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Background: Salivary microbiome alterations are associated with chronic
diseases, such as cardiovascular disease, diabetes, and dementia. These
chronic diseases often coexist in older adults, leading to polypharmacy. This
situation complicates the relationship between systemic diseases and salivary
microbiome dysbiosis. Previous studies have demonstrated the association of the
human gut microbiome with common prescription drug use, including
polypharmacy. However, a comprehensive analysis of the salivary microbiome
and prescription drugs is yet to be conducted in older adults. Therefore, in this
study, we performed a multivariate analysis to investigate the relationship
between salivary microbiomes and host variables, including prescribed drugs,
cognitive function, and oral health, in Japanese older adults with different disease
backgrounds.

Methods: We enrolled non-hospitalised 82 older adults aged ≥70 years from a
Japanese village community, and collected metadata, including age, sex, body
mass index, cognitive function, oral health, alcohol consumption, smoking, and
common prescription drug information. We performed multivariate analyses and
functional predictions on the salivary microbiome based on 16S ribosomal RNA
gene amplicon sequencing, including the metadata as potential confounders.

Results:Weobserved a relationship between the human salivarymicrobiome and
prescribed drug use in Japanese older adults with a heterogeneous background
of comorbidities. The effects of several prescribed drugs, such as statins, proton
pump inhibitors, and transporter/symporter inhibitors, on the salivary
microbiome diversity were more prominent than those of host variables,
including age, sex, and oral health. Notably, statin use was strongly correlated
with a decrease in the Streptococcus abundance. Furthermore, statin intensity
and obesity may be associated with altering the salivary microbiome, including
functional predictions for vitamin biosynthesis and purine nucleotide degradation
pathways in statin users.

Conclusion:Our multivariate analysis, adjusted for prescribed drug use and non-
use, revealed the drug-specific alteration of salivary microbiome composition in
Japanese older adults with comorbidities. To our knowledge, this study is the first
to described the association of common prescription drug use with salivary
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microbiome alterations in older adults. Our findings indicated that prescribed drug
use is a key factor in understanding the link between salivary microbiome changes
and systemic diseases in older adults.

KEYWORDS

common prescription drug, confounder, obesity, older adults, salivary microbiome, statin,
Streptococcus

Introduction

The increasing prevalence of obesity in older adults is associated
with a higher risk of cardiovascular diseases (hypertension and
arrhythmia), dyslipidaemia, type 2 diabetes, and dementia
(Mattiuzzi and Lippi, 2020). Previous studies have shown the
evident association of obesity, including obesity-related
comorbidities (inflammatory bowel diseases and atherosclerosis),
with gut microbiome dysbiosis (Duvallet et al., 2017; Jie et al., 2017;
Ley et al., 2006; Turnbaugh et al., 2006). Recently, gut microbiome
alterations have been shown to be associated with transitions to
Western diets, leading to the development of obesity, metabolic
disease, and colorectal cancer in South Africa and Asia, including
Japan (Chiba et al., 2021; Kolodziejczyk et al., 2019; Ramaboli et al.,
2024; Yoshimatsu et al., 2021). However, research on the
compositional change of individual bacteria is varied due to
numerous confounding factors that affect the microbial structure
(Escobar et al., 2014; Nishijima et al., 2016). In forensic science,
human saliva, including the host genome, metabolite, and
microbiome, is known as a promising application for inferring
postmortem and individual characteristics such as dietary habits
(Adserias-Garriga et al., 2017; Kamodyová et al., 2013; Sun et al.,
2024). The relationship between the salivary or oral microbiome and
host physiology, including systemic diseases and circadian rhythms,
is also gaining attention (Said et al., 2014; Takayasu et al., 2017;
Zhang et al., 2015). There is increasing interesting evidence that oral
bacteria, including periodontitis-related pathobiont, translocate to
the gut, exacerbating intestinal inflammation and the pathology of
systemic diseases (Li et al., 2022b; Nagao et al., 2022; Yamazaki et al.,
2021). Previous studies have revealed reductions in the salivary
microbiome diversity in people with obesity (Shaalan et al., 2022;
Wu et al., 2018). Further, the salivary microbiome composition was
altered in individuals who underwent obesity surgery; however,
these compositional observations were heterogeneous (Dzunkova
et al., 2020). Numerous confounders in the salivary microbiomemay
lead to inter-individual variability. Therefore, the contribution of the
salivary microbiome to the pathogenesis of obesity remains unclear.

Older adults with chronic diseases, including obesity, tend to
practice polypharmacy (Tsoi et al., 2014). Polypharmacy has been
associated with increased rates of hospitalisation and mortality in
older adults (Chang et al., 2020). The most common prescription
drugs are associated with cardiovascular diseases, such as anti-
hypertensives (calcium channel blockers) and anti-
hyperlipidaemics (statins), and gastrointestinal disorders, such as
gastric acid suppressants (proton pump inhibitors [PPIs]), in older
adult populations, including Japan (Ishizaki et al., 2020; Tsoi et al.,
2014). Statins, also known as 3-hydroxy-3-methylglutaryl coenzyme
A (HMG-CoA) reductase inhibitors, are first-line drugs for
dyslipidaemia; other anti-dyslipidaemic drugs are cholesterol-

absorption inhibitors and fibrates (Grundy, 2006). Recent studies
at the population level have revealed a strong relationship between
gut microbiome alterations and therapeutic drug use, including PPIs
and statins (Falony et al., 2016; Jackson et al., 2018; Nagata et al.,
2022; Vich Vila et al., 2020). However, the relationship between the
salivary microbiome and prescribed drugs remains unclear. A
cohort study of the association of the salivary microbiome with
common prescription drug use, including polypharmacy, in older
adults is required to understand the connection between salivary
microbiome alteration and the development of systemic diseases.

Therefore, we performed a multivariate analysis to investigate
the relationship between salivary microbiomes and host variables,
including prescribed drugs, cognitive function, and oral health, in
Japanese older adults with different disease backgrounds. Our
findings may provide new insights into the association of
systemic diseases with the human salivary microbiome,
particularly concerning prescribed drug use.

Materials and methods

Study design

We enrolled 82 participants from a Japanese village volunteer
cohort consisting of older adults aged ≥70 years. The following
metadata were collected: age, sex, body mass index (BMI),
prescribed drug information, cognitive function scores [Mini-
Mental State Examination (MMSE) and revised Hasegawa
Dementia Scale (HDS-R) scores], and questionnaire responses
(frequency of drinking alcohol, smoking status, and oral health
information). The participants were diagnosed with cognitive
impairment using cognitive function test scores and grouped into
normal (MMSE ≥28 and HDS-R ≥21) and impairment (24≤
MMSE ≤27 and HDS-R ≥21) groups. We further analysed
71 participants with complete prescription drug information.
Inclusion criteria were (1) 70 years of age or older, (2) capable of
independently providing written informed consent, and (3) capable
of everyday conversation in Japanese. Exclusion criteria were (1)
hospitalised patients, (2) the presence of visible oral and jaw lesions,
and (3) the use of antibiotics within 3 months before sampling
following previous studies (Huse et al., 2008; Rashid et al., 2015).

Classification of prescribed drugs

The 153 prescribed drugs were classified into 26 categories based
on their mode of action (Supplementary Table S1). In this study, the
drug categories were not divided based on disease specificity (anti-
diabetic drugs) due to the difficulty in distinguishing between the
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effects of the disease and those of drug use on the microbiome, as
suggested by Vich Vila et al. (Vich Vila et al., 2020). Briefly, drug
classes share a common molecular mode of action modulating the
activity of a specific biological target based on a previous review
(Imming et al., 2006). In the case of enzymes, these activities include

activators or inhibitors [e.g., angiotensin-converting enzyme (ACE)
inhibitors]. Receptor-targeting activities include agonists [e.g.,
benzodiazepine (BZD) receptor agonists] or antagonists (e.g.,
adrenergic receptor antagonists). Ion channel-targeting activities
include openers (e.g., potassium channel openers) or blockers

TABLE 1 Number and percentage of prescribed drug users in our cohort.

Demographics

Number of participants 82

Number of participants with complete prescribed drug information 71

Age (mean ± SD, years) 77.1 ± 4.8

Sex (% male) 18.3

MMSE (mean ± SD) 28.8 ± 1.8

HDS-R (mean ± SD) 28.6 ± 2.0

Number of users (%)

CNS drugs 4 (5.6%)

PNS-N drugs 19 (26.8%)

PNS-V drugs 1 (1.4%)

Arachidonate cascade regulators 14 (19.7%)

Steroids 1 (1.4%)

RAAS-targeting drugs 20 (28.2%)

Voltage-gated ion channel-targeting drugs 31 (43.7%)

Transporter/Symporter inhibitors 9 (12.7%)

Isosorbide 1 (1.4%)

DPP-4 inhibitors 5 (7.0%)

Metformin 1 (1.4%)

Statins 27 (38.0%)

Ion-exchange resins 1 (1.4%)

Fibrate 2 (2.8%)

Anticoagulants 7 (9.9%)

ATP-ADP-cAMP pathway regulators 5 (7.0%)

Xanthine oxidase inhibitors 4 (5.6%)

PPIs 18 (25.4%)

Bronchodilator 1 (1.4%)

Thyroid hormone 1 (1.4%)

Bisphosphonates 4 (5.6%)

ERAAs 2 (2.8%)

Vitamins 7 (9.9%)

Cathartics 2 (2.8%)

Probiotics 3 (4.2%)

Kampo 5 (7.0%)

CNS, central nervous system; DPP4, dipeptidyl-peptidase 4; ERAAs, estrogen receptor agonists/antagonists; HDS-R, revised Hasegawa Dementia Scale score; MMSE, Mini-Mental State

Examination; ns, not significant; PNS-N, peripheral nervous system via neurotransmitters; PNS-V, peripheral nervous system through voltage-gated ion channels drugs; PPIs, proton pump

inhibitors; RAAS, renin-angiotensin-aldosterone system.
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(e.g., sodium channel blockers). We first divided the site of action
into the central nervous system (CNS) or peripheral tissues. We
further categorised based on the type of molecular targets [e.g.,
arachidonate cascade, renin-angiotensin-aldosterone system

(RAAS), and statins]. Exclusion drugs were eye drops, nasal
drops, and topical steroids in this study. Statin intensity was
determined by type and dose following a previous study (Stone
et al., 2014).

FIGURE 1
Study design. (A, B) Participants are recruited from a Japanese village volunteer cohort. The cohort comprises volunteers aged ≥70 years with
diverse disease backgrounds enrolled at a municipal facility. Cognitive function tests and a questionnaire, including oral health and the frequency of
smoking and alcohol consumption, are administered. Prescribed drug information is collected from a personal medication diary (the “Okusuri-techo”)
and an interview. Diversity and multivariate analyses on the salivary microbiome are performed in participants with complete prescribed drug
information (n = 71). To further evaluate the effect of statin use on the salivary microbiome, we selected participants who matched for age, sex, and the
proportion of all medication use between non-statin and statin users (n = 64).

FIGURE 2
Salivary microbiome association with prescribed drug use in Japanese village volunteers with heterogenous disease backgrounds. (A–C) Individual
and cumulative adjusted R2 (explained variance) of covariates in stepwise redundancy analysis using unweighted (A) and weighted UniFrac distance (B)
and at the genus level (C) in the village volunteer cohort (n = 71, n ≥ 3 per each drug category). The graph excludes negative values for individual adjusted
R2. *P < 0.05; ***P < 0.005. CNS, central nervous system; MMSE, Mini-Mental State Examination; PNS-N, peripheral nervous system via
neurotransmitters; PPI, proton pump inhibitor; Q, questionnaire; RAAS, renin-angiotensin-aldosterone system.
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Questionnaire

Dental treatment was divided into two scales: currently
undergoing treatment (including routine examinations) or not.
The usage of dentures was divided into two scales: users and
non-users. Following a previous study (Blaustein et al., 2021;
Pyysalo et al., 2019), the toothbrushing frequency was on a scale
of once or, twice or more. Oral dryness was self-reported as a daily
feeling or not. The smoking frequency was on a scale of never or
smoking. The frequency of alcohol consumption was on a scale of
regulatory (three or more times per week) or not, following a
previous study (Vujkovic-Cvijin et al., 2020).

Saliva collection and 16S ribosomal RNA
gene amplicon sequencing

All saliva samples were collected during the daytime (9:
30–16:00), following a previous study (Iwasawa et al., 2018).
The samples were collected using a sterilised sputum container

(DE 2000; Eiken Chemical Co., Tokyo, Japan), kept at 4°C until
immediately frozen with liquid nitrogen (within 8 h after
sampling), and stored at −80°C until DNA extraction.
Sampling, freezing, and DNA extraction through enzymatic
lysis were performed following previous studies (Iwasawa
et al., 2018; Said et al., 2014). The 16S ribosomal RNA
(rRNA) gene amplicons (V1-V2 region) were obtained by
performing polymerase chain reaction (PCR) using the following
primers, containing the Illumina Nextera adapter sequence and a
unique 8-bp index sequence for each sample (indicated by
xxxxxxxx): forward 27Fmod (5′-AATGATACGGCGACCACCG
AGATCTACACxxxxxxxxACACTCTCTTTCCCTACACGACGCTC
TTCCGATCTagrgtttgatymtggctcag-3′) and reverse 338R (5′
-CAAGCAGAAGACGGCATACGAGATxxxxxxxxGTGACTGGAG
TTCAGACGTGTGCTCTTCC GATCTtgctgcctcccgtaggagt-3′). The
thermal cycling of the PCR was performed on a 9700 PCR system
(Life Technologies, Carlsbad, CA, United States) using Ex Taq
polymerase (Takara Bio, Tokyo, Japan) with the following
conditions: initial denaturation at 96°C for 2 min; 25 cycles of
denaturation at 96°C for 30 s, annealing at 55°C for 45 s, extension

FIGURE 3
Salivary microbiome diversity alterations in prescribed Japanese drug users with heterogenous disease backgrounds. (A) Comparison of the alpha-
diversity score (Shannon index) by each drug category (n = 71, n ≥ 3 per each drug category; see Table 1). Statistical significance is determined using the
Wilcoxon rank-sum test (P < 0.05). Dots represent individual participants. (B) Permutational multivariate analysis of variance based on the weighted and
unweighted UniFrac distance in each drug category (n = 71, n ≥ 3 per each drug category; see Table 1). (C)Weighted and unweighted UniFrac-PCoA
in each drug category with a significant difference. The number of participants in each drug category is depicted in the figure. The R2 and P-values are
determined using permutational multivariate analysis of variance via the Benjamini–Hochberg method. Dots represent individual participants. CNS,
central nervous system; DPP-4, dipeptidyl-peptidase 4; PPI, proton pump inhibitor; PNS-N, peripheral nervous system via neurotransmitters; RAAS,
renin-angiotensin-aldosterone system.
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at 72°C for 1 min, and final extension at 72°C. The 16S rRNA gene
amplicons were purified using AMPure XP magnetic purification
beads (Beckman Coulter, Brea, CA, United States) and quantified
using the Quant-iT PicoGreen dsDNA Assay Kit (Life Technologies,
Japan). The amplicon pools were sequenced on the Illumina MiSeq
Platform (2 × 300 bp), following the manufacturer’s instructions.

Data processing

The analysis pipeline for MiSeq-barcoded amplicon sequencing
was conducted following previous studies (Aiyoshi et al., 2023; Li
et al., 2022a). Primer sequences were trimmed from the paired-end
16S rRNA gene amplicon using Cutadapt v.4.1–1. To construct
amplicon sequence variants (ASVs), the trimmed reads were
uploaded to the DADA2 R package v.1.18.0, and possible
chimeric reads were removed. We adopted 10,000 filter-passed
reads per sample of high-quality reads and deposited them in the
DDBJ/GenBank/EMBL database. The taxonomy assignment of
ASVs was determined by similarity searches against the National

Center for Biotechnology Information RefSeq database, downloaded
on 8 January 2020, using the GLSEARCH programme.

Microbiome and metadata analysis

We analysed microbiome diversity as previously described
(Iwasawa et al., 2018). Unweighted UniFrac (i.e., measuring the
difference between microbial communities based on the presence or
absence of species without considering their abundance) or weighted
UniFrac (i.e., considering both the presence/absence and the relative
abundance of species) distance analyses were used to determine the
dissimilarity (distance) between each pair of samples. Dissimilarity in
the microbiome composition was visualised using principal coordinate
analysis based on UniFrac distance analysis. Statistical significance was
obtained through permutational multivariate analysis of variance, and
P-values were adjusted using the Benjamini–Hochberg method. The
alpha diversity (α-diversity) was calculated as a Shannon index using the
vegan package (v2.6−4) of the statistical programming language R,
version 4.0.3 (2020-10-10).

FIGURE 4
Alteration ofmicrobial abundance depends on the prescribed drug used. (A, B)Graphs showing the effect size estimates based on diversity scores of
each prescribed drug. Effect sizes captured as −log10 (P-value) of the alpha-diversity are shown on the X-axis, and as–log10 (P-value) of β-diversity based
onweighted (A) and unweighted (B)UniFrac distances are shown on the Y-axis. Magenta dots represent drug categories with significant differences. Grey
dots represent drug categories with no significant differences. The pie charts within the figure show the percentage of usage of the drug category
with significant differences (also shown in Table 1). (C) Graphs show representative genera: the top 31 abundant genera with a relative mean abundance
of >0.1%, enriched and depleted among participants using individual or combination of the prescribed drugs (n = 64; see Table 2). The number ofmultiple
drug users is as follows: statin plus transporter/symporter inhibitors = 3, statin plus RAAS-targeting drugs = 10, statin plus voltage-gated ion channel-
targeting drugs = 12, and statin plus PPIs = 9. Statistical significance and 95% confidence interval are determined using the MaAsLin2 package with age,
sex, and the prescribed drugs contributing to the microbiome (CNS drugs, transporter/symporter inhibitors, PPIs, and bisphosphonates) as random
effects (P < 0.05). *P < 0.05; **P < 0.01; ***P < 0.005. Confidence interval, CI; CNS, central nervous system; DPP-4, dipeptidyl-peptidase 4; PPI, proton
pump inhibitor; PNS-N, peripheral nervous system via neurotransmitters; RAAS, renin-angiotensin-aldosterone system.
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Stepwise redundancy analysis (RDA)was performed to evaluate the
confounding variables that contributed to the microbiome composition
using the ordiR2step function (default direction = both) in the vegan
package (v2.6−4), as previously described (Nagata et al., 2022; Nishijima
et al., 2022). Distance-based RDAwas performed using the Bray–Curtis
distance with 999 permutations, and the P-values were corrected using
the Benjamini–Hochberg method. This analysis estimates the linear
cumulative and individual effect size of all identified microbiome
covariates. Individual adjusted R2 refers to the explained variance
when the most influenced variable’s adjusted R2 is maximised in the
first step involving all microbiome covariates.

Multivariate analysis of the microbial community was
performed through the R package MaAsLin2 (v1.10.0) using
generated linear and mixed models (default model: min
abundance = 0.00; min prevalence = 0.10; max significance =
0.25; normalisation = TSS; transformation = LOG) (Mallick
et al., 2021), as previously described (Nagata et al., 2023). For the
model of statin users, fixed effects included prescribed drugs (statin),
whereas random effects encompassed age, sex, and four prescribed
drugs (CNS drugs, transporter/symporter inhibitors, PPIs, and
bisphosphonates) affected by the stepwise RDA and
diversity analyses.

TABLE 2 Cohort demography between the statin-users and non-users.

Non-statin user Statin user P-value

Number of participants 40 24 —

Age (mean ± SD, years) 76.8 ± 4.5 77.2 ± 4.8 0.893

Sex (% male) 20.0 16.7 ns

BMI (mean ± SD) 24.0 ± 3.7 22.9 ± 2.6 0.279

MMSE (mean ± SD) 29.2 ± 1.1 28.6 ± 2.3 0.502

HDS-R (mean ± SD) 28.9 ± 1.4 28.5 ± 2.6 0.790

Number of users (%)

CNS drugs 3 (7.5%) 1 (4.2%) ns

PNS-N drugs 9 (22.5%) 6 (25.0%) ns

Arachidonate cascade regulators 6 (15.0%) 6 (25.0%) ns

RAAS-targeting drugs 9 (22.5%) 10 (41.7%) ns

Voltage-gated ion channel-targeting drugs 16 (40.0%) 12 (50.0%) ns

Transporter/Symporter inhibitors 5 (12.5%) 3 (12.5%) ns

DPP-4 inhibitors 4 (10.0%) 1 (4.2%) ns

Anticoagulants 3 (7.5%) 1 (4.2%) ns

ATP-ADP-cAMP pathway regulators 2 (5.0%) 3 (12.5%) ns

Xanthine oxidase inhibitors 3 (7.5%) 1 (4.2%) ns

PPIs 6 (15.0%) 9 (37.5%) ns

Bisphosphonates 0 (0.0%) 2 (8.3%) 0.137

Vitamins 3 (7.5%) 3 (12.5%) ns

Probiotics 2 (5.0%) 1 (4.2%) ns

Kampo 2 (5.0%) 2 (8.3%) ns

Number of positive answers (%)

Q_Dental treatment 6 (15.0%) 8 (33.3%) ns

Q_Toothblushing once, 5 (12.5%) twice, 35 (87.5%) once, 1 (4.2%) twice, 23 (95.8%) ns

Q_Denture 20 (50.0%) 14 (58.3%) ns

Q_Oral dryness 15 (37.5%) 4 (16.7%) ns

Q_Smoking 3 (7.5%) 1 (4.2%) ns

Q_Alcohol 5 (12.5%) 4 (16.7%) ns

BMI, bodymass index; CNS, central nervous system; DPP4, dipeptidyl-peptidase 4; HDS-R, revised HasegawaDementia Scale score; MMSE,Mini-Mental State Examination; ns, not significant;

PNS-N, peripheral nervous system via neurotransmitters; PPIs, proton pump inhibitors; RAAS, renin-angiotensin-aldosterone system.
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Functional predictive analysis based on the 16S rRNA gene
sequencing data was performed using PICRUSt2 (phylogenetic
investigation of communities by reconstruction of unobserved
states) v2.6.0 (Douglas et al., 2020). Raw ASV count data was
imported and run through the PICRUSt2 pipeline with default
parameters. Briefly, the aligned ASVs were placed into a
reference tree and were then used to infer gene family copy
numbers of each ASV. The abundances of Kyoto Encyclopedia of
Genes and Genomes (KEGG) orthology terms, Enzyme
Commission (EC) terms and MetaCyc pathway were obtained
by PICRUSt2.

Statistical analyses

All statistical analyses were performed using the statistical
programming language R version 4.3.3 (2024-02-29). Statistical
significance was determined using the Wilcoxon rank-sum test
through the Benjamini–Hochberg method. The Q-value, FDR
(false discovery rate), and P-values were set at <0.05.

Study approval

The Ethics Committee of Juntendo University School of Medicine
approved this study (approval number H19-0244). All participants
provided written informed consent for study participation. The
procedures in this study were performed following the principles of
the Declaration of Helsinki.

Results

Prescribed drug use as a salivary
microbiome confounder

The older adults in the study did not include patients with
dementia, and their most commonly prescribed drugs were voltage-
gated ion channel-targeting drugs (43.7%), including
dihydropyridine calcium channel blockers and potassium channel
openers and blockers, statins (38.0%), and RAAS-targeting drugs
(28.2%), including ACE inhibitors and angiotensin receptor
antagonists (Table 1; Supplementary Table S1). We initially
performed a stepwise RDA based on 16S rRNA gene sequence
data to evaluate how variables, including age, sex, cognitive function,
oral health, and prescribed drugs, contributed to the salivary
microbiome composition (Figure 1; Table 1). Notably, three
drugs significantly contributed to the overall microbiome
composition (cumulative adjusted R2: Figures 2A–C;
Supplementary Table S2): 1) unweighted UniFrac distance:
bisphosphonates = 2.4% (P = 0.001); 2) weighted UniFrac
distance: statins = 3.3% (P = 0.014) and PPIs = 6.1% (P = 0.015);
and 3) at the genus level: statins = 5.3% (P = 0.004). No significant
contributions to the salivary microbiome composition were
observed in the host variables, including alcohol consumption
frequency, smoking status, oral health (toothbrushing frequency,
denture use, presence of oral dryness, and history of dental
treatments), and cognitive function (Figures 2A–C). These results

indicate that several prescribed drugs may be confounding factors
for the salivary microbiome alteration in older adults with diverse
comorbidities. Thus, alterations in prescribed drug use greatly
influenced the salivary microbiome compared with changes
associated with age, sex, oral health, and cognitive function.

Association of the salivary microbiome
diversity with prescribed drug use

We performed diversity analyses on each prescribed drug user to
further evaluate the impact of the confounding prescribed drugs on the
salivary microbiome. The species richness and evenness (α-diversity)
were significantly higher in transporter/symporter inhibitor users but
lower in bisphosphonate users compared with that in non-users (P =
0.045 and 0.025, respectively; Figure 3A). Furthermore, the inter-
individual diversity (β-diversity) among users of prescribed drugs
such as statins, CNS drugs, and bisphosphonates exhibited
significant alterations compared with non-users (R2; Figures 3B, C):
1) weighted UniFrac distance: statin = 0.046 (P = 0.016); and 2)
unweighted UniFrac distance: statins = 0.023 (P = 0.036), CNS
drugs = 0.028 (P = 0.011), and bisphosphonates = 0.037 (P =
0.002). However, the number of bisphosphonate and CNS drug
users was small (n = 4 per drug category; Table 1). These results
suggest that using several drugs may be associated with altering salivary
microbiome diversity in older adults.

Polypharmacy is not associated with salivary
microbiome composition

The number of prescribed drugs was categorised into three groups
(taking 0, one to five, and ≥6 drugs) based on previous studies (Kojima
et al., 2012; Nagata et al., 2022; Vich Vila et al., 2020). The α-diversity
tended to decline with increasing the number of drugs used (taking 0 vs.
one to five groups, P = 0.333; taking 0 vs. ≥6 groups, P = 0.691; taking
1–5 vs.≥6 groups,P= 0.333; Supplementary Figure S1A).No significant
changes were found in the β-diversity among these groups
(Supplementary Figure S1B). Moreover, we evaluated the correlation
between the number of prescribed drugs and the bacterial abundance at
the genus level. A Spearman’s correlation coefficient analysis revealed
that the abundance of Lachnoanaerobaculum and Gemella increased
under conditions of polypharmacy (P = 0.056 and 0.063, respectively;
Supplementary Figure S1C). We also investigated the effect of the
dosage form because the taste of oral disintegrating drugs is masked by
sweeteners and flavouring agents (Reo and Fredrickson, 2002). The α-
and β-diversities did not differ significantly according to dosage form
(Supplementary Figure S2). These results suggest that the number of
prescribed drugs and dosage form had less influence on the salivary
microbiome diversity.

Statin user-specific salivary microbiome
alterations

We applied diversities as an indicator to evaluate which prescribed
drug use had a greater influence on the salivary microbiome. The use of
bisphosphonates showed the largest impact on α- and β-diversity, but
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its usage was low at 5.6% (Figures 4A, B; Table 1). The effect of
transporter/symporter inhibitors with a usage rate of 12.7% was
observed in intra-individual diversity (Figures 4A, B; Table 1).
However, statins had a low impact on intra-individual diversity but
a large inter-individual difference between users and non-users, with a
high usage rate of 38.0% (Figures 4A, B; Table 1). We then explored the
salivary microbiome alteration specific to statin users because statin is
one of the most common prescription drugs in older adults (Ishizaki
et al., 2020; Tsoi et al., 2014). In addition, as transporter/symporter
inhibitors include anti-dyslipidaemia drugs (cholesterol-absorption
inhibitors; Supplementary Table S1), we investigated the interaction
between statins and transporter/symporter inhibitors. The cohort was
divided into statin users and non-users with all matched metadata,
including prescribed drug use and oral health (Table 2). We performed
amultivariate analysis considering age, sex, and the use of the four drugs

(CNS drugs, transporter/symporter inhibitors, PPIs, and
bisphosphonates) affected by the stepwise RDA and diversity
analyses. We found that the abundance of Lachnoanaerobaculum,
Oribacterium, Solobacterium, Neisseria, Haemophilus, and Veillonella
increased significantly, whereas that of Streptococcus decreased
significantly in statin users (P < 0.05; Figure 4C; Supplementary
Table S3). The Solobacterium abundance increased significantly also
in the transporter/symporter inhibitor users (P = 0.007; Figure 4C;
Supplementary Table S3). The Prevotella abundance increased
significantly only in the transporter/symporter inhibitor users (P =
0.031; Figure 4C; Supplementary Table S3). Notably, a significant
increase was observed only for Lachnoanaerobaculum in users
taking these two drugs (P = 0.027; Figure 4C; Supplementary Table
S3). We further analysed the effect of combining statins and drugs with
high usage rates, including voltage-gated ion channel-targeting drugs

FIGURE 5
Alteration of the relative Streptococcus abundance in statin-users. (A)Graphs show the abundance of seven genera that significantly differ between
non-statin and statin users (shown in Figure 4C) associated with the BMI in non-statin and statin users (n = 44 and 27, respectively). Spearman’s
correlation coefficients (i.e., rho) and their P-values are depicted in the graph. (B) The box plot represents the relative abundance of Streptococcus
between patients taking low- andmoderate-intensity statins (n = 27). (C) Box plots represent the relative abundance of Streptococcus in statin users
with BMI below and above 25 with statin intensity (n = 27). The pie charts within the figure show the percentage of sex. Statistical significance is
determined using the Wilcoxon rank-sum test (P < 0.05). Dots represent individual participants. (D) Graph shows the median distance between two
groups (i.e., lean non-statin users vs. obese statin users, lean statin users taking low-intensity statins, or lean statin users takingmoderate-intensity statins,
obese statin users vs. lean statin users taking low-intensity statins or those taking moderate-intensity statins, and lean statin users taking low-intensity
statins vs. those taking moderate-intensity statins) based on the weighted UniFrac distance. The distribution of users is as follows: lean non-statin users =
30, obese statin users = 6, lean statin users taking low-intensity statins = 16, and lean statin users taking moderate-intensity statins = 5. Statistical
significance is determined using the Wilcoxon rank-sum test with the Benjamini–Hochberg method (P < 0.05). BMI, body mass index.
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(50.0%), RAAS-targeting drugs (41.7%), and PPIs (37.5%; Table 2). No
significant differences were observed in combinations with RAAS-
targeting and voltage-gated ion channel-targeting drugs (Figure 4C).
The abundance of Veillonella, Lachnoanaerobaculum, and
Oribacterium increased significantly in PPI and statins-only users
(P < 0.05; Figure 4C; Supplementary Table S3). These results
suggest that the influence of statins on individual salivary bacteria is
greater than that of cholesterol-absorption inhibitors among anti-
dyslipidaemia drug users.

Streptococcus is associated with obesity in
statin users

The study of the human gut microbiome has shown an
association between statin intake and obesity-related microbiome
community types based on BMI (Vieira-Silva et al., 2020).
Therefore, we first evaluated the correlation between BMI and
bacterial abundance (at the genus level) in non-statin and stain
users. In seven genera that were significantly different between non-

FIGURE 6
Functional prediction of the salivary microbiome composition associated with statin use. (A, B) The left panels show the relative abundance of the
representative PICRUSt2-predicted MetaCyc pathway between non-statin and statin users. The right panels show the statistical significance and 95%
confidence interval calculated by MaAsLin2 package with age, sex, and the prescribed drugs contributing to the microbiome (CNS drugs, transporter/
symporter inhibitors, PPIs, and bisphosphonates) as random effects (FDR <0.05). Confidence interval, CI; CNS, central nervous system; FDR, false
discovery rate; PPI; proton pump inhibitor.

Frontiers in Pharmacology frontiersin.org10

Hisamatsu et al. 10.3389/fphar.2025.1455753

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1455753


statin and statin users in multivariate analyses, significant negative
and positive correlations were observed for Streptococcus and
Solobacterium, respectively, in statin users (rho = −0.473 and
0.395, P = 0.013 and 0.042, respectively; Figure 5A). On the
contrary, no significant correlations were observed in non-statin
users (Figure 5A). We then compared the Streptococcus abundance
based on statin intensity and BMI. We divided the statin users into
two groups based on their BMI according to Japanese standards
(Kanazawa et al., 2005): obese (BMI of ≥25) and lean (BMI of <25)
statin users. We further classified lean statin users into two
categories (i.e., low and moderate intensity) based on the statin
intensity. No significant difference in the Streptococcus abundance
was observed between individuals taking low- and moderate-
intensity statins (Figure 5B). Notably, the Streptococcus
abundance was significantly lower in lean statin users taking low-
intensity statins than those taking moderate-intensity statins (P =
0.040; Figure 5C). In addition, we evaluated the relative abundance
of Streptococcus at the species level. No significant changes in the
statin intensity were observed in lean statin users (Supplementary
Figure S3). Overall, statin intensity and BMI may be key covariates
of statin-related alteration of the genus Streptococcus.

To compare the dissimilarity in microbiome composition
among non-statin users, obese statin, and lean statin users, we
evaluated the distance between groups based on the weighted
UniFrac distance. We found that the distance between obese
statin users and lean non-statin users was the most distant,

whereas that between lean statin users taking moderate-intensity
statins and lean non-statin users was the closest (P < 0.005;
Figure 5D). Furthermore, a significant difference was observed
between lean statin users taking moderate-intensity statins and
obese statin users or lean statin users taking low-intensity statins
(Figure 5D). These results suggest that the alteration of salivary
microbiome composition is associated with statin intake,
intensity, and BMI.

Functional prediction of the salivary
microbiome composition associated with
statin use

To investigate the functional profiles of the microbiome
composition associated with statin intake and BMI, we used
PICRUSt2 based on the 16S rRNA sequencing data (Douglas
et al., 2020). We found that 64 or 46 MetaCyc functional
modules were significantly enriched or depleted in statin users
compared to non-statin users, respectively, using MaAsLin2
(FDR <0.05; Figure 6; Supplementary Table S4). The enriched
modules included the biosynthesis of vitamin K2, B5, and B2
(e.g., PWY-5845, PANTO-PWY, and RIBOSYN2-PWY) and
L-methionine (e.g., HSERMETANA-PWY, HOMOSER-
METSYN-PWY, and PWY-5347). The depleted modules included
the CoA biosynthesis (e.g., COA-PWY and COA-PWY-1).

FIGURE 7
Functional prediction of the salivarymicrobiome composition associatedwith obesity in statin users. (A) The left panel shows the relative abundance
of the representative PICRUSt2-predicted MetaCyc pathway between lean and obese statin users. The right panel shows the statistical significance and
95% confidence interval calculated byMaAsLin2 packagewith age, sex, and the prescribed drugs contributing to themicrobiome (CNS drugs, transporter/
symporter inhibitors, PPIs, and bisphosphonates) as random effects (FDR <0.05). (B) Schematic illustration of the main results regarding the
association of statin intake, intensity, BMI, and salivary microbiome composition changes, including predictive metabolic pathways. In our older adult
cohort, we found statin therapy-associated microbiome compositions, including decreasing the Streptococcus abundance and changing biosynthesis
pathways (e.g., vitamins and CoA). Furthermore, the Streptococcus abundance increased in statin users as the BMI decreased and the statin intensity
increased, with alteration of predictive metabolic pathways (e.g., purine degradation, PGs biosynthesis, and methionine biosynthesis). The salivary
microbiome composition of participants taking moderate-intensity statins is closest to those of lean non-statin users. BMI, body mass index; CoA,
coenzyme A; confidence interval, CI, CNS, central nervous system; FDR, false discovery rate; PG, phosphatidylglycerol; PPI, proton pump inhibitor.
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Furthermore, we found that five MetaCyc functional modules
related to purine nucleotide degradation and L-methionine
biosynthesis were significantly increased in lean statin users
compared to obese statin users (MaAsLin2, FDR <0.05;
Figure 7A; Supplementary Table S5). A significant decrease in
four functional modules, including the phosphatidylglycerol (PG)
biosynthesis, was observed in lean statin users compared to obese
statin users (MaAsLin2, FDR <0.05; Figure 7A;
Supplementary Table S5).

Discussion

Our main finding showed considerable associations of salivary
microbiome alterations with commonly prescribed drugs, including
statins, PPIs, transporter/symporter inhibitors, bisphosphonates
and CNS drugs, in Japanese older adults with differing
comorbidities. Notably, the influence of the drugs was more
prominent than that of host variables, including age, sex, and
oral health. We also observed a unique alteration of the salivary
microbiome, especially the genus Streptococcus, associated with
statin intake, intensity, and BMI. In order of obese statin users,
lean statin users taking low-intensity statins, and lean statin users
taking moderate-intensity statins, the Streptococcus abundance
increased to the comparable abundance of lean non-statin users
(Figure 7B). Additionally, functional predictions exhibited
significant differences in the biosynthesis (e.g., vitamins, CoA,
methionine, and phosphatidylglycerol) and purine nucleotide
degradation pathways in statin users (Figure 7B). Our results
found an evident relationship among statin intensity, obesity, and
microbiome composition changes, suggesting that considering
prescription drugs is important for deciphering the relationship
between systemic diseases and salivary microbiome changes.

PPIs are a type of acid-suppressive agents that treat
gastrointestinal ulcers (Imhann et al., 2016). Previous studies
have shown that the human gut microbiome composition is
affected by PPI use, and the proportion of oral bacteria is
increased in the gut microbiome (Imhann et al., 2016; Jackson
et al., 2016). Moreover, the salivary microbiome was shown to be
altered in participants who were administered PPIs (Mishiro et al.,
2018). Mishiro et al. suggested a relationship between the oral
microbiome and PPI use and drug-induced alteration of T helper
type 2 (Th2) immunity as an underlying mechanism of this
association (Mishiro et al., 2018). Our analyses indicate that
statin use may have a greater effect on salivary microbiome
compositions than PPI use in older adults. The abundance of
several bacteria (i.e., Lachnoanaerobaculum, Oribacterium, and
Veillonella) was commonly changed in users taking statin
monotherapy and statin/PPI combination therapy. However, no
significant difference in the Strentoroccus abundance was observed
in participants with statin/PPI combination therapy. These results
suggest the complex relationship between salivary microbiome
alterations and medication in older adults with polypharmacy.
Further, bisphosphonates are significantly associated with gut
microbial species in patients with osteoporosis (Nagata et al.,
2022). The butyrate produced by the gut microbiome is required
for the osteoanabolic activity of the parathyroid hormone, which is
critical for bone formation (Li et al., 2020). Recently, Lin et al.

demonstrated that Bacteroides vulgatus in the gut microbiome
enhanced inflammation and osteoclast activity by inhibiting
valeric acid-producing species, resulting in decreased bone
mineral density in human and mice experiments (Lin et al.,
2023). Furthermore, bisphosphonates may lead to jaw
osteonecrosis, and the underlying pathogenesis involves oral
bacterial fluctuations and deficiencies in the host’s innate
immune response (Pushalkar et al., 2014; Russmueller et al., 2016).

Streptococcus is one of the dominant genera, along with
Veillonella, Prevotella, Neisseria, Haemophilus, and Gemella, in
the human salivary microbiome (Nearing et al., 2020; Segata
et al., 2012). A Canadian study, which did not consider all
prescribed drug usage, showed a relationship between the
abundance of salivary microbial species (Bacteroides, Bacillus,
Catonella, Johnsonella, Neisseria, and Stenotrophomonas) and
statin therapy (DeClercq et al., 2021). However, in our study, the
mean abundance of Bacteroides, Bacillus, Johnsonella, and
Stenotrophomonas was <0.1%, which is considered noise in the
sequence. This inconsistency may be associated with interracial,
dietary, lifestyle differences, and technical factors (Abdill et al.,
2025). In relation to the diseases, the salivary Streptococcus is
more abundant in individuals with obesity and diabetes
compared with individuals without obesity and diabetes (Casarin
et al., 2013; Piombino et al., 2014). Obesity is associated with the
onset or exacerbation of respiratory diseases, such as asthma
(Menegati et al., 2023). The dysbiosis, including increased
Streptococcus pneumoniae, leads to the dysfunction of T
regulatory cells, resulting in more susceptibility to antigens
reactions in patients with Th2-related asthma (Menegati et al.,
2023). Previous studies have shown that obesity is associated
with a longer survival of older adults admitted to the hospital
with S. pneumoniae infection (Braun et al., 2017; Frasca and
McElhaney, 2019). The Streptococcus abundance tended to
increase in obese non-statin users than in lean non-statin users
in our cohort. Interestingly, the Streptococcus abundance in statin
users was low in obese participants, and their salivary microbiome
composition differed most from lean non-statin users (Figure 7B).
Along with a decrease in BMI and an increase in statin intensity, the
Streptococcus abundance increased, and the salivary microbiome
composition was closer to lean non-statin users (Figure 7B).
Although our multivariate analyses did not consider the
therapeutic efficacy, these results suggest that altering the salivary
microbiome composition may reflect the host’s physiological
changes associated with statin intake and obesity. The
discrepancy between obesity and infectious diseases in older adult
populations may be due to medications, including statins.

Vieira-Silva et al. demonstrated that statin therapy is a
considerable covariate of gut microbiome alteration in patients
with obesity (Vieira-Silva et al., 2020). The prevalence of
Bacteroides-2 enterotype associated with systemic inflammation
gradually increased with elevated BMI in non-statin users. This
prevalence is lower in statin users with obesity, showing that obesity-
associated gut microbiome dysbiosis was negatively correlated with
statin intake (Vieira-Silva et al., 2020). Previous studies showed
statin therapy inhibits vitamin K2 production, and their prolonged
treatment may decline the vitamin K2 supply to our bodies
(Hashimoto and Okuyama, 2017). The depletion of vitamin K is
associated with inflammation, especially in patients with
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cardiovascular diseases (Harshman and Shea, 2016; Yan et al., 2023).
On the contrary, the serum vitamin D level may increase in statin
users compared to non-statin users (Caglar et al., 2019). Functional
predictions revealed that vitamin biosynthesis pathways were
increased in statin users, implying a compensatory mechanism to
supply the body with depleted vitamins. Furthermore, previous
studies showed that PGs are related to inflammation and
indirectly regulated by the gut microbiome in obesity (Chen
et al., 2021; Kayser et al., 2019; Meikle and Summers, 2017).
Purine degradation, which is activated by fructose consumption,
is related to obesity, and its metabolites are altered, along with gut
dysbiosis, in patients with obesity (Andres-Hernando et al., 2021;
Liu et al., 2017; Zhang et al., 2022). Altogether, these studies support
that the alteration of salivary microbiome composition in statin
users may be related to inflammation and/or immune responses.

Additionally, a significant correlation with longer survival is
observed in patients with amyotrophic lateral sclerosis (ALS), a
neurodegenerative disease, taking low-intensity statins compared
with those not taking statins (Weisskopf et al., 2022). This
correlation was not observed in individuals taking high-intensity
statins. Previous studies have suggested that statins may attain
neuroprotection in CNS (Bagheri et al., 2020; Morimoto et al.,
2023; Weisskopf et al., 2022). However, the relationship between
statin intake and the incidence of ALS remains unclear (Nabizadeh
et al., 2022). Furthermore, Wolosin et al. demonstrated a reduced
incidence of dementia and Parkinson’s disease in patients taking
statins compared with those taking cardiovascular drugs other than
statins (Wolozin et al., 2007). On the other hand, the dysbiosis in the
gut and oral microbiome is connected to the onset of ALS in human
and mouse experiments (Blacher et al., 2019; Kim et al., 2022; Zeng
et al., 2020). The CNS drugs used in this study were anti-depressive
agents and anti-parkinsonian drugs, including non-BZD hypnotics,
BZD receptor agonists, lithium carbonate, and levodopa/dopa-
decarboxylase inhibitors (Supplementary Table S1). The
mechanism is unknown, but the salivary microbiome alteration is
associated with neurodegenerative diseases and CNS drug use.

This study has some limitations. First, the study has a small
number of participants and is limited to a specific region. A large
cohort analysis, including cohorts from outside Japan, is needed to
assess the true efficacy of prescribed drugs. However, in our cohort,
the proportion of prescribed drug usage, such as statins, voltage-
gated ion channel-targeting drugs, RAAS-targeting drugs, and PPIs,
was similar to those of the global cohorts, including Japan.
Furthermore, our results that PPI and bisphosphonate use
significantly contributed to the salivary microbiome composition
align with previous studies. Although further generalizability
analysis is necessary, our results showing statin-associated
salivary microbiome changes are applicable in older adult
populations. Second, our multivariate and PICRUSt2-predicted
MetaCyc pathway analyses are based on 16S rRNA amplicon
sequencing, which is a short-read sequencing and limited in its
ability to precisely identify bacteria at the species level (Suzuki et al.,
2019). Metagenomics sequencing or full-length 16S rRNA amplicon
sequencing is necessary for further functional analysis of the salivary
microbiome. Third, the influences of the dosing period and
therapeutic efficacy were not considered. Nagata et al. reported
an association between the duration of drug use and gut microbiome
composition at the genus level (Nagata et al., 2022). Generally, the

dosing period is closely linked to dosage. Moderate- and high-
intensity statins can be prescribed to individuals when low-intensity
statins fail to cause a response (Stone et al., 2014). A relationship
between statin intensity and prognosis has been observed through
the host’s physiological changes. Our finding that the reduction in
Streptococcus abundance in individuals taking low-intensity than in
those taking moderate-intensity implies that the salivary
microbiome may be affected by the duration of statin use.
Therefore, further longitudinal studies, including dosage and
therapeutic efficacy, are needed to elucidate the complex
relationship between microbiomes and prescribed drug use.
Finally, socioeconomic status and lifestyle factors such as diet
were not considered in the analyses. The abundance of several
salivary bacteria is independent of the dietary intake but is
affected by dietary factors, such as sweeteners (Suez et al., 2022),
socioeconomic status and smoking (Belstrøm et al., 2014). Poor
socioeconomic status is associated with oral health issues such as
periodontitis (Buchwald et al., 2013). Determining the
socioeconomic status of the participants is difficult; however, we
collected oral health data using questionnaires and showed that oral
health did not significantly contribute to the salivary microbiome.
However, the accurate assessment of oral health, including
conditions such as periodontitis, can be challenging using
questionnaires alone. Therefore, obtaining precise information
through diagnoses by a professional dentist is required to better
understand the relationship between salivary microbiome
alterations and prescribed drug use.

In conclusion, we identified a relationship between salivary
microbiome alteration and prescribed drug use, particularly
statins, in a Japanese older adult population practising
polypharmacy. Statin intensity and obesity are associated with
changes in the salivary microbiome, including Streptococcus, in
statin users. Our multivariate analyses, considering prescribed
drug use as a confounder, highlight the potential of salivary
microbiome profiles as non-invasive biomarkers for accurately
monitoring the effects of drug intake and disease progression in
older adults.
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