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Introduction: Cigarette smoking is a well-established risk factor for renal
dysfunction. Smoking associated with renal damage bears distinct
physiological correlations in conditions such as diabetic nephropathy and
obesity-induced glomerulopathy. However, the cellular and molecular basis of
such an association remains poorly understood. High mobility group box
1(HMGB1) is a highly conserved non-histone chromatin associated protein
that largely contributes to the pathogenesis of chronic inflammatory and
autoimmune diseases such as sepsis, atherosclerosis, and chronic kidney
diseases. Hence, the present study tested whether HMGB1 contributes to
nicotine-induced podocyte injury.

Methods and Results: Biochemical analysis showed that nicotine treatment
significantly increased the HMGB1 expression and release compared to
vehicle treated podocytes. However, prior treatment with glycyrrhizin (Gly), a
HMGB1 binder, abolished the nicotine-induced HMGB1 expression and release in
podocytes. Furthermore, immunofluorescent analysis showed that nicotine
treatment significantly decreased the expression of podocyte functional
proteins- podocin and nephrin as compared to control cells. However, prior
treatment with Gly attenuated the nicotine-induced nephrin and podocin
reduction. In addition, nicotine treatment significantly increased desmin
expression and cell permeability compared to vehicle treated podocytes.
However, prior treatment with Gly attenuated the nicotine-induced desmin
expression and cell permeability. Mechanistic elucidation revealed that
nicotine treatment augmented the expression of toll like receptor 4 (TLR4)
and pre-treatment with Gly abolished nicotine induced TLR4 upregulation.
Pharmacological inhibition of TLR4 with Resatorvid, a TLR4 specific inhibitor,
also attenuated nicotine induced podocyte damage.

Conclusion: HMGB1 is one of the important mediators of nicotine-induced
podocyte injury through TLR4 activation.
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1 Introduction

Cigarette smoking is a well-established cause for varied
physiological dysfunctions viz cancer, atherosclerosis,
thrombogenesis and vascular occlusion (Salonen and Salonen,
1993; United States. Dept. of Health and Human Services. et al.,
1983; Passarelli et al., 2016; Jacobs et al., 2015; Lv et al., 2024; Datta
et al., 2024a). In fact, cigarette smoking is responsible for close to
8 million mortalities globally every year- which also includes around
1.3 million non-smokers exposed to second-hand smoke
(Organization, 2024). Cigarette smoking induces sympathetic
stimulation, functional alterations in the endothelium, smooth
muscle cell proliferation and dysfunction of vascular tone
regulators- all of which play a significant role towards the onset
and progression of arterial damage (Cryer et al., 1976; Ross, 1993).
However, the exact mechanism involved remains largely unclear.

Studies over the years have suggested that cigarette smoking
contributes to significant hemodynamic alterations and culminates to
renal dysfunction (Franek et al., 1996; Mühlhauser, 1994). Meta-analysis
patient-based studies andmechanistic investigations reveal that cigarette
smoking is a significant risk factor that leads to both acute and chronic
kidney injury onset and worsens conditions viz diabetic nephropathy,
glomerulosclerosis, glomerulonephritis, and obesity associated
glomerulopathy over the long term (Ito et al., 2020; Ataka et al.,
2023; Wang et al., 2021; McDermott et al., 2020; Pesce et al., 2021;
Liao et al., 2019; Jaimes et al., 2021; Gündoğdu and Anaforoğlu, 2022).
Cigarette smoke is an aerosol comprising of both vapour and particulate
phase materials (Smith and Fischer, 2001; Thielen et al., 2008;
Borgerding and Klus, 2005; Osborne et al., 1956). Vapor phase
constituents chiefly include carbon monoxide, acetaldehyde,
formaldehyde, and nitrogen oxides (Moldoveanu and Charles, 2007;
Pang and Lewis, 2011). Nicotine, biologically one of the most stable and
active components of the particulate phase, is central to most of the
pathophysiological dysfunctions associated with cigarette smoking
(Benowitz and Burbank, 2016; West, 2017; Schweitzer et al., 2015).
Active or passive forms of nicotine exposure enhances renal oxidative
stress through mitochondrial reactive oxygen species (ROS)
upregulation, transcriptional activation of the pro-apoptotic and pro-
oxidant p66shc in renal proximal tubule cells, and
NLRP3 inflammasome activation (Arany et al., 2016; Wu et al., 2018;
Singh et al., 2019a; Wu et al., 2020; Datta et al., 2024b). Oxidative stress
drives inflammatory cascades and renal fibrosis and culminates to
chronic kidney injury and end-stage renal diseases (ESRD) (Arany
et al., 2016; Wu et al., 2018; Singh et al., 2019a; Ramalingam et al.,
2019; Akkoyun and Karadeniz, 2016; Harwani et al., 2016; Zheng et al.,
2020; Mishra et al., 2015; Jha et al., 2018; Mayyas and Alzoubi, 2019).
Although nicotine has been identified as a major risk factor for the onset
and progression of CKI, clear mechanistic understanding of nicotine
induced kidney damage remains largely unclear.

High Mobility Group Box 1 (HMGB1) is a highly conserved
non-histone chromatin-associated protein widely recognized for its
regulatory impact on vital cellular processes like autophagy,
apoptosis, and cell survival (Datta et al., 2024a; Narumi et al.,
2015; Tang et al., 2010a; Singh et al., 2019b). HMGB1 exhibits
dual functionality based upon its localization- as a non-histone
protein in the nucleus and as a prototypic damage associated
molecular pattern (DAMP) molecule upon extracellular release
(Gazzar et al., 2009; Yu and Spring, 1977; Zhang et al., 2019;

Andersson et al., 2018). Upon extracellular release,
HMGB1 orchestrates inflammatory cascades, immunological
responses and drives conditions viz cancer, neurodegeneration,
and cardiovascular complications (Tang et al., 2010b; Festoff
et al., 2016; Huang et al., 2016). Pathophysiological insights
reveal that HMGB1 also plays a significant role in the onset and
progression of kidney damage (Good et al., 2015; Ito et al., 2007).
Extracellular HMGB1 drives cellular damage and inflammatory
cascades in renal ischemic reperfusion injury (IRI) and plays a
pivotal role in acute kidney injury (AKI) onset via Tumor Necrosis
Factor (TNF)-α/HMGB1 inflammatory signalling (Wu et al., 2010;
Wang et al., 2020). Hence, in the current study we tested whether
HMGB1 mediates nicotine-induced podocyte injury.

2 Materials and methods

2.1 Cell culture

A conditionally immortalized murine podocyte cell line (Division
of Nephrology, Department of Medicine, Mount Sinai School of
Medicine, NY, United States) was cultured undifferentiated with
10 U/mL recombinant mouse interferon-γ at 33°C on collagen
I-coated flasks in RPMI-1640 media (Thermo Fisher Scientific,
United States) containing 10% foetal bovine serum (R&D Systems,
United States), 100 U/mL penicillin and 100 mg/mL streptomycin (Life
Technologies Corporation, NY, United States). The podocytes were
allowed to differentiate at 37°C for 10–14 days without interferon–γ.
These differentiated podocytes were subsequently utilized for the
experiments (Koka et al., 2019). Podocytes were pretreated with
Glycyrrhizin (Gly, 120 μM) (Tokyo Chemical Industry Co. Ltd.,
Tokyo, Japan; dissolved in water for 30 min) (Mollica et al., 2007;
Palumbo et al., 2004) or Resatorvid (TAK-242; 100 nM, Med Chem
Express; United States; dissolved in dimethyl sulfoxide for 15 min)
(Kashani et al., 2020; Kashani et al., 2019; Matsunaga et al., 2011) prior
to nicotine treatment for overnight (8 μM; dissolved in water) (Singh
et al., 2019a).

2.2 Immunofluorescence staining

The podocytes were grown on eight-well chamber slides (Thermo
Fisher Scientific, United States) and treated as experimentally designed.
The cells were then fixed with 4% paraformaldehyde for 15 min. Cells
were then washed in phosphate-buffer saline (PBS) followed by
blocking with 1% bovine serum albumin (BSA) for 1 h at room
temperature. This was followed by primary antibody incubation at
4°C overnight against podocin (1:200, Sigma-Aldrich, United States;
catalogue number P0372), desmin (1:200, Abcam, Cambridge, CA,
United States; catalogue number ab15200), HMGB1 (1:200, Abcam,
Cambridge, CA, United States; catalogue number ab18256) and
nephrin (1:200; Santa Cruz Biotechnology, Inc., United States;
catalogue number sc-377246). Subsequently, the slides were
incubated at room temperature with Alexa Fluor 555-labeled
secondary antibody (1:500, Invitrogen; catalogue numbers
A32732 and A-31570) for 1 h. The slides were washed with PBS
and mounted with DAPI containing mounting medium (Vector
Laboratories, Inc., United States). The slides were sequentially
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scanned and imaged using confocal microscopy (Leica SP8 STED
Confocal Microscope). ImageJ software was used for the
quantification of mean fluorescence intensity of the images
developed and statistical analysis was done using GraphPad Prism 9.2.0.

2.3 Extracellular HMGB1 quantification

The cultured murine podocytes were treated with nicotine with
and without Gly (120 µM) overnight. The supernatants were
collected and the concentration of the released extracellular
HMGB1 was measured using commercial enzyme-linked
immunosorbent assay (ELISA) kit (MyBioSource, San Diego, CA,
United States) as per the manufacturer’s instructions.

2.4 Cell permeability assay

The monolayer permeability of podocytes in culture was measured
according to previously optimized method (Boini et al., 2018; Boini
et al., 2010). In summary, the podocytes were seeded in the upper
chambers of 0.4 μm polycarbonate trans-well filters of a 24-well
filtration microplate (Corning Inc., United States). After optimum
confluence, the culture medium was replaced with fresh serum free
RPMI 1640 media in presence of nicotine (8 μM) with or without Gly
(30 min pretreatment) or Resatorvid (15 min pretreatment) and
incubated overnight. Subsequently, the serum free media was
discarded, fresh phenol red-free RPMI-1640 with 70 kDa fluorescein
isothiocyanate (FITC)-dextran (2.5 μM) was added in the upper
chambers and incubated for 3 h. Then, the filtration microplate was
removed and themedium in the lower compartment was collected. The
fluorescence intensity was measured in a spectrofluorometer (BioTek
Instruments, Inc., Winooski, VT, United States) at 494 nm excitation
and 521 nm emission wavelengths. The relative permeable fluorescence
intensity was used as a measure of cell permeability.

2.5 Western blot

After being treated as experimentally designed, the cultured
podocytes were washed with ice-cold PBS twice followed by
homogenization in cell lysis buffer (BioVision, United States). After
homogenization, they were centrifuged at 1,500 × g for 15 min at 4°C.
The supernatants were collected and stored at −80°C until use. Cell
homogenates were denatured with reducing Laemmli sodium dodecyl
sulphate (SDS)-sample buffer and boiled for 5 min at 95°C.
Homogenates were run on SDS-PAGE gel, transferred into a
polyvinylidene difluoride (PVDF) membrane (Thermo Fisher
Scientific, United States), and blocked with 5% BSA. The membranes
were probed with primary antibodies for podocin (1:1000, Sigma-
Aldrich, United States; catalogue number P0372), TLR4 (1:1000,
Santa Cruz Biotechnology, Inc., United States; catalogue number sc-
293072), RAGE (1:1000; Sigma-Aldrich, United States; catalogue
number R5278), TLR2 (1:1000; Santa Cruz Biotechnology, Inc.,
United States; catalogue number sc-21759),and β-actin (1:1000; Santa
Cruz Biotechnology, Inc., United States; catalogue number sc-47778)
overnight at 4°C. The membranes were subsequently washed with 1X
tris-buffered saline (TBS) and 0.5% tween, incubated with secondary

antibody (catalogue numbers sc-2357 and 1706516) for 1 h, and then
conjugated to horseradish peroxidase (HRP)-labelled immunoglobulin
G. The bands on the membrane were enhanced by chemiluminescence.
The membranes were scanned using Licor chemiluminescence system.

2.6 Statistical analysis

Quantification data for all the experiments were analysed using
GraphPad Prism 9.2.0. Data was plotted as arithmetic mean ±
standard error of mean (SEM); n represents the number of
independent experiments. All data were tested for significance
using Student’s unpaired t-test or one way ANOVA followed by

FIGURE 1
Effect of Nicotine on expression and extracellular release of
HMGB1 in murine podocytes. Representative immunofluorescence
images (Scale- 50 µm) (A) and summarized quantification data (B)
depict HMGB1 expression in podocytes subjected to increasing
concentrations of nicotine. ELISA quantification data (C) shows
extracellular release pattern of HMGB1 as influenced by increasing
nicotine concentrations. The immunofluorescence images were
quantified using ImageJ software and statistical analysis of the
quantified data was accomplished using GraphPad Prism 9.2.0. *p <
0.05 vs. control group.
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a post hoc test. Results with p < 0.05 were considered statistically
significant.

3 Results

3.1 Nicotine upregulates expression and
extracellular release of HMGB1 in podocytes

To investigate the influence of nicotine on HMGB1 expression
and extracellular release in podocytes, the cultured murine
podocytes were treated with increasing concentrations of nicotine
for 16 h. Our results show that nicotine dose dependently increases
the HMGB1 expression (Figures 1A, B) and HMG1 extracellular
release (Figure 1C) in podocytes.

3.2 HMGB1 targeted inhibition attenuates
nicotine-induced HMGB1 expression and
extracellular localization

Studies over the years have identified Gly, obtained from
liquorice (Glycyrrhiza glabra) plant, as a potent inhibitor of
HMGB1 and associated pro-inflammatory cascades (Mollica
et al., 2007; Palumbo et al., 2004). Herein, we tested the influence
of Gly on nicotine-induced HMGB1 expression and extracellular
release. Our investigations reveal that Gly attenuates nicotine
induced increase in extracellular release of HMGB1 (Figure 2A).
Additionally, our immunofluorescence results show that Gly
attenuates nicotine induced HMGB1 expression upregulation
(Figures 2B, C). Together, these results confirm that
HMGB1 binder Gly interferes with and attenuates nicotine
induced increase in HMGB1 expression and extracellular release.

3.3 Nicotine mediates podocyte damage in a
HMGB1-dependent manner

Podocyte specific proteins podocin and nephrin are central to
podocyte function and are downregulated upon podocyte damage
(Saleem et al., 2002; Perico et al., 2016). In coherence with our
former investigations (Singh et al., 2019a), our immunofluorescence
analysis showed that nicotine-induced decrease in nephrin and
podocin expression (Figures 3A–D). However, pre-treatment with
Gly attenuated nicotine induced nephrin and podocin
downregulation (Figures 3A–D). In addition, our
immunofluorescence analysis studies also reveal that nicotine
upregulates cytoskeletal desmin levels and mediates podocyte
damage (Figures 3E, F). However, prior treatment with Gly
prevents nicotine induced desmin upregulation (Figures 3E, F).
Our results confirm that nicotine drives podocyte damage
through HMGB1 activation and prior attenuation of
HMGB1 extracellular release protects against nicotine induced
podocyte injury.

3.4 HMGB1 targeted inhibition attenuates
nicotine induced podocyte permeability

Next, in functional studies we tested how monolayer
permeability of podocytes was affected by nicotine in the
presence and absence of Gly. Nicotine augments podocyte
permeability relative to their control cells (Figure 4). However,
prior treatment with Gly attenuates nicotine induced podocyte
permeability upsurge (Figure 4). Our results confirm that
inhibition of HMGB1 nucleus/cytoplasm translocation prevents
nicotine associated upsurge in podocyte permeability.

3.5 HMGB1 inhibition prevents nicotine
induced toll-like receptor (TLR)
4 upregulation in podocytes

Further we tested the influence of nicotine on cultured
podocytes with and without HMGB1 inhibition. Our results

FIGURE 2
HMGB1 specific inhibition attenuates nicotine induced
HMGB1 expression and extracellular release. ELISA quantification data
(A), representative immunofluorescence images (Scale- 50 µm) (B)
and summarized quantification (C) outlines the influence of Gly
(HMGB1 specific binder) on nicotine induced extracellular release and
expression of HMGB1. The immunofluorescence images were
quantified using ImageJ software and statistical analysis of the
quantified data was accomplished using GraphPad Prism 9.2.0. *p <
0.05 vs. control group, #p < 0.05 vs. nicotine treated group; Ctrl-
Control, Gly- Glycyrrhizin, Nico- Nicotine.
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reveal that nicotine increases TLR4 expression in podocytes as
compared to the control counterparts (Figures 5A, B). However,
prior treatment with Gly attenuated nicotine induced
TLR4 upsurge (Figures 5A, B). We also tested for the influence
of nicotine on TLR2 and receptor for advanced glycation end
products (RAGE) in the presence and absence of Gly. TLR2 and
RAGE levels exhibited no significant difference for nicotine with or
without Gly relative to control podocytes (data not shown here).
These results outline that HMGB1 mediates nicotine induced
podocyte damage potentially via pro-inflammatory
TLR4 upregulation and HMGB1 inhibition attenuates nicotine-
induced TLR4 upregulation.

3.6 TLR4 pharmacological inhibition lessens
nicotine induced podocyte damage

In this study, we utilized Resatorvid (TAK-242), a small
molecule inhibitor of TLR4 (Kashani et al., 2020; Kashani
et al., 2019; Matsunaga et al., 2011), to investigate its influence
on nicotine-induced podocyte injury. Dose-dependent studies
were carried out to determine the optimum concentration of
Resatorvid for our experiments (data not shown). 100 nM was
found to be the optimum concentration for Resatorvid and
utilized for further experiments in this study. Our
immunofluorescence studies showed that Resatorvid protects

FIGURE 3
HMGB1 specific inhibition attenuates nicotine induced functional and structural damage in podocytes. Representative immunofluorescence images
(Scale- 50 µm) and summarized quantification outlines the influence of Gly on nephrin (A, B), podocin (C, D) and cytoskeletal desmin (E, F) expression in
podocytes treated with nicotine. ImageJ software was used for quantification of the immunofluorescence images and statistical analysis of the quantified
data was accomplished using GraphPad Prism 9.2.0. *p < 0.05 vs. control group, #p < 0.05 vs. nicotine treated group; Ctrl- Control, Gly-
Glycyrrhizin, Nico- Nicotine.
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against nicotine associated decrease in nephrin and podocin
levels (Figures 6A–D). Additionally, Resatorvid attenuates
nicotine induced desmin upregulation (Figures 6E, F).
Together, these results confirm that nicotine-induced podocyte
damage is mediated via TLR4 activation and TLR4 specific
inhibition protects against nicotine associated podocyte damage.

3.7 TLR4 specific inhibition attenuates
nicotine induced podocyte permeability

Furthermore, we tested the influence of Resatorvid mediated
TLR4 inhibition on nicotine induced upsurge in podocyte
permeability. Our results show that TLR4 inhibition protects against
nicotine associated rise in podocyte monolayer permeability (Figure 7).
These results further consolidate our understanding that
TLR4 inhibition protects against nicotine-induced podocyte damage.

4 Discussion

The goal of the present study is to determine whether HMGB1 is
implicated in the development of nicotine-induced podocyte injury.
Our findings demonstrate that nicotine upregulates TLR4 expression
andHMGB1 expression and extracellular release inmediating podocyte
injury. However, pre-treatment with HMGB1 inhibiting Gly attenuated
nicotine induced HMGB1 and TLR4 upregulation and associated
podocyte damage. To our understanding, this is the first study to
establish the pathophysiological role of HMGB1 in nicotine induced
podocyte injury, primarily via TLR4 upregulation.

Nicotine, one of the most stable and active components of cigarette
smoke, plays a pivotal role towards the onset and progression of
proteinuria, diabetic nephropathy and subsequently, CKD (Briganti
et al., 2002; Rossing et al., 2002; Hallan and Orth, 2011). Chronic
exposure to nicotine augments mitochondrial ROS levels and
exacerbates mitochondrial depolarization and renal cell apoptosis
and/or necrosis- chiefly through the inhibition of epidermal growth
factor receptor/Ras/Mitogen activated protein kinase (MAPK)/
Extracellular signal-regulated kinase (ERK) cascade (Arany et al.,
2010; Arany et al., 2008). Nicotine augments cyclooxygenase (COX)-
2 expression and ERK1/2 phosphorylation and mediates proliferation
and fibronectin generation in kidney-derived mesangial cells (Jaimes
et al., 2009; Hua et al., 2010). Nicotine induced oxidative stress
upregulates c-Jun N-terminal kinase (JNK) driven activator protein
(AP)-1 activation and attributes to the tubular effects of nicotine
(Arany et al., 2011). Renal function evaluation studies reveal that
nicotine significantly reduces renal plasma flow rate and augments
microalbuminuria risk (Gambaro et al., 1998; Gerstein et al., 2000).
Smoking associated nicotine exposure downregulates estimated
glomerular filtration rate (eGFR) and augments progression of
proteinuria and autosomal polycystic kidney disease (Ozkok et al.,
2013; Chase et al., 1991). However, exact mechanistic understanding
of nicotine induced renal damage remains poorly understood and largely
limits draggability in this regard.

High Mobility Group Box 1 (HMGB1) is a highly conserved non-
histone chromatin-associated protein across species (Gazzar et al., 2009;
Štros, 2010). It functions as a non-histone protein in the nucleus and as
an inducer of inflammatory cytokines upon extracellular release
(Gazzar et al., 2009; Andersson et al., 2018; Genschel and Modrich,
2009). Existing paradigm of studies show that HMGB1 is central to the
onset and progression of renal dysfunctions (Poston and Koyner, 2019;
Wang et al., 2004; Zhao et al., 2020). Studies outline that
HMGB1 exhibits a regulatory role in driving onset and progression
of secondary renal damage like glomerulonephritis, diabetic
nephropathy and lupus nephritis (Tachibana et al., 2019; Andersen
et al., 2014). Extracellularly releasedHMGB1 activatesNF-ƘB signalling

FIGURE 4
HMGB1 inhibition attenuates nicotine induced podocyte
permeability. The influence of Gly on nicotine induced podocyte
permeability was assessed using cell permeability assay. Statistical
analysis of the quantified data was accomplished using GraphPad
Prism 9.2.0. *p < 0.05 vs. control group, #p < 0.05 vs. nicotine
treated group.

FIGURE 5
HMGB1 inhibition attenuates nicotine induced Toll-like receptor
(TLR)-4 upregulation in podocytes. Western blot images (A) and
associated quantification data (B) summarize the influence of Gly on
nicotine induced TLR4 upregulation in podocytes. Western blot
band intensity values were obtained using Image Studio Lite 5.2 and
statistical analysis of the quantified data was done using GraphPad
Prism 9.2.0. *p < 0.05 vs. control group, #p < 0.05 vs. nicotine treated
group; Ctrl- Control, Gly- Glycyrrhizin, Nico- Nicotine, Nico + Gly-
Nicotine + Glycyrrhizin.
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and mediates release of pro-inflammatory cytokines like TNF-α,
Interleukin (IL)-6 and IL-1β in serum (Anders et al., 2018; Chen
et al., 2018; Shen et al., 2024). However, the pathophysiological role
of HMGB1 in smoking associated renal damage remains poorly
understood. In this regard, our present study confirms that nicotine
augments intracellular expression and extracellular release of
HMGB1 in murine podocytes in a dose-dependent manner. Prior
treatment with Glycyrrhizin (Gly), a HMGB1 binder (Mollica et al.,
2007; Palumbo et al., 2004), attenuates nicotine associated
HMGB1 upregulation in podocytes.

Podocin and Nephrin are podocyte specific proteins that are central
to structural and functional integrity maintenance in podocytes (Saleem
et al., 2002; Perico et al., 2016). Podocin governs structural organization

of the slit diaphragm via interaction with podocyte specific nephrin and
CD2 associated protein (CD2AP) (Saleem et al., 2002; Huber et al., 2003;
Schwarz et al., 2001). On the other hand, nephrin is central to podocyte
maturation during glomerular development and development of the slit
diaphragm junctional complex (Done et al., 2008; Li et al., 2015). Our
results confirm that nicotine downregulates podocin and nephrin
expression and mediates podocyte damage. However, pre-treatment
with HMGB1 binder Gly prevents nicotine induced podocin and
nephrin downregulation. Cytoskeletal protein desmin is central to
intermediate filament formation and maintenance of structural and
mechanical integrity of podocytes (Schell and Huber, 2017a; Nagata,
2016). Dysregulation of the podocyte cytoskeletal framework attributes
to anomalies chiefly foot process retraction and proteinuria (Fuchshofer

FIGURE 6
Pharmacological TLR4 inhibition lessens nicotine associated functional and structural injury in podocytes. Representative immunofluorescence
images (Scale- 50 µm) and summarized quantification outlines the influence of Resatorvid (TLR4 specific inhibitor) on nephrin (A, B), podocin (C, D) and
desmin (E, F) expression in podocytes treated with nicotine. ImageJ software was used for quantification of the immunofluorescence images and
statistical analysis of the quantified data was accomplished using GraphPad Prism 9.2.0. *p < 0.05 vs. control group, #p < 0.05 vs. nicotine treated
group; Ctrl- Control, Resa- Resatorvid (100 nM), Nico- Nicotine (8 µM).
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et al., 2011; Schell and Huber, 2017b). In fact, upregulation of desmin
constitutes one of the key features of podocyte injury associated
glomerular diseases (Zou et al., 2006). Our investigations show that
nicotine upregulates desmin expression in mediating podocyte damage.
However, prior Gly treatment attenuates nicotine induced desmin
upsurge. To further assess the functional significance of HMGB1 in
nicotine induced podocyte injury, we examined the impact of nicotine
on podocyte permeability with and without Gly treatment. Our results
showed that nicotine augments podocyte permeability to FITC-dextran
through HMGB1 activation and this was prevented via prior treatment
with HMGB1 inhibitor Gly. These findings postulate that nicotine
induced structural and functional decadence in podocytes potentially
occurs via HMGB1 activation.

TLR4, a member of pattern recognition receptor (PRR) family, is
central to intrarenal inflammatory response initiation- chiefly
characterized by increase in proinflammatory cytokine and
chemokine expression, neutrophil and monocyte influx and
urinary elimination of cytokines and chemokines (Ramesh and
Reeves, 2002; Ramesh et al., 2007; Ramesh and Reeves, 2003;
Majumder et al., 2024). The cytokine-like proinflammatory
properties of HMGB1 have been established to be primarily
TLR4 dependent (Kim et al., 2013). HMGB1, upon activation,
interacts with TLR4/myeloid differentiation protein 2 (MD2)
which engages coreceptor CD14 (Yang et al., 2015; He et al.,
2018). This, in turn, promotes the release of monocyte
chemoattractant protein (MCP)-1, IF-induced protein 10 (IP-10)
and macrophage inflammatory protein 1α (MIP-1α) (Nano et al.,
2013; Rabadi et al., 2012). Pharmacological inhibition of TLR4 and/or
associated pro-inflammatory signalling has been vastly undertaken to
better understand the signalling mechanisms driving kidney damage
(Niu et al., 2019; González-Guerrero et al., 2017; Shi et al., 2017).
Existing paradigm of studies establish a strong correlation between
HMGB1 activation and TLR4 signalling. However, it remains
unknown whether TLR4 signalling is involved in nicotine induced
renal damage. Our study confirms that nicotine upregulates
TLR4 levels and drives podocyte damage. However, prior
treatment with HMGB1 inhibiting Gly attenuates nicotine induced

TLR4 upregulation. These findings postulate that nicotine upregulates
TLR4 levels in podocytes potentially via HMGB1 activation. To
further validate our hypothesis, we advocated pharmacological
inhibition of TLR4 using Resatorvid to investigate nicotine-induced
podocyte damage from functional and structural perspectives.
Resatorvid mediated TLR4 inhibition recovers podocin and
nephrin downregulation induced by nicotine associated podocyte
damage. TLR4 inhibition also attenuates nicotine associated
upregulation of desmin expression and podocyte permeability.
Together, these findings confirm that HMGB1 activation and
extracellular release drives TLR4 signalling and mediates nicotine
induced podocyte injury.

In conclusion, our results show that HMGB1 is an important
mediator of nicotine induced podocyte damage potentially via
TLR4 activation. The amelioration of podocyte injury by
inhibition of HMGB1 during nicotine stimulation implicates the
pivotal role of HMGB1 in smoking-induced podocyte injury.
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