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Cardiovascular disease remains the leading cause of mortality, with atrial
fibrillation emerging as one of the most common conditions encountered in
clinical practice. However, its underlying mechanisms remain poorly understood,
prompting ongoing research. Ferroptosis, a recently discovered form of
regulated cell death characterized by lipid peroxidation and disrupted cellular
redox balance leading to cell death due to iron overload, has attracted significant
attention. Since its identification, ferroptosis has been extensively studied in
various contexts, including cancer, stroke, myocardial ischemia/reperfusion
injury, and heart failure. Growing evidence suggests that ferroptosis may also
play a critical role in the onset and progression of atrial fibrillation, though
research in this area is still limited. This article provides a concise overview of
the potential mechanisms by which ferroptosis may contribute to the
pathogenesis of atrial fibrillation.
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1 Overview of ferroptosis

Iron is essential for numerous vital biological processes, including DNA synthesis,
transfer, and the production of enzymes critical for cellular cycles and biogenesis. As a
result, iron metabolism is a key biochemical process, tightly regulated by genetic
mechanisms. Within cells, iron primarily exists in heme, ferritin, and iron-sulfur
clusters in mitochondrial proteins. Iron regulatory proteins 1 and 2 (IRP1 and IRP2)
act as intracellular sensors, regulating iron transport and storage. Transferrin (TFR) is the
main protein responsible for iron uptake from the extracellular environment. Additionally,
ferritin plays a crucial role in sequestering free iron, thereby protecting cells from
ferroptosis.

Ferroptosis is a distinct form of cell death, different from apoptosis, characterized by
iron-dependent lipid peroxidation and non-apoptotic oxidative damage. It involves both
enzymatic mechanisms (mediated by lipoxygenases, LOXs) and non-enzymatic
mechanisms (via the Fenton reaction), leading to iron-driven lipid peroxidation. The
enzymatic pathway is primarily regulated by glutathione peroxidase 4 (GPX4), which
reduces lipid hydroperoxides to lipid alcohols, thereby preventing excessive lipid
peroxidation and ferroptosis. When phospholipid membranes rich in polyunsaturated
fatty acids (PUFAs) undergo excessive peroxidation due to Fe2+ activation, and antioxidant
defenses are overwhelmed, iron accumulates, triggering ferroptosis (Hassannia et al., 2019;
Conrad and Pratt, 2019). The presence of PUFAs in membranes enhances fluidity,
supporting cellular adaptation to external changes. A decrease in GPX4 levels promotes
ferroptosis. Studies have shown that reduced GPX4 expression and subsequent iron buildup
contribute to ferroptosis, a process implicated in various cardiovascular conditions,
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including myocardial infarction, ischemia/reperfusion injury, heart
failure, arrhythmias, and other heart diseases (Hong et al., 2022).

Several key steps in lipid oxidation contribute to the initiation of
ferroptosis. Initially, acyl-CoA synthetase long-chain family
member 4 (ACSL4) catalyzes the attachment of coenzyme A to
long-chain polyunsaturated fatty acids (PUFAs) within the
phospholipid membrane, activating them for subsequent
reactions. Additionally, PUFAs may undergo esterification by
lysophosphatidylcholine acyltransferase 3 (LPCAT3), further
modifying the lipid composition of the membrane.

Both ACSL4 and LPCAT3 are key regulators of lipid metabolism
and play a role in iron activation. Intracellular iron activation can
trigger membrane lipid peroxidation, which, in turn, initiates
ferroptosis. This peroxidation process leads to several detrimental
effects, including disrupted protein function, altered membrane
fluidity, increased membrane permeability, structural damage,
membrane rupture, cytotoxicity, and ultimately, ferroptotic cell
death. These events highlight the intricate relationship between
lipid metabolism, iron homeostasis, and the induction of
ferroptosis (Tang et al., 2021).

During ferroptosis, lipid peroxidation generates various
byproducts, including lipid hydroperoxides (LOOHs),
malondialdehyde (MDA), 4-hydroxynonenal (4-HNE), and other
reactive aldehydes (Tang et al., 2021). Mitochondria are a major
source of reactive oxygen species (ROS), which play a crucial role in
driving ferroptosis. Elevated ROS levels can lead to DNA damage,
protein denaturation, and lipid peroxidation.

ROS include singlet oxygen and three types of free radicals:
hydroxyl radical (OH−), superoxide anion (O2−), and hydrogen
peroxide (HO2·). Among these, OH− is the most chemically
reactive, generated through the Fenton reaction between Fe2+ and
hydrogen peroxide. This highly reactive hydroxyl radical directly
initiates non-enzymatic lipid peroxidation, a process
catalyzed by iron.

Iron ions can enhance the activity of enzymes involved in lipid
peroxidation and oxygen homeostasis, such as LOX and EGLN
proline hydroxylases. These enzymes contribute to lipid
peroxidation and the generation of reactive species. To
counteract iron-induced cellular damage, lipid antioxidants like
α-tocopherol or endostatin-1, along with iron chelators, can
effectively mitigate these harmful effects (Kotschi et al., 2022;
Zilka et al., 2017).

It is important to note that our understanding of ferroptosis and
its complex molecular mechanisms is still evolving, with ongoing
research shedding light on the intricate processes driving this form
of cell death.

Iron accumulation in the body can increase ROS production and
trigger inflammation (Masaldan et al., 2019). Free iron, which forms
the labile iron pool (LIP), is characterized by weak chelation, redox
activity, and its availability for the Fenton reaction (Jamnongkan
et al., 2017). LIP instability is primarily caused by increased iron
absorption, reduced storage capacity, ferritin degradation, or
transferrin dysfunction, all of which disrupt redox balance and
promote ferroptosis in myocardial cells (Lou et al., 2021).

Ferroptosis involves various organelles, including mitochondria,
lysosomes, and the endoplasmic reticulum. This form of cell death
can lead to the loss of specific leukocyte subsets, impairing their
immune functions, and may also affect non-leukocytic cells.

Different types of cell death release distinct damage-associated
molecular patterns (DAMPs), triggering varied immune-related
inflammatory responses. As a result, ferroptosis is considered an
immunogenic process (Minagawa et al., 2020).

Morphologically, ferroptotic cells exhibit compromised
membrane integrity, cytoplasmic swelling, preserved nuclear size,
altered electron density, and significant mitochondrial damage. This
includes rupture of the outer mitochondrial membrane, increased
membrane density, reduced mitochondrial volume, decreased
cristae in the inner membrane, and the absence of NADH.
Notably, ATP levels remain stable during ferroptosis, as this
process relies on ATP production, not caspase activation, for
initiation (Xu et al., 2019). Ferroptosis can also propagate to
adjacent cells in waves through an osmotic mechanism (Riegman
et al., 2020; Katikaneni et al., 2020).

2 Overview of atrial fibrillation

Atrial fibrillation (AF) is a common arrhythmia with a wide
range of contributing factors, including age, male gender, obesity,
genetics, lifestyle choices, metabolic syndrome, hypertension,
coronary artery disease, valvular heart disease, heart failure,
diabetes, hyperthyroidism, chronic kidney disease, and chronic
obstructive pulmonary disease (Schnabel et al., 2009; Wasmer
et al., 2017; Tomaszuk-Kazberuk et al., 2020). These conditions
often induce structural changes in the atria, such as atrial
enlargement, increased fibrosis, elevated epicardial adipose tissue,
autonomic nervous system dysfunction, systemic inflammation,
impaired myocardial contractile function, and alterations in
myocardial cell structure (Vlachos et al., 2016).

AF affects over 30 million people globally (Chugh et al., 2014),
representing approximately 2%–3.4% of the population (Zoni-
Berisso et al., 2014; Kjerpeseth et al., 2021; Williams et al., 2020).
In Europe, the prevalence is about 2.1%, with an annual incidence of
1.3 per 1,000 individuals. The economic burden of AF is
considerable, impacting individuals, families, and societies, with
annual treatment costs ranging from 450 to 3,000 euros per
patient (Williams et al., 2020).

In the United States, over five million individuals have AF, with a
prevalence of around 8% in those aged 65 and older (Colilla et al.,
2013; Piccini et al., 2012). Annual treatment costs range from
$2,000 to $14,200 per patient, contributing to a total expenditure
exceeding $28 billion annually (Dieleman et al., 2020). AF
significantly increases the risk of ischemic stroke, pulmonary
embolism, heart failure, and mortality (Alonso et al., 2021).
Patients with AF face a 50%–90% higher risk of mortality
compared to those without the condition, with female patients
potentially having a worse prognosis than males (Benjamin
et al., 1998).

AF is primarily classified by the duration of episodes.
Paroxysmal AF refers to episodes that resolve within 7 days,
while persistent and permanent AF require medical intervention
to manage or terminate the arrhythmia (Nattel, 2013). Treatment
options for AF include oral anticoagulants for stroke prevention and
surgical interventions. Significant progress has been made in the
management of AF, driven by advances in understanding its
mechanisms, pathophysiology, and surgical techniques. However,

Frontiers in Pharmacology frontiersin.org02

Fan et al. 10.3389/fphar.2025.1362060

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1362060


ongoing research is focused on determining whether these
treatments offer long-term survival benefits for AF patients.

AF is characterized by key features such as atrial enlargement,
myocardial cell hypertrophy, and increased extracellular matrix
content in the atrial myocardium. These changes facilitate the
formation of an electrical conduction loop that sustains the
arrhythmia (Pandit and Jalife, 2013). Atrial premature beats
often originate from the myocardial sleeve of the pulmonary
vein, triggering reentry and leading to AF (Khan, 2004). In
younger patients without structural heart abnormalities, rapid,
localized activity inducing pulmonary vein arrhythmia may be
the primary trigger for paroxysmal AF (Voigt et al., 2014). In
contrast, older patients are more likely to develop persistent or
permanent AF due to the combined effects of atrial tissue
remodeling and metabolic disorders (Lau et al., 2016; Platonov
et al., 2011).

Adverse cardiac remodeling, changes in ion channel expression
and function, electrical remodeling, autonomic nervous system
dysfunction, and disturbances in calcium homeostasis are well-
established contributors to the development and progression of
AF (Brunner et al., 2017; Guichard et al., 2020). Structural
changes can directly or indirectly lead to atrial electrical
abnormalities, triggering ectopic events that culminate in AF.
However, determining whether these structural changes are a
cause or consequence of AF remains challenging.

Key pathophysiological mechanisms include myocardial lipid
peroxidation, fibrosis, inflammation, oxidative stress, and
ferroptosis, all of which contribute to AF progression
(Protchenko et al., 2021; Tang et al., 2019). However, the precise
underlying pathogenesis is still under investigation, and no
consensus has yet been reached. Atrial fibrosis is an essential
feature of atrial structural remodeling, driven by factors that
stimulate fibroblast proliferation and differentiation into
myofibroblasts, resulting in excessive extracellular matrix (ECM)
production. The predominant components of this ECM are type I
and type III collagen, which contribute to the development of AF (Li
et al., 2021). This process leads to ultrastructural changes in the
heart, including widened vascular gaps and increased ECM
deposition.

Atrial fibrosis can be categorized into two main types: reparative
and reactive fibrosis. Reparative fibrosis occurs as a secondary
response to myocardial cell loss, such as after a myocardial
infarction. In contrast, reactive fibrosis is primarily associated
with cardiac inflammation and excessive pressure load. Based on
its location, reactive fibrosis can be further classified into interstitial
or perivascular fibrosis (Kong et al., 2014).

Fibrosis is essential for maintaining cardiac structural integrity
but disrupts normal electrical conduction. Fibroblasts and
myofibroblasts form gap junctions with myocardial cells via
Connexin proteins (Kohl and Gourdie, 2014; Ongstad and Kohl,
2016). However, their membrane potential is lower than that of
atrial myocardial cells, which reduces action potential conduction
velocity and maximum depolarization, slowing transverse but
accelerating longitudinal conduction (Nguyen et al., 2014). This
pathological coupling enhances automatic depolarization and
promotes reentry circuits, contributing to AF (Nattel, 2018).

This review will explore the potential role of ferroptosis in the
pathogenesis of AF.

3 Possible mechanisms of atrial
fibrillation caused by ferroptosis

Activation of the renin-angiotensin-aldosterone system (RAAS),
inflammation, oxidative stress, apoptosis, and autonomic imbalance
are interconnected factors that contribute to the persistence of AF
(Nattel et al., 2020; Van Wagoner and Chung, 2018). Ferroptosis, a
form of regulated cell death, has been observed in various cell types,
particularly in myocardial tissue under pathological conditions
(Zheng and Conrad, 2020). This article explores the role of
ferroptosis in AF pathogenesis, focusing on mitochondrial
dysfunction, oxidative stress, electrical remodeling disturbances,
ion channel dysfunction, autophagy, and other related
factors (Figure 1).

3.1 Ferroptosis and mitochondrial
dysfunction

The onset of AF is closely linked to myocardial dysfunction,
driven by electrophysiological abnormalities and disturbances in ion
exchange, which lead to electrical remodeling and arrhythmias
caused by ectopic pacing. Emerging research suggests a potential
connection between these electrical disturbances and mitochondrial
dysfunction (Muszyński and Bonda, 2021). Mitochondria, essential
for ATP production through the electron transport chain, are
particularly vulnerable to ferroptosis, an organelle-specific form
of cell death.

Cell membrane proteins regulate ion flux across the membrane,
orchestrating vital biochemical processes. During ferroptosis,
mitochondrial dysfunction disrupts ion gradients and membrane
potential, leading to altered cardiac electrical conduction and the
development of arrhythmias (Galaris et al., 2019). However, the
precise mechanisms behind these processes require further
investigation.

Mitochondria make up approximately 30% of the volume of
myocardial cells and are essential for energy production, supplying
about 90% of the energy required for cardiac contraction (Schaper
et al., 1985; Harris and Das, 1991). Mitochondrial dysfunction can
significantly impair both systolic and diastolic heart function.
Studies have shown that such dysfunction disrupts ATP
production, leading to the accumulation of ROS, which in turn
disturbs calcium homeostasis and membrane excitability in
myocardial cells, contributing to the development of AF (Clark
and Mach, 2017).

Peroxisome proliferator-activated receptor γ coactivator-1α
(PGC-1α) is a crucial nuclear transcription coactivator involved
in mitochondrial biogenesis, energy metabolism, and the regulation
of oxidative stress and inflammation (Chandrasekaran et al., 2015).
Inhibition of PGC-1α results in mitochondrial dysfunction,
oxidative stress, and intracellular calcium overload, ultimately
triggering AF (Sahin et al., 2011; Summermatter et al., 2013).
Patients with atrial fibrillation often show mitochondrial
alterations, including abnormal ATP levels, elevated
HSP60 expression, mitochondrial ATP depletion, reduced
respiration and membrane potential, and abnormal morphology.
These changes mirror those seen in other cardiac conditions such as
myocardial infarction, heart failure, dilated cardiomyopathy,
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ischemic heart disease, hypertensive heart disease, and diabetic
cardiomyopathy (Guzmán et al., 2014; Eirin et al., 2014).
Ferroptosis is marked by mitochondrial constriction, loss of
cristae, and outer membrane disruption (Kagan et al., 2020).
Irregular mitochondrial morphology involves fragmentation
(Chen et al., 2010), swelling, decreased density, cristae disarray
(Cogliati et al., 2013), and disintegration (Guzmán et al., 2014).
These structural changes impair mitochondrial respiratory function,
hinder ATP synthesis, and compromise cardiac contractility.
Additionally, prolonged mitochondrial calcium buffering delays
calcium uptake, further disrupting mitochondrial respiration
(Jeganathan et al., 2017; Wiersma et al., 2019).

Ferroptosis is induced through the mitochondrial voltage-
dependent anion channel, activation of mitogen-activated protein
kinase, and inhibition of the cystine/glutamate transporter (Xie
et al., 2016). Mitochondria are central to iron synthesis, utilization,
and degradation, thus maintaining iron homeostasis and supporting
both material and energy metabolism. They regulate iron sensitivity
across various metabolic pathways, with proteins such as ferritin,
mitochondrial ferritin 1/2, and NEET playing key roles in iron
regulation. Additionally, ASCF2 and CS are involved in
mitochondrial lipid metabolism, while glutamine and other
metabolic pathways are also influenced by mitochondrial function.
Therefore, understanding mitochondrial responses during ferroptosis
is crucial for clarifying its role in the initiation and progression of AF.

3.2 Ferroptosis and oxidative stress

Oxidative stress results from an imbalance between antioxidant
and oxidative systems, significantly affecting iron homeostasis. The

Fenton reaction is the primary source of oxidative stress in
ferroptosis (Shen et al., 2018; Wang et al., 2018).

A key feature of oxidative stress is the elevation of ROS, which
occurs when the body’s antioxidant defenses are insufficient to
neutralize oxidizing substances. This leads to the accumulation of
free radicals and other oxidative species, causing cellular damage.
Oxidative stress is a well-established factor in the onset and
progression of numerous diseases. Research shows that iron
overload promotes glutathione (GSH) depletion, ROS production,
lipid peroxidation, and the synthesis of ferroptosis markers such as
GPX4 and the cystine-glutamate antiporter (SLC7A11). It also
inhibits ACSL4 and reduces mitochondrial membrane potential
(MMP). Ferroptosis can exacerbate mitochondrial oxidative stress
through the NRF2-ARE pathway (Chen et al., 2022). Furthermore,
iron overload induces lipid peroxidation, mitochondrial ROS
production, and further decreases MMP.

MiR-23a-3p targets and regulates SLC7A11, promoting
oxidative stress and ferroptosis, which contribute to the
progression of AF (Liu et al., 2022). The key to mitigating
oxidative stress injury lies in upregulating antioxidant-related
genes and proteins, such as FTH1, GPX4, SLC7A11, and various
antioxidant enzymes, to restore redox homeostasis (Stockwell
et al., 2020).

GPX4 is a critical antioxidant enzyme that inhibits lipid
peroxidation and reduces ROS accumulation (Thomas et al.,
1990). When ROS levels rise or cystine levels decrease, cellular
GSH levels drop, impairing GPX4 activity and promoting
ferroptosis (Li et al., 2020a; Seiler et al., 2008). Studies have
identified a correlation between GPX4 variants, especially
rs713041, and cardiovascular diseases (Strauss et al., 2018;
Admoni et al., 2019). Additionally, GPX4 variants may be linked

FIGURE 1
Possible mechanisms of atrial fibrillation caused by ferroptosis. I. Ferroptosis leads to mitochondrial dysfunction, disrupting ion gradients and
membrane potential, ultimately altering cardiac electrical conduction and promoting arrhythmias; II. Oxidative stress results from an imbalance between
the antioxidant and oxidative systems, significantly impacting iron homeostasis; III. Electrical remodeling is characterized by SR calcium overload,
elevated cytosolic Ca2+ levels, reduced expression of slow inward calcium channels, increased rectifier potassium current, and altered expression of
junction proteins; IV. Ion channels are regulated by ferroptosis, influencing their functional activity; V. Autophagy plays a key role in ferritin degradation
and upregulation of TfR1 expression, increasing intracellular iron levels and promoting ferroptosis.
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to the onset of postoperative AF, along with changes in myocardial
GPX4 content and activity (Berdaweel et al., 2022). These
findings above indicate that ferroptosis could play a role in the
initiation and progression of AF, potentially serving as a
prognostic marker.

Mitochondrial aldehyde dehydrogenase (ALDH2) inhibits
ACSL4, a key enzyme in lipid peroxidation, thereby preventing
ferroptosis and improving cardiac systolic function (Zhu et al.,
2022a). Conversely, alcohol is a known risk factor for AF with
the ALDH2 heterozygous defect allele (*1/*2), who regularly
consume alcohol, are at increased risk of AF due to slower
alcohol metabolism and enhanced ferroptosis (Yamashita
et al., 2022).

3.3 Ferroptosis and electrical
remodeling disorder

The formation of arrhythmogenic lesions may be driven by
diastolic calcium leakage from the sarcoplasmic reticulum (SR),
caused by hyperphosphorylation of the ryanodine receptor (RyR).
This promotes delayed depolarization and triggers activity that
favors AF (Chan et al., 2019). Both reentry and rapid focal
activity contribute to frequent atrial depolarization and electrical
remodeling, characterized by reduced conduction velocity and a
shortened atrial refractory period, which sustain AF (Lenaerts et al.,
2009). Electrical remodeling is linked to SR calcium overload,
elevated cytoplasmic Ca2+ levels, reduced expression of inward
calcium channels, increased rectifier potassium current, and
altered connexin expression (Wang et al., 2017).

Excessive ethanol consumption significantly elevates
ferroptosis-promoting proteins (e.g., PTGS2, ACSL4, P53) and
reduces anti-ferroptosis proteins (e.g., GPX4, FTH1) in the
atrium, leading to substantial atrial damage. This damage
includes increased susceptibility to AF, impaired atrial
conduction, atrial enlargement, and heightened fibrosis markers
(Yu et al., 2023). The SIRT1-Nrf2-HO-1 signaling pathway may
provide therapeutic insights by inhibiting ferroptosis and protecting
the atrium from injury.

3.4 Ferroptosis and ion channel

Recent research on ferroptosis has highlighted its regulatory
effects on ion channels, which play a critical role in the development
of AF. Cardiac rhythm generation is closely linked to the functional
dynamics of ion channels.

During ferroptosis, lipid peroxides accumulate on the cell
membrane, increasing surface tension and activating Piezo1 and
TRP channels (Hirata et al., 2023). This lipid oxidation also
enhances the permeability of cations such as Na+ and Ca2+,
leading to their efflux from the cell. As a result, intracellular Na+

and Ca2+ concentrations rise, while K+ levels decrease. Additionally,
membrane lipid oxidation reduces the activity of Na+/K+-ATPase,
further disrupting monovalent cation gradients. This study
emphasizes the crucial role of altered cation permeability—mediated
by Piezo1, TRP channels, andNa+/K+-ATPase activity—in the initiation
of ferroptosis.

During episodes of atrial fibrillation, progressive atrial
enlargement is a key feature closely associated with atrial
mechanical overload. In human atrial fibroblasts, at least two
stretch-activated ion channels (SACs) are involved: Piezo1, a
non-selective cation channel activated directly by mechanical
stretch, and BKCa, a calcium-dependent, potassium-selective
channel (Emig et al., 2021). In individuals with non-persistent
atrial fibrillation, both the activity and expression of Piezo1 are
significantly increased, suggesting its predominant role over other
channels compared to sinus rhythm. In response to atrial
mechanical stimulation, BKCa activity rises as a secondary
response to Piezo1. In contrast, patients with persistent atrial
fibrillation exhibit a reduction in BKCa activity. Additionally, the
upregulation of TRP channels is implicated in both electrical and
structural cardiac remodeling. TRP channels, which are non-
selective cation channels with varying calcium permeability,
consist of six subtypes expressed in different cell types (Yue
et al., 2015). TRP channels contribute to endothelial cell
apoptosis and cardiac fibrosis through fibroblast differentiation,
playing a role in the onset and progression of various
cardiovascular diseases (Yue et al., 2011). Multiple TRP subtypes
have been shown to participate in atrial electrical remodeling in AF
patients, though through different mechanisms (Yue et al., 2015). A
study examining leukocyte TRP channels found significantly higher
expression in patients with nonvalvular AF compared to controls
(Düzen et al., 2017), suggesting that Piezo1 and TRP channels may
serve as critical targets for ferroptosis, promoting the onset and
progression of AF.

A study investigating sinoatrial node function in mice with
chronic iron overload found that inhibition of the Ca(V1.3) channel
initially reduced the density of L-type calcium currents (I(Ca,L)),
causing a rightward shift in the voltage activation curve of I(Ca,L)
(Rose et al., 2011). These changes led to a decrease in spontaneous
action potential generation in sinoatrial node cells, resulting in
bradycardia, prolonged PR intervals, cardiac blocks, and AF.

In conclusion, ferroptosis-induced modulation of ion channels
may contribute to the development of AF.

3.5 Ferroptosis and autophagy

The ferroptosis inducer elastin can trigger autophagy through
ROS generation. Autophagy plays a key role in regulating ferritin
degradation and TFR1 expression, leading to increased intracellular
iron levels and promoting ferroptosis (Park and Chung, 2019). This
process involves a range of autophagic proteins that facilitate the
degradation of damaged or excess cellular components. Double-
membrane vesicles encapsulate these components, which then fuse
with lysosomes for degradation (Klionsky, 2008; Yorimitsu and
Klionsky, 2005). Autophagy serves both as an essential biological
process, regulated by specific genes, and as a stress-responsive
survival mechanism that may also contribute to cell death (Liu
et al., 2013). Key autophagic proteins include BECN1 and light chain
3 β (LC3B). By engulfing ferritin through phagocytosis, autophagy
elevates intracellular free iron levels, further promoting ferroptosis
(Manz et al., 2016). Notably, the expression of BECN1 in valvular AF
may offer a promising therapeutic target for future treatments of AF
(Liu et al., 2021).
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In a study of patients with postoperative atrial fibrillation
(Garcia et al., 2012), significant accumulation of autophagic
vesicles and lipofuscin deposits was observed in atrial tissue.
Additionally, LC3B levels were reduced, indicating selective
damage during the autophagic process. These findings suggest
the presence of ultrastructural atrial remodeling associated with
autophagy-related damage.

Nuclear receptor coactivator 4 (NCOA4) interacts directly
with FTH1, facilitating the transport of ferritin to the
autophagosome for degradation. This process triggers
phagocytosis and ferritin breakdown, releasing large amounts of
free iron. The resulting increase in cytoplasmic Fe2+ enhances the
expression of exoflavin (SFXN1) on the mitochondrial membrane,
promoting the transfer of Fe2+ into mitochondria (Dowdle et al.,
2014; Bellelli et al., 2016). This leads to mitochondrial ROS
production and ferroptosis, contributing to cardiac damage (Li
et al., 2020b).

The IL-6/STAT3 signaling pathway regulates NCOA4-
mediated ferritin phagocytosis, promoting ferroptosis in
cardiomyocytes (Zhu et al., 2023). In a rapid atrial pacing
(RAP)-induced AF animal model, activation of the IL-6/
STAT3 pathway was observed in both peripheral blood and
liver (Yaegashi et al., 2016). This activation increases fibrinogen
expression, triggers the extrinsic prothrombin activation pathway,
and induces a hypercoagulable state in AF.

Additionally, under Paraquat exposure, Protein 1 containing the
Fun14 domain (FUNDC1)/JNK-mediated ferroptosis may
contribute to cardiac and mitochondrial damage (Peng et al.,
2022). Phosphorylation of FUNDC1 at the Ser17 site activates
mitochondrial autophagy (Zhu et al., 2022b), a key process for
eliminating dysfunctional or excess mitochondria and maintaining
mitochondrial quality control (Pickles et al., 2018; Chang et al., 2021;
Sun et al., 2022). Previous studies have highlighted the significant
role of mitochondrial autophagy dysfunction in atrial muscle cells of
patients with AF (Bravo-San Pedro et al., 2017). FUNDC1, a recently
identified mitochondrial autophagy receptor, interacts directly with
LC3B, a microtubule-associated protein (Chen et al., 2016; Lv
et al., 2017).

Despite limited research on ferroptosis in AF, its pathogenesis,
experimental validation, and drug mechanisms remain areas for
extensive investigation. Therapeutic approaches targeting
ferroptosis in atrial fibrillation may draw from research in other
systemic diseases. Potential agents include experimental compounds
like erastin and RSL3, drugs such as statins and artemisinin, ionizing
radiation, and cytokines like IFNγ and TGF-β1, which may offer
avenues for reversing AF (Chen et al., 2021).

4 Conclusion

Currently, surgical interventions such as radiofrequency
ablation and cryoablation, along with pharmaceutical treatments
like antiarrhythmic drugs and oral anticoagulants, remain the
primary approaches for managing AF. However, significant gaps
remain in our understanding of the underlying mechanisms and
potential therapeutic targets for this condition. The recent
recognition of ferroptosis has opened a promising new avenue
for both the diagnosis and treatment of various diseases.

This article reviews the relationship between AF and ferroptosis,
exploring how ferroptosis contributes to the condition through key
mechanisms such as mitochondrial dysfunction, oxidative stress,
electrical remodeling, ion channel abnormalities, and autophagy. By
examining these pathways, the review aims to inform future research
efforts and provide insights into the development of novel diagnostic
and therapeutic strategies for atrial fibrillation.
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