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Periodontitis is a chronic inflammatory condition driven by plaque-associated
microorganisms, where uncontrolled bacterial invasion and proliferation impair
host immune responses, leading to localized periodontal tissue inflammation and
bone destruction. Conventional periodontal therapies face challenges, including
incomplete microbial clearance and the rise of antibiotic resistance, limiting their
precision and effectiveness in managing periodontitis. Recently, nanotherapies
based on polymeric materials have introduced advanced approaches to
periodontal antimicrobial therapy through diverse antimicrobial mechanisms.
This review explored specific mechanisms, emphasizing the design of
polymer-based agents that employ individual or synergistic antimicrobial
actions, and evaluated the innovations and limitations of current strategies
while forecasting future trends in antimicrobial development for periodontitis.
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1 Introduction

As a prevalent biofilm-associated oral disease, periodontitis presents a significant public
health concern (Sczepanik et al., 2020). This condition, driven by microbial factors and host
responses, leads to gingival inflammation, periodontal pocket formation, and alveolar bone
loss, ultimately resulting in tooth loss if untreated (Yuan et al., 2023). Early prevention and
intervention are essential to slow disease progression and maintain oral health (Janakiram
and Dye, 2020; Pattamatta et al., 2024). The primary periodontal treatment
methods—mechanical debridement through scaling and root planning—aim to reduce
bacterial load, alleviate inflammation, and inhibit bone loss, but its effectiveness is often
limited by difficult-to-reach infection sites (Petersilka et al., 2002; Arweiler et al., 2017).
Conventional antibiotics, which inhibit bacterial growth by targeting key biological
processes (Saikia and Chetia, 2024), face limitations in periodontitis due to the need for
high doses to penetrate biofilms, risking microbiome disruption, fungal overgrowth, allergic
reactions, and other adverse effects (Nakajima et al., 2021; Yu et al., 2022; Herrera et al.,
2023). Additionally, the rise of antimicrobial resistance—through mechanisms such as
efflux pump activation and membrane alteration—further complicates treatment efficacy
(Abouelhadid et al., 2020; Klenotic et al., 2020; Darby et al., 2022). These challenges
underscore the need for innovative periodontal therapies capable of overcoming resistance
and enhancing therapeutic outcomes.

Periodontitis arises primarily from the destructive symbiotic relationship between
dental plaque biofilms and the immune system of host (Lamont et al., 2018). The
bacterial hydrolysis of proteins and the resulting inflammatory response create an
acidic microenvironment that selectively promotes the growth of periodontitis-
associated bacteria (Xiu et al., 2022; Hsiao et al., 2014). This cycle of bacterial
proliferation leads to the characteristic loss of soft and hard tissue in periodontitis,
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emphasizing the need for targeted antimicrobial therapies to
interrupt this pathological progression (Li et al., 2024). This
review focused on the latest therapeutic strategies using polymer-
based macromolecular materials to combat periodontitis-associated
bacteria. We summarized the primary antimicrobial mechanisms of
novel agents for periodontitis treatment and discussed innovative
polymeric material designs that leverage these mechanisms. Finally,
we addressed the challenges in antimicrobial therapy, offering
insights for future developments in the field.

2 Polymer-based antimicrobial
strategies

Conventional antibiotics kill bacteria by disrupting bacterial
membranes and walls or by interfering with protein synthesis
and metabolic processes (Lewis et al., 2024). However, pure
drugs are prone to isomerization and degradation in aqueous
environments, which diminish their antimicrobial efficacy. To
overcome this, complexes are introduced to enhance stability and
preserve potency (Lam et al., 2018; Kaupbayeva and Russell, 2020;
Haktaniyan and Bradley, 2022). For example, metronidazole (MTZ)
has been encapsulated in solid lipid nanoparticles (SLN) or
electrostatically spun into triple-layered eccentric side-by-side
fibrous structures for controlled release, improving the efficacy of
periodontitis treatment (Zhao et al., 2024). Polymeric drug delivery
systems enhance the solubility, reduce toxicity, and increase the
stability of antimicrobial agents. These systems also enable
controlled and programmed drug release in response to specific
microenvironmental changes. Critical factors in polymer design,
such as particle size, surface charge, hydrophobicity, mucosal
adhesion, and targeted ligands, influence the ability to penetrate
biofilms and effectively kill bacteria (Huo et al., 2016; Jiang et al.,
2023; Ju et al., 2023). Novel antimicrobial polymers are strategically
designed to target different bacterial mechanisms, and the
combination of multiple mechanisms allows for precise bacterial
localization and efficient destruction, offering a promising solution
for periodontal therapy (Shi et al., 2021a; Zou et al., 2015; De et al.,
2022). Below, we discussed novel antimicrobial strategies involving
polymers, categorized by the antimicrobial mechanisms.

2.1 Mechanisms of membrane disruption

Membrane integrity is essential for bacterial survival, and
electrostatic interactions are key in disrupting bacterial
membranes. Various recognition units—such as antibodies,
biomolecules, chemical moieties, and functional
nanomaterials—have been developed based on biological and
chemical characteristics of bacterial surfaces (Yin et al., 2024).
These recognition units fall into two main categories: non-
specific recognition and ligand-receptor-specific recognition.

2.1.1 Non-specific recognition based on
electrostatic interactions

Distinguished from specific recognition that occurs for specific
biomolecules, non-specific recognition usually refers to molecules
interacting with each other through non-covalent bonds, such as

electrostatic interactions. Electrostatic interactions refer to the
attraction or repulsion between charged groups. The main
advantage of using non-specific interactions is that spatio-
temporal controlled release and precise targeting of drugs can be
achieved from an antimicrobial platform, ultimately leading to
efficient antimicrobials (Adibnia et al., 2020). Bacterial membrane
surfaces are rich in negative charges, primarily due to the
extracellular glycosylation of phospholipids and membrane
proteins. The interaction between nanomedicines and bacterial
membranes is more complex than simple electrostatic attraction.
Nanomedicines with different charge characteristics exhibit distinct
mechanisms of action and endocytosis pathways. Positively charged
nanodrugs selectively interact with negatively charged lipids
through electrostatic forces, enhancing adsorption and
endocytosis. This process effectively crosses the bacterial
membrane, inducing tension that leads to membrane
deformation and rupture (Yuan et al., 2020).

Polyamino acids exhibit distinct properties dictated by the
structure of their side chains (Shen et al., 2018). Three
alternating amino acid copolymers—Orn-Ser, Orn-Gly, and Orn-
Val—were synthesized using solid-phase peptide technology. The
diverse side chains demonstrated excellent biocompatibility, broad-
spectrum antimicrobial activity, and selective antimicrobial
properties (Ma et al., 2023). ε-Polylysine, a naturally occurring
cationic peptide, exerts potent antimicrobial effects by disrupting
bacterial membranes, inducing oxidative stress, and modulating
gene expression (Li et al., 2019; Dima et al., 2020; Huang et al.,
2024; Rao et al., 2024). To enhance antimicrobial efficacy, a novel
double-crowned vesicle system, formed by the co-assembly of two
block copolymers (PCL-b-P (Lys-co-Phe) and PEO-b-PCL), was
designed for periodontitis treatment. The PEO crown imparted
protein-repelling properties, enabling penetration of extracellular
polymeric substances in biofilms, while the P(Lys-co-Phe) crown
provided positive charge, bacterial membrane penetration, and
broad-spectrum antimicrobial effects (Xi et al., 2019).

α-Lipoic acid (LA), a mitochondrial coenzyme, confers
antioxidant and anti-inflammatory effects via its disulfide ring
structure (Yu et al., 2024). LA reduces oxidative stress and
apoptosis by promoting osteogenic marker expression through
the NOX4, NF-κB, JNK, and PI3K/AKT pathways, ultimately
mitigating periodontal bone loss (Lu et al., 2017b). Additionally,
LA induces morphological changes and dysfunction in bacterial
membranes to achieve antimicrobial effects (Shi et al., 2016; Mu
et al., 2022). Wet-reactive PolyLA-GelMA elastic patches exhibited
strong adhesion to gingival tissues through intermolecular
interactions, making them suitable for filling periodontal defects
and promoting alveolar bone regeneration. In vitro studies
confirmed the patches’ excellent hemocompatibility, antibacterial
properties, and ROS-scavenging ability (Qi et al., 2024). Gelatin, a
natural macromolecular polymer that mimics the extracellular
matrix (ECM) and contains RGD sequences, is commonly used
to create natural gels. Gelatin methacryloyl (GelMA) hydrogels
possess intrinsic antimicrobial properties, which are enhanced by
quaternary ammonium groups and glycidyl-trimethylammonium
chloride (GTMAC), effectively inhibiting bacterial enzymes, such as
gingival protease (Vargas-Alfredo et al., 2022). Natural polyphenol
microspheres were innovatively fabricated by combining T-NPs and
poloxamer to create a pH- and temperature-sensitive antibiotic

Frontiers in Pharmacology frontiersin.org02

Chen and Dong 10.3389/fphar.2024.1533964

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2024.1533964


delivery platform, enabling in situ slow release of T-NPs at
periodontitis lesions. This approach mitigated oxidative stress
and inhibited oral pathogenic bacteria (Qi et al., 2022).

The suitability of Chitosan for periodontal applications stems
from its exceptional biocompatibility, biodegradability, selective
permeability, and antimicrobial activity. The positively charged,
low-molecular-weight chitosan binds to negatively charged
teichoic acid or lipopolysaccharide through electrostatic
interactions, enhancing membrane permeability to exert
extracellular antimicrobial effects (Ke et al., 2021). Chitosan
oligomers cross bacterial cell wall, inhibiting DNA/RNA
transcription, protein synthesis, and mitochondrial function, thus
demonstrating intracellular antimicrobial activity (Raafat and Sahl,
2009; Kravanja et al., 2019). Furthermore, chitosan interferes with
bacterial copolymerization (Tan et al., 2018). Chemically modified
chitosan derivatives exhibit enhanced antimicrobial activity and
water solubility. The introduction of quaternary ammonium
groups enhances the cationic properties of chitosan and improves
its solubility in aqueous and alkaline solutions (Tan et al., 2013).
These modifications include the attachment of functional groups
bind to anionic sites on microbial membrane surfaces, which not
only promotes agglutination and inhibits microbial proliferation,
but also disrupts bacterial membranes and leads to leakage of
intracellular DNA and RNA, thereby improving antimicrobial
efficacy (Murotomi et al., 2023). Diabetic patients are particularly
vulnerable to periodontal disease due to the immune system
suppression caused by hyperglycemia, necessitating effective
antimicrobial solutions. A photo-crosslinked chitosan hydrogel
self-regulates the release of therapeutic drugs based on glucose
levels, enabling both glucose detection and pH-responsive drug
release within the periodontal environment. This system provided
a controlled drug delivery mechanism for chitosan (CS)-
methacrylamide (CM) formulations (Liu et al., 2019). It is well-
established that chitosan modified with quaternary ammonium
groups demonstrates superior antimicrobial activity compared to
unmodified chitosan. TMC-Lip-DOX nanoparticle, which conjugate
quaternary ammonium-modified chitosan (N,N,N-
trimethylchitosan) with liposomes and doxycycline, forms a pH-
responsive system effective against dental biofilms. The nanoparticle
accumulates in acidic environments via electrostatic interactions,
penetrate biofilms, degrade extracellular polymers, and enhance
doxycycline’s antimicrobial effect, offering a promising strategy
for preventing and treating periodontitis (Hu et al., 2019).

To achieve precise antimicrobial effects, introducing a local
stimulus-response mechanism into drug delivery systems is a
common targeted strategy. Streptococcus lactis peptides, with
inherent antimicrobial properties, are encapsulated in sodium
caseinate (SC) carriers through strong interactions with anionic
alginate molecules. This nanocarrier system not only enhances
antimicrobial activity but also promotes biofilm elimination and
imparts pH responsiveness (Niaz et al., 2020). Liu et al. developed a
novel functional peptide module (FPM) consisting of a short
antimicrobial peptide (SAMP) flanked by two anchoring peptides
containing arginine protease (Rgp)-specific splice sites. This design
uses the gingipain secreted by Porphyromonas gingivalis as a
responsive stimulus, resulting in both intense gingipain reactivity
and potent inhibition of Porphyromonas gingivalis growth (Liu
et al., 2021).

Antimicrobial peptides (AMPs) offer significant advantages over
traditional antibiotics in oral antimicrobial therapies. Known for
their lysine- and arginine-rich properties, as well as their
amphiphilic structures, AMPs inhibit bacterial dehydrogenase
activity and disrupt bacterial membranes through electrostatic
interactions and hydrogen bonding. This leads to membrane
rupture and bacterial cell death (Gao et al., 2023). AMPs also
interfere with peptidoglycan synthesis by binding to precursor
molecules involved in bacterial cell wall formation or by directly
interacting with peptidoglycan and amino acids. In particular, for
Gram-negative bacteria, AMPs bind to negatively charged
lipopolysaccharides in the outer membrane, forming peptide-lipid
complexes that generate transmembrane channels, compromising
cell membrane integrity. Additionally, acidic phospholipids in the
bacterial membrane interact electrostatically with cationic AMPs,
while the hydrophobic regions of the peptides accumulate on the
amphiphilic phospholipid surface, further disrupting the membrane
structure (Yount and Yeaman, 2013; Luo and Song, 2021).

Plant antimicrobial peptides (PMAMPs) with a circular or
hairpin structure exhibit enhanced biofilm penetration and
antimicrobial activity when combined with matrix-degrading
enzymes. These PMAMPs consist of a green fluorescence protein
(GFP)-fusion peptide and the protein drug protegrin-1 (PG-1),
which rapidly kill bacteria within 1 h of local exposure at low
concentrations. The permeabilization mechanism is primarily
driven by changes in bacterial surface charge, PG-1 penetration
of the lipid bilayer, and interactions with negatively charged teichoic
and lipoteichoic acids (Liu et al., 2016). Arginine-rich β-hairpin
peptides self-assemble into hydrogels that lyse bacteria through
guanidine-mediated interactions with bacterial membranes,
independent of antibiotics. The antimicrobial potency of these
hydrogels is significantly increased by higher arginine content. To
balance antimicrobial activity with reduced cytotoxicity and
hemolysis, the PEP6R peptide was synthesized by substituting an
arginine residue in the PEP8R peptide. At a concentration of 1.5 wt
%, PEP6R self-assembled into a hydrogel of moderate hardness that
effectively eradicated bacteria (Veiga et al., 2012). Lysozyme (LYS)
effectively kills Gram-positive bacteria by disrupting the β-1,4-
glycosidic bonds in the bacterial cell wall and inducing
membrane rupture. However, its activity against Gram-negative
bacteria is relatively weak. To enhance both the antimicrobial
efficacy and stability of LYS, 2,2-pyridinedicarboxaldehyde (PDA)
and the initiator ABM were introduced at the N-terminus of LYS,
forming a LYS-PDMAEMA conjugate. This conjugate exhibited
superior activity against Gram-positive bacteria of M. lysodeikticus
and Gram-negative bacteria of E. coli. The distribution of the red
fluorescent Cy5-labeled conjugate on the bacterial surface and
within the bacteria highlighted the proposed antibacterial
mechanism: the positively charged PDMAEMA disrupts the
bacterial membrane and enters the interior through strong
multivalent electrostatic interactions with the negatively charged
membrane, leading to highly efficient and selective antibacterial
effects (Figure 1) (Zhang et al., 2022).

2.1.2 Ligand-receptor–based specific recognition
The interactions between immune cells, the complement system,

and bacterial surface structures are crucial for pathogen recognition
and clearance by the immune system (Rivera et al., 2016; Lu et al.,
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2017a; Askarian et al., 2018). Porphyromonas gingivalis (P.
gingivalis), a Gram-negative anaerobic bacterium, produces a
variety of virulent factors that facilitate its adhesion, colonization,
and nutrient uptake (Mysak et al., 2014). Porphyromonas gingivalis
binds to Toll-like receptors (TLRs) through lipopolysaccharide

(LPS) on its surface, triggering an inflammatory signaling cascade
and the release of proinflammatory cytokines, ultimately leading to
an inflammatory response (Tsukamoto et al., 2018). The virulence
factors of P. gingivalis trigger localized inflammation, prompting the
host’s immune system to restore periodontal health by primarily

FIGURE 1
(A) Scheme of the antibacterial mechanism of LYS-PDMAEMA. (B) Scheme of the synthesis of LYS-PDMAEMA. (C) Antimicrobial activity of LYS-
PDMAEMA against M. lysodeikticus and E. coli. (D) CLSM images of E. coli incubated with Cy5-labeled LYS and LYS-PDMAEMA (red). The nucleus was
stained with DAPI (blue). The membrane was stained with Dil (yellow). (E) SEM images of E. coli treated with LYS and LYS-PDMAEMA (Zhang et al., 2022).
Copyright © 2022 American Chemical Society.
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producing antibodies and engaging in phagocytosis (Lunar Silva and
Cascales, 2021; Blasco-Baque et al., 2017). However, P. gingivalis
evades immune surveillance by activating mechanisms that impair
immune cell function, particularly macrophages. This ability
disrupts the homeostasis between the host and its microbiota,
altering the composition of the subgingival biofilm, promoting

inflammation, tissue damage, alveolar bone loss, and ultimately
leading to periodontal disease.

Porphyromonas gingivalis typically inhibits macrophage
phagocytosis and bactericidal activity through TLR2/1 and
complement C5a receptor (C5aR)-dependent signaling pathways.
In response, researchers developed a microenvironmentally

FIGURE 2
(A) Schematic diagram of the MZ@PNM@GCP hydrogel for periodontitis treatment. (B) Representative fluorescence images of Porphyromonas
gingivalis. Incubated with MZ@PNM or MZ and TEM images of the destruction of Porphyromonas gingivalis by MZ@PNM (C) Proportion of
Porphyromonas gingivalis inhibited after 24 h of incubation with MZ@NR, PNM, MZ and MZ@PNM, respectively. (D) Colony-forming assay of
Porphyromonas gingivalis after treatment with PBS, MZ@NR, PNM, MZ and MZ@PNM, respectively (Yan et al., 2022). Copyright © 2022 American
Chemical Society.
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responsive nanogel (MZ@PNM@GCP) that mimics macrophage
membranes, achieving a stealth effect. MZ@PNM@GCP specifically
targets P. gingivalis through the TLR2/1 complex on the
macrophage-mimicking membrane, disrupting the bacterial
membrane with cationic nanoparticles and releasing
metronidazole inside the bacterial cell. Encapsulating the

nanoparticles in a responsive hydrogel allows controlled drug
release in localized acidic and inflammatory environments,
enhancing treatment efficacy. Additionally, the nanogel prevented
P. gingivalis from binding to immune cells, restoring local immune
function and targeting pathogenic bacteria. This approach has
shown promising results in the prophylactic treatment of

FIGURE 3
(A) Schematic illustration of mechanism how the high modulus ROS-sensitive hydrogel encapsulating macrophages and C5aR antagonists (Hgel@
C5A/MV) treats periodontitis. (B) Quantitative analyses showing the colony forming units (CFU) of residual live bacteria (n = 8, mean ± SD). (C)
Quantitative analyses and flow cytometry (D) of NO production by RAW264.7 cells receiving different treatments (n = 4, mean ± SD) (Gan et al., 2023).
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periodontitis (Figure 2) (Yan et al., 2022). Innate immune cells
utilize TLR4 receptors to detect lipopolysaccharide (LPS) from
bacteria, triggering an inflammatory response. Leveraging this
TLR4 mechanism, researchers designed a novel nanoplatform
(MSNCs) that mimics macrophage membrane properties and
expresses TLR4, combining antimicrobial and
immunomodulatory effects. By engineering immunocompetent
cell membranes, MSNCs selectively localize to bacteria through
TLR4 and act as molecular decoys, competitively binding to LPS
in the microenvironment (Deng et al., 2023). Actin is a critical
component of the cytoskeleton, involved not only in sensing and
transmitting mechanical signals but also in macrophage
phagocytosis of pathogens. To effectively eliminate P. gingivalis
hiding within inactivated immune cells, researchers optimized
hydrogel stiffness by adjusting the polyvinyl alcohol (PVA) cross-
linking degree. This modification enabled targeted delivery of
macrophages and C5a receptor antagonists to the gingival sulcus.
At the molecular level, the stiffer hydrogel enhanced the expression
of the mechanosensor Piezo1, which translates mechanical stimuli
into biochemical responses, such as Rac1 activation and cytoskeletal
reorganization, resulting in improved endocytosis and phagocytosis
(Figure 3) (Gan et al., 2023).

The early colonization of the oral cavity by Porphyromonas
gingivalis (P. gingivalis) is facilitated by interactions between its
secondary hair antigens and oral streptococci, culminating in
specific bacterial adhesion. Streptococcus gordonii typically serves
as the initial colonizer, using its adhesion proteins to establish a
foothold. These proteins provide a nutrient supply and a base for
the secondary colonization of P. gingivalis, making Streptococcus
gordonii an ideal target for therapeutic interventions. Researchers
have engineered surface-modified PLGA nanoparticles (BNP) by
incorporating a peptide (BAR) derived from S. gordonii surface
proteins. This modification enhanced specific adhesion to P.
gingivalis and prevents non-specific bioadhesion, leveraging
the bacteria’s known interaction to initiate periodontal
infections. This approach aimed to enable multivalent
targeting and inhibit bacterial adhesion, as well as the
formation of early biofilms (Mahmoud et al., 2019). Similarly,
nanoparticles (ZnO2/Fe3O4@MV) were developed by
encapsulating ZnO2 within Fe3O4 composite core-shell
structures and coating them with S. gordonii membranes. This
targeted membrane coating enhances nanoparticle
internalization, where the combined action of hydrogen
peroxide (H2O2) and hydroxyl radicals disrupts bacterial
structures, ultimately leading to bacterial cell death and the
removal of symbiotic biofilms (Cao et al., 2023).

The introduction of exogenous substances modulate bacterial
subcellular organization by inducing intracellular aggregation
through ligand-receptor interactions. This aggregation shows a
strong affinity for various proteins, thereby disrupting bacterial
contents. A novel method has been proposed for global bacterial
disruption, based on DNA-induced intracellular aggregation. This
method involved synthesizing dAPM-1, a di-arginine peptide
mimetic with a specific spacer linkage, to trigger cellular cohesion
through nuclear protein-DNA phase separation. This process
disrupted subcellular tissues and induced membrane rupture,
interfering with bacterial functions and inhibiting drug resistance
(Yang et al., 2024).

2.2 Mechanisms of oxidative damage

Reactive oxygen species (ROS) exert antimicrobial effects
primarily through oxidative damage, which undermines
bacterial antioxidant defenses. ROS initiate lipid peroxidation
by reacting with bacterial membrane lipids, increasing
membrane permeability and compromising membrane
integrity. This disruption leads to the leakage of bacterial
contents and cell death (Elian et al., 2024). The H2O2

produced from ROS interactions with unsaturated fatty acids
diffuses within the bacterial cell, interacts with proteins, and
facilitates the penetration of metal ions or oxidized molecules,
exacerbating lipid peroxidation and accelerating bacterial death
(Liu et al., 2022a; Wang et al., 2020). Additionally, ROS
oxidatively modify amino acid residues in proteins, altering
their structure and function, which leads to protein
inactivation. ROS also cause DNA strand breaks and base
modifications, resulting in genetic mutations and abnormal
gene expression, contributing to bacterial death (Pannunzio
and Lieber, 2017; Liang et al., 2019; Srinivas et al., 2019).

Photodynamic therapy (PDT) is a promising bactericidal
approach that utilizes photosensitizers to generate reactive
oxygen species (ROS) for bacterial eradication (Zhang et al.,
2020; Yu et al., 2023). ROS production occurs through two
primary pathways: type I and type II (Liu et al., 2022b). The type
I pathway generates superoxide anion radicals (O2•−) and hydroxyl
radicals (OH•) through electron transfer, while the type II pathway
produces singlet oxygen (1O2) through energy transfer between the
photosensitizer and oxygen, with H2O2 as an intermediary (Chen
et al., 2021). These highly reactive species interact with biological
macromolecules, such as purine bases, specific amino acids, and
mitochondrial membranes in DNA, resulting in oxidative damage
that ultimately causes bacterial cell death (DiMascio et al., 2019; Ran
et al., 2022).

Advancing photosensitizer development is crucial for enhancing
antimicrobial effectiveness. Under laser irradiation, the high density
of positive charges on the brush layer of star-shaped polycationic
brushes (sPDMA) significantly enhanced the binding of the
photosensitizer indocyanine green (ICG) to bacterial membranes
and its ability to penetrate biofilms. sPDMA@ICG NPs effectively
killed Porphyromonas gingivalis, inhibited alveolar bone resorption,
and reduced the inflammatory response in both in vivo and in vitro
models (Shi et al., 2021b). Inspired by the abalone’s unique suction
cup structure, Song et al. employed microfluidic electrospray
technology to create a novel, adhesive, light-responsive particle
(MP) delivery system for periodontitis treatment. The concave
structure of the disc-shaped MPs confers enhanced adhesion and
stability in the presence of saliva, while controlled release of
minocycline hydrochloride and black phosphorus under near-
infrared irradiation provides potent antimicrobial effects against
P. gingivalis (Figure 4) (Song et al., 2022). Type I photosensitizers are
not constrained by the periodontium’s local anoxic environment,
reducing the dependence on oxygen during treatment. In the
presence of light, the purine-based ĈN ligand in the Ir(III)
complex undergoes an n-π* transition, transferring energy to the
Ir core and facilitating strong spin-orbit coupling. This mechanism
promoted excited state transitions, enhancing the ROS-generating
capability of the complex to kill anaerobic bacteria (Ding et al.,
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2024). An anaerobic cationic polymer (HQRB-SS-Dex) containing
the photosensitizer rose Bengal (RB) and dextran, functions through
both type I and type II mechanisms. The positively charged
quaternary ammonium salts and dextran improved the
photosensitizer’s surface adhesion and permeability to bacterial
biofilms, particularly against anaerobic periodontal pathogens.
The introduction of disulfide bonds significantly improved the
biosafety of this complex, making it a promising candidate for
clinical treatment of periodontal infections (Qian et al., 2023).

Photothermal therapy (PTT) is a hyperthermic treatment that
utilizes near-infrared (NIR) light absorbers to generate heat,
effectively killing bacteria through laser-induced temperature
elevation (Li et al., 2020). The antimicrobial mechanisms of PTT
include: (1) the conversion of absorbed light energy into thermal

energy by nanomaterials, which rapidly raise the temperature and
create a localized high-temperature environment; and (2) the high
temperature increasing bacterial cell membrane permeability and
directly damaging the bacterial cell wall, facilitating the penetration
of antimicrobial drugs or photosensitizers, and leading to cellular
content leakage. By designing nanomaterials with specific binding
properties to the bacterial surface, PTT enhances therapeutic
efficacy while minimizing host cell damage. Moreover, PTT may
synergize with antimicrobial agents by promoting immune cell
infiltration through thermal effects, thereby boosting the host
immune response. Due to its physical mode of action, PTT
presents a reduced risk of bacterial resistance, positioning it as a
promising antimicrobial strategy, particularly against drug-
resistant strains.

FIGURE 4
(A) Schematic illustration for the preparation and the anti-periodontitis mechanism of abalone-inspired microparticles. (B) Confocal images of the
plaque biofilms stained with SYTO-9 and PI after various treatments. (C) The quantitative analysis of fluorescent images in (B) through Fiji. (D) The
quantitative analysis of colony formation. (n = 3. ***p < 0.001). (E) The quantitative analysis of CEJ-ABC. (n = 3. **p < 0.01, *p < 0.05) (Song et al., 2022).
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Zhang et al. developed an innovative nano-antibiotic delivery
system that integrates gold nanocages (GNCs) with two
temperature-sensitive components: phase change materials
(PCMs) and the heat-sensitive polymer poly
(N-isopropylacrylamide-co-bis-diethylaminomethyl methacrylate)
(PND). This hybrid system formed a novel, light-triggered
antibiotic platform, TC-PCM@GNC-PND. The heat-responsive
properties of GNCs enable in situ formation of injectable
hydrogels, enhancing local retention of tetracyclines (TCs) after
their release at the infection site. Furthermore, the incorporation of
positively charged tertiary amine groups in the PND facilitates
targeted delivery to negatively charged bacterial surfaces. The
efficient photothermal conversion of GNCs induced bacterial
damage through heat-mediated membrane disruption and
protein denaturation under near-infrared (NIR) irradiation,
demonstrating potent antimicrobial activity. This process also
triggered phase transitions in the PCM and contraction of the
PND, providing precise control over the on-demand release of
TCs. In vitro and in vivo studies confirmed the platform’s high
bactericidal efficacy and low toxicity, offering valuable insights for
the design of new antimicrobial materials (Zhang et al., 2024).

Sonodynamic therapy (SDT) employs ultrasound (US) to
activate reactive oxygen species (ROS) generated by acoustic
sensitizers, producing toxic effects on a broad spectrum of
bacteria. This non-invasive technique offers deep tissue
penetration, excellent time precision, and avoids the development
of bacterial resistance. A novel acoustic sensitizer was developed by
incorporating titanium dioxide (TiO2) onto dendritic mesoporous
silica nanoparticles (DLMSNs), reinforcing the structure with silver
(DT-Ag) and modifying it with quaternary chitosan (DT-Ag-CS).
Upon returning to the ground state, TiO2 transfers energy to oxygen
and water, generating ROS that serve as antimicrobial agents.
Additionally, the collapse of cavitation bubbles produced
localized high temperatures, promoting water pyrolysis and
generating more hydroxyl radicals (Xin et al., 2023). This
mechanism enhanced the antimicrobial efficacy of the sensitizer.
Furthermore, the novel acoustic sensitizer TPP-TeV, a combination
of tetraphenylporphyrin and telluric violet alkaloids, produced a
substantial number of cationic radicals and ROS through electron
transfer under ultrasonic radiation. This effectively killed anaerobic
P. gingivalis, improving the local periodontal microbial environment
and offering a promising new approach for SDT in the treatment of
periodontitis.

The bacterial antioxidant system maintains the balance of ROS
levels. When ROS production surpasses the scavenging capacity,
oxidative stress ensues, potentially damaging cell membranes and
proteins (Redza-Dutordoir and Averill-Bates, 2016). In some cases,
dynamic regulation of ROS is essential to preserve physiologically
necessary ROS while eliminating cytotoxic ones. For example, on-
demand regulation of ROS can be achieved by modulating the
surface state of carbon dots, allowing for efficient and precise
treatment of chronic inflammation and infection (Nie et al.,
2024). As a traditional antimicrobial agent, copper’s contact-
killing mechanism plays a critical role in its antimicrobial effect,
disrupting bacterial cell membranes. Furthermore, exposure to high
concentrations of copper surfaces results in copper ions penetrating
the membrane, where they rapidly kill bacteria by impairing
respiratory activity and DNA integrity—causing DNA

fragmentation and inhibiting respiration (Portelinha et al., 2021;
Mahmoudi et al., 2022; Xue et al., 2023). The novel TM/BHT/CuTA
hydrogel system integrated antioxidant properties with the
antimicrobial activity of tannin-ligated copper nanosheets. This
system efficiently delivered therapeutics to inflamed periodontal
areas through electrostatic adsorption and physical adhesion. The
intelligent release mechanism endowed the material with multiple
ROS-scavenging capabilities and robust antimicrobial properties,
showing great potential for periodontal treatments (Xinyu et al.,
2023). In addition to its direct antimicrobial effects, copper ions
generated harmful hydroxyl radicals through a Fenton-like reaction.
ROS production not only covalently damages biomolecules but also
depletes bacterial antioxidants. To enhance efficacy, amino groups
were introduced into mesoporous silica (MSN)-coated citrate-
grafted copper sulfide (CuS) nanoparticles (CuS@MSN),
imparting a positive charge. These nanoparticles then interacted
electrostatically with sulfated chitosan (SCS) to form CuS@MSN-
SCS nanoparticles. Cu2+-mediated activation of the ROS signaling
pathway enabled efficient bacterial eradication. The initiation of
oxidative stress within Fusobacterium nucleatum—including DNA
damage, protein oxidation, and lipid peroxidation—induced
bacterial apoptosis and biofilm inhibition (Chen et al., 2024).

Nitric oxide (NO) plays a pivotal antimicrobial role in
organisms, primarily through the generation of nitroso
compounds and the induction of oxidative stress. These reactions
disrupt bacterial functions while protecting host cell membranes.
Notably, low concentrations of NO, which are not toxic to bacteria,
effectively prevent biofilm formation and depolymerize established
biofilms via cell signaling mechanisms. Moreover, macromolecule-
based NO release systems exhibit superior antimicrobial effects due
to enhanced NO loading and stronger binding affinity to bacteria.
Under aerobic conditions, NO release significantly boosted the anti-
biofilm activity of hyperbranched polymers. This enhancement is
evident not only in reduced biofilm metabolic activity but also in the
effective killing of bacteria isolated from the biofilm. NO’s excellent
aqueous solubility, coupled with its dose-dependent anti-biofilm
properties, presents the potential for incorporation into oral rinses,
gels, or ointments, opening new avenues for the treatment of oral
diseases (Yang et al., 2020).

2.3 Synergistic antibacterial effect

Single antimicrobial mechanism has a certain inhibitory effect
against bacteria, but for multiple mechanisms synergistic
antimicrobial can overcome the shortcomings of single
antimicrobial to achieve more efficient antimicrobial effect. The
synergistic antimicrobial action of bacterial membrane disruption
and oxidative stress mechanisms against different bacterial targets
not only increases the antimicrobial spectrum, but also prolongs the
duration of action and reduces the likelihood of bacterial target
escape (Hu et al., 2022).

Porphyromonas gingivalis acquires essential iron and heme from
hemoglobin through hemagglutinin-mediated erythrocyte
aggregation and protease hydrolysis, both crucial for its growth
and virulence. Some heme is degraded by P. gingivalis proteases and
transported to the bacteria via HmuR or HmuY receptors, while the
excess accumulates on the bacterial surface. This excess heme
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contributes to the bacterium’s oxidative stress resistance through its
peroxidase activity (Cao et al., 2024; Olczak et al., 2005; Aleksijević
et al., 2022). To exploit this mechanism of adhesion to erythrocytes

and heme utilization, Tang et al. engineered GLR (an erythrocyte
membrane liposome loaded with gallium porphyrin) nanovesicles
mimicking erythrocytes, loaded with gallium porphyrin to target the

FIGURE 5
(A) GLR combined with Porphyromonas gingivalis and was cleaved, loading gallium porphyrin resulted in bacterial death through photodynamic
therapy as well as disruption of bacterial metabolism, weakening bacterial invasion of epithelial cells. (B) SEM image of Porphyromonas gingivalis
adhesion with RBCs and illustration of GLR. (C) Comparison of the antibacterial effect of GLR against Porphyromonas gingivalis. Under different
treatments and relative quantification of the area of human subgingival biofilm residue. (D) SEM images of Porphyromonas gingivalis under different
treatments. (E)Quantification of the distance of periodontal bone resorption (from the alveolar crest to the enamel-osteum junction) after periodontitis
treatment in rats (Tang et al., 2024). Copyright © 2024 American Chemical Society.
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bacteria. Gallium ions from GLR disrupted bacterial metabolism,
while surface-deposited porphyrins generate ROS through
photodynamic therapy. This results in a synergistic antimicrobial
effect both inside and outside the bacterium through distinct
mechanisms (Figure 5A). Additionally, the increased sensitivity
to oxygen enhanced antimicrobial effects. SEM revealed that P.
gingivalis exhibited stronger adhesion to erythrocytes (Figure 5B).
Treatments of P. gingivalis with this material maintained robusted
antimicrobial efficacy even at low hydrogen peroxide
concentrations, significantly reducing bacterial resistance to
oxidative stress. The combination of GLR and photoirradiation
(Hv) demonstrated a synergistic antimicrobial effect, effectively
eliminating both suspended bacteria and biofilms (Figure 5C).
SEM images confirmed the disruption of the bacterial membrane
structure by GLR (Figure 5D). In animal studies, the treated rats
exhibited a significant reduction in bone resorption, confirming the
in vivo antimicrobial efficacy and the practical application potential
of this approach (Figure 5E) (Tang et al., 2024).

The combination of bacterial membrane disruption, oxidative
stress, and antimicrobial mechanisms exhibited enhanced
antibacterial and anti-biofilm effects. Surfactin, an amphiphilic
biosurfactant derived from Bacillus subtilis, contains a cyclic
heptapeptide and β-hydroxy fatty acid structure. Nanoparticles
loaded with various concentrations of surfactin inhibited
periodontal pathogens and oral bacteria by modifying bacterial
membrane hydrophobicity and inducing oxidative stress
(Johnson et al., 2020; Johnson et al., 2021). Amphiphilic cationic
polymers with guanidine groups readily interact with proteins,
nucleic acids, and phospholipids, facilitating deep penetration
and efficient bacterial adhesion. A charge reversal strategy
temporarily neutralized the positive charge of these polymers to
minimize toxicity, while the polymer’s acid-responsive release of the
guanidine group reactivates its antimicrobial function when
accumulated in biofilms. Upon near-infrared laser irradiation,
photothermal agents (CS) encapsulated in the polymer generate
heat, effectively eliminating bacterial biofilms.

Similarly, combining various pathways to generate oxidative
stress has a more than twofold synergistic effect. Novel Bi2 S3/Cu-
TCPP Z-type nanocomposites exhibited superior light absorption
and efficient electron-hole separation. Theoretical calculations
showed that the heterogeneous structure of Bi2 S3/Cu-TCPP
facilitates the adsorption of oxygen molecules and hydroxyl
radicals at its interface, enhancing ROS generation. PTT with
Bi2S3 nanoparticles promoted Cu2+ ion release, augmenting the
chemodynamic therapy (CDT) effect. Moreover, released Cu2+

ions deplete intracellular glutathione, weakening the bacterial
antioxidant defense. The combination of PDT/PTT/CDT
synergistically enhanced antimicrobial activity against periodontal
pathogens and promotes biofilm eradication (Kong et al., 2023). By
leveraging the catalytic effects of nano-enzymes and the
photosensitization of self-oxygenating PDT materials, Sun et al.
developed hybrid nanoplatforms that selectively target anaerobic
bacteria, demonstrating exceptional antimicrobial activity and
therapeutic selectivity. Additionally, the MnO2 nanolayer was
modified to provide a continuous oxygen supply, addressing the
challenges posed by the anaerobic microenvironment. This
modification alleviated the hypoxic conditions in periodontal
pockets and boosts the production of reactive oxygen species

(ROS), significantly enhancing the therapeutic efficacy of PDT
(Sun et al., 2021).

2.4 Other strategies

Embelin (Emb), a plant-derived compound, was successfully
released in a controlled manner using a carboxymethyl chitosan
oxidized dextran (CMCS-OD) hydrogel as a drug carrier. This was
achieved through a dual dynamic network formed by ligand and
Schiff base bonds. Molecular docking studies revealed that Emb
interacts with efflux pump proteins, inhibiting their function by
hydrogen bonding to their active sites. This interaction reduced the
efflux of antimicrobial drugs, thereby influencing bacterial DNA
gyrase/topoisomerases. Furthermore, Emb was shown to disrupt
bacterial quorum sensing (QS), inhibiting the synthesis of virulence
factors and biofilm formation. This reduced bacterial pathogenicity
and enhanced the efficacy of antimicrobial drugs, potentially
advancing a targeted antimicrobial strategy for the treatment of
periodontitis (Cai et al., 2024a).

Bacteria within biofilms are organized in a structured
extracellular matrix and interact through quorum sensing (QS)
mechanisms. Intercellular communication regulates bacterial
behavior and plays a pivotal role in biofilm formation (Bodelón
et al., 2016; Su et al., 2023). Co-polymerization among pathogenic
bacteria disturb the oral microbiota’s physiological balance, and the
proliferation of biofilms is a significant contributor to microbiota
dysbiosis. To restore ecological balance, cationic dextran was utilized
to induce disruptions in the extracellular polymeric substances
(EPS) matrix, promoting phase separation within 2 h and
disrupting the matrix’s structural integrity (Li et al., 2023).
Furazone C-30 acts as a disruptor of bacterial communication.
When combined with Ca2+-coated PLGA particles and PBMP
polymers, a novel PLGA/PBMP particle was developed. The
sustained release of furazone C-30 from this particle effectively
prevented biofilm formation, offering a promising strategy for
preventing bacterial infections in periodontitis (Kang et al., 2019).

Probiotics offer a promising approach to address biofilm
ecological dysregulation, with their antimicrobial action
attributed to direct competition with pathogens for nutrients and
adhesion surfaces. Beneficial strains isolated from the oral
microbiota of healthy individuals were screened via genome
sequencing for genes linked to antimicrobial and
immunomodulatory activities, virulence factors, and antibiotic
resistance transfer. The selected probiotics target specific
periodontal pathogens without exhibiting cytotoxicity (Grilc
et al., 2023). The application of oxygen to periodontal tissues
exerts a toxic effect on anaerobic pathogens, significantly
reducing bacterial colonization in both floating cultures and
biofilms. Importantly, this process does not induce side effects or
resistance. Oxygen also plays a critical role in energy production and
cellular metabolism. Therefore, moderate oxygenation not only
inhibits the growth of anaerobic bacteria but also stimulates
angiogenesis, cell proliferation, collagen synthesis, and ultimately,
periodontal regeneration. Ming et al. developed a biocompatible,
oxygen-releasing thermosensitive hydrogel encapsulating small
extracellular vesicles (sEVs) and calcium peroxide nanoparticles
secreted by bone marrow mesenchymal stem cells (BMMSCs).
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This system enabled controlled release of sEVs and oxygen,
effectively inhibiting the growth of anaerobic periodontal
bacteria, alleviating anaerobic infections in periodontal pockets,
and promoting the regeneration of periodontal defects (Ming
et al., 2024).

3 Conclusions and future perspectives

This review examined polymer-based antibacterial strategies for
treating periodontitis. By leveraging various antibacterial
mechanisms—either individually or in combination—these
strategies reduce the risk of drug resistance, providing insights
for the development of future innovative therapies. While
polymer-based antimicrobial therapeutics show significant
potential in laboratory settings, their clinical efficacy remains to
be fully validated. This step is crucial for optimizing and advancing
novel therapeutic strategies.

Currently, most antimicrobial treatments for periodontitis focus on
eradicating all bacteria within periodontal tissues. However, certain
beneficial bacteria, such as lactobacilli and specific streptococci, can
counteract or inhibit periodontal disease promoters (Wang et al., 2022).
Therefore, developing targeted nanosystems or biomimetic strategies
with selective antimicrobial effects is critical. These strategies must
protect beneficial flora and normal tissue cells from harm. Given the
complex interactions between microbial communities and the immune
system, future antimicrobial therapies using nano-delivery systems
should aim to restore the oral microbiota’s homeostasis rather than
eliminate all microorganisms. Similarly, while current treatments focus
on generating ROS to induce oxidative damage, excessive ROS
accumulation contributes to periodontal tissue damage. Moderate
ROS levels, however, activate c-Jun N-terminal kinase, which in turn
activates the transcription factor AP-1 and anti-apoptotic genes, aiding
cell survival (Mittal et al., 2014; Tan and Suda, 2018). Thus, maintaining
low ROS levels in periodontal tissues is vital for promoting tissue
regeneration and optimizing antimicrobial efficacy.

Innovative approaches for periodontitis treatment are advancing
rapidly, although most remain in preclinical stages. In vitro and ex
vivo models do not fully replicate the complexity of human
periodontitis. Combining polymers with drug delivery systems
can extend drug residence time in the periodontal pocket and
increase local drug concentrations, offering a promising route for
clinical application. As effective adjunctive periodontitis therapies,
treatments such as photodynamic photothermal are expected to
improve periodontal health indicators and reduce the risk of drug
resistance when combined with routine periodontal scaling in the
clinic, thus creating a more comfortable and convenient

periodontitis diagnosis and treatment process (Joshi et al., 2020).
Currently, differences in experimental design such as different
photosensitizers and laser wavelengths can lead to differences in
the clinical indicators of the samples, and there is a need to further
standardize the parameters and treatment specifications in order to
achieve controlled and visualized efficient diagnosis and treatment
(Chiang et al., 2020; Sukumar et al., 2020). Moreover, periodontitis is
often associated with a range of comorbidities, including diabetes
and hypertension (Bosi et al., 2013; Cai et al., 2024b). Therefore,
future antimicrobial therapeutic strategies must consider the
treatment of these comorbidities to ensure that new therapies are
effective for patients with conditions associated with periodontitis.
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