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Introduction: Traditional Chinese medicine (TCM) prescriptions are generally
formulated by experienced TCM researchers based on their expertise and data
statistical methods.

Methods: In order to predict TCM formulas for diabetes more accurately, this paper
proposes a novelmulti-source ensemble predictionmethod that combinesmachine
learning ensemble techniques and multi-source data. In this method, the multi-
sourcedata contain datasets basedon the components and targets (DPP-4andGLP-
1). Gradient boosting decision tree (GBDT), flexible neural tree (FNT), and Light
Gradient Boosting Machine (LightGBM) algorithms are trained using these two types
of datasets, respectively. The compound dataset from the TCMSP database is then
used as testing data to predict and screen the active ingredients. The frequencies of
occurrences of medicinal herbs corresponding to these three algorithms are
obtained, each containing an active ingredient list. Finally, the frequencies of
occurrences of the medicinal herbs obtained from the three algorithms using the
component and target datasets are integrated to select duplicate drugs as the
candidate drugs for diabetes treatment.

Results: The identification results reveal that theproposed ensemble method has
higher accuracy than GBDT, FNT, and LightGBM. The medicinal herbs predicted
include Lycii fructus, Amygdalus communis vas, Chrysanthemi flos, Hippophae
fructus, Mori folium, Croci stigma, Maydis stigma, Ephedrae herba, Cimicifugae
rhizoma, licorice, and Epimedii herba, all of which have been proven effective in
the treatment of diabetes.

Discussions: The results of network pharmacology show that myrrha can play a
role in treating diabetes through multiple targets and pathways.
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1 Introduction

Diabetes mellitus (DM) is an endocrine metabolic disease characterized by chronic
hyperglycemia, which is formed by genetic and environmental factors (Zhang Y. et al., 2024;
Öztürk et al., 2017). The basic pathological characteristics of this disease are absolute or
relative insufficiency of insulin secretion or decreased sensitivity of peripheral tissues to
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insulin, which could result in a systemic metabolic disease mainly
characterized by abnormal glucose metabolism (Jr et al., 2005;
Abdul-Ghani et al., 2006). Chronic hyperglycemia can cause
long-term damage, dysfunction, and even failure of various
organs, especially the eyes, kidneys, nerves, and cardiovascular
system (Schuster et al., 2002). The clinical treatment methods
include diet control (Esposito et al., 2009; Simpson et al., 1981),
exercise therapy (Balducci et al., 2014), hypoglycemic drug therapy
(Prasathkumar et al., 2022; Khan and Baig, 2022), and insulin
therapy (Saglam and Bektas, 2023; Nkonge et al., 2023).
However, in clinical practice, oral hypoglycemic drugs such as
metformin, proinsulin secretagogues, and α-glucosidase inhibitors
often have clinical limitations due to side effects, including
gastrointestinal reactions, nutritional and metabolic disorders,
allergic reactions, and liver function damage (Akinwunmi, 2020).
In addition, the treatment mechanism is single. Therefore, searching
for safe, effective, multi-directional, and multi-target treatment
methods has become a focus of current medical research.

The overall therapeutic characteristics of single and compound
Chinese medicine, with their multiple targets and effects, provide
certain advantages and potential in the treatment of certain diseases
(Luo et al., 2024). Traditional Chinese medicine (TCM) and its
active ingredients in the prevention and treatment of diabetes are
characterized by stable efficacy, fewer adverse reactions, and
suitability for long-term use, which may also result in delayed
complications, multi-target and multi-channel regulation of
metabolic disorders, and protection of the structure and function
of the pancreas, liver, kidney, and other related organs. With the
acceleration of the TCM modernization process, the research on
TCM prescriptions for diabetes has also attracted more attention
(Chen and Dun, 2016; Zhou, 2022; Gao et al., 2024; Zhou et al., 2022;
Li et al., 2022). Many TCM prescriptions, including Huanglian
decoction (HLD) (Pan et al., 2020), Jiao-tai-wan (JTW) (Tang
et al., 2021), Yuye Decoction (Guo et al., 2023), Roselle (Niu
et al., 2022), Rhizoma coptidis (Chen et al., 2021), and Ling-Gui-
Zhu-Gan (LGZG) (Long et al., 2023), have been mentioned and
utilized to investigate the action mechanism in treating diabetes.
These TCM prescriptions are generally formulated by experienced
TCM researchers based on their expertise. However, this knowledge
and experience are extensive, and the relationships between them
are very complex, making it difficult to effectively analyze TCM
prescriptions solely through manual labor. Therefore, data mining
methods have been applied to search the TCM formulas.

Data mining can effectively induce and analyze the massive
amounts of TCM data, summarize patterns, discover and solve
potential problems, and provide more accurate descriptions and
judgments of the relationships between various characteristic
information elements of TCM, which also provide more reliable
data support for TCM theory and practice (Zhang X. et al., 2024).
Statistical and clustering algorithms are commonly used methods.
Generally, the frequency of the presence of traditional Chinese
medicinal materials in the prescriptions is counted, and a pair of
medicinal materials with the highest frequency is selected for
research. In order to predict TCM formulas more accurately, this
paper proposes a novel prediction method of TCM against diabetes
based on the multi-source ensemble method. First, the most recent
literature on the treatment of the disease was collected based on
disease keywords in order to construct three datasets: one based on

components, another based on two targets (dipeptidyl peptidase-4
(DPP-4) and glucagon-like peptide-1 (GLP-1)), and a compound
dataset from the TCMSP database. In the multi-source ensemble
method, gradient boosting decision tree (GBDT), flexible neural tree
(FNT), and Light Gradient Boosting Machine (LightGBM)
algorithms were trained using the component and target datasets.
The compound dataset from the TCMSP database is used as testing
data to predict and screen the active ingredients. The frequencies of
occurrences of medicinal herbs corresponding to these three
algorithms are obtained, respectively, which contain the active
ingredients. Finally, the frequencies of occurrences of the
medicinal herbs obtained from the three algorithms using the
component and target datasets are integrated to select the
duplicate drugs as the candidate drugs for diabetes treatment.

2 Methodology

2.1 Data collection

2.1.1 Component and target datasets
Based on keywords such as diabetes and type 2 diabetes mellitus

(T2DM), the full and abbreviation names of the disease are searched
in the public literature databases such as CNKI, Springer, Elsevier,
NCBI, and IEEE in order to collect the literature related to the
treatment and prevention of diseases with TCM prescriptions by
network pharmacology. The collected literature reports are
preprocessed by removing reports that use the same prescription
and selecting those with a more complete analysis process. Finally,
81 literature reports have been obtained, which were published in
the past 5 years. The data mining method is utilized to search for the
active ingredients for treating diabetes. After deleting the duplicate
ingredients, 124 ingredients were collected, which can be
downloaded at https://github.com/batsicilab/Data. These
ingredients have been validated by biological experiments or have
a good combination with diabetes-related targets via
molecular docking.

The ingredient set collected for the treatment or prevention of
diabetes is designated as the positive set and is input into the DUD-E

FIGURE 1
Example of the flexible neural tree model.
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website to generate a component set unrelated to the disease
(Mysinger et al., 2012). Compared to the positive samples, there
are more non-related compounds generated. In order to construct
the dataset with the balanced numbers of positive and negative
samples, a negative sample selection algorithm is utilized to select
the accurate unrelated compounds, which is described in Algorithm
1. This algorithm utilizes the Tanimoto index to evaluate the
distance between two components. The Tanimoto index between
compounds C1 and C2 is defined as Equation 1.

T C1, C2( ) � C1 ∩ C2

C1 ∪ C2
. (1)

The larger the Tanimoto index, the higher the similarity between
two compounds. For each related compound, its Tanimoto index
with each unrelated compound is calculated. These indexes are
arranged in ascending order, and a certain proportion of unrelated
samples are selected as the negative samples based on the pre-
defined proportion of positive and negative samples. The specific

FIGURE 2
Prediction flowchart of TCM for diabetes based on the multi-source ensemble method.
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algorithm is shown in Algorithm 1. Using Algorithm 1, the negative
sample set is constructed. In addition, combined with the positive
sample set, the dataset based on the component is constructed.

Input: related compound set of a target gene [c1 ,c2 , . . . ,cm]
(m is the number of

compounds) and the generated decoy set [g1 ,g2 , . . . ,gn]
(n is the number of

decoys);

Output: the selected negative compound set [n1 ,n2 , . . . ,n2m]
for i = 1; i≤n; i++ do

sumi � 0;

for j = 1; j≤m; j++ do
Tij � Tanimotoindex gi,cj( );
sumi � sumi + Tij;

end

end

Sort the decoy set according to [sum1 ,sum2, . . . ,sumn];
Select the decoys with 2m smallest Tanimoto indexes as

the negative compound set.

Algorithm 1. Negative sample selection algorithm.

With the same process, the target genes are collected from the
literature for treating diseases, and the top 10 target genes are
selected based on their occurrence frequencies. These target genes
are input into BindingDB website to search for the target-related
compounds (Liu et al., 2007). Target genes that do not meet the
requirements were deleted based on the number of compounds
collected. Finally, dipeptidyl peptidase-4 (DPP-4) and glucagon-like
peptide-1 (GLP-1) are selected. These two targets have been proven
to be very effective in the treatment of type 2 diabetes. GLP-1 can
participate in the regulation of blood glucose homeostasis, improve
islet function, and delay or even reverse the progression of type
2 diabetes through multiple pathways. DPP-4 inhibitors can
effectively improve blood glucose levels and promote insulin
secretion in the body. The compounds related to DPP-4 and
GLP-1 are considered the positive sample sets, with their
numbers being 248 and 89, respectively. The negative sample set
for each target gene is obtained using Algorithm 1. In addition, the
datasets based on DPP-4 and GLP-1 are obtained.

2.1.2 Compound dataset from the TCMSP database
All compounds are collected from the TCMSP database, totaling

13,144 (Ru et al., 2014). Oral bioavailability (OB) represents the speed
and degree of the absorption of TCM in human circulation. Drug-like
(DL) properties represent the similarity between a compound and a
known drug. Thus, OB ≥ 25% and DL ≥ 0.15 are set, which are utilized
to screen active ingredients. According to OB and DL screening, a total
of 2,376 compounds are obtained from the TCMSP database, which are
utilized as a compound set for future analysis.

2.2 Classification methods

2.2.1 Gradient boosting decision tree
GBDT is a supervised learning algorithm that combines gradient

enhancement and decision tree (Zhuang et al., 2017). The main idea
is to gradually reduce the residuals through a continuous iterative

process and construct multiple regression decision trees through
gradient optimization. Finally, the conclusions of all regression trees
are summarized to form the final model, with the aim of
simultaneously reducing the variance and bias of the model. In
addition to the strong interpretability of tree models and the
effective processing ability of mixed models, its other advantages
are high prediction accuracy, strong robustness, and the ability to
flexibly handle various types of data.

In GBDT, each iteration aims to minimize the current loss
function. After each iteration, the updated model is defined as
Equation 2.

Mk x( ) � Mk−1 x( ) + argmin
h

∑n
i�1
L yi,Mk−1 xi( ) + hi x( )[ ], (2)

where Mk(x) is the prediction result of the decision tree generated
for the kth iteration, n is the number of samples, L[yi,Mk−1(xi) +
hi(x)] is the loss function, yi is the actual value of the ith sample, and
hi(x) is a weak learning function.

Through continuous iterations, the final residual of the model
approaches 0, which satisfies the convergence condition. Finally, the
decision tree generated by the iteration is linearly combined through
an additive model to obtain the prediction result. The final
prediction result of GBDT can be calculated as Equation 3.

M x( ) � ∑M
k�1

Mk x( ), (3)

where M is the number of decision trees.

2.2.2 Flexible neural tree model
FNT can automatically determine the network structure and

allow cross-layer connections between different nodes, making it a
high-performance deep neural network structure (Chen et al., 2006).
An example of FNT is depicted in Figure 1. During the construction
of FNT, twomain parts need to be determined, namely, the structure
of the tree and the leaf nodes of the tree. So, FNT has two basic
instruction sets, namely, the neuron instruction set (F) and the
terminal instruction set (T). The neural instruction set determines
the tree structure of FNT, which takes the basic form as +i. The
terminal instruction set determines the input vector of FNT. The sets
of neuron and terminal instructions can be represented as
Equation 4.

F � +2,+3, . . . ,+n{ }
T � x1, x2 . . . , xm{ }{ , (4)

where n represents the number of child nodes owned by the non-leaf
node +n. In other words, the node will have n input features. The
output of the non-leaf node +n is calculated as Equation 5.

on � ∑n
j�1
wjxj,

yn � f a, b, on( ) � e−
on−a
b( )2 ,

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (5)

where f(·) denotes the activation function, a and b are the
parameters of the function, xj is the input variable, and wj is the
corresponding weight of the input variable.

During the evolutionary process, first, an FNT tree and a set of
corresponding parameters are randomly generated and then the
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structure of the tree is optimized. After finding the optimal tree
structure, the particle swarm optimization (PSO) algorithm is used
to optimize the parameters of the connection weights in the tree
structure. In addition, a complete and optimal flexible neural tree is
ultimately generated.

2.2.3 LightGBM
LightGBM utilizes a decision tree based on the histogram,

which could discretize continuous eigenvalue data into histograms
(Gao and Balyan, 2022). The algorithm adopts Gradient-based
One-Side Sampling (GOSS) technology, which is utilized to sample
the data with small gradients based on sample gradients, while the
samples with large gradients are retained for sampling and splitting
selection in order to reduce the number of samples required for
calculation. GOSS could improve the training speed and memory
efficiency of the model. Exclusive Feature Bundling (EFB)
technology is utilized to bundle mutually exclusive features into
a single feature in order to reduce the number of features in
training samples, thereby improving training efficiency and
accuracy. It is suitable for training high-dimensional and
sparse data.

2.3 Prediction of TCM for diabetes based on
the multi-source ensemble method

In this part, a novel prediction method of TCM in treating
diabetes based on a multi-source ensemble method is proposed; the
flowchart of this method is depicted in Figure 2.

FIGURE 4
Protein–protein interaction network of potential targets of myrrha for diabetes treatment.

FIGURE 3
Accuracy performance of the proposed method and three
classification methods.
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(1) Dataset construction. The latest literature on the treatment of
diabetes is collected using disease-related keywords in order
to construct a dataset based on components, another based on
targets (DPP-4 and GLP-1), and a compound dataset from the
TCMSP database. Molecular descriptors are utilized to extract
the feature vectors for each compound in these datasets.

(2) Prediction based on the multi-source ensemble method. The
datasets based on targets and components are input into three
algorithms (GBDT, FNT, and LightGBM) for training to
obtain the optimal models. Then, as the testing data, the
compound dataset from the TCMSP database is predicted,
and all the components are scored. The compounds above

0.5 are considered active ingredients. The annotation
information in the TCMSP database is utilized to obtain
the medicinal herbs that contain the active ingredients.
The frequencies of occurrences of medicinal herbs
corresponding to these three algorithms are obtained,
respectively. Finally, for each classification algorithm, the
top 20 ranked medicinal herbs are selected as the
medicinal herb list of each algorithm. The medicinal herb
lists obtained from three methods are integrated. In addition,
the herbs with a frequency of occurrence equal to or greater
than 2 are selected as the candidate drugs for
diabetes treatment.

FIGURE 6
“Component–target–pathway” network.

FIGURE 5
Bubble plot of the KEGG pathway enrichment analysis.
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3 Results

In this section, the dataset based on components includes
124 positive and 248 negative samples, while the dataset based
on the two targets includes 337 positive and 1,011 negative samples.
In GBDT and lightGBM, the tree-structured Parzen estimator (TPE)

is utilized to optimize the hyperparameters of these methods. In
FNT, the model and hybrid optimization algorithm contain more
hyperparameters. In addition, the optimization algorithm could be
utilized to iteratively search the optimal FNT model. Therefore, the
hyperparameters of FNT are selected by experience. In our method,
the numbers of the compounds predicted by GBDT, lightGBM, and
FNT are 655, 183, and 872, respectively. The numbers of the
predicted herbs are 399, 226, and 415, respectively. Single
hypoglycemic herbs are collected from the 2020 edition of
“Chinese Pharmacopoeia” (Part 1) and Chinese Materia Medica
(third edition) as a standard set (Jing et al., 2024). The accuracy
performance of the proposed method and three classification
methods is depicted in Figure 3. Figure 3 shows that our
proposed method could obtain the highest accuracy performance,
which is 96.5% higher than that of lightGBM, 112.8% higher than
that of GBDT, and 110% higher than that of FNT.

The herbs with a frequency of occurrence equal to or greater
than 2 include Lycii fructus, Amygdalus communis vas,
Chrysanthemi flos, Hippophae fructus, Mori folium, Croci stigma,
Maydis stigma, myrrha, Microctis folium, Forsythiae fructus,
Ephedrae herba, Cimicifugae rhizoma, licorice, and Epimedii herba.

4 Discussions

According to the 2020 edition of the “Chinese Pharmacopoeia”
(Part 1) and Chinese Materia Medica (third edition), Lycii fructus,

FIGURE 8
Docking models of SRC with MOL001058 (top) and ESR1 with MOL001150 (bottom).

FIGURE 7
Binding energy heatmap of molecular docking.
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Amygdalus communis vas, Chrysanthemi flos, Hippophae fructus,
Mori folium, Croci stigma, Maydis stigma, Ephedrae herba,
Cimicifugae rhizoma, licorice, and Epimedii herba have been
proven to be single hypoglycemic herbs. Forsythiae fructus
exhibits anti-tumor, antiviral, and hypoglycemic effects (Liu
et al., 2020). Xu et al. found that Forsythia glycoside, Forsythia
suspensa glycoside A, and Rosin-β-D-fructose extracted from
Forsythiae fructus leaves can increase glucose uptake in 3T3-L1
adipocytes under insulin resistance by activating the PI3K/Akt
signaling pathway, thereby increasing their insulin sensitivity (Xu
et al., 2019). Some TCM prescriptions for treating T2DM include
Microctis folium, such as Shuzheng granules. The extract of myrrha
has a direct stimulating effect on insulin secretion in β-cell lines and
primary pancreatic islets under low- and high-stimulation
concentrations, indicating that myrrha can regulate insulin
release in β-cells without being affected by glucose levels (Al-
Romaiyan et al., 2021). Preliminary research and analysis indicate
that the predicted drugs had good effects on the treatment of
diabetes and its complications, thereby validating the
effectiveness of our proposed prediction method.

In order to further verify the effectiveness of our ensemble
method, the network pharmacology method will be utilized to
explore the mechanism of myrrha in the treatment of diabetes.

4.1 Candidate target of myrrha in the
treatment of diabetes

Through the Traditional Chinese Medicine Systems
Pharmacology Database and Analysis Platform (TCMSP), myrrha
is utilized as the keyword for search, and according to oral
bioavailability (OB) > 30 and drug-like (DL) properties > 0.18,
22 effective ingredients of myrrha are obtained. These effective
ingredients are input into the SwissTargetPrediction Database
(http://www.swis-stargetprediction.ch/) in order to obtain drug
targets by removing duplicate target genes. With diabetes
mellitus as the keyword, the diabetes-related targets are searched
in the GeneCards database. By intersecting drug targets with disease
targets, a total of 442 candidate targets are obtained.

4.2 Construction of the protein–protein
interaction network of candidate targets

A total of 442 candidate action targets are imported into the
STRING database, and the protein–protein interaction (PPI)
network of potential targets of myrrha for diabetes treatment
is obtained, which includes 442 nodes (target proteins) and
2,421 edges (protein interactions). According to the degree
ranking, TP53, STAT3, SRC, HSP90AA1, EGFR, AKT1, IL6,
PIK3CA, BCL2, and HIF1A have high degree values, which
may be key targets for the treatment of diabetes. In addition,
TNF, PIK3R1, ESR1, ERBB2, JAK2, and MAPK1 may be effective
targets. The PPI network containing 50 targets with the largest
degrees is depicted in Figure 4. The larger the node and the darker
the orange color, the higher the corresponding degree value,
indicating that there are more targets in the predicted disease-
related targets that can effectively interact with this target.

4.3 KEGG enrichment analysis

Potential targets are imported into the DAVID database (https://
david.ncifcrf.gov/) in order to perform KEGG pathway enrichment
analysis. The bubble plot is drawn with the top 30 pathways
according to the p-value, as shown in Figure 5. Figure 5 shows
that KEGG analysis mainly involves the following main pathways:
pathways in cancer, neuroactive ligand–receptor interactions, the
calcium signaling pathway, EGFR tyrosine kinase inhibitor
resistance, central carbon metabolism in cancer, proteoglycans in
cancer, the MAPK signaling pathway, the PI3K–Akt signaling
pathway, prostate cancer, the HIF-1 signaling pathway, hepatitis
B, the AGE–RAGE signaling pathway in diabetic complications,
lipid and atherosclerosis, inflammatory mediator regulation of TRP
channels, the cAMP signaling pathway, the Ras signaling pathway,
non-small cell lung cancer, the sphingolipid signaling pathway, the
FoxO signaling pathway, endocrine resistance, insulin resistance,
efferocytosis, Kaposi’s sarcoma-associated herpesvirus infection,
human cytomegalovirus infection, glioma, the ErbB signaling
pathway, the phospholipase D signaling pathway, the
Rap1 signaling pathway, apoptosis, and the neurotrophin
signaling pathway.

4.4 Construction of the
“component–target–pathway” network

Due to a large number of predicted potential targets, the targets with
the top 30° values in the PPI network are selected to participate in the
construction of the “component–target–pathway” network, as shown in
Figure 6. The network contains 87 nodes (28 blood components,
30 targets, and 29 pathways) and 767 edges. The higher the degree
value, the more the other nodes connected to a node, indicating that the
node has a higher contribution rate in the network. By analyzing the
network, the components such as MOL001058 (picropolygamain),
MOL000997 (guggulsterol V), MOL001150 (3β-acetoxy-16β-
hydroxydammar-24-ene), MOL001002 (ellagic acid), MOL001009
(guggulsterol-VI), MOL001021 (7β,15β-dihydroxypregn-4-ene-3,16-
dione), and MOL001013 (mansumbinoic acid) have the higher
degree values and are all connected to multiple targets. The targets
with higher degree values include AKT1, MAPK3, EGFR, MAPK1,
PIK3CA, TP53, SRC, PIK3R1, and PIK3CB. Pathways with higher
degree values not only involve cancer pathways but also involve lipids
and atherosclerosis, Kaposi’s sarcoma-associated herpesvirus infection,
the PI3K–Akt signaling pathway, hepatitis B, the HIF-1 signaling
pathway, endocrine resistance, EGFR tyrosine kinase inhibitor
resistance, the FoxO signaling pathway, the AGE–RAGE signaling
pathway in diabetic complications, apoptosis, the ErbB signaling
pathway, the sphingolipid signaling pathway, the neurotrophin
signaling pathway, and insulin resistance.

4.5 Molecular docking

According to the abovementioned network pharmacology analysis,
the target protein with the highest median value in the PPI network was
identified, and five primary active components of myrrha in the
treatment of diabetes were screened out. They are MOL001058
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(picropolygamain), MOL000997 (guggulsterol-V), MOL001150 (3β-
acetoxy-16β-hydroxydammar-24-ene), MOL001002 (ellagic acid), and
MOL001021 (7β,15β-dihydroxypregn-4-ene-3,16-dione). The MOL
format files of six molecules (SRC, BCL2, STAT3, ESR1, AKT1, and
IL6) were acquired from the TCMSP database and used as candidate
small-molecule ligands in molecular docking. 1US0, 6HOI, 6NJS,
7NFB, 8R5K, and 5ZO6 were obtained from the PDB database as
receptor protein structures for molecular docking. The binding energy
heatmap of molecular docking is shown in Figure 7. The docking
models of SRC with MOL001058 and ESR1 with MOL001150 are
shown in Figure 8. The results indicate that most of the active
components of myrrha have strong binding activity to diabetes-
related targets and have high potential biological activity.

4.6 Result analysis

In this paper, we predicted the mechanism of myrrha in treating
diabetes through network pharmacology and predicted that TP53,
STAT3, SRC, AKT1, IL6, TNF, and ESR1 might be the potential
gene targets of myrrha in treating diabetes.

TP53 is a tumor suppressor protein that plays an important
regulatory role in cancer progression while directly regulating
glycolysis and gluconeogenesis to affect glucose levels (Minamino
et al., 2009). After DNA damage, TP53 can reprogram the energy
generation strategy of cells from glycolysis to mitochondrial respiration
(or oxidative phosphorylation) to inhibit the development of diabetes
(Kruiswijk et al., 2015). STAT3 may be involved in nutrition induction
and cytokine-induced insulin resistance (Mashili et al., 2013). SRC
could regulate insulin secretion and glucose metabolism by affecting the
subcellular localization of glucokinase in pancreatic β cells (Sato et al.,
2016). AKT1 is a serine/threonine protein kinase that is an important
downstream target of the insulin signaling pathway. It can regulate the
body’s acquisition of glucose, maintain blood glucose stability, regulate
glucose transport pathways, and play an important role in regulating
pancreatic islet quality (Millischer et al., 2020). IL-6 has a hormone-like
effect. It enters the bloodstream after being released from tissue,
regulates the glucose metabolism and lipid metabolism of the body,
provides a self-protection immune response caused by insulin
resistance, and improves the formation of diabetes from insulin
resistance. Tumor necrosis factor (TNF) is often secreted by
macrophages and promotes insulin resistance and reduces insulin
sensitivity by interfering with the insulin signaling pathway. TNF
inhibition has been suggested for the treatment and prevention of
T2DM (Ji et al., 2019; Trinh et al., 2019). ESR1 is a regulator of blood
glucose homeostasis, which can affect blood glucose homeostasis by
regulating the estrogen level and plays an important role in pancreatic
β-cell function and survival, participating in the pathological and
physiological processes of obesity, insulin resistance, and diabetes
(Gregorio et al., 2021; Xie et al., 2024; Liu et al., 2023).

KEGG enrichment pathway analysis shows that neuroactive
ligand–receptor interaction, the calcium signaling pathway, EGFR
tyrosine kinase inhibitor resistance, the PI3K–Akt signaling pathway,
prostate cancer, the HIF-1 signaling pathway, hepatitis B, the
AGE–RAGE signaling pathway in diabetic complications, lipid and
atherosclerosis, the cAMP signaling pathway, the Ras signaling
pathway, the sphingolipid signaling pathway, the FoxO signaling
pathway, endocrine resistance, and insulin resistance are important

pathways related to the disease regulation of diabetes. Research shows
that there is a significant difference in the expression of genes related to
the neuroactive ligand–receptor interaction signal pathway between
T2DM patients and normal subjects (Das and Rao, 2007). The cAMP
signaling pathway (PKA system) is a type of cyclic nucleotide system
that regulates biological cell activity when cells are stimulated (Tian
et al., 2022). Ginseng polysaccharide can improve the progression of
renal fibrosis in diabetic mice by inhibiting the activation of cAMP/
PKA/CREB signaling pathways (Huang et al., 2018). The dysfunction of
the PI3K/AKT signaling pathway and downstream target proteins can
cause abnormal glucose and lipid metabolism, leading to insulin
resistance and playing an important role in the occurrence and
development of insulin resistance (Wei et al., 2022). The HIF-1
signaling pathway is a key signaling pathway that affects metabolic
diseases. The imbalance of signal transmission of this pathway will lead
to the obstacle of the adaptive response of pancreatic islets, the retina,
and other tissues to hypoxia, further promoting the occurrence and
development of diabetes and its complications (Wei et al., 2022; Catrina
and Zheng, 2021). The KEGG enrichment pathway also refers to insulin
resistance (IR). IR is a phenomenon in which the biological effects of
insulin are lower than normal levels, resulting in delayed blood glucose
reaching tissue cells for processing. Due to the existence of IR, blood
glucose cannot be effectively used. Therefore, IR is the main
pathogenesis of T2DM.

To sum up, myrrha can play a role in treating diabetes through
multiple targets and pathways. Using network pharmacology, this
study constructed a “component–target–pathway” network of
myrrha for diabetes treatment and predicted its targets and
pathways, which could provide a theoretical basis for the in-
depth study of the molecular mechanism of myrrha
against diabetes.

5 Conclusion

In this paper, a prediction method of TCM for diabetes is
proposed based on the multi-source ensemble method. The
medicinal herbs identified by our method include Lycii fructus,
Amygdalus communis vas, Chrysanthemi flos, Hippophae fructus,
Mori folium, Croci stigma,Maydis stigma, Myrrha,Microctis folium,
Forsythiae fructus, Ephedrae herba, Cimicifugae rhizoma, licorice,
and Epimedii herba. Lycii fructus, Amygdalus communis vas,
Chrysanthemi flos, Hippophae fructus, Mori folium, Croci stigma,
Maydis stigma, Ephedrae herba, Cimicifugae rhizoma, licorice, and
Epimedii herba have been proven to be effective in the treatment of
diabetes. The paper also utilizes network pharmacology to explore
the mechanism of myrrha in the treatment of diabetes. In addition,
the results show that myrrha can play a role in treating diabetes
through multiple targets and pathways. Thus, the paper proposes an
effective prediction method of TCM in the treatment of diabetes. In
the future, our method will be utilized to predict TCM formulations
for other diseases.
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