparative models predict binding
affinities based on individual docking pose instances. One
could report the quantitative metrics using all individual pose
results for the comparative models. However, this method does
not align with our MIL approach, which generates a single
binding affinity from multiple docking poses for each complex
entity. Instead, we use the following two methods. First, we report
the metrics based on the predicted binding affinities for the top
poses, specifically the first pose with the lowest docking scores
(“Top”). This approach is commonly used in high-throughput
screening with molecular docking tools. Second, we group the
results based on compound IDs (e.g., PDB IDs in the PDBbind
dataset), and use the average of predicted binding affinities for the
same complex entity to ensure consistency with our
results (“Avg”).

4.1 PDBbind

Table 1 summarizes the model performance on docking poses
with the crystal structures in the PDBbind CASF-2016 (core set).
Each complex entity can have up to 11 pose instances, including the
crystal ligand instance with up to 10 docking poses. The first group
(row 1–6) in Table 1 presents results frommodels trained exclusively
on crystal structures. The SGCNN and EGNN models (row 3–6)
were trained using crystal structures from the PDBbind 2020 general
and refined sets. In contrast, we utilized the HACNET model (row
1–2) trained on crystal structures from the PDBbind 2016 general
and refined sets. The second and third groups (row 7-9 and 10-12,
respectively) show results from models trained on both crystal
structures and docking poses from the PDBbind 2020 general
and refined sets. “Top” presents results based on the top poses,
while “Avg” shows results based on non-weighted averages across
multiple docking poses within the same complex entities. The
SGCNN-MIL and EGNN-MIL results present our proposed MIL
method integrating the spatial graph network (SGCNN) and the
equivariant graph network (EGNN) as backbone models,
respectively.

We conducted an additional experiment to show the model
performance based training solely on the docking poses without the
crystal ligand structures from the PDBbind CASF-2016 (core set).
Table 2 shows the model performance among several methods.
Similar to the results in Table 1, the first 7 rows present results from
HACNET, SGCNN, EGNN, and late-fusion models, respectively,
trained exclusively on crystal structures. The HACNET and fusion
models (row 1,2 and 7) were trained on crystal structures from the
PDBbind 2016 general and refined sets. In contrast, the SGCNN and
EGNN models (row 3,4,5 and 6) were trained on crystal structures
from the PDBbind 2020 general and refined sets. The second and
third groups (row 8-10 and 11-13, respectively) show results from
models trained exclusively on docking poses from the PDBbind
2020 general and refined sets. For each of the two backbone models
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(SGCNN and EGNN), we report the top-pose only (“Top”),
averaged (“Avg”) across the poses, and our (“MIL”) results.

Results in Tables 1, 2 show that our proposed method (“MIL”)
outperforms the other methods in both cases. Overall, models
trained on both crystal structures and docking poses, or solely on
docking poses, outperform those trained exclusively on crystal
structures. Among the SGCNN-based models (second group),
our MIL method significantly outperforms the other approaches.
The results from the third group (EGNN) also demonstrate that our
method outperforms the other approaches.

4.2 SARS-CoV-2 Mpro

We conducted experiments using the SARS-CoV-2 (COVID-
19) main protease dataset (“Mpro”), sourced from POSTERA
(Morris et al., 2021) and GOSTAR (GoStar, 2023), and curated
and docking processed by Shim et al. (2024). Our evaluations
include both random splits and scaffold splits of the “Mpro”
dataset. Tables 3, 4 summarize the model performance in
predicting binding affinities on the dataset with random and
scaffold splits, respectively.

TABLE 1 Model Performance of Binding Affinity Prediction on docking and crystal structures of the PDBbind CASF-2016. Themodels in the first group (row
1–6) were trained solely on the crystal structures of the PDBbind general and refined sets. HACNET was trained using the PDBbind 2016 dataset, while the
othermodels were trained on the PDBbind 2020 dataset. Themodels in the second and third groups (row 7-9, and row 10–12) were trained on both docking
and crystal structures of the PDBbind general and refined sets.

Method RMSE ↓ MAE ↓ r2 ↑ Pearson r ↑ Spearman ρ ↑

HACNET-Top (Kyro et al., 2023) (Crystal trained) 1.539 1.209 0.506 0.745 0.734

HACNET-Avg (Kyro et al., 2023) (Crystal trained) 1.523 1.202 0.512 0.763 0.750

SGCNN-Top (Feinberg et al., 2018) (Crystal trained) 1.498 1.230 0.532 0.775 0.776

SGCNN-Avg (Feinberg et al., 2018) (Crystal trained) 1.507 1.238 0.522 0.776 0.777

EGNN-Top (Satorras et al., 2021) (Crystal trained) 1.269 0.968 0.664 0.818 0.803

EGNN-Avg (Satorras et al., 2021) (Crystal trained) 1.198 0.939 0.698 0.842 0.827

SGCNN-Top 1.341 1.058 0.625 0.812 0.806

SGCNN-Avg 1.327 1.052 0.629 0.824 0.816

SGCNN-MIL (Ours) 1.237 0.951 0.678 0.836 0.828

EGNN-Top 1.024 0.790 0.781 0.895 0.891

EGNN-Avg 0.999 0.764 0.790 0.901 0.897

EGNN-MIL (Ours) 0.955 0.736 0.808 0.904 0.899

TABLE 2 Model Performance of Binding Affinity Prediction exclusively on docking structures of the PDBbind CASF-2016. The training sets used for the first
group follow the same setup as in the previous experiment (Table 1). However, models in the second and third groups were trained solely on docking poses,
without crystal structures.

Method RMSE ↓ MAE ↓ r2 ↑ Pearson r ↑ Spearman ρ ↑

HACNET-Top (Kyro et al., 2023) (Crystal trained) 1.539 1.209 0.506 0.745 0.734

HACNET-Avg (Kyro et al., 2023) (Crystal trained) 1.543 1.213 0.503 0.757 0.742

SGCNN-Top (Feinberg et al., 2018) (Crystal trained) 1.498 1.230 0.532 0.775 0.776

SGCNN-Avg (Feinberg et al., 2018) (Crystal trained) 1.501 1.233 0.530 0.777 0.778

EGNN-Top (Satorras et al., 2021) (Crystal trained) 1.269 0.968 0.664 0.818 0.803

EGNN-Avg (Satorras et al., 2021) (Crystal trained) 1.242 0.967 0.678 0.829 0.812

Fusion (Jones et al., 2021) (Crystal trained) 1.871 1.498 - 0.712 0.693

SGCNN-Top 1.410 1.120 0.585 0.790 0.793

SGCNN-Avg 1.423 1.130 0.578 0.788 0.788

SGCNN-MIL (Ours) 1.242 0.962 0.678 0.844 0.838

EGNN-Top 1.057 0.849 0.767 0.876 0.873

EGNN-Avg 1.028 0.817 0.779 0.884 0.882

EGNN-MIL (Ours) 0.967 0.748 0.805 0.906 0.903
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The evaluation results with the random split, as shown in
Table 3, indicate that our proposed method generally
outperforms the approaches using only the top docking pose
(“Top”) or the averaged pose (“Avg”) results. However, it does
not achieve the same level of performance as observed in the
PDBbind evaluations. In the scaffold split scenario, where no
similar compounds overlap between the training and evaluation
sets, our approach clearly outperforms the other methods.

5 Ablation study and discussion

Our experiments with the PDBbind and Mpro datasets
demonstrate that our proposed MIL approach consistently
outperforms existing methods. We discuss several key observations
from these experiments. First, for each backbone architecture, our MIL
approach produces more accurate predictions than the non-weighted
averages of the predicted binding affinities from multiple docking pose
instances and the predictions from the top-ranked poses. The results
demonstrate that the attention network module of our approach
effectively predicts accurate binding affinities across multiple pose
instances within each complex entity. In comparing the EGNN-MIL
models trained on both the crystal and docking pose data with those
trained on docking pose data alone, there is no significant discrepancy,
as illustrated in Tables 1, 2). The model trained on both crystal and
docking data exhibits slightly improved RMSE, MAE, and R2 values,
while the model trained solely on docking data shows marginal
improvements in Pearson and Spearman correlations.

Second, incorporating docking poses generally improve the model
prediction over training models solely on crystal structure data. For
instance, SGCNN-Top and SGCNN-Avg (rows 7-8 vs. row 3–4) and
EGNN-Top and EGNN-Avg (rows 10-11 vs. row 5–6) in Table 2).

demonstrate this clearly. It can be argued that incorporating docking data
introduces greater diversity into the data distribution, enhancing the
model’s predictive performance and generalizability. In addition, adding
crystal structures into the training data yields a slight improvement in
model accuracy, as shown in a comparison of the results in Table 1 with
those in Table 2. However, results may vary based on the quality of the
docking poses for each complex structure entity. If all docking poses are
significantly inaccurate relative to the crystal structures, incorporating
crystal structures could enhance model accuracy.

Furthermore, the choice of backbone graph network architectures
also affects the prediction accuracy. The EGNN models demonstrate a
clear advantage over the SGCNNmodels, likely due to its effective feature
learning capabilities, which enhance understanding of the input geometry
of ligand-protein structures. This results in improved generalizability
across different configurations (poses) within the same underlying co-
complex entity.

The results evaluating the SARS-CoV-2 Mpro dataset indicate
that our MIL approach achieves improved accuracy, compared to
the other methods. However, the difference between the correlation
coefficients (Pearson and Spearman) becomes marginal in the
random split scenario. In contrast, our approach clearly
outperforms other methods in the scaffold split scenario. In
comparison to the results for the PDBbind dataset, the models
trained on the Mpro dataset yield relatively poor performance. It is
possibly due to greater inaccuracies in the Mpro docking poses
compared to those in the PDBbind dataset.

5.1 Performance with good poses

We evaluate model performance based on the number of good
docking poses within each complex entity. We define “good” docking

TABLE 3 Model Performance of Binding Affinity Prediction on SARS-CoV-2 “Mpro” dataset with a random split.

Method RMSE ↓ MAE ↓ r2 ↑ Pearson r ↑ Spearman ρ ↑

SGCNN-Top 0.820 0.598 0.508 0.731 0.731

SGCNN-Avg 0.806 0.586 0.525 0.742 0.739

SGCNN-MIL (Ours) 0.781 0.572 0.554 0.746 0.739

EGNN-Top 0.845 0.570 0.478 0.755 0.751

EGNN-Avg 0.816 0.553 0.513 0.770 0.761

EGNN-MIL (Ours) 0.763 0.535 0.574 0.766 0.760

TABLE 4 Model Performance of Binding Affinity Prediction on SARS-CoV-2 “Mpro” dataset with a scaffold split.

Method RMSE ↓ MAE ↓ r2 ↑ Pearson r ↑ Spearman ρ ↑

SGCNN-Top 1.026 0.787 0.069 0.488 0.403

SGCNN-Avg 1.006 0.772 0.105 0.499 0.409

SGCNN-MIL (Ours) 0.966 0.739 0.174 0.523 0.430

EGNN-Top 0.929 0.689 0.236 0.602 0.502

EGNN-Avg 0.877 0.650 0.319 0.635 0.543

EGNN-MIL (Ours) 0.846 0.640 0.366 0.639 0.550
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poses as those with an RMSD less than 2.5 Å. We categorize the
evaluation data into three groups: structures with no good
poses, those with 1–4 good poses, and those with more than
4 good poses. Figure 4 shows model performance based on the
number of good poses in the PDBbind CASF-2016 set.
Compared to models that rely on top poses (Top) or average
predictions across multiple poses (Avg), our approach
consistently demonstrates improved and consistent

performance. Notably, groups with a sufficient number of
good poses tend to outperform those lacking good poses.

As we discussed earlier,models trained on theMpro dataset generally
underperform, compared to those trained on the PDBbind dataset. One
possible explanation is that the quality of the docking poses (the number
of “good” poses for each complex entity) may be lower in the Mpro
dataset than in the PDBbind dataset. However, analyzing the quality of
the docking poses in theMpro dataset is non-trivial, due to the absence of

FIGURE 4
Model performance of binding affinity prediction on the PDBbind CASF-2016 dataset, based on the number of good docking poses within each
complex entity. The evaluation data were divided into three groups: structures with no good poses, thosewith 1–4 good poses, and thosewithmore than
4 good poses. The top and bottom row show results using the SGCNN and EGNN backbones, respectively. The left and right columns show RMSE and R2

results, respectively.

FIGURE 5
Histograms (probability density) of pair-wise RMSD errors between ligand docking poses in the PDBbind CASF-2016 (left) and SARS-CoV-2 Main
Protease (right) datasets.
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co-crystal structures. Instead, wemeasure the RMSD errors between pairs
of docking poses within each complex entity. Figure 5 shows the
histograms of RMSD errors for pairwise ligand poses in both datasets.
While these histograms do not reflect accurate poses based on crystal
structures, they indicate the consistency of the docking poses for each
complex. The docking poses in theMpro dataset noticeably show greater
discrepancies compared to those in the PDBbind CASF-2016 set. In real
compound screening, compoundswith highly inconsistent docking poses
may be excluded from further ML predictions. Moreover, utilizing more
advanced, state-of-the-art molecular docking simulations could improve
overall prediction accuracy together with our MIL approach.

5.2 Optimal number of docking poses

In multi-instance learning, finding an optimal range of the bag size
K (the number of instances within a bag) is crucial. Larger bag sizes
generally yield better feature extraction and improved model accuracy

by capturing diverse instance characteristics. In contrast, larger bag sizes
can increase the number of model parameters and overall complexity,
which may lead to overfitting. Having more positive and negative
instances can also introduce label ambiguity during model training.
In our MIL setup, we generated up to 10 docking poses in most
cases. We evaluated our models using varying numbers of docking
pose instances for each complex entry, specificallyK = 1, 3, 5, 7, and
9 instances. During model evaluation, we randomly selected K
instances from 10 poses and averaged the predictions over
10 trials. Figure 6 illustrates the RMSE and R2 values of our MIL
models with two different backbone architectures. Overall, utilizing
more docking poses tends to increase model accuracy. Specifically,
SGCNN-MIL model achieves the best performance with 7 docking
poses, while EGNN-MIL model performs optimally with 5 and
9 docking poses. While determining an optimal bag size is
challenging due to factors such as compound type, the number
of good poses, and model architectures, a range of 5–10 poses per
bag seems to be more effective, compared to smaller bag sizes.

FIGURE 6
Model performance of binding affinity prediction on the PDBbind CASF-2016 dataset, based on the number of docking pose instances within each
complex entity. The evaluation was performed where the number of poses is 1, 3, 5, 7, and 9. The top and bottom row show results using the SGCNN and
EGNN backbones, respectively. The left and right columns show RMSE and R2 results, respectively. Error bars indicate minimum and maximum values.

TABLE 5 Model Performance in Binding Affinity Prediction on PDBbind CASF-2016 using two types of attention mechanisms.

Method RMSE ↓ MAE ↓ r2 ↑ Pearson r ↑ Spearman ρ ↑

SGCNN-MIL (Ours) 1.242 0.962 0.678 0.844 0.838

SGCNN-MIL (Multi-head) 1.226 0.929 0.686 0.836 0.830

EGNN-MIL (Ours) 0.967 0.748 0.805 0.906 0.903

EGNN-MIL (Multi-head) 1.073 0.827 0.76 0.891 0.882
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5.3 Attention types

We evaluated two different attention types formulti-instance learning.
The first method involves global attention for weighted average pooling, as
detailed in Section 2. The second method utilizes a multi-head attention
mechanism (Vaswani et al., 2017). We observed no significant change or
improvement using the multi-head attention network. While the multi-
head attention mechanism offers slight improvements in predictions for
SGCNN-MIL models (RMSE, MAE and R2), it yields poorer results for
EGNN-MIL models, as illustrated in Table 5.

5.4 Computational Costs

The attention network in our MIL framework is lightweight,
comprising approximately 68,000 parameters, which is under 1 MB
in size. The training and evaluation of ourmodels are fast. Using a single
NVIDIA Titan Xp GPU, the training time for one epoch with a batch
size of 20, across 18,539 complex entities with up to 10 docking poses, is
approximately 36.5 s (1.97 milliseconds per complex entity).

6 Conclusion

We presented a new structure-based multi-instance learning
approach utilizing molecular docking poses as a bag of complex
entity. Our method employs an attention network together with
graph neural networks to enable permutation-invariant weighted
average pooling between docking poses. We demonstrated our
method using the PDBbind and the Mpro datasets. Our method
offers binding affinity prediction without requiring co-crystal
structures, which increases its applicability for various targets of interest.
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