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Introduction: Researchers are increasingly exploring the use of artificial
intelligence (AI) tools in evidence synthesis, a labor-intensive, time-
consuming, and costly effort. This review explored and quantified the
potential efficiency benefits of using automated tools as part of core evidence
synthesis activities compared with human-led methods.

Methods: We searched the MEDLINE and Embase databases for English-
language articles published between 2012 and 14 November 2023, and hand-
searched the ISPOR presentations database (2020–2023) for articles presenting
quantitative results on workload efficiency in systematic literature reviews (SLR)
when AI automation tools were utilized. Data on efficiencies (time- and cost-
related) were collected.

Results: We identified 25 eligible studies: 13 used machine learning, 10 used
natural language processing, and once each used a systematic review automation
tool and a non-specified AI tool. In 17 studies, a >50% time reduction was
observed, with 5-to 6-fold decreases in abstract review time. When the
number of abstracts reviewed was examined, decreases of 55%–64% were
noted. Studies examining work saved over sampling at 95% recall reported 6-
to 10-fold decreases in workload with automation. No studies quantified the
economic impact associated with automation, although one study found that
there was an overall labor reduction of >75% over manual methods during dual-
screen reviews.

Discussion: AI can reduce both workload and create time efficiencies when
applied to evidence gathering efforts in SLRs. These improvements can facilitate
the implementation of novel approaches in decision making that consider the
real-life value of health technologies. Further research should quantify the
economic impact of automation in SLRs.
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Introduction

Automation through artificial intelligence (AI) has been
considered the most rapidly evolving field in healthcare and
related research. AI has the potential to analyze large pools of
diverse data and process heterogeneous information following
structured prompts/instructions, and its applications to
healthcare, from facilitating early diagnosis and monitoring, to
improving overall patient access and quality and efficiency of
care, have been increasingly documented (Alami et al., 2020). To
date, wider AI applications in health economics and outcomes
research (HEOR) and research to inform policy-making
(including health technology assessment [HTA]) have failed to
gain significant traction. The recent AI position statement by the
HTA body in England (National Institute for Health and Care
Excellence [NICE]), which sets up the principles around the use of
AI methods in the generation and reporting of evidence for the
technology submissions, may change the HEOR status quo and
influence other HTA bodies around the world (NICE, 2024).

The application of machine learning (ML) in
pharmacoepidemiology and HEOR has been previously used to
advance cohort or feature analytics (confounder adjustment, causal
inference) and to predict clinical response or adverse reactions to a
drug (Padula et al., 2022; Wyss et al., 2022). Recently, and most
apparently during and after the COVID-19 pandemic, HTA bodies
have recognized significant challenges in how to process a higher
volume of evidence efficiently and rigorously paralleled with a
demand to consider a wider evidence base and deliver decisions
under short notice (Hair et al., 2021; Daniels et al., 2015). This is
equally true in systematic literature reviews (SLR), a cornerstone of
evidence-based medicine and policy-making in healthcare decision-
making, which aims to identify and synthesize data and/or
information for a targeted population or disease problem in a
reproducible and unbiased manner. SLRs are, however, labor
intensive and costly (Michelson and Reuter, 2019), often taking
months to complete and requiring significant effort and training
from a team of researchers (Bashir et al., 2018; Shojania et al., 2007).
A 2017 analysis using data from the PROSPERO registry confirmed
that the time and staff needed to conduct systematic reviews was
considerable (Borah et al., 2017), with reviews routinely requiring
6 months and, in more complex topics, several years for completion
(Featherstone et al., 2015; Ganann et al., 2010; Khangura et al.,
2012). In a 2018 case study, for example, the average time to
complete a systematic review was 66 weeks and 881 person-
hours (Pham et al., 2018). However, given the increased demands
by policymakers to explore more complex methodologies to increase
trust in data and provide sound evidence for their decision-makers
(such as bias quantification methods, surrogate analyses, and long-
term survival extrapolations), it remains a struggle for all
stakeholders involved (decision-makers, pharmaceutical
industries, researchers) of how to prioritize personnel training
and resource needs to meet higher evidentiary needs and stricter
methodological requirements while ensuring the evidence produced
is up-to-date and findings are timely, relevant, and accurate for
decision-making (Sarri et al., 2023). Therefore, the concept of living
(regularly updating) systematic reviews (LSR) was introduced as a
novel approach to evidence identification and synthesis that aims to
continually update a review, using rigorous methodology, to

incorporate relevant new evidence as it becomes available
(Community, 2024).

In response to these challenges, researchers have begun to
embrace AI tools that show how to increase efficiency in SLRs
through automation and active learning. In addition to ML, text
mining, natural language processing (NLP) and deep learning are all
layers that can be grouped under the broad and ever-evolving
umbrella of AI and offer a potential solution to the challenges
faced by today’s evidence synthesis researchers (Hirschberg and
Manning, 2015; Singh et al., 2023). In essence, these tools aim to
complete specific review tasks through different applications (active
learning, human or researcher in the loop learning) (van de Schoot
et al., 2021) by incorporating probabilistic reasoning to deal with
uncertainty in the decisions and whereby the algorithms improve
with data experience. ML now underpins most of modern AI and
can be unsupervised, seeking a pattern in the data presented to it, or
supervised, when it learns from information fed into it by a human
who has labeled it (for example, by adding the definitive excluded
code to screening) (Table 1). In evidence synthesis, AI automation
technologies are largely suggested as a method to assist in the time-
consuming screening of citations, as this represents the rate-limiting
step in the timely completion of SLRs and HTAs (Beller et al., 2013),
although previous SLRs have also covered automation processes for
all SLR steps (search strategies, text mining, data extraction,
synthesis) (Jonnalagadda et al., 2015; O’Mara-Eves et al., 2015;
Marshall and Wallace, 2019). A recent review of economic
models submitted to the National Institute for Health and Care
Excellence outlined shortcomings, both structural and
methodological, of the current approaches to literature reviews
and highlighted the opportunities available with the expanded
use of AI (Daly et al., 2022).

Previous reports have detailed the types of automated
technologies available for each stage of evidence synthesis and
their impact on results including proposed frameworks for their
implementation and barriers to their adoption (Padula et al., 2022;
Marshall and Wallace, 2019; Hocking et al., 2022). However, much
less effort has been placed on quantifying their impact in terms of
efficiencies and cost savings through a review of existing literature.

Against this background, we conducted a pragmatic literature
review to explore and quantify the potential benefits gained from the
introduction of AI-automated tools in core evidence literature
review steps (screening, data extraction, reporting). Our aim was
to comprehensively examine the literature to determine whether the
use of AI-automated tools was associated with time efficiencies and/
or cost savings as compared with traditional (manual) human-led
methods. Issues around the development and training of AI tools
including metrics around their accuracy and reproducibility of
results, although crucial in generating trust for their broader
applications and adoption in literature reviews, were topics
beyond the scope of this review.

Materials and methods

Following a pre-designed review protocol, we conducted a
structured search of the Embase and MEDLINE databases for
English-language, publicly available literature published between
2012 and 14 November 2023 using key AI-related terms: “artificial
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intelligence”, “machine learning”, “automation”, “web application”,
and “living”, the latter of which we included to reflect the regular
updating of evidence in SLRs and HTAs that is often accomplished
by leveraging automation. A supplementary hand search was
conducted of The Professional Society for Health Economics and
Outcomes Research (ISPOR) presentations database for related
abstracts between 2020 and 2023. Reporting was guided by the
Preferred Reporting Items for Systematic Review and Meta-analysis
(PRISMA) guidelines (Page et al., 2021). We searched for and
included published, freely available articles presenting
quantitative results on workload efficiency estimates such as
reduced time to undertake any tasks related to performing
systematic reviews using a type of automation compared with
human effort and/or corresponding cost savings. For the
purposes of this review, we considered automated tools to be any
instrument or system fitting under the general AI umbrella. A good
introduction of systematic review automation is provided by
Marshall and Wallace (2019), and readers can familiarize

themselves with the terminology of AI and ML tools in research
synthesis as listed in Table 1.

Studies referring to the role of AI as part of HEOR-related
methods such as databases/patient cohort identification, causal
inference, predictive modelling or economic analyses were
excluded. We also excluded studies presenting methodological
guidelines on AI use and commentaries on this topic. Screening
of titles/abstracts and full texts was carried out independently by two
(human) reviewers with any disagreements resolved by a third, more
senior reviewer.

Data extraction was completed by a single reviewer using a pre-
specified template and validated by a second reviewer. We extracted
key publication and AI characteristics but also included key themes
and comments regarding the key outcomes of interest (decreased
workload, time and cost savings). We sought articles that evaluated
any efficiencies by using metrics including time-to-review (i.e., for
abstracts, etc.), number-to-review (i.e., number of abstracts
reviewed) or work saved over sampling at 95% recall (WSS@

TABLE 1 AI definitions related to automation in evidence synthesis.

Types of artificial
intelligence

Definition Focus Relationship to AI

Machine learning Computer algorithms which “learn” to perform a specific task
through statistical modeling of (typically large amounts of) data

Learning from data to improve
performance

Foundational technology for most AI
applications

Natural language processing Computational methods for automatically processing and
analyzing “natural” (i.e., human) language texts

Meaning and intent behind
text

Core subfield of AI

Text classification Automated categorization of documents into groups of interest

Text mining Process of extracting information and patterns from
unstructured text data

Quantitative insights and
patterns

No strictly AI but often used in AI
applications

Classifiers Algorithms that learn to assign data points so specific categories Classification of data Fundamental concept in AI and ML

Algorithms Set of instructions for solving a problem Specific steps to achieve a goal Foundational building blocks of AI
and ML

Data extraction The task of identifying key bits of structured information from
texts

Crowd-sourcing Decomposing work into micro-tasks to be performed by
distributed workers

Support vector machines Machine learning algorithm used for classification and
regression tasks

Finding hyperplanes that best
separate data points

Subfield of ML used with in AI
applications

Micro-tasks Discrete units of work that together complete a larger
undertaking

Semi-automation Using machine learning to expedite tasks, rather than complete
them

Human-in-the-loop Workflows in which humans remain involved, rather than
being replaced

Supervised learning Estimating model parameters using manually labelled data

Distantly supervised Learning from pseudo, noisy “labels” derived automatically by
applying rules to existing databases or other structured data

Unsupervised Learning without any labels (e.g., clustering data)

Deep learning Subfield of ML using artificial neural networks with multiple
layers

Learning complex
representations from data

Specialized form of ML used within AI

Generative AI Subfield of AI focused on creating new data, often similar to
existing data

Generating new data based on
learned patterns

Can be used within other AI subfields like
natural language processing

Abbreviations: AI, artificial intelligence; ML, machine learning.
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95%). WSS@95% measures efficiency by providing an estimate of
the work saved while screening for eligible articles, when compared
with traditional manual screening, to find 95% of eligible articles
(Cohen et al., 2006; Chai et al., 2021). Data outlining quantified
savings in time, cost and/or workload were extracted as reported in
the source literature. Data is presented narratively with no pooling of
data. Performance metrics of individual tools including specific
considerations in their development and validation were beyond
the scope of this paper and were not extracted or presented
subsequently.

Results

In total, 2,564 studies were eligible for title/abstract review after
de-duplication, of which 32 proceeded to full-text screening.
Eleven studies were deemed to be eligible for inclusion based
on full-text review. An additional 14 studies were included via a
hand search of the ISPOR presentations database, resulting in a
total of 25 studies (Pham et al., 2018; Borowiack et al., 2023;
Cichewicz et al., 2023; Egunsola et al., 2023; Liu et al., 2023a; Liu
et al., 2023b; Venkata et al., 2023; Bhagat et al., 2022; Hubscher
et al., 2022; Liu et al., 2022; Rajadhyax et al., 2022; Stansfield et al.,
2022; Clark et al., 2021; Gates et al., 2021; Queiros et al., 2020;
Queiros et al., 2022; van Haastrecht et al., 2021; Abogunrin et al.,
2020; Popoff et al., 2020; Kebede et al., 2023; Qin et al., 2021;
Witzmann et al., 2021; Yamada et al., 2020; Ji and Yen, 2015;
Jonnalagadda and Petitti, 2013) that were eligible for inclusion in

this review. The literature attrition is shown as a PRISMA diagram
in Figure 1.

Included publications

All 25 studies (Pham et al., 2018; Borowiack et al., 2023;
Cichewicz et al., 2023; Egunsola et al., 2023; Liu et al., 2023a; Liu
et al., 2023b; Venkata et al., 2023; Bhagat et al., 2022; Hubscher et al.,
2022; Liu et al., 2022; Rajadhyax et al., 2022; Stansfield et al., 2022;
Clark et al., 2021; Gates et al., 2021; Queiros et al., 2020; Queiros
et al., 2022; van Haastrecht et al., 2021; Abogunrin et al., 2020;
Popoff et al., 2020; Kebede et al., 2023; Qin et al., 2021; Witzmann
et al., 2021; Yamada et al., 2020; Ji and Yen, 2015; Jonnalagadda and
Petitti, 2013) examined improvements in time efficiency associated
with automation in screening, updating and/or analysis during the
SLR process, whereas one study (Cichewicz et al., 2023) examined
the impact on labour reduction from the inclusion of automation in
this process (Table 2). No studies were identified to quantify the
economic (cost savings) impact linked to automation in
evidence synthesis.

Nature of automation

Thirteen (Pham et al., 2018; Borowiack et al., 2023; Hubscher
et al., 2022; Stansfield et al., 2022; Gates et al., 2021; Queiros et al.,
2020; Queiros et al., 2022; van Haastrecht et al., 2021; Abogunrin

FIGURE 1
PRISMA diagram summarizing study eligibility and screening process.
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TABLE 2 Eligible studies.

References Innovation
and short
description

Therapeutic
area

Evidence
base

Evidence
synthesis
task

Innovation
role

Time
savings (%)

Time
savings

Costs
savings

Time-to-review

Borowiack et al.
(2023)

Machine
learninga

Duplication of
published SR-
CCEO

Osteoarthritis 4,459 records/
economic SLR

Abstract
screening

Second reviewer 42.69% 19 h NR

Cichewicz et al.
(2023)

Machine
learning
DistillerAI
compared with
human
reviewer(s)

NR ~5,000 hits
(epidemiology,
SLRs/NMAs,
treatment
guidelines and
patterns, utilities)

Abstract
screening

Second reviewer Average: 40%
(36%–45%)

NR 39.8%

Reviewer
replacement

Average: 80%
(73%–91%)

NR 79.6%

Egunsola et al.
(2023)

Natural language
processing
LiveNMA and
LiveSLR used to
update
NMA/SLR

Prostate cancer Replication of
published NMA

Replicate
network and
treatment
hierarchy

Automated
literature updates
and results
synthesis

NR NR (time taken
for NMA
replication:
2 min)

NR

Liu et al. (2023a) Natural language
processing
LiveSLR
platform used as
part of ongoing
updates of SLRs

NR 1,595 references Data
extraction

Limited data
extraction for
GVD updates

99.6% 264.5 h NR

Liu et al. (2023b) Natural language
processing
LiveSTART
platform used as
part of ongoing
updates of SLRs

NR 1,400 hits/
24 oncology and
non-oncology
indications
(clinical,
economic,
humanistic
burden SLRs)

Abstract
screening

Adaptation to
protocol changes

75% 3 h NR

Venkata et al.
(2023)

Natural language
processing
DistillerAI and
Classifiers used
to complete
8 TLRs and
3 SLRs

NR ~5,000 records Title and
abstract
screening

Reviewer support
system

57.3%
(SLRs) – 77.9%
(TLRs)

263 h
(SLRs) – 311 h
(TLRs)

NR

Bhagat et al.
(2022)

Natural language
processing
AI classifier
compared with
human reviewer
when
determining
eligibility

NR 574 records/no
information

Abstract
screening

Second reviewer 50%–60% 14–17 h NR

Hubscher et al.
(2022)

Machine
learning
Ongoing
evidence
updating using
LiveRef

Multiple myeloma 188 hits/targeted
reviews in
oncology

All stepsb Automated
literature updates
and results
synthesis

63% 5 weeks NR

Liu et al. (2022) Natural language
processing
LiveNMA and
LiveSLR used to
update
NMA/SLR

Multiple myeloma Replication of
ICER-
produced NMA

All steps Automated
literature updates
and results
synthesis

NR NR (time taken
for NMA
replication:
10 min)

NR

(Continued on following page)
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TABLE 2 (Continued) Eligible studies.

References Innovation
and short
description

Therapeutic
area

Evidence
base

Evidence
synthesis
task

Innovation
role

Time
savings (%)

Time
savings

Costs
savings

Rajadhyax et al.
(2022)

Machine
learning
AI tool reviewed
abstracts for
targeted
literature review

NR 487 records Title and
abstract
screening

Reviewer
replacement

40%–50% 3.3 hc NR

Stansfield et al.
(2022)

Machine
learning
AI classifier
compared with
manual
screening

NR 5,812, 7,185 and
9,368 records in
3 test sets

Abstract
screening

Reviewer support
system

41%–74% 25 h NR

Clark et al. (2021) Systematic
review
automation tools
(n = 5)
SRA tool used in
screening in SLR
compared with
human reviewers

Chronic kidney
disease

596 titles/abstracts
as part of a
systematic review

Abstract
screening

Reviewer
replacement

71.6% total
70.3%
(screening)
78.6% (learning)

30 h (screening)
5 h (learning)

NR

Gates et al. (2021) Machine
learning and text
mining tool
AI identification
of data elements
and relevance in
RCTs

NR Reviewing
included 75 RCTs

Abstract
screening

Reviewer support
system

17.1% 3.7 h NR

Reviewer
replacement

44.6% 24.4 h NR

Pham et al.
(2018) d

Machine
learning and text
mining tool
Abstract
eligibility
prediction based
on title/abstract
training

NR Published SLR
(14,314 abstracts)
and published
scoping review
(17,200 abstracts)

Abstract
screening

Second reviewer
replacement

55%–63% 91–95 h NR

Queiros et al.
(2022)

Support vector
machines
Review of
human-
performed
retrospective
SLRs

NR ~44,000 records
across different
indications/study
designs

Abstract
screening

Second reviewer NR Up to 283 he NR

van Haastrecht
et al. (2021)

Machine
learning
(SYMBALS)
Backwards
snowballing
combined with
machine learning

NR 2,708 papers Title/abstract
and full-text
screening

Reviewer
replacement

Title/abstract
review time was
thus improved
by a factor of 6

37.5 h NR

Abogunrin et al.
(2020)

Machine
learning
Comparison of
human abstract
review with
review by two
MLMs

Prostate cancer 2,434 records/
clinical SLR

Abstract
screening

Second reviewer 70% 60 h NR

Popoff et al.
(2020)

Text mining and
machine learning
Abstract
eligibility
determination of

Psoriasis, lung
cancer, liver
cancer, melanoma,
obesity

Five datasets from
various disease
areas (psoriasis,
lung cancer, liver
cancer, melanoma
and obesity)

Abstract and
full-text
screening

Reviewer
replacement

NR 7.5 h NR

(Continued on following page)
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TABLE 2 (Continued) Eligible studies.

References Innovation
and short
description

Therapeutic
area

Evidence
base

Evidence
synthesis
task

Innovation
role

Time
savings (%)

Time
savings

Costs
savings

previously
published SLRs

totaling
33,994 abstracts

Queiros et al.
(2020)

Support vector
machines
AAMs review
abstract records
from human-
conducted SLR

Non-small cell
lung cancer

5,820 records Abstract
screening

Reviewer
replacement

72% 144 h NR

Number-to-review

Kebede et al.
(2023)

Text-mining and
machine learning
Validation of
eligibility
determination
using multiple
methodologies

Obesity 9,857 records Abstract
screening

Reviewer support
system
Reviewer
replacement

61%–80.3% NR NR

Pham et al. (2018) Text-mining and
machine learning
Abstract
eligibility
prediction based
on title/abstract
training

NR Published SLR
(14,314 abstracts)
and published
scoping review
(17,200 abstracts)

Abstract
screening

Second reviewer
replacement

55%–63% 91–95 h NR

Qin et al. (2021) Natural language
processing
(LightGBM)
Title/abstract
eligibility
verification of
published SLR

Diabetes mellitus Set of 947 citations Abstract
screening

Reviewer
replacement

64.1% NR NR

WSS@95%

Witzmann et al.
(2021)

Text mining
Classification of
title and abstract
for inclusion
in SLR

Oncology 5 review topics
(clinical,
economic, utility)/
records range
from 288 to 9,123

Title and
abstract
screening

Reviewer support
system

WSS@95 ≥ 61% NR NR

Yamada et al.
(2020)

Machine
learning
Confirmation of
eligibility using
SLR and MA of
published clinical
guidelines

Diabetes mellitus,
cardiovascular
disease

8 published SLRs Abstract
screening

Reviewer
replacement

6-fold (and up
to 10-fold)

90% NR

Ji and Yen (2015) Text mining
Predictive
performance of
MEDLINE
elements

NR 15 published SLRs Title/abstract
screening
including
Medline
elements

Reviewer support
system

>36% NR NR

Jonnalagadda and
Petitti (2013)

Text mining
Relevance
feedback
algorithm

Multiple, drug-
related

15 published SLRs Abstract
screening

Reviewer support
system

Median 13%
(6%–30%)

NR NR

aThis study used a three-stage screening process by training both humans and AI model.
bTested for rapid updates on topics (epidemiology, disease burden, treatment practices, comparative effectiveness) to support global value dossiers.
cHowever, humans required extra two hours for cross-checking exclusions and take decisions for unclear references.
dPham et al. study evaluated both time-to-review and number of abstracts to review.
eDepending on disease area and type of evidence reviewed: range from 5.1 h savings (early NSCLC/trial SLR) to 282.5 h (metastatic NSCLC SLR) using the binary classifier method to range from

0.8 h (early NSCLC/trial) to 276 h (metastatic NSCLC SLR) using the ensemble classifier.

Abbreviations: AAM, advanced analytic methods; GVD, global value dossier; LightGBM, light-gradient boosting machine; MA, meta-analysis; MLM, machine learning methods; NMA, network

meta-analysis; NR, not reported; RCT, randomized controlled trial; SLR, systematic literature review; SR-CCEO, systematic review with costs and cost-effectiveness outcomes; SYMBALS,

SYstematic review Methodology Blending Active Learning and Snowballing; TLR, targeted literature review; WSS@95%, work saved over sampling at 95% recall.
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et al., 2020; Popoff et al., 2020; Kebede et al., 2023; Witzmann et al.,
2021; Yamada et al., 2020) studies used nine different tools to
implement 15 different AI methods. Eleven methods (73%) were
used in the screening stage of the review. The remainder were
divided as follows: two methods (13%) focused on data extraction
and two (13%) focused on risk-of-bias assessment. The ambiguous
benefits of the data extractions, combined with the reported
advantages, indicate that AI platforms have taken hold with
varying success in evidence synthesis. However, the results are
qualified by the reliance on the self-reporting of study authors.

Regarding specific methods used, 10 studies (Cichewicz et al.,
2023; Egunsola et al., 2023; Liu et al., 2023a; Liu et al., 2023b;
Venkata et al., 2023; Bhagat et al., 2022; Liu et al., 2022; Qin et al.,
2021; Ji and Yen, 2015; Jonnalagadda and Petitti, 2013) used NLP,
one study (Clark et al., 2021) used a systematic review automation
(SRA) tool and one study (Rajadhyax et al., 2022) used a general AI
tool (i.e., not specifically defined). While the application of ML
techniques varied somewhat among studies, all those that used ML
utilized some variation on the traditionalML approach where results
from human searches are used to “train” the ML algorithm, after
which potentially eligible citations were classified and categorized by
the automation tool. Studies that utilized NLP were generally used to
provide updates to existing databases and/or reviews and relied
upon NLP as part of the screening process.

Effect of automation on workload and
time saving

Improvements in time efficiency were evaluated in three ways:
time-to-review (19 studies) (Pham et al., 2018; Borowiack et al.,
2023; Cichewicz et al., 2023; Egunsola et al., 2023; Liu et al., 2023a;
Liu et al., 2023b; Venkata et al., 2023; Bhagat et al., 2022; Hubscher
et al., 2022; Liu et al., 2022; Rajadhyax et al., 2022; Stansfield et al.,
2022; Clark et al., 2021; Gates et al., 2021; Queiros et al., 2020;
Queiros et al., 2022; van Haastrecht et al., 2021; Abogunrin et al.,
2020; Popoff et al., 2020), number of abstracts screened (three
studies) (Pham et al., 2018; Kebede et al., 2023; Qin et al., 2021) and
WSS@95% (four studies) (Witzmann et al., 2021; Yamada et al.,
2020; Ji and Yen, 2015; Jonnalagadda and Petitti, 2013); one study
(Pham et al., 2018) used both time-to-review and number of
abstracts (Table 1). All 19 studies using time-to-review as their
primary outcome observed substantial time savings with the use of
AI. Among these, 15 studies reported on the total time required to
review abstracts, with the improvement in time-to-review ranging
from 36.0% (Cichewicz et al., 2023) to more than 99.0% (Liu et al.,
2023a). Of the full 25 included studies, 17 found a >50% time
reduction. The largest time savings noted among the eligible
studies was associated with the use of an AI tool designed to
provide live updates to SLRs (Liu et al., 2023a). Several studies of
this “live update” technology have examined its efficiency and
found that in two studies (Liu et al., 2023a; Liu et al., 2023b) time
savings ranged from 75.0% to 99.8% while in two other studies
(Egunsola et al., 2023; Liu et al., 2022) estimated the time to
replicate network meta-analyses (NMA), time savings ranged from
two to 10 min to complete the entire analysis, representing time
savings of 99.0% compared with a fully manual process completed
by human reviewers. The time required per task was drastically

decreased with AI automation, with one study (Stansfield et al.,
2022) reporting that the time to review individual abstracts could
be as low as 7 seconds (compared with approximately 60 s per
record by humans (Devane et al., 2014)), which itself contributed
to an estimated savings of 25 h in that study. Another study
(Egunsola et al., 2023) reported a total time of two minutes to
replicate a full NMA. Clark et al. (2021) compared the time-to-
review in two teams (one manual, one automated) reviewing the
eligibility criteria for a single published systematic review and
noted a 72.0% decrease in time required, with manual reviewers
requiring 41 h and 33 min to complete the eligibility screening, as
compared with only 11 h and 48 min for reviewers assisted by
automation.

Another study (Cichewicz et al., 2023) indirectly estimated cost
savings based on the hours required to complete tasks estimating a
labor reduction of more than 75.0% with associated cost savings of
79.6% (range: 73.0%–91.0%) during dual-screen reviews (i.e., where
AI acts as a single screener). For single-screen reviews (i.e., where AI
was employed as a second reviewer), they estimated a decrease in
hours-to-complete of 33.0%, which translates to costs savings
averaging 39.8% (range: 36.0%–45.0%) based on the anticipated
manpower saved.

Several studies used a defined number of abstracts for review and
compared the time required for manual versus automated/assisted
methods. Again, significant efficiencies were observed. Two studies,
one in which more than 2,700 abstracts were screened (van
Haastrecht et al., 2021) and the other that involved screening of
over 33,000 abstracts (Popoff et al., 2020), noted five-to six-fold
decreases in the time required to review the abstracts, findings that
were observed to be scalable and consistent. Another study (Gates
et al., 2021) observed that, when reviewing 75 abstracts, automation
used to assist reviewers resulted in a 17.1% time savings, but that
when automation was used to replace reviewers, up to 44.6% of time
was saved. Elsewhere, ML algorithms were able to complete in
31 min what would have taken an individual reviewer up to 85 h to
complete (Popoff et al., 2020), and an estimated total of 25 h of
screening time was saved when three sets of citations totaling more
than 22,000 citations were screened using AI tools (Stansfield
et al., 2022).

Three studies (Pham et al., 2018; Kebede et al., 2023; Qin et al.,
2021) evaluated the impact of automation on the number of
abstracts reviewed, all of which noted similar decreases in the
screening burden of between 55.0% and 64.1%. All three studies
compared automated review with manual review and concluded that
automation (i.e., ML) has the potential to replace at least one
reviewer in the screening process. One study (Kebede et al.,
2023) calculated that the minimum decrease in review burden
was 61.0% (based on a total of more than 9,800 potential
abstracts for review) but that if ML was used to replace one of
two reviewers, the workload reduction could be up to 80.3%. All
studies reported high sensitivity as well, indicating that quality is not
lost when automation is used to replace one of the reviewers. One
study (Pham et al., 2018) that used both time to review and number
of abstracts reviewed observed that the use of ML not only decreased
the number of abstracts reviewed by up to 63.0% but also calculated
that this translated to a savings of between 91 and 95 h per
systematic review, suggesting that the impact of automation can
significantly improve the efficiency of the SLR screening process.
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Finally, four studies (Witzmann et al., 2021; Yamada et al., 2020;
Ji and Yen, 2015; Jonnalagadda and Petitti, 2013) usedWSS@95% to
quantify the reduction in workload associated with automation,
reporting between six- and 10-fold improvements in workload with
ML. In one study (Yamada et al., 2020), ML was compared with
manual screening for eight previously published systematic reviews.
The authors reviewed published SLRs and extracted both correct
(those reviewed as part of the published SLR) and incorrect (those
not reviewed as part of the published SLR) articles and used those
articles to train an AI algorithm. They noted that a six-fold decrease
in workload was observed when all articles were used but that when
two correct articles were randomly selected by a researcher and used
to initiate ML, the process was accelerated further, with a maximum
10-fold decrease in workload observed. Elsewhere, two studies used
methods relating to text word searching and found that efficiencies
improved by up to one-third. One of them (Ji and Yen, 2015) used
MEDLINE elements such as TI (title), AB (abstract), MH (MeSH
heading), PT (publication type) and AU (author name) in various
combinations and noted average improvements of between 36.0%
and 37.0%, while the other study (Jonnalagadda and Petitti, 2013)
used distributional semantics to assist with abstract text word
screening and noted improvements ranging from 6.0% to 30.0%
(median: 13.0%). Finally, in one study (Witzmann et al., 2021) that
used text mining to evaluate five review topics (three clinical, one
economic, and one utility review) with datasets varying from 288 to
9,123 articles, there was a >61.0% reduction in the number of articles
needing manual review for all topics.

Discussion

AI technologies and methods to speed up the production of
SLRs by reducing manual burden and promote cost savings have
recently emerged. To date, much of the discussion has focused on
the type of each AI tool and its validation properties and
computing technicalities, with less emphasis on systematically
generating evidence around these tools’ efficiency metrics in
SLRs. To close this gap, our pragmatic review sought to
quantify the impact of using automated tools in evidence
synthesis (review, economic modelling) in terms of efficiencies
and cost savings and provide an evidence base for the
implementation of automation in SLR methodologies.

The innovation of SLR automation tools (e.g., ML algorithms,
automated screening, and automated data extraction) and
advanced web-based economic models using cloud-based tools
can have a significant impact on time and given a presumed
decrease in manpower, potential cost savings for both
manufacturers and decision makers. van Dijk et al. (2023) have
shown that the use of an AI reviewer can reduce the number of
articles to be reviewed by human reviewers to as low as 23.0%,
which aligns with other work by Yao et al. (2024) that showed in a
systematic review that the time savings using an AI reviewer can
range from seven to 86 h when reviewing titles and abstracts.
Despite these demonstrated benefits, the uptake of these tools has
been slow, mainly due to human factor-related barriers (Tachkov
et al., 2022), limited validation of SRA tools (O’Connor et al., 2018)
or data-related barriers and distrust of the tools (van Altena et al.,
2019) due to lacking transparency of ML systems. Results from this

review demonstrated that automation in SLR can substantially
decrease the time required to complete the review, decreasing the
number of articles required to be reviewed at the full-text level by a
factor of five to six and resulting in up to a 10-fold decrease in
workload. Our review revealed a literature (data) gap on
quantifying the potential economic impact (cost savings)
associated with the improved efficiencies through automation in
evidence synthesis tasks. We only found one study (Cichewicz
et al., 2023) that estimated potential cost savings based on
manpower decreases that could indirectly translates to cost
savings. Given that human reviewers are known to average 60 s
per citation reviewed (Wang et al., 2020), as compared with AI
tools that can replicate an entire review in minutes (Liu et al.,
2023a; Liu et al., 2023b), significant potential lies ahead with the
use of such technologies for conducting SLRs. Michelson and
Reuter (2019) recently examined the costs associated with SLR
work in the pharmaceutical industry and found that, in the
United States, a typical SLR costs in excess of $141,000 when
costs for time and manpower are considered. Further, among the
10 largest pharmaceutical companies and 10 largest academic
centers, between $16 million and $18 million is spent annually
on SLRs (figures which may be underestimated, as it is unclear if
they include other types of literature reviews such as pragmatic
reviews). Based on our findings that automation can at minimum
assist and at best replace one of two reviewers during the
identification and screening process, there is the potential for
significant savings associated with the decreased labor
requirements. More work is needed to accurately quantify these
potential savings opportunities, though, as automation itself will be
associated with development and implementation costs and, as
with any technology, some experience and training in its use (by
reviewers) are required to maximize its efficiency. Furthermore,
while these results provide important evidence regarding the
efficiencies gained through automation, other aspects such as
performance metrics of individual tools, safe data access, new
structures of data classification and technological acceptance
criteria should be factored into future research in this area.

Creating time efficiencies in the SLR process allows for the
redistribution of efforts, with the potential to shift the more labor-
intensive activities to automation, freeing up human researchers to
consider a wider breadth of questions regarding a new technology
(beyond the fundamental safety and efficacy questions) and redirect
time to resolve more complex methodological topics in comparative
effectiveness research. Reason et al. (2024) suggest that this shifting
of effort could be exploited to advantage in the development of
health economic models, where automation can be used to rapidly
review, adapt, and expand existing models, thus removing the delays
associated with human action and allowing for the further
development of concepts. This is especially valuable in the case
of new technologies, which are often associated with a high degree of
uncertainty, complicated clinical scenarios but also represent the
possibility for considerable added value for patients. Automation in
the HTA/SLR environment could therefore support stakeholders,
for example, by allowing for the exploration of non-traditional
methods for data collection and real-world evaluations to aid AI-
based decisions.

The incorporation of AI tools into literature reviews, however, is
not without challenges. As with any technology designed and
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programmed by humans, the quality of the output is dictated largely
by the quality of the input. Many publications have previously
outlined concerns around diversity and inclusion in AI system
design, development, and deployment and have highlighted how
ignoring these issues may exaggerate existing discrimination, health
inequalities and algorithmic oppression, leading to AI systems being
perceived as untrustworthy and unfair (Shams et al., 2023; Chen
et al., 2024).

Many researchers acknowledge a trade-off when using AI or
automation tools, where AI may allow a task to be completed more
quickly but may not be completed to the same standard as when
completed by humans (Control ECfDPa, 2022). Additionally, AI tools
such as large language models are not themselves deterministic,
meaning that responses will not be identical each time a particular
question is asked (Qureshi et al., 2023). As a result, some researchers
may feel that the use of AI forces users down a specific path of decision-
making while not understanding how the tool made specific decisions
(Control ECfDPa, 2022). Whether to use AI in a given study is a
fundamental decision facing researchers, as is the appropriate choice of
stopping criteria (van Dijk et al., 2023). AI algorithms do not
autonomously decide where or how to be applied (van de Schoot
et al., 2021), as their application relies upon a combination of human
skill and training using large volumes of data, which can be difficult to
collect due to the ethical implications (Ali et al., 2023). However, in the
case of the usage of AI for conducting SLRs, ethical implications are less
of a concern as the data being processed are secondary, publicly
available data. Regardless of the robustness of input, the evidence we
found shows that AI in SLR applications is currently biased heavily
toward one predominant task, namely, determination of study
eligibility. Although this is a logical first step in applying AI to
evidence synthesis tasks, given its labor-intensive nature, the
application of AI to other tasks within the SLR, and ultimately
HTA, process demands more attention (de la Torre-López et al., 2023).

The efficiency gains noted in one of the included studies (Egunsola
et al., 2023)may have been overestimated by ignoring the time required
for data preparation and training of the AI tool itself. Nevertheless,
some included studies (Queiros et al., 2020; Abogunrin et al., 2020)
with more conservative estimates indicate that using an AI tool saves
considerable resources even when all preparation and training time is
accounted for. A small number of studies in our review considered the
utilization of AI for other SLR steps by replicating entire studies,
including data analysis. Although these studies demonstrated
significant efficiency improvements, these findings require further
validation across several disease areas and SLR topics. de la Torre-
López et al. (2023), in a comprehensive review of the state of AI
technology in SLRs, identified challenges with the AI applications in
more advanced tasks beyond simple “selection-based” tasks such as
research question formulation, defining of inclusion/exclusion criteria
and reporting SLR results and the need for more active human
involvement in AI-assisted SLR efforts. Finally, while researchers
may embrace the use of AI tools to assist in their efforts, the
technology remains a relative “black box”, where end users do not
fully understand the inner workings of the technology (Quinn et al.,
2021). As such, a potential lack of trust in the automated results may
persist and presents a barrier to widespread acceptance of–and
expansion of–the use of AI tools in the HTA space (Tachkov et al.,
2022; van Altena et al., 2019). Some work has already been done by
Abogunrin et al. (2023) to enable the transparent reporting of data

generated by AI tools during the conduct of SLRs. Standardized best
practices for AI use in HEOR activities, similar to other areas in
healthcare, will provide the framework for methods reporting for both
researchers and decision-makers and foster trust and transparency in
the results produced by these tools (Author Anyonomus, 2021). The
“Vienna Principles” established by the International Collaboration for
the Automation of Systematic Reviews have outlined the basic
principles for automation across the spectrum of review tasks,
continuous improvement and how their integration can adhere to
high-quality standards (Kraker et al., 2016). The latest PRISMA
guidelines already provide some direction on reporting of the use of
AI for conducting SLRs, though there is still gap as to the explainability
of the underlying algorithms used in tools with AI embedded in them.
Likewise, current quality assessment tools do not adequately address
quality assessment in automated SLRs. The NICE AI position
statement provides the first HTA-developed principles for guiding
the integration of AI tools in evidence generation and reporting and
can provide the foundation for HTA cross-collaboration efforts in this
area. Of note, our review quantitatively supported the NICE statement
regarding the less established value demonstration of AI tools, in terms
of efficiencies and cost savings, for data extraction steps compared to
the tools used for evidence identification. The risk-tier based system
suggested by both the EU AI regulation (Europarl, 2023) and NICE
position statement (NICE, 2024) should guide reliable and trustworthy
integration of such tools in evidence synthesis activities to support
decision-making in healthcare.

Conclusion

Automation through AI is key to unlocking the potential of
real-time, dynamic evidence generation creating substantial
efficiencies in evidence generation efforts. While AI tools have
made significant headway in supporting these processes,
challenges and opportunities lie ahead. Integration between
tools to facilitate data synthesis remains a prominent
gap. Different review topics may require tailored synthesis
methods, therefore interoperability between tools is crucial to
ensure a smooth flow of data between SLR stages while the
necessity for human oversight can build trust in the automated
process. Recent examples of automated analysis and reporting for
comparative analyses and health economic modeling using open
codes have also been proposed, suggesting a wider application of
AI tools is possible to allow a real-time monitoring of new evidence
in decision-making.
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