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Background: Lower-grade glioma (LGG) exhibits significant heterogeneity in
clinical outcomes, and current prognostic markers have limited predictive
value. Despite the growing recognition of histone modifications in tumor
progression, their role in LGG remains poorly understood. This study aimed to
develop a histone modification-based risk signature and investigate its
relationship with drug sensitivity to guide personalized treatment strategies.

Methods:Weperformed single-cell RNA sequencing analysis on LGG samples (n = 4)
to characterize histone modification patterns. Through integrative analysis of TCGA-
LGG (n = 513) and CGGA datasets (n = 693 and n = 325), we constructed a histone
modification-related risk signature (HMRS) using machine learning approaches. The
model’s performance was validated in multiple independent cohorts. We further
conducted comprehensive analyses of molecular mechanisms, immune
microenvironment, and drug sensitivity associated with the risk stratification.

Results: We identified distinct histone modification patterns across five major cell
populations in LGG and developed a robust 20-gene HMRS from 129 candidate
genes that effectively stratified patients into high- and low-risk groups with
significantly different survival outcomes (training set: AUC = 0.77, 0.73, and 0.71
for 1-, 3-, and 5-year survival; P < 0.001). Integration of HMRS with clinical features
further improved prognostic accuracy (C-index >0.70). High-risk tumors showed
activation of TGF-β and IL6-JAK-STAT3 signaling pathways, and distinct mutation
profiles including TP53 (63% vs 28%), IDH1 (68% vs 85%), and ATRX (46% vs 20%)
mutations. The high-risk group demonstrated significantly elevated immune and
stromal scores (P < 0.001), with distinct patterns of immune cell infiltration,
particularly in memory CD4+ T cells (P < 0.001) and CD8+ T cells (P = 0.001).
Drug sensitivity analysis revealed significant differential responses to six therapeutic
agents including Temozolomide and targeted drugs (P < 0.05).

Conclusion: Our study establishes a novel histone modification-based prognostic
model that not only accurately predicts LGG patient outcomes but also reveals
potential therapeutic targets. The identified associations between risk stratification
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and drug sensitivity provide valuable insights for personalized treatment strategies.
This integrated approach offers a promising framework for improving LGG patient
care through molecular-based risk assessment and treatment selection.
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1 Introduction

Low-grade glioma (LGG) is a primary brain tumor originating
from glial cells (Weller et al., 2024), accounting for 7.6% of all primary
brain tumors and 31.8% of gliomas. The median overall survival ranges
from 5.6 to 13.3 years, depending on tumor histopathological
characteristics, molecular phenotype, and growth rate (Li et al.,
2021a). The optimal treatment strategy for LGG remains
controversial, with current approaches including surgical resection,
radiotherapy, chemotherapy, targeted therapy, and immunotherapy
(van den Bent et al., 2023). Although LGG patients have slightly better
survival rates than those with high-grade (WHO grade III or IV)
gliomas (Aiman et al., 2024), the infiltrative nature of gliomas makes
LGG prone to drug resistance and recurrence after treatment (Fukuya
et al., 2019), with potential progression to high-grade gliomas,
significantly shortening survival time (Tom et al., 2019). Following
local dissemination, LGG tumor cells exhibit high heterogeneity
(Nicholson and Fine, 2021), leading to greater variations in patient
survival rates and times. This cellular diversity and heterogeneity in
LGG are considered primary factors in tumor recurrence and
malignant transformation (Ye et al., 2024; Gittleman et al., 2019).
Therefore, understanding the cellular mechanisms underlying LGG
development is crucial for clarifying its progression and developing new
effective therapeutic targets to extend patient survival.

Histonemodification is a crucial epigenetic regulatorymechanism
encompassing various forms, including methylation, acetylation,
phosphorylation, adenylation, ubiquitination, and ADP-ribosylation
(Millán-Zambrano et al., 2022). With rapid advances in molecular
biology, the World Health Organization substantially updated its
diagnostic criteria for LGG in 2021, transitioning from traditional
histological diagnosis to an integrated diagnostic system incorporating
molecular markers (Figarella-Branger et al., 2022). This shift is
prominently reflected in the WHO CNS5 classification system,
which establishes IDH mutation and 1p/19q codeletion status as
core molecular markers for adult-type diffuse low-grade glioma
classification, fully reflecting the molecular heterogeneity of LGG.

Currently, epigenetic alterations (including histone methylation,
DNA methylation, and histone acetylation) are increasingly being
applied in brain tumor research (Han et al., 2024). While histone
modifications have been extensively studied in high-grade gliomas
(HGG), such as proteomics combined with other multi-omics
revealing the central role of PTPN11 signaling in high-grade
gliomas (Lowe et al., 2019a), and histone H3 mutations promoting
diffuse glioma development through chromatin dysregulation (Lowe
et al., 2019b), related research in LGG remains relatively scarce. Given
the common cellular origins between LGG and HGG (Network et al.,
2015), these findings may hold significant implications for LGG as
well. Considering that tumor cell heterogeneity is a key factor in LGG
recurrence andmalignant transformation, conducting more extensive

and comprehensive studies on histone modifications is crucial. This
not only helps deepen our understanding of LGG’s molecular
pathogenesis but also provides new insights for developing
personalized treatment strategies for highly heterogeneous LGG.

In our study, we conducted a series of complex bioinformatics
analyses, utilizing high-throughput sequencing and proteomics
technologies to monitor genome-wide histone modification
dynamics, while employing diverse machine learning frameworks
and big data to perform comprehensive systematic analysis and
identification of histone modifications and related multi-omics
features in LGG. By integrating genomics, transcriptomics, and
proteomics data to establish machine learning models, we
comprehensively revealed key molecules and pathways
controlling LGG development and treatment response. This
cross-omics integrated analysis approach not only deepens our
understanding of LGG epigenetic regulation but also identifies
new biomarkers and potential therapeutic targets, potentially
providing new directions for LGG treatment research.

2 Materials and methods

The research workflow is shown in Figure 1.

2.1 Data source

This study integrated multiple independent datasets to construct
and validate a prognostic model for low-grade glioma. Initially, we
established a histone modification gene set based on Füllgrabe et al.
(2011)’s research and the GeneCards database (https://www.
genecards.org/) (relevance score >20). Subsequently, single-cell
transcriptome data from 4 LGG samples (GSE182109) were
obtained from the GEO database (https://www.ncbi.nlm.nih.gov/
geo/) for further single-cell analysis. TCGA-LGG (513 samples) and
GTEx (2,642 normal control samples) datasets were merged after
batch effect removal to calculate differentially expressed genes in
LGG. Additionally, TCGA-LGG served as the training set, while two
independent cohorts from the Chinese Glioma Genome Atlas
(CGGA) database (https://www.cgga.org.cn/), containing 693 and
325 GBM samples respectively with clinical and survival
information, were used as external validation sets.

2.2 Single cell analysis

2.2.1 Data preprocessing and quality control
Single-cell RNA sequencing data were analyzed using Seurat

(v5.0.0) (Abdelfattah et al., 2022). Initially, raw data in 10X
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Genomics format were processed and preliminarily filtered,
requiring each gene to be expressed in at least three cells and
each cell to express at least 250 genes. Subsequently, the

expression proportions of mitochondrial genes (prefixed with
MT-) and ribosomal genes [prefixed with RP (SL)] were
calculated for each cell. To ensure data quality, we filtered out

FIGURE 1
Flow chart.
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the following cells: 1) cells expressing <100 or >7,500 genes; 2) cells
with mitochondrial gene expression proportion >25%; 3) cells with
total RNA counts <1,000.

2.2.2 Data integration and annotation
Filtered data were normalized using the “LogNormalize”

method (Luo et al., 2019) with a scale factor of 10,000. The “vst”
method was used to select 2,000 highly variable genes for subsequent
analysis. To eliminate batch effects, the Harmony algorithm was
employed to integrate data from multiple samples (Petegrosso et al.,
2020; Korsunsky et al., 2019). Subsequently, PCA dimensionality
reduction was performed, selecting the top 30 principal components
for further analysis. Using these principal components, UMAP and
t-SNE dimensionality reduction visualizations were performed
separately. Cell clustering was conducted using a graph-based
clustering algorithm (Petegrosso et al., 2020), with the optimal
resolution parameter of 0.2 determined through the clustree
package. Cell types were automatically annotated using the
SingleR package (Aran et al., 2019) in conjunction with the
Human Primary Cell Atlas database (https://www.humancellatlas.
org/) and scMayomap package (Yang et al., 2023). Additionally,
manual verification was performed based on characteristic gene
expression (Hassn Mesrati and Behrooz, 2020), including:
OLIG2 and MBP (oligodendrocyte markers), CD44 and SOX2
(tumor cell markers), PDGFRB (pericyte marker), FOLR2, AIF1,
and CD68 (macrophage markers), CD8A, CD3E, and CCL5
(T cell markers).

2.2.3 Histone score analysis
Based on the predefined histone gene set, the ssGSEA algorithm

was used to calculate histone scores for each cell (Chen et al., 2022).
For LGG cell subgroups, cells were divided into high and low
expression groups based on the median histone score, and
differential expression analysis was performed (logFC threshold
of 0.5, minimum expression proportion of 0.35) to identify
functional pathways associated with histone expression.

2.3 Weighted gene co-expression
network analysis

WGCNA analysis was conducted based on the previously
obtained histone-related differentially expressed gene set (Xu
et al., 2023) to reveal gene co-expression relationships and their
associations with phenotypes. During data preprocessing, gene
expression data from the TCGA-LGG dataset were normalized,
and quality was ensured by removing genes with zero standard
deviation and samples with missing values. Subsequently, the
goodSamplesGenes function was used for quality assessment, and
outlier samples were detected using hierarchical clustering (Grabski
et al., 2023). In network construction, the optimal soft threshold
power = 5 was determined by analyzing the scale-free topology fit
index and average connectivity under different soft thresholds. The
blockwiseModules function was used to construct the co-expression
network, setting the minimum module size to 50 genes, module
merging similarity threshold to 0.15, and using unsigned network
type. Through calculating Module Eigengenes (MEs) (Han et al.,
2019), we analyzed the correlation between modules and histone

scores, using Pearson correlation coefficients to evaluate module-
trait relationships, and assessed correlation significance using
Student’s t-test. The correlation intensity between modules and
phenotypic features was visualized through heatmaps. Finally, in
modules significantly correlated with histone scores, the biological
significance was validated by analyzing the relationship between
Module Membership and Gene Significance, with scatter plots
demonstrating their positive correlation, further confirming these
modules’ central role in the histone regulatory network.

2.4 Feature genes selection

Differential expression analysis was performed using the TCGA-
LGG dataset and GTEx dataset through DESeq2, with selection
criteria of absolute logFC >1 and p-value <0.05. Feature genes were
selected by intersecting the differentially expressed genes with
module genes obtained from WGCNA.

2.5 Machine learning based prognosis
signature construction

To construct a reliable prognostic prediction model, this study used
the TCGA-LGG dataset as the training set and CGGA325 and
CGGA693 datasets as independent validation sets. Initially, all
datasets underwent standardization and feature space consistency was
ensured, with missing values eliminated through strict data quality
control. During model construction, we systematically evaluated
multiple machine learning algorithms and their combinations,
including Random Survival Forest (RSF), Elastic Net (Enet), Stepwise
Cox regression (StepCox), CoxBoost, Partial Least Squares Regression
(plsRcox), Principal Component Regression (SuperPC), Gradient
Boosting Machine (GBM), Survival Support Vector Machine
(survival-SVM), Ridge regression, and Lasso regression as base
models. To enhance prediction performance, we explored various
combinations of these base models, such as RSF with CoxBoost and
Lasso with GBM combinations. For the Elastic Net model, performance
was optimized by adjusting the α parameter (0.1–0.9); for stepwise Cox
regression, forward, backward, and bidirectional feature selection
methods were employed. Model evaluation used C-index (Song et al.,
2022) as the primary evaluation metric, assessing predictive ability and
generalization performance through comprehensive performance on
training and two independent validation sets. Finally, model
performance across different datasets was visualized through
heatmaps, and models were ranked based on average C-index values
from validation sets to select the final prognostic prediction tool with
optimal predictive efficacy and stability.

2.6 Optimal model performance validation
and risk score construction

Based on the comprehensive evaluation results of machine
learning models, the optimal prediction model underwent
thorough performance validation and risk score system
construction. Specifically, through feature importance analysis,
20 key features contributing most significantly to prognosis
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prediction were identified from the original features. Based on the
model’s predictions, a risk score system was established, dividing
patients into high and low-risk groups using the median score as the
threshold, and Kaplan-Meier survival analysis was performed to
observe survival differences between risk groups. Additionally, to
evaluate the model’s time-dependent predictive ability, time-
dependent ROC curves (Obuchowski and Bullen, 2018) and
corresponding AUC values were calculated for 1-year, 3-year,
and 5-year predictions.

2.7 Prognostic value analysis of clinical
features and risk scores

The prognostic value of clinical features and risk scores was
evaluated through systematic survival analysis (Schober and Vetter,
2018). Initially, univariate Cox regression analysis assessed the impact
of clinical features including age, gender, tumor type, grade, and risk
score on patient prognosis. Subsequently, multivariate Cox regression
analysis identified independent prognostic factors. Based on significant
independent prognostic factors, an integrated nomogram prediction
model (Gittleman et al., 2019) was constructed, and its prediction
accuracy was verified through calibration curves for 1-year, 3-year, and
5-year survival predictions. Time-dependent C-index analysis was used
to compare the predictive performance between the nomogram model
and individual predictive factors, while decision curve analysis (DCA)
evaluated the clinical net benefit of the model at different decision
thresholds to validate this prediction tool’s value in clinical practice.

2.8 Enrichment analysis

This study explored molecular pathway differences between high
and low risk score groups through systematic functional enrichment
analysis (Canzler and Hackermüller, 2020). First, Gene Set
Enrichment Analysis (GSEA) evaluated significantly enriched
Hallmark pathways in the high-risk group. Subsequently, Gene Set
Variation Analysis (GSVA) scored all samples, and limma differential
analysis identified pathways with significantly different activities
between high and low-risk groups. To verify the clinical relevance
of key pathways, patients were divided into high and low pathway
activity groups based on GSVA scores, with Kaplan-Meier survival
analysis evaluating prognostic differences, and Cox proportional
hazards regression model calculating hazard ratios (HR) and their
95% confidence intervals. For significantly correlated pathways, forest
plots were generated to visualize their prognostic value. Finally,
survival curves were verified for the six most significant pathways,
comprehensively assessing these pathways’ potential roles in glioma
development and progression.

2.9 Mutation analysis and heterogeneity
assessment

This study explored the association between tumor
heterogeneity and risk scores through comprehensive analysis of
somatic mutation data from the TCGA-LGG cohort. First, the
Mutant-Allele Tumor Heterogeneity (MATH) score (Timar and

Kashofer, 2020) was used to quantify tumor heterogeneity levels for
each sample, comparing differences between high and low-risk
groups. Distribution characteristics were visualized through violin
plots, with statistical significance assessed using the Wilcoxon rank-
sum test. Subsequently, patients were divided into high and low
heterogeneity groups based on the median MATH score, with
Kaplan-Meier survival analysis evaluating the relationship
between tumor heterogeneity and prognosis. Further combining
MATH scores with risk scores, patients were classified into four
subgroups (high MATH/high risk, high MATH/low risk, low
MATH/high risk, low MATH/low risk) to explore the joint
predictive value of both indicators. Finally, maftools was used to
analyze mutation characteristics of high and low-risk groups, with
waterfall plots displaying distribution characteristics of top
20 mutated genes, while co-occurrence and mutual exclusivity
analysis (Zang et al., 2023) revealed interaction patterns among
key driver genes.

2.10 Immune analysis

This study conducted systematic analysis of the LGG tumor
immune microenvironment using multiple algorithms. Initially, the
ESTIMATE algorithm (Tennant et al., 2022) calculated stromal
scores, immune scores, and overall scores for each sample,
comparing differences between high and low-risk groups.
Subsequently, immune-related pathways were scored using
ssGSEA, with heatmaps visualizing differential patterns of
immune pathway activity between risk groups. Further, the
CIBERSORT algorithm (Chen et al., 2018) was employed to
deconvolute the infiltration proportions of 22 immune cell types,
with violin plots showing immune cell composition differences
between high and low-risk groups. Additionally, ssGSEA analysis
was performed using 28 immune cell characteristic gene sets, with
box plots clearly displaying abundance differences of various
immune cell types between risk groups. Finally, correlation
analysis explored relationships between key gene expression and
immune cell infiltration, as well as associations between risk scores
and immune cell infiltration levels. Significant correlation patterns
were displayed through heatmaps and correlation scatter plots,
revealing potential connections between the risk score model and
tumor immune microenvironment.

2.11 Drug sensitivity analysis

Systematic drug sensitivity prediction analysis was performed
on the TCGA-LGG cohort using the pRRophetic package (Yan et al.,
2022). Initially, half maximal inhibitory concentration (IC50) values
(Sebaugh, 2011) were predicted for all available drugs based on drug
response data from the Cancer Genome Project (CGP) database. For
each drug, drug sensitivity differences between high and low-risk
groups were compared, with statistical significance assessed using
the Wilcoxon rank-sum test. For drugs showing significant
differences (P < 0.05), box plots were used to visually display
drug sensitivity distribution characteristics across different
risk groups.
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2.12 Human protein atlas validation

Based on previous analysis results, we selected the top five key genes
with the highest weights for expression validation in the HPA database
(https://www.proteinatlas.org/). Through immunohistochemical
staining images, protein expression levels and distribution patterns
of these key genes were visually demonstrated in normal brain tissue
and glioma tissues of different grades. The validation results from the
HPA database not only confirmed the differential expression
characteristics of these genes in glioma development at the protein
level but also provided histological evidence for understanding their
potential roles in tumor progression.

2.13 Pan-cancer analysis

To comprehensively visualize the pan-cancer analysis results, we
constructed a stratified forest plot integrating survival analysis
outcomes across 29 cancer types, organized by eight major organ
systems (Breast and Gynecologic System, Respiratory System,
Digestive System, Urinary System, Nervous System, Endocrine
System, Male Reproductive System, Hematologic System, and
Others). In the forest plot, dot sizes represent -log10 (p-value), error
bars indicate 95% confidence intervals, and color-coding displays risk
levels (red for high-risk groups, cyan for low-risk groups, and gray for
non-significant differences). A horizontal dashed line (HR= 1) serves as

a reference, and hazard ratios are presented on a logarithmic scale to
better illustrate the relative magnitude of risk differences.

3 Results

3.1 Single-cell data reveals differential
distribution of histone modifications

Through dimensionality reduction clustering analysis and cell
type annotation of LGG single-cell data (Figure 2A), we successfully
identified five major cell subpopulations: SOX2 and OLIG2-
expressing LGG tumor cells, CD68, AIF1, and FOLR2-expressing
macrophages, MBP-expressing oligodendrocytes, PDGFRB-
expressing pericytes, and CCL5, CD3E, CD8A, and CD44-
expressing T cells. To validate the accuracy of cell type
annotation, we constructed a dot plot displaying the expression
patterns of marker genes for each cell type (Figure 2B).

To deeply explore the heterogeneity of histone modification
levels among different cell types, we calculated and visualized
histone modification scores for each cell subgroup (Figure 2C).
Results showed significant differences in histone modification levels
among different cell subgroups. Further statistical analysis
(Figure 2D) revealed that LGG tumor cells and oligodendrocytes
exhibited higher histone modification levels (scores >0.25). Based on
the overall cellular histone modification levels (HMs), we separated

FIGURE 2
Histone Modification Lineage Analysis Based on Single-Cell Transcriptomics. (A) t-SNE dimensionality reduction showing spatial distribution of LGG
cell subgroups. Different colors represent different cell subgroups. (B) Heatmap of cell subgroup-specific marker gene expression profiles. Rows
represent genes, columns represent cells. (C) t-SNE plot showing distribution characteristics of histone modification scores across different cell
subgroups. Color intensity indicates modification levels. (D) Box plot analysis of histone modification scores for five cell subgroups. (E) Bidirectional
clustering analysis based on histone modification scores. t-SNE projection showing distribution patterns of high-score (red) and low-score (blue) cells.
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LGG cells into high HMs and low HMs groups (Figure 2E).
Differential expression analysis identified 5,278 differentially
expressed genes (|logFC|>1, p < 0.05), with 3,638 genes
upregulated in the high HMs group and 1,640 genes upregulated
in the low HMs group.

3.2 HMs-related gene network analysis

Differential expression analysis revealed significant
transcriptomic differences between high and low HMs groups.
Volcano plot analysis showed numerous genes with significant
differential expression (Figure 3A), suggesting these genes may
participate in the histone modification regulatory network. To
deeply analyze key regulatory genes, we visualized the top 50 up-
and downregulated genes with the most significant differences in a
circular plot (Figure 3B). To systematically identify co-expression
modules related to histone modifications, we performed WGCNA
analysis on differentially expressed genes. The hierarchical
clustering dendrogram displayed gene co-expression
relationships, while the bottom heatmap reflected HMs score
variation patterns among samples (Figure 3C). Based on the
dynamic tree-cutting algorithm, we ultimately identified

15 functional modules with significant co-expression
characteristics (Figure 3D). Module-trait correlation analysis
indicated that the magenta module (225 genes) showed the
strongest positive correlation with histone modification scores
(cor = 0.44, P < 0.005) (Figure 3E). Further module membership
analysis revealed that genes in the magenta module showed
significant positive correlation between Gene Significance (GS)
and Module Membership (MM) (cor = 0.58, P < 1e-21)
(Figure 3F), strongly suggesting this module plays a core role in
the histone modification regulatory network.

3.3 Construction of prognostic model using
feature genes

Through integrative transcriptomic analysis of TCGA-LGG and
GTEx datasets, we initially identified 6,672 LGG-related
differentially expressed genes (DEGs), including
5,798 upregulated and 874 downregulated genes. Intersection
analysis of these DEGs with previously determined magenta
module genes yielded 129 LGG-specific histone modification-
related genes (LGG-HMRgenes) (Figure 4A). Functional
enrichment analysis revealed these LGG-HMRgenes were

FIGURE 3
WGCNA Network Analysis Reveals Key Gene Modules in Histone Modification Regulation. (A) Volcano plot distribution of differentially expressed
genes. Red and blue dots represent significantly upregulated and downregulated genes in the high HMs group, respectively. (B) Circular plot of top
50 most significantly up- and downregulated genes. Inner to outer rings show gene names, expression change direction, and statistical significance. (C)
Hierarchical clustering dendrogram of differentially expressed genes. Upper part shows hierarchical clustering relationships among genes, lower
heatmap shows distribution characteristics of sample HMs scores. Color intensity represents score levels. (D) WGCNA module identification results.
Dendrogram shows gene clustering relationships, bottom colored bands represent 15 functional modules identified by dynamic tree-cutting algorithm.
(E)Module-trait correlation heatmap. Each row represents a co-expression module, values and color intensity indicate Pearson correlation coefficients
with histone modification scores. Magenta module shows strongest positive correlation (cor = 0.44, P < 0.005). (F) GS-MM scatter plot analysis of
magentamodule. X-axis: ModuleMembership; Y-axis: Gene Significance. Distribution trend (cor = 0.58, P < 1e-21) validates thismodule’s core position in
histone modification regulatory network.
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significantly enriched in pathways including heterocycle catabolic
process, nucleobase-containing compound catabolic process, RNA
catabolic process, and negative regulation of cellular macromolecule
biosynthetic process (Figure 4B, P < 0.05). These results emphasize
the regulatory role of histone modifications in LGG development
and provide theoretical basis for developing targeted therapeutic
strategies.

To construct a robust prognostic prediction model, we
systematically evaluated the predictive performance of
105 machine learning algorithms using 129 HMR genes as
feature inputs (Figure 4C). Through comprehensive comparison
of C-index performance across validation sets, the Random Survival
Forest (RSF) model demonstrated optimal predictive performance.
Based on feature importance analysis of the RSF model, we further

FIGURE 4
Systematic Identification and Model Construction of Histone Modification-Related Prognostic Markers (A) Venn diagram analysis of LGG DEGs and
magenta module genes. (B)GO functional enrichment dot plot of LGG-HMRgenes. X-axis represents gene ratio, dot size represents number of enriched
genes, color intensity represents statistical significance [-log10 (P-value)]. (C)Machine learning model performance evaluation heatmap. Rows represent
different algorithms, columns represent validation datasets. Color scale indicates C-index values (red indicates higher prediction accuracy, blue
indicates lower prediction accuracy). (D) Importance ranking plot of Top 20 feature genes identified by RSF model. X-axis represents feature importance
scores, Y-axis represents gene symbols. Bar length reflects each gene’s contribution to prognostic prediction.
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selected 20 core feature genes with the strongest predictive
contributions (Figure 4D).

3.4 Multi-center validation and performance
assessment of HMRS prognostic model

To systematically evaluate the time-dependent predictive
performance of the HMRS model, we first conducted time-
dependent receiver operating characteristic (ROC) analysis in the
TCGA-LGG cohort (513 samples). Results showed that the model
demonstrated excellent discriminative ability in 1-year, 3-year, and
5-year survival predictions, with corresponding areas under the
curve (AUC) reaching 0.77, 0.73, and 0.71 respectively
(Figure 5A). After stratifying patients into high and low-risk
groups based on the optimal cutoff value, Kaplan-Meier survival
analysis revealed significant prognostic differences between the
groups (log-rank test, P < 0.001) (Figure 5B).

To validate the external applicability of the HMRS model, we
conducted validation in two independent CGGA validation cohorts
(CGGA325 and CGGA693). In the CGGA325 cohort (325 samples),
the model demonstrated time-dependent prediction accuracy
comparable to the training set (Figure 5C), with survival
stratification differences showing statistical significance (P <

0.001) (Figure 5D). These results were further confirmed in the
CGGA693 cohort (693 samples) (Figures 5E, F). Multi-center
validation results confirmed that the HMRS model possesses
robust prognostic prediction capability and broad clinical
applicability.

3.5 Construction and evaluation of clinical
variable-integrated prognostic model

To systematically evaluate the prognostic value of clinical
features and HMRS scores, we first conducted Cox proportional
hazards regression analysis. Univariate analysis showed that age,
WHO grade, and HMRS score were significant prognostic factors
(Figure 6A, all P < 0.001). Multivariate analysis further confirmed
the independent prognostic value of these three factors
(Figure 6B). Based on these independent prognostic factors, we
constructed an integrated nomogram prediction model.
Calibration curve analysis showed that the model demonstrated
excellent calibration in 1-year, 3-year, and 5-year survival
predictions (Figure 6C).

Clinical decision curve analysis (DCA) indicated that the
integrated nomogram model demonstrated greater net benefit
compared to single prognostic factors (Figure 6D). Dynamic

FIGURE 5
Predictive Performance and External Validation of HMRS Model (A) Time-dependent ROC curve analysis in TCGA training set. Red, blue, and green
curves represent AUC values for 1-year, 3-year, and 5-year survival predictions. (B) Kaplan-Meier survival analysis based on HMRS scores in TCGA cohort.
Yellow and blue curves represent high-risk group (n = x) and low-risk group (n = y) respectively. Shaded areas indicate 95% confidence intervals. (C, E)
Time-dependent ROC curves in CGGA325 and CGGA693 validation sets. AUC values at various time points demonstrate the model’s stable
predictive performance. (D, F) Survival stratification analysis in validation sets. Separation of survival curves validates themodel’s prognostic discrimination
ability (log-rank test, P < 0.001). Numbers at bottom indicate number at risk at each time point.
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analysis of time-dependent C-index showed that the nomogram
model’s prediction accuracy (C-index >0.70) consistently
outperformed single prognostic factors (Figure 6E). Notably,
although age performed well in short-term (1–3 years)
prediction, its long-term prediction stability was insufficient.
Finally, we established a visual nomogram incorporating HMRS
score, WHO grade, and age (Figure 6F), providing an intuitive
quantitative tool for clinical prognostic assessment.

3.6 Systematic functional analysis of HMRS-
related molecular mechanisms

To elucidate the molecular biological basis of HMRS
prognostic stratification, we conducted systematic functional
enrichment analysis between high and low-risk groups. GSEA
showed that the high-risk group was significantly enriched in
multiple cancer-related Hallmark pathways, including Allograft
Rejection, E2F Targets, Interferon Gamma Response, MYC
Targets V1, and TNFα Signaling via NFκB
(Figure 7A, FDR <0.05).

Gene Set Variation Analysis (GSVA) further revealed risk
stratification-specific signaling pathway activity characteristics
(Figure 7B). The high-risk group showed significant activation of
TGF Beta Signaling, Mitotic Spindle, and IL6 JAK STAT3 Signaling;
while the low-risk group was characterized by Pancreas Beta Cells,
Oxidative Phosphorylation, and KRAS Signaling DN. Correlation

analysis between HMRS scores and these pathway activity scores
further validated these findings (Figure 7C, P < 0.05).

To assess the clinical prognostic significance of key pathways,
we selected six most significant signaling pathways for survival
analysis, including Epithelial Mesenchymal Transition,
Angiogenesis, Glycolysis, Apoptosis, Coagulation, and
IL2 STAT5 Signaling. Kaplan-Meier analysis showed that high
activity in these pathways was significantly associated with
poorer overall survival (Figure 7D, all P < 0.001). Hazard ratio
(HR) analysis further confirmed these outcomes and found that the
role of Hedgehog signaling pathway as the sole protect prognostic
factor (Figure 7E).

3.7 Analysis of somatic mutation spectrum
and tumor heterogeneity

To deeply understand the genomic characteristics of LGG
patients, we conducted systematic analysis of histone
modification gene mutation patterns and tumor heterogeneity.
Using MATH (Mutant-Allele Tumor Heterogeneity) scores to
quantify intratumoral heterogeneity levels, results showed
significant difference between high score group and low score
group (Figure 8A, p < 0.001). Survival analysis based on MATH
scores indicated that lowMATH scores were significantly associated
with poorer prognosis (Figure 8B, p = 0.005). Further analysis
integrating MATH scores with HMRS risk stratification showed

FIGURE 6
Construction and Performance Evaluation of Integrated Prognostic Prediction Model. (A) Forest plot of univariate Cox regression analysis. Shows
hazard ratio (HR) and 95% confidence intervals for each clinical feature. (B) Forest plot of multivariate Cox regression analysis. Confirms independent
prognostic factors (age,WHOgrade, HMRS score). (C)Calibration curves for nomogrammodel. Shows consistency between predicted and actual survival
probabilities at 1-year (red), 3-year (blue), and 5-year (green). Diagonal line represents perfect prediction. (D)DCA. Compares net benefit of different
prediction strategies at various risk thresholds. (E) Dynamic comparison of time-dependent C-indices. Shows prediction accuracy of nomogram model
(red) versus single prognostic factors at different follow-up time points. (F) Integrated prognostic prediction nomogram. Includes three independent
prognostic factors: HMRS score, WHO grade, and age, for individualized prognosis prediction.
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that the “low risk + low MATH” subgroup had the most favorable
prognosis (Figure 8C, p < 0.001).

Through systematic analysis of mutation landscapes in high and
low-risk groups (Figures 8D, E), we found: 1) TP53, as a key tumor
suppressor gene, had a mutation frequency of 63% in the high-risk
group, significantly higher than 28% in the low-risk group; 2) The
transcription repressor CIC had a mutation frequency of 4% in the
high-risk group compared to 36% in the low-risk group; 3)
IDH1 mutations, associated with specific cytogenetic abnormalities
and 1p/19q codeletion, showed mutation frequencies of 68% and 85%
in high and low-risk groups respectively; 4) ATRX gene, involved in
transcriptional regulation and chromatin remodeling, had mutation
frequencies of 46% and 20% in high and low-risk groups respectively; 5)
Additionally, characteristic mutations in the high-risk group included
TTN (16%), while the low-risk group included FUBP1 (15%).

Mutation co-occurrence analysis (Figures 8F, G) revealed that in
the high-risk group, TP53 mutations significantly co-occurred with
IDH1 and ATRX. In the low-risk group, besides observing co-
occurrence patterns of TP53, IDH1, and ATRX, significant mutation
co-occurrence characteristics were also found between
COL6A3 and PTEN.

3.8 Analysis of immune microenvironment
characteristics and model associations

We conducted multi-dimensional analysis of the
immune microenvironment in high and low-risk groups.
ESTIMATE algorithm assessment results showed (Figures
9A–C) that the high-risk group had significantly
higher stromal scores, immune scores, and overall scores
than the low-risk group (p < 0.001), suggesting more active
immune responses and stromal components in the high-
risk group.

Furthermore, ssGSEA algorithm analysis revealed all
15 significantly different immune-related pathways between high
and low-risk groups (Figure 9D).

CIBERSORT algorithm analysis of immune cell infiltration
characteristics showed (Figures 9E, F): 1) Memory CD4+ T cells
were significantly higher in the high-risk group (P < 0.001); 2)
Memory B cells, CD8+ T cells, and follicular helper T cells were more
abundant in the low-risk group (P = 0.001); 3) Except for CD56dim
NK cells, other immune cells generally showed higher expression
levels in the high-risk group.

FIGURE 7
Multi-dimensional Functional Analysis of HMRS-Related Molecular Mechanisms. (A) GSEA waterfall plot showing five key pathways significantly
enriched in high-risk group. Upper part shows enrichment plots, lower part shows gene expression heatmap. (B) Differential pathways revealed by GSVA
analysis between high and low-risk groups. Red and blue indicate upregulated pathways in high-risk and low-risk groups respectively. (C) Correlation
heatmap betweenHMRS scores and key pathway activities. Red and blue indicate positive and negative correlations respectively. (D) Survival analysis
of six key pathways. Patients divided into high activity (red line) and low activity (blue line) groups based on pathway activity scores. (E) Forest plot of
pathway hazard ratios. Shows degree of impact and 95% confidence intervals of each pathway on prognosis.
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Correlation analysis between key gene expression and
immune cell infiltration (Figure 9G) revealed that histone
modification genes might participate in LGG progression by
regulating immune cell infiltration. Correlation analysis

between risk scores and immune cell infiltration
(Figure 9H) indicated: 1) Significant positive correlations
with memory CD4+ T cells, regulatory T cells, dendritic
cells, and neutrophils; 2) Significant negative correlations

FIGURE 8
Multi-dimensional Analysis of Somatic Mutation Spectrum and Tumor Heterogeneity. (A) Box plot comparison of MATH scores between high and
low score groups. (B) Kaplan-Meier survival analysis based on MATH scores. (C) Survival analysis combining MATH scores and risk scores. (D, E)Mutation
landscape waterfall plots showing top 20 mutated genes in high-risk (D) and low-risk (E) groups. (F, G)Mutation gene co-occurrence/mutual exclusivity
relationship heatmaps for high-risk (F) and low-risk (G) groups.
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FIGURE 9
(A–C) ESTIMATE algorithm assessment of immune microenvironment differences between high and low-risk groups. (A) Stromal Score reflects
tumor stromal components; (B) Immune Score quantifies immune cell infiltration levels; (C) ESTIMATE Score comprehensively characterizes tumor
microenvironment features. (D) Heatmap of differential immune-related pathway activities between high and low-risk groups identified by ssGSEA
algorithm, red indicates pathway upregulation, blue indicates pathway downregulation, color intensity represents degree of difference. (E) Violin
plot of infiltration proportion differences of 22 immune cells between high and low-risk groups quantified by CIBERSORT algorithm. Shows distribution
characteristics, density, and significant differences of each immune cell type. (F) Box plot of abundance differences of 28 characteristic gene-defined
infiltrating immune cell types between high and low-risk groups. Box shows interquartile range, whiskers show 1.5 times interquartile range, outliers
shown separately. (G)Correlation heatmap between risk score-related gene expression levels and various immune cell infiltration degrees. Red indicates
positive correlation, blue indicates negative correlation, color intensity represents correlation strength. (H) Correlation scatter plot between risk scores
and key immune cell infiltration levels. Point size represents absolute value of correlation coefficient, color indicates correlation direction and statistical
significance.
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FIGURE 10
Drug Sensitivity Analysis (IC50 values) Between High and Low-risk Groups. (A) Temozolomide: DNA alkylating agent, widely used chemotherapy
drug for brain glioma treatment. (B) Pazopanib: Multi-target tyrosine kinase inhibitor, used for treatment of various solid tumors. (C) Paclitaxel:
Microtubule protein inhibitor, classic anti-tumor chemotherapy drug. (D) Rapamycin: mTOR pathway inhibitor, with immunosuppressive and anti-tumor
effects. (E) Sorafenib: Multi-target tyrosine kinase inhibitor. (F) Gefitinib: EGFR tyrosine kinase inhibitor.

FIGURE 11
HPA Database Immunohistochemical Validation of Key Gene Expression Characteristics in LGG Tissue. ADK (Adenosine Kinase): Normal brain tissue
shows light gray weak positive expression, while glioma tissue shows deep brown moderate to strong positive staining, mainly localized in cytoplasm.
UGCG (UDP-Glucose Ceramide Glucosyltransferase): Normal brain tissue shows faint staining with almost no expression, glioma tissue shows obvious
brown positive staining in cell membrane and cytoplasm. RPN2 (Ribophorin II): Normal brain tissue shows uniform light gray weak expression,
glioma tissue shows uneven dark strong positive staining, mainly localized in endoplasmic reticulum. CAPZA1 (F-Actin-Capping Protein Subunit Alpha-1):
Normal brain tissue shows weak expression, glioma tissue shows obvious brown moderate to strong positive staining, distributed in cytoplasm. KDELR2
(KDEL Endoplasmic Reticulum Protein Retention Receptor 2): Normal tissue shows light brown weak expression, glioma tissue shows obvious deep
brown strong positive expression, mainly localized in Golgi apparatus.
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with naive T cells and memory B cells. These findings
suggest that HMRS can effectively quantify the immune
status of LGG patients, reflecting significant
immune landscape differences among patients with different
risk levels.

3.9 Drug sensitivity analysis

Based on the risk score model, we predicted sensitivity differences
to common drugs between high and low-risk groups. Through
comparison of IC50 values (Figure 10), significant response

FIGURE 12
Pan-cancer analysis of survival outcomes across 29 cancer types stratified by organ systems.
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differences were found for the following drugs: Temozolomide (A),
Pazopanib (B), Paclitaxel (C), Rapamycin (D), Sorafenib (E), and
Gefitinib (F). These findings provide important references for risk
stratification-based individualized medication.

3.10 HPA validation analysis

To further validate the expression characteristics of key genes in the
risk model, we selected five genes with the highest weight coefficients
(ADK, UGCG, RPN2, CAPZA1, KDELR2) for HPA database
immunohistochemical validation (Figure 11). Results showed that all
these genes exhibited significantly high expression in LGG tissue.

3.11 Pan-cancer analysis

Our pan-cancer analysis revealed distinct survival patterns across
different cancer types and organ systems (Figure 12). Among the
29 cancer types analyzed, four cancer types demonstrated statistically
significant associations with survival outcomes (p < 0.05). In the Urinary
System, both Kidney Renal Clear Cell Carcinoma (KIRC, HR = 1.72, p =
0.00016) and Kidney Renal Papillary Cell Carcinoma (KIRP, HR = 2.87,
p = 0.00077) showed significantly higher risk in the high-risk
group. Within the Respiratory System, Lung Adenocarcinoma
(LUAD) exhibited significantly poorer outcomes (HR = 1.57, p =
0.0014). Additionally, in the others category, Sarcoma (SARC)
demonstrated significantly worse survival (HR = 1.59, p = 0.024).

Although not reaching statistical significance, several other
cancer types showed notable trends:

1. Adrenocortical Carcinoma (ACC) displayed a strong tendency
toward higher risk (HR = 2.06, p = 0.065).

2. Liver Hepatocellular Carcinoma (LIHC) showed a trend
toward increased risk (HR = 1.35, p = 0.056).

3. Thymoma (THYM), despite having the highest hazard ratio
(HR = 3.55), did not reach statistical significance (p = 0.116),
possibly due to limited sample size (n = 121).

Notably, most cancer types (24/29) maintained hazard ratios
above 1.0, suggesting a consistent trend toward worse outcomes in
high-risk groups across different cancer types, although not all
reached statistical significance. However, some cancer types,
including Cholangiocarcinoma (CHOL), Head and Neck
Squamous Cell Carcinoma (HNSC), Acute Myeloid Leukemia
(LAML), Ovarian Serous Cystadenocarcinoma (OV), and
Testicular Germ Cell Tumors (TGCT), showed hazard ratios below
1.0, indicating potentially better outcomes in the high-risk group,
though these associations were not statistically significant.

4 Discussion

4.1 Significance of histone modification
heterogeneity

In this study, we first revealed the cellular heterogeneity
characteristics of histone modifications in LGG through multi-omics

analysis and developed a prognostic prediction model with clinical
application prospects. Single-cell level analysis showed that tumor cells
and oligodendrocytes exhibited higher levels of histone modifications,
which is consistent with previous reports on the key role of histone
modifications in glioma stem cell maintenance (Liu et al., 2024; Zhu
et al., 2024; Liu et al., 2023). High levels of histone modifications may
promote tumor cell proliferation and stemness maintenance through
precise regulation of gene expression networks (Sharma et al., 2023;
Shen et al., 2020), and this epigenetic level cellular heterogeneity may be
one of the important reasons leading to LGG treatment resistance and
recurrence. Based on this finding, we constructed theHMRS prognostic
model, which demonstrated excellent predictive performance across
multiple independent cohorts. The model’s prediction accuracy was
further improved after integrationwith clinical features. The advantages
of the HMRS model lie in its robustness, practicality, and
individualization characteristics, providing a new tool for LGG
patients’ prognostic assessment and treatment decision-making.
These findings not only deepen our understanding of LGG
epigenetic heterogeneity (Chaligne et al., 2021) but also provide an
operational prognostic assessment method for clinical practice.

4.2 Advantages of the HMRS model

Compared with currently widely used prognostic assessment
models, the HMRS model shows unique advantages. Traditional
prognostic assessments mainly rely on WHO grading, IDH
mutation status, and 1p/19q codeletion as molecular markers.
Although these indicators have important prognostic implications,
they often cannot fully reflect the molecular heterogeneity and
dynamic evolution characteristics of tumors (Eckel-Passow et al.,
2015). Recently developed radiomics-based prediction models, such
as those combining MRI imaging features with machine learning (Li
et al., 2021b), although advantageous in non-invasive assessment, still
need improvement in prediction accuracy and stability. In contrast, our
HMRSmodel not only integrates histonemodifications as an important
epigenetic feature but also ensures its predictive reliability through
multi-center validation. Notably, the HMRS model can reflect the
epigenetic heterogeneity of tumor cells, giving it potential advantages
in predicting treatment response and guiding individualized treatment.
Furthermore, the inclusion of clinical features makes it more easily
applicable in actual clinical work, an advantage not possessed by other
single molecular markers or complex models.

4.3 Molecular mechanisms and
pathway analysis

Through functional enrichment analysis of high and low-risk groups,
we deeply revealed the molecular mechanisms behind HMRS
stratification. The study found multiple key signaling pathways
significantly activated in the high-risk group, most notably the TGF-β
and IL6-JAK-STAT3 signaling pathways. TGF-β signaling pathway
activation may enhance tumor cell invasion and metastasis capabilities
through inducing epithelial-mesenchymal transition (EMT) (Meng et al.,
2016), while IL6-JAK-STAT3 pathway activation suggests the important
role of inflammatory microenvironment in LGG progression, with this
chronic inflammatory state potentially promoting tumor malignant
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progression through multiple mechanisms (Zhang et al., 2023).
Meanwhile, we observed significant differential expression of
metabolism-related pathways, reflecting the metabolic heterogeneity
developed by tumor cells to adapt to malignant proliferation. These
findings not only explain the intrinsic mechanisms of prognostic
differences between different risk stratification patients at the
molecular level but also provide theoretical basis for developing new
therapeutic strategies, particularly targeted therapy against these
abnormally activated pathways as potential treatment options for
high-risk patients. Importantly, the interactions between these
pathways form a complex regulatory network, suggesting the need to
consider multi-target combined intervention when developing treatment
strategies.

Compared to previous studies, the uniqueness of our research lies in
being the first to systematically reveal the role of histone modification-
mediated signaling pathway networks in LGG progression. Previous
studies mainly focused on single pathways, such as IDH mutation-
mediated metabolic reprogramming reported byWang et al. (2023), or
Guo et al. (2023)’s discovery of Notch signaling regulation in glial cell
development and tumorigenesis. Through integrative analysis, our
study not only confirmed the importance of these known pathways
but also discovered complex regulatory relationships between them.
Notably, we found that the TGF-β signaling pathway may influence
global epigenetic states by regulating histone-modifying enzyme
expression, a finding that echoes Mao et al. (2020)’s recent discovery
in glioma but is the first report in LGG. Furthermore, our study first
revealed potential connections between inflammatory pathways and
metabolic reprogramming, providing new perspectives for
understanding LGG heterogeneity and theoretical basis for
developing multi-target combination therapy strategies.

4.4 Immune microenvironment
characteristics

Further pathway analysis revealed comprehensive activation of
both innate and adaptive immune response networks in high-risk
patients. The enrichment of pattern recognition receptor pathways
(RIG-I-like, NOD-like, and Toll-like receptor signaling) indicates
heightened innate immune surveillance, potentially triggered by
tumor-derived danger signals. The concurrent activation of B cell
receptor signaling pathway, T cell receptor signaling pathway, and
natural killer cell-mediated cytotoxicity suggests broad
engagement of adaptive immune responses. The upregulation of
leukocyte transendothelial migration and chemokine signaling
pathways points to active immune cell trafficking within the
tumor microenvironment. Additionally, the enrichment of
antigen processing and presentation pathways, along with the
complement and coagulation cascades, indicates robust immune
recognition and response mechanisms. However, despite this
extensive immune activation, the apparent ineffectiveness in
tumor control suggests potential immune dysfunction or
suppression. The enhanced FC gamma R-mediated phagocytosis
pathway might reflect increased clearance of antibody-coated
tumor cells, yet the overall immune response appears
insufficient to prevent disease progression in high-risk patients.
These pathway alterations, combined with the observed immune
cell composition changes, paint a picture of a complex but

potentially dysfunctional immune response that may contribute
to tumor progression (Giannone et al., 2020; Kaur et al., 2022).

Then, our study revealed close associations between HMRS risk
stratification and tumor immune microenvironment through multi-
dimensional analysis. Through ESTIMATE algorithm analysis, we
found that high-risk group patients showed significantly elevated
immune scores and stromal scores, suggesting the existence of a more
complex immune regulatory network. Notably, we observed significantly
increased memory CD4+ T cells in the high-risk group, while other
immune cells such as memory B cells, CD8+ T cells, and follicular helper
T cells showed relative deficiency. This immune cell component
remodeling may reflect the establishment of tumor immune escape
mechanisms. Meanwhile, the activation of multiple immune-related
signaling pathways, including RIG-I-like receptor signaling pathway,
B cell receptor signaling pathway, and Toll-like receptor signaling
pathway, further supports the key role of immune microenvironment
in LGG progression. These findings not only deepen our understanding
of the LGG immune microenvironment but more importantly provide
new perspectives for developing immunotherapy strategies. Particularly
for high-risk patients, rebuilding effective anti-tumor immune responses,
such as enhancing memory CD8+ T cell function or regulating specific
immune pathway activity, may become important strategies for
improving treatment efficacy. Additionally, these immune
characteristic differences suggest the need to consider individualized
immunemicroenvironment differences when designing treatment plans,
potentially requiring treatment strategy adjustments based on patients’
immune status, including whether to combine immune checkpoint
inhibitors and other immunotherapy approaches.

4.5 Clinical applications and drug sensitivity

In terms of drug applications, temozolomide, the standard first-line
treatment for LGG, showed significant therapeutic differences between
high-risk and low-risk groups (Tomar et al., 2021), providing direct
guidance for clinical medication decisions. Meanwhile, we observed
that the high-risk group demonstrated good sensitivity to certainmulti-
target tyrosine kinase inhibitors such as pazopanib (Miyamoto et al.,
2018), which is consistent with the abnormal pathway activation
patterns we previously identified. Interestingly, high-risk group
patients also showed increased sensitivity to traditional
chemotherapy drugs like paclitaxel (Alqahtani and Aleanizy, 2019),
suggesting that cell cycle regulation may be a crucial factor affecting
drug response. Individualized treatment strategies not only hold
promise for improving therapeutic outcomes but may also reduce
unnecessary drug toxicity, thereby enhancing patients’ quality of life.

4.6 Pan-cancer applications and
developmental biology perspective

Our pan-cancer analysis demonstrates that the model initially
developed for LGG exhibits predictive value across multiple cancer
types, achieving statistical significance particularly in kidney cancers
(KIRC, KIRP) and lung adenocarcinoma (LUAD). This cross-organ
system predictive capacity can be understood through the lens of
evolutionary conservation in developmental biology. Although these
tissues originate from different germ layers (neuroectoderm vs.
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mesoderm), they share several key regulatory networks during
embryonic development.

Notably, kidney development involves complex mesenchymal-
epithelial transition (MET) and neuroectoderm-mesoderm
interactions, which share many similarities with cell fate
determination mechanisms in neural system development. For
instance, WT1 and the PAX gene family play crucial roles in both
kidney and neural system development (Discenza et al., 2003; Ochi et al.,
2022). Similarly, lung development requires precise EMT and complex
cell lineage determination, sharing multiple regulatory pathways with
neural crest cell migration and differentiation mechanisms (Jolly et al.,
2018). These common developmental features may explain why
epigenetic markers derived from neural system tumors demonstrate
significant predictive value in these cancer types.

From an evolutionary developmental perspective, this
conservation of predictive features reflects the shared pluripotent
state and fundamental regulatory mechanisms of different tissues
during early embryonic development. Despite subsequent
divergence in differentiation pathways, the basic epigenetic
regulatory networks remain highly conserved throughout evolution.

4.7 Limitations and future directions

Although our study has made several important discoveries in LGG
histone modifications and prognostic prediction, there are still some
limitations that need to be addressed in future research. The primary
limitation is the lack of prospective clinical validation; although our
model has demonstrated good predictive performance across multiple
independent cohorts, its performance in real clinical settings still needs to
be verified through prospective studies. Secondly, the functional
mechanisms of key genes still need more experimental data support,
particularly in vivo and in vitro functional experiments will help to deeply
understand these genes’ specific roles in LGG progression. Additionally,
while drug sensitivity analysis provides important clues for individualized
treatment, these predicted results still need to be validated through
standardized clinical trials for accuracy and reliability. Finally, the
dynamic nature of epigenetic modifications suggests that longitudinal
sampling might provide additional insights not captured in our current
cross-sectional analysis. Based on these limitations, we have planned
several important future research directions: first, we will conduct multi-
center prospective clinical studies to systematically evaluate the clinical
application value of the HMRS model; second, through in-depth
molecular biology experiments, we will elucidate the regulatory
mechanisms of key genes and their roles in tumor progression; third,
we will explore individualized combination treatment strategies based on
risk stratification, particularly in optimizing combinations of
immunotherapy and targeted therapy; finally, we plan to integrate
multi-modal data such as radiomics and metabolomics to develop
more comprehensive and precise prediction models. These studies
will help to further improve the diagnosis and treatment level of LGG
patients, ultimately achieving better clinical outcomes.

5 Conclusion

This study establishes a novel HMRS for LGG through
comprehensive multi-omics analysis. The model demonstrates

robust predictive performance across multiple independent
cohorts and reveals distinct molecular and immune
characteristics between risk groups. High-risk tumors show
activation of specific signaling pathways (particularly TGF-β
and IL6-JAK-STAT3), distinct mutation profiles, and unique
immune cell infiltration patterns. The model also provides
valuable insights into drug sensitivity, suggesting potential
therapeutic strategies for different risk groups. Furthermore,
pan-cancer analysis indicates the model’s broader applicability
across multiple cancer types, particularly in kidney and lung
cancers. While the model shows promise for clinical application
in personalized treatment planning, future prospective studies
are needed to validate its clinical utility. This integrated approach
advances our understanding of LGG biology and offers a
framework for improving patient care through molecular-
based risk assessment and treatment selection.
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