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The goal of this review is to highlight the role of second-hand smoke (SHS) or
environmental tobacco smoke (ETS) and e-cigarette (EC) vapors on brain integrity
and function during development and adulthood, including how it relates to
increasing the risk for age-related neurodegenerative disorders. A systematic
review of the literature of the effect of SHS or ETS and e-cigarette vapors on the
brain revealed a total of 284 or 372 publications and 312 publications,
respectively. After taking into account duplicate publications or publications
focused on policy, surveys or other organs than brain, there are limited
studies on the effects of SHS, ETS or EC vapors on brain structure and
function. In this review, we examine the major constituents in SHS or EC
vapors and their effects on brain health, mechanisms by which SHS or vapors
alters brain integrity and function, including behavioral and cognitive
performance. We hope that this review will encourage investigators to explore
further the short-as well long-term effects of SHS or vapor exposure on the
developing and adult brain to better understand its role in neurodevelopmental
disorders and neurodegenerative diseases and ultimately to develop therapeutic
modalities to reduce or even prevent the short- and long-term detrimental
effects on brain health.
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1 Introduction

Please see Figure 1 for the Prisma statement.
Tobacco use is one of the leading risk factors for disease burden and mortality worldwide,

contributing to 229.8 million (95% uncertainty interval: 213.1–246.4 million) disability-adjusted
life years and 8.7 million (8.1–9.3 million) deaths in 2019 (Flor et al., 2024). Second-hand smoke
(SHS) exposure, also referred to as passive or environmental tobacco smoke (ETS), is a major
tobacco-related public health concern for nonsmokers. SHS increases the risk of nine health
outcomes, including ischemic heart disease stroke, diabetes and lung cancer, but the effects on
the nervous system have not been extensively examined (Flor et al., 2024). Although smoking
rates have gradually declined over the past 50 years, ~37% of the global population is still being
exposed to the smoke emitted from the burning end of tobacco products (sidestream smoke, SS)
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or exhaled from smokers (mainstream smoke, MS), with higher rates of
exposure reported among women and children compared to men (Flor
et al., 2024). This is concerning, since tobacco smoke is composed of
thousands of toxic chemicals and compounds, including many
carcinogens, which when inhaled can lead to disease and death,
especially among vulnerable populations.

SHS or ETS consists of sidestream (~85%) and mainstream
smoke (~15%) (Soleimani et al., 2022). Mainstream smoke is
exhaled from a smoker, while sidestream smoke is smoke emitted
from a burning cigarette. Indoors, SHS can persist for hours to
become more toxic with time and duration, a process known as
aging (Schick and Glantz, 2005; Schick and Glantz, 2007). When
second-hand smoke is released into the open air, it changes both
chemically and physically. Human exposure to SHS depends on
airflow patterns, dilution volume, the distance between smokers and
non-smokers, and smoking prevalence (Public Health Service,

2006). The toxic chemicals in SHS can also react with
atmospheric air to generate other toxins that can be inhaled
(Centers for Disease Control and Prevention, 2010; Fu et al.,
2012). SHS contains >7,000 chemicals with at least 70 of them
being carcinogenic (Li and Hecht, 2022). Nicotine, polycyclic
aromatic hydrocarbons (PAHs) and aldehydes (formaldehyde,
acetaldehyde and propionaldehyde) are the most abundant
chemical constituents commonly found in SHS. SHS also
contains smaller amounts of metals and nitrosamines (Soleimani
et al., 2022). However, aldehyde concentrations in SHS can exceed
those of nicotine, depending upon exposure conditions (e.g., indoor
vs outdoor places). PAHs, formaldehyde, and acetaldehyde all have
the potential to damage DNA (genotoxins) associated with
neurodevelopmental and neurological disorders (Perera et al.,
2014; Joshi et al., 2019; Rana et al., 2021; Kou et al., 2022; Yuan
et al., 2023). These genotoxic effects might also vary among different

FIGURE 1
The number of records identified from the PubMed database was searched using the terms SHS, ETS or EC and brain. Records that were excluded
from this review were those focusing primarily on policy or surveys, effects on non-nervous tissues, non-tobacco smoke or from other abused drugs.
These reduced the number of records for each term that focused primarily on brain health. A document from the CDC on a visual dictionary of electronic
cigarettes or vaping was also included in this review (Centers for Disease Control and Prevention, 2024).
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ethnic populations. For example, recent studies indicate that a
mutation of the enzyme that metabolizes formaldehyde and
acetaldehyde (aldehyde dehydrogenase 2, ALDH2) is highly
prevalent (30%–50%) among the East Asian population (Chen
et al., 2015; Wang X. et al., 2024), which can increase the
susceptibility to second-hand exposure to toxins (Ma et al., 2024).

Electronic cigarettes (e.g., e-cigarettes, ECs, vape pens, etc.) or
electronic nicotine delivery systems (ENDS) contain a liquid solution
(“pods”) composed of various amounts of nicotine, flavoring
substances, and other chemicals that is vaporized upon activation
of an electronic heating element that is triggered by inhalation (Grana
et al., 2014; Lopez-Ojeda and Hurley, 2024). Using ECs, is commonly
known as ‘vaping. Details about the different types of ECs, their
components and aerosols can be found in recent reviews by the Center
for Disease Control (Centers for Disease Control and Prevention,
2024) and other investigators (Lopez-Ojeda and Hurley, 2024;
Omaiye et al., 2022; Heywood et al., 2024). ECs have been
promoted as containing fewer toxic chemicals than conventional
cigarettes suggesting that these type of cigarettes are less harmful
(Heywood et al., 2024; Hamann et al., 2023; Izquierdo-Condoy et al.,
2024). However, the exhaled vapors from e-cigarettes also contains
toxic chemicals and carcinogens (e.g., acrolein, benzene, diacetyl,
formaldehyde) following second-hand exposure of individuals
(Lopez-Ojeda and Hurley, 2024; Armendariz-Castillo et al., 2019;
Yan et al., 2021). These findings suggest that e-cigarettes may be less
harmful for smokers, but they are not safe for non-smokers
(Izquierdo-Condoy et al., 2024). While there are many studies
examining the neurological effects of e-cig vapors in humans
(Hamann et al., 2023), there have been limited studies to
investigate the direct effects of e-cigarette vapors on brain function
and structure using animal models (Siegel et al., 2022; Ruszkiewicz
et al., 2020). The vapors from e-cigarettes also contain significant
amounts of nicotine, as well as other constituents found in SHS, but at
lower concentrations (Ebersole et al., 2020) (Table 1). Formaldehyde
can also be formed during the partial combustion of propylene glycol
and glycerol liquids in e-cigarettes (Strongin et al., 2024), which
reaches more deeply into the lungs than gaseous formaldehyde
(Pankow, 2017).

Exposure to second-hand smoke (SHS) at different times during
brain development (fetal, infant, and adolescence) can produce
short- or long-term effects on brain structure and function
leading to neurodevelopmental disorders (NDDs) (Slotkin et al.,
2015; Lin et al., 2021; Ou et al., 2024). Children exposed from
pregnancy to childhood have a higher risk of developing Attention
Deficit Hyperactivity Disorder (ADHD) during school-aged years
and this risk is somewhat stronger for SHS exposure during the
prenatal and postnatal periods (Lin et al., 2021). Amore recent study
of SHS exposure and neurodevelopmental disorders also revealed
that exposure is associated with higher risk of ADHD and other
learning disabilities (Ou et al., 2024). Collectively, these studies
demonstrate that SHS can induce short- and long-term structural
effects on the developing brain to cause permanent functional
changes. The contribution of individual toxins in cigarette on
both brain development and function appears to be greater when
they are combined (Slotkin et al., 2019). Combined exposure of
pregnant rats to both a PAH (i.e., benzo [a]pyrene) and nicotine
impairs acetylcholine presynaptic activity and upregulates
acetylcholine and serotonin receptors in adolescent rats when

compared with exposure to either agent alone. These studies
demonstrate that exposure to combinations of SHS chemicals is
more detrimental to the developing brain than single exposure to
SHS chemicals. Since SHS contains more than 4,000 chemicals
(Arfaeinia et al., 2023), two or more of them may be more
detrimental to the developing brain, but studies assessing
combinations of SHS chemicals have yet to been conducted.

2 Pharmacology and pathology of
nicotine in the brain

Nicotine is one of the most abundant toxins in SHS (mg to µg
quantities), next to aldehydes and polycyclic aromatic hydrocarbons
(Arfaeinia et al., 2023), and is also produced after the heating of
tobacco products (e.g., e-cigarettes) (Upadhyay et al., 2023). EC
cigarette pods contain approximately 59.2–66.7 mg/mL of nicotine,
which is comparable to one pack of 20 conventional cigarettes
(Lopez-Ojeda and Hurley, 2024). Nicotine levels in e-cigarette
aerosols can range anywhere from 0–50 mg/mL of liquid (Yan
et al., 2021; Goniewicz et al., 2018; Prochaska et al., 2022) and are
reportedly lower following exposure of individuals to vapors vs SHS
(Tattan-Birch et al., 2024). This difference may be explained by the
99% retention of nicotine by vapors following inhalation (Czogala
et al., 2014; St Helen et al., 2016). SHS inhaled from conventional
cigarettes or e-cigarette vapors is absorbed into the pulmonary
circulation where it binds to neuronal nicotinic acetylcholine
receptors (nAChRs) that mediate fast neurotransmission in both
the central and peripheral nervous system (Wells and Lotfipour,
2023). The inhaled nicotine causes the release of multiple
neurotransmitters (e.g., dopamine, norepinepinephrine,
acetylcholine, GABA and glutamate) in the reward/addiction
pathways and involved in cognition, as well as activation of
nicotinic receptors at the neuromuscular junction (Figure 2).
Cholinergic receptors are located in several brain regions notably
the midbrain tegmentum, the striatum, nucleus accumbens and the
ventral tegmentum (VTA). The addictive properties of nicotine are
reportedly due to activation of nACHRs in the brain to cause the
release acetylcholine and dopamine in the nucleus acccumbens
(Tiwari et al., 2020). GABAergic, serotonergic, noradrenergic, and
brain stem cholinergic may also mediate the actions of nicotine on
the brain. The addictive properties of nicotine may also be related to
its activation of both dopaminergic neurons of VTA as well the
GABA-ergic neurons (Varani et al., 2018). The activation of
nicotinic receptors at the neuromuscular junction by SHS can
also cause degeneration, consistent with a key role for smoke
exposure causing denervation in patients with chronic pulmonary
disease (Kapchinsky et al., 2018). In the CNS, nicotine modulates the
reward/addiction pathways and cognition through activation of
nAChRs in the mesocortical and mesolimbic dopaminergic (DA)
pathways (Ikemoto and Bonci, 2014). The rewarding and cognitive
effects of nicotine are mediated through the activation of
mesocortical DA receptors in the prefrontal cortex and anterior
cingulate cortex, while the activation of DA receptors by nicotine in
the nucleus accumbens and amygdala modulate synaptic plasticity
and long-term potentiation that are more important in addiction.

Inhaled nicotine can also have long-term effects on brain
development, because nicotinic acetylcholine receptors (nAChRs)
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play a very important role in modulating the release of
neurotransmitters during key stages of neurodevelopment
(England et al., 2017). Nicotinic receptors regulate critical aspects
of brain maturation during the prenatal, early postnatal, and
adolescent periods (Dwyer et al., 2009). Nicotine interferes with
catecholamine and brainstem autonomic nuclei development during
the rodent prenatal period (first and second trimester in humans),
alters the neocortex, hippocampus, and cerebellum during the early
rodent postnatal period (third trimester in humans) and influences
the limbic system and later monoamine-containing neuron
maturation during adolescence (Dwyer et al., 2009). SHS

exposure during fetal (prenatal) or neonatal (postnatal) brain
development can also produce long-term effects on the
developing brain to disrupt brain plasticity and overall brain
structure (e.g., volume, thinning) to lead to neurodevelopmental
disorders (e.g., ADHD, schizophrenia, ASD, and anxiety) (Ou et al.,
2024; Herrmann et al., 2008; Colyer-Patel et al., 2023; Greenwood
et al., 2024).

Prenatal exposure to nicotine from tobacco products might also
produce neurodevelopmental delay through epigenetic changes
(Buck et al., 2020; Gould, 2023; Hoang et al., 2024). DNA
methylation changes are observed in mothers who are exposed to

FIGURE 2
Effect of nicotine on brain and neuromuscular function following exposure to vapors or SHS generated by e-cigarettes and conventional cigarettes
(respectively). VTA, ventral tegmentum area, NMJ, neuromuscular junction. Images were created with BioRender.

TABLE 1 Chemical components found in SHS from Conventional and Electronic cigarettes.

Chemical aConventional bElectronic (E-cigs)

Nicotinec 0.85–100 μg/m3 (6.80 μg/m3) 0–50 mg/mL

Formaldehyde 49 μg/m3 0–11 µg/10 puffs

Acetaldehyde 1,390 μg/m3 0–4.5 µg/10 puffs (341 μg/m3)

Propionaldehyde 120 μg/m3 ND (87 μg/m3)

Acrolein 2.3–275 μg/m3 0–1.0 µg/10 puffs

AA 43.43–155.11 ng/m3 147 ng/m3

Metals (Cd, Cr, Ni) 0.03–0.01 μg/m3

0.0012–0.009 μg/m3

0.0025–0.007 μg/m3

ND
0.0846 mg/m3

0.04 mg/m3

Nitrosoamines (NNN, NNK, NDMA, NPYR) ND – 0.006 μg/m3

ND – 0.0135 μg/m3

0.008–0.045 μg/m3

0.0025–0.007 μg/m3

ND – 0.06 ng/g
ND – 0.06 ng/g
Not determined
Not determined

aAdapted from Arfaeinia et al. (2023).
bNicotine varied depending on the source of exposure (i.e., indoor air, restaurants, bars or discotheques). Mean concentrations in parentheses were from Soleimani et al. (2022).
cAdapted frommultiple sources (Goniewicz et al., 2018; Vivarelli et al., 2024; Farsalinos and Gillman, 2017; Schober et al., 2014; Olmedo et al., 2018; Quintana et al., 2021). ND, below detection

limits.
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cigarette smoke during pregnancy (Markunas et al., 2014).
Markunas and colleagues (Markunas et al., 2014) showed that
DNA methylation is changed in 110 gene regions and notably
FRMD4A, a gene associated with Alzheimer disease (AD) and
nicotine dependence and CNTNAP2, a gene associates with
neural development, autism spectrum disorder, schizophrenia,
and language impairment. Another study (Rauschert et al., 2019)
also revealed that tobacco use is associated with differential DNA
methylation of both FRMD4A and CNTNAP2. More recently,
Hoang and colleagues (Hoang et al., 2024) reported that in utero
exposure to environmental tobacco smoke (ETS) alters DNA
methylation of both CNTNAP2 and FRMD4a that might persist
into adulthood. Collectively, these studies provide evidence that
prenatal exposure to nicotine in tobacco smoke can alter brain
processes involved in neural development, age-related
neurodegenerative conditions like Alzheimer’s disease,
and addiction.

Neurotrophins, like nerve growth factor (NGF) and brain-
derived neurotrophic factor (BDNF), play important roles in
neuronal development, function, and survival during early stages
of both the central and peripheral nervous system (Ferraguti et al.,
2023). In general, the brain peptide system plays an important role
in nicotine addiction and drugs that target this system prevent the
activation of reward systems (Bruijnzeel, 2017; Boiangiu et al., 2023).
Exposure of the fetus to SHS during pregnancy appears to alter the
expression of neuropeptides (BDNF, PCAP) by the region-specific
activation of nicotinic receptors (Machaalani et al., 2019). Nicotine
also increases brain-derived neurotrophic factor (BDNF) levels in
the hippocampus and neocortex. Mice exposed to environmental
tobacco smoke (ETS) during the first two postnatal weeks show
lower locomotor activity, anxiety-like behavior and corresponding
reduced levels of synaptic proteins and BDNF in the cerebellum,
striatum and prefrontal cortex (Torres et al., 2018). Exposure to
tobacco smoke during various periods of brain development also
alters synaptic and neurotrophin levels in different brain regions
that appear to last long after early life exposure to SHS.

3 Pharmacology and pathology of other
SHS chemicals on the brain

As discussed above, smoke from cigarettes or e-cigarettes
contains many chemicals at levels comparable to nicotine (see
Table 1). SHS also contains aldehydes and polycyclic aromatic
hydrocarbons (PAHs), as well as lower concentrations of other
constituents (Arfaeinia et al., 2023), which have also been
detected in e-cigarette vapors or even after the heating (versus
combustion) of tobacco products (HTP) (Upadhyay et al., 2023;
Vivarelli et al., 2022). HTPs are a newer category of tobacco products
that generate nicotine and other chemicals, but at lower amounts
than conventional cigarettes. Sufficient evidence supports that pre-
natal PAH exposure negatively impacts cognitive development with
specific regard to child intelligence (Humphreys and Valdes
Hernandez, 2022). PAH during childhood and as an adult also
was associated with an increase in biomarkers of neuroinflammation
found in neurodegenerative diseases like AD and PD (Humphreys
and Valdes Hernandez, 2022). There are ethnicity differences in SHS
exposure that need to be considered as well. Smoking and SHS

exposure accounts for the largest exposure to PAHs of non-Hispanic
Whites vs other age-matched ethnic groups as well as older age
groups (Gearhart-Serna et al., 2021). This large study indicates that
there are vulnerable subpopulations with high PAH intake as a result
of different smoking behaviors and potentially other exposures.
Prenatal exposure to PAHs might alter mitochondrial copy
number as a mechanism to explain its ability to impair
neurodevelopment in children (Cao et al., 2020). Cord blood
levels of benzo [a]pyrene DNA adducts (marker of PAH
exposure) are inversely associated with the development of
infants born to pregnant mothers who are exposed to PAHs
from a Chinese coal burning power plant (Kalia et al., 2017).
Benzo [a]pyrene DNA adducts levels are also negatively
associated with BDNF levels in cord blood, suggesting that PAHs
might cause neurodevelopmental delay through a DNA damage-
mediated mechanism. The PAH concentration in cord blood after
exposure to SHS would be expected to be much lower than after
exposure of mothers to PAHs from a coal-burning plant.

Reactive aldehydes like acetaldehyde, acrolein and formaldehyde
are formed during the combustion of tobacco products (Tulen et al.,
2022). Acetaldehyde induces cytotoxicity by disrupting
mitochondrial function to cause oxidative stress in neural cells
(Yan et al., 2022), while acrolein causes DNA damage and
oxidative stress in non-neural cells (Bellamri et al., 2022; Hikisz
and Jacenik, 2023) and is elevated in the brain of patients with
neurodegenerative diseases (Chang et al., 2022). Acrolein and
formaldehyde induce Alzheimer-like disease pathology when
administered to rodents (Liu et al., 2018; Chen et al., 2022) or
primates (Zhai et al., 2018). Adult male rats treated for 3 months
with acrolein show neurobehavioral alterations and cognitive
impairments that are associated with electrophysiological
disturbances (Khoramjouy et al., 2021). Endogenous acrolein
plays a significant role in the pathogenesis of various
neurodegenerative diseases, including Alzheimer’s disease (Chang
et al., 2022), possibly through inducing oxidative stress reducing
brain antioxidant levels and activating the MAPK pathway resulting
in the hyperphosphorylation of tau and increasing amyloid-β levels,
both biomarkers of neuropathology (Dhapola et al., 2023; Jallow
et al., 2024). Thus, environmental exposure of humans to tobacco
smoke and endogenous antioxidant levels could be important risk
factors for the developing as well as adult brain (Chang et al., 2022)
(Figure 3).

Formaldehyde (FA) is as environmental contaminant with toxic
potential that also serves as an indispensable and thus normal
physiological metabolite in the healthy brain, where it is
hypothesized to regulate learning and memory via the N-methyl-
D-aspartate receptor (Ai et al., 2019). FA is also a product of various
metabolic pathways that participate in the one-carbon cycle, which
provides carbon for the synthesis and modification of bio-
compounds, such as DNA, RNA, and amino acids (Li et al.,
2021). Endogenous FA plays a role in epigenetic regulation by
regulating the methylation and demethylation of DNA, histones,
and RNA (Li et al., 2021). At high levels, FA can pose a significant
threat to genomic stability (Reingruber and Pontel, 2018), DNA
repair (Nadalutti et al., 2021;Weng et al., 2018; Tang et al., 2022) and
impede transcription, with negative physiological consequences
(Mulderrig et al., 2021), through epigenetic alteration (Li et al.,
2021), including neuronal and endothelial damage, (Chen et al.,
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2024). Notably, impaired memory is observed in mice with elevated
endogenous FA, induced by knock-out of the gene coding for
aldehyde dehydrogenase-2, a key mitochondrial enzyme for the
effective metabolism of alcohol and acetaldehyde (Ai et al., 2019).
Exposure to high levels of FA by inhalation (3.0 mg/m3) impairs
cognitive function, including memory, in humans, causing neuronal
damage and oxidative stress in the cerebellum of experimental
animals, and inducing the misfolding of neuronal tau and related
proteins in vitro (Rana et al., 2021). The balance between genotoxins
and benign metabolites is presumed to depend on concentration,
localization, pH and redox state, features that are or potentially
altered during disease progression (Hopkinson and Schofield, 2018).

4 Pathway changes associated with
cellular damage and inflammation
in brain

A systematic review of the effects of active and passive smoking
of conventional cigarettes, electronic cigarettes and tobacco heating
products indicated that active and passive smoking induce oxidative
stress and inflammatory responses in peripheral tissues (Kopa-
Stojak and Pawliczak, 2024; Zieba et al., 2024), but the nervous
system was not examined (Kopa-Stojak and Pawliczak, 2024).
Oxidative stress-induced DNA damage and inflammation are also
emerging as key triggers of dementia and related neurological
disorders (Houldsworth, 2024; Giri et al., 2024; Neven et al.,
2024; Firdous et al., 2024), as well as neurodevelopmental
disorders (Qing et al., 2023; Lubrano et al., 2024; Xu et al., 2024).
Since 90% of neurodegenerative diseases (e.g., MCI, dementia) are
sporadic, this suggests that environmental factors like tobacco
smoke might play an important, but undefined, role in their
etiology (Ourry et al., 2024; Pandics et al., 2023). Early life
exposure to SHS may also be an important risk factor for

dementia (Chen, 2012; Zhou and Wang, 2021; Wan et al., 2024),
as well as neurodevelopmental disorders (Hall et al., 2016; Julvez
et al., 2021; Mukhopadhyay et al., 2010; Wade et al., 2023). Studies
with animal models suggest that the effect of SHS on the brain may
be due to increased oxidative stress and inflammation during brain
development, leading to increased brain cell apoptosis in adulthood
(Vivarelli et al., 2024; Raber et al., 2021; Raber et al., 2023; Lopes
et al., 2023). Short-term exposure of 2-month-old mice (6h/day x
5 days/wk x four or 8 weeks) to a mixture of sidestream/mainstream
cigarette smoke impairs brain insulin signaling and induces the
accumulation of neuropathological proteins (Deochand et al., 2015;
Deochand et al., 2016). Shorter durations of mainstream/sidestream
smoke (1h/day x 1 month) induces lipid peroxides, DNA damage,
and tau dysregulation (tau isomers, phosphotau) in the brain of
neonatal mice (La Maestra et al., 2011), markers of neuropathology
frequently observed in MCI and patients with dementia (Lovell and
Markesbery, 2007; Simpson et al., 2016; Wirz et al., 2014). Longer
exposures of 2-month-old rats or 3-month-old APP/PS1 transgenic
mice to sidestream cigarette smoke (1h/day x 5 days/wk x two or
4 months) induces tau and amyloid pathology like that reported in
MCI and patients with dementia (Ho et al., 2012; Moreno-Gonzalez
et al., 2013). These studies strongly suggest that SHS increases the
risk of developing MCI and dementia by perturbing brain
metabolism (i.e., insulin signaling, oxidative stress) and the
accumulation of neuropathological proteins (i.e., tau, amyloid).
SHS induces a distinct brain metabolic profile characterized by
oxidative stress (Raber et al., 2021; Raber et al., 2023; Neal et al.,
2016) and inflammation (Lopes et al., 2023; D et al., 2019; Chan
et al., 2020). The cortex and hippocampus in the brains from the
offspring of female C57BL/6 mice exposed to air or SHS (50 μg/m3;
5h/day, 5 days/week for 5 weeks and 2 days) were examined by
untargeted metabolomics. Insulin signaling, which regulates an
abundance of metabolic proteins, is altered in the hippocampus
of the offspring exposed throughout development to SHS. An

FIGURE 3
Effect of other SHS chemicals on brain structure and function following exposure to conventional cigarettes. ROS, reactive oxygen species, 8-OH-
dG, 8-hydroxy-2′-deoxyguaonsine,. Images were created using BioRender software.
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increase in glutathione-S-transferase is also detected, and a trend
towards increased glutathione reductase activity, increases GSSG,
and a decreased GSH/GSSG ratio is observed. In a systematic review
of the literature, it was also reported that cigarette smoking (active
and passive) induces oxidative stress and an inflammatory response
in peripheral (i.e., non-neurological) tissues (Kopa-Stojak and
Pawliczak, 2024; Kanithi et al., 2022; Prasad and Bondy, 2022;
Mukharjee et al., 2020). Thus, exposure to SHS (passive
smoking) on the brain and non-neurological tissues induces both
oxidative stress and inflammation.

A multi-center study of six European countries that examined the
relationship between early life environmental exposures and child
cognitive function found that ETS exposures adversely and cross
sectionally associate with cognitive function (Julvez et al., 2021). In
human studies, maternal exposure to SHS is also closely linked to small
brain size and changes in brain structure that associated with a higher
risk of cognitive impairments (Colyer-Patel et al., 2023; Greenwood
et al., 2024; Chan et al., 2020) and psychotic experiences (WangD. et al.,
2024). SHS also induces oxidative stress and inflammation in the
developing brain (D et al., 2019; Chan et al., 2020; Lobo Torres
et al., 2012; Mohamed et al., 2022; Church et al., 2020). Acute
exposure to SHS on postnatal day 18 increased GST activity and
malondialdehyde (MDA levels in the hippocampus, GPx and SOD
activity in the prefrontal cortex and GST activity andMDA levels in the
striatum and cerebellum of postnatal mice (Lobo Torres et al., 2012).
Three hours later, SOD activity and MDA levels increased in the
hippocampus and the activity of all enzymes decreased in the
prefrontal cortex. This study shows that SHS induces oxidative stress
by perturbing antioxidant enzymes in distinct brain regions during early
brain development like that reported in older animals. Thus, oxidative
stress appears to be an early event following exposure to ETS or SHS
from tobacco products. Pregnant mice were exposed to e-cig vapor
(2.4% nicotine) from GD five until postnatal day 7 (PD7) and the brain
of mice at PD7 and PD 90 examined for reactive oxygen species (ROS)
and pro-inflammatory cytokines (Archie et al., 2023). E-cig vapor
reduced antioxidant marker expression and increased the expression
of pro-inflammatory and cytokine markers in the PD7 brain, but not
the PD 90 brain. Pregnant mice were also exposed daily to e-cigarette
chemicals (propylene glycol, vegetable glycol) and 16mg/mL of nicotine
for 3 h/d, 7 days a week from gestational day (GD) 0.5 until GD 17.5
(Church et al., 2020). Male and female offspring of e-cigarette exposed
mice had lower scores on the novel object recognition task and reduced
inflammatory markers in the diencephalon (IL-4, IFNγ) and
hippocampus (IFNγ; females only). This experimental study
demonstrates that e-cigarette vapors can also persistently alter the
neuroimmunology and behavior following maternal exposure. Thus,
oxidative stress and inflammatory markers are also increased in the
brain of mice after in utero exposure to SHS from both conventional
cigarettes and e-cigarettes (Figure 4).

5 MCI, neurodegeneration, and other
neurological disorders

As described earlier, there is growing evidence that non-smokers
exposed to SHS are at an increased risk of developingMCI (Chen, 2012;
Llewellyn et al., 2009; Yolton et al., 2005; Murphy et al., 2020; Akhtar
et al., 2013; Cataldo et al., 2010; Chang et al., 2012) and dementia (Chen,

2012; Cataldo et al., 2010; Chang et al., 2012), as well as
neurodevelopmental disorders (Ou et al., 2024; Chan et al., 2020;
Pagani, 2014). Exposure to SHS increases the risk for dementia
among individuals who never smoked (Zhou and Wang, 2021; Wan
et al., 2024; He et al., 2020) and it is 2–6 times more toxic and
tumorigenic to humans than mainstream smoke (Schick and Glantz,
2005; Akhtar et al., 2013). Cholinergic dysfunction of the nucleus basalis
of Meynert (NBM) is hypothesized to be an important factor for the
increased risk of AD (Slotkin et al., 2015; Slotkin et al., 2019; Toro et al.,
2008). Chronic exposure to nicotine through smoking may lead to
atrophy of cholinergic input areas of the basal forebrain. Chronic
exposure to nicotine through smoking disrupts the functional
connectivity between the NBM and precuneus in MCI patients (Qiu
et al., 2022). The ability of cigarette smoke to disrupt the connectivity in
both non-smokers and those with MCI suggests that exposure to
cigarette smoke disrupts cognition. Yet, 6 months of transdermal
nicotine administration (16 mg/day) to MCI patients improves
primary and secondary cognitive measures of attention, memory,
and mental processing (Heffernan and O’Neill, 2013). These studies
demonstrate that exposure to nicotine through cigarette smoke can
either disrupt cholinergic function or be protective. Early life exposure
to nicotine and other SHS constituents might be the key to
understanding how the toxins in cigarette smoke induce their long-
term effects on learning and memory, executive function, and the
reward circuitry (Hall et al., 2016; Cauley et al., 2018; Ponzoni
et al., 2020).

Base excision repair (BER) is the primary cellular pathway for
repairing oxidative DNA damage (e.g., 8-oxo-deoxyguanosine, 8-
oxodG) (Oka et al., 2021) that is reportedly impaired in both MCI
individuals and those with AD (Chang et al., 2022; Cherbuin et al.,
2024). Furthermore, the brain of dementia subjects also exhibits
activation of the DNA damage response (DDR) pathway,
inflammatory changes and cellular senescence (Schwab et al.,
2021). Exposing mice for 4 months to active (La Maestra et al.,
2011) or passive (Moreno-Gonzalez et al., 2013) cigarette smoke
induces oxidative stress, DNA damage and neuropathology in mice.
Chronic exposure of mice to SHS (90% side stream, 10%mainstream
smoke x 2.8 h/day x 7 days/wk x 10.4 mos) induces dark, shrunken
cells, hippocampal thinning, and the presence of activated astrocytes
and prominent 8-oxoG staining in the prefrontal cortex (PFC) and
hippocampus (HIPP) (Raber et al., 2021; Lopes et al., 2023). 8-
oxoguanine DNA glycosylase (Ogg1) staining is also reduced in the
PFC and CA3 hippocampal neurons of SHS chronically exposed
mice. Apurinic/apyrimdinic endonuclease (Ape1) staining is more
prominent in the PFC and the HIPP in SHS chronically exposed
mice. These studies demonstrate that oxidative DNA damage (8-
oxoG) is elevated and oxidative DNA repair (Ogg1 and Ape1) is
altered in the brain of SHS exposed mice, as well as activation of
reactive astrocytes. The percentage of 8-OHdG-labeled cells in the
CA1 region of the hippocampus is associated with performance in
the novel object recognition test, consistent with urine and serum
levels of 8-OHdG serving as a biomarker of cognitive performance
in humans. Therefore, SHS induces both oxidative DNA damage
and repair, as well as inflammation as possible underlying
mechanism(s) of the behavioral and cognitive function and
metabolic changes that were observed in chronically exposed
mice (Raber et al., 2021). These findings suggest that human
exposure to cigarette smoke induces oxidative stress, genomic
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stress (i.e., DNA damage and repair) and enhances
neuroinflammation like that in age-related neurodegenerative
diseases (Simpson et al., 2016; Shadfar et al., 2023) (Figure 5).

With regard to neurodevelopmental disorders, a recent META
analysis involving 54 studies revealed associations between SHS
exposure and the risks of developing attention deficit hyperactivity
disorder (ADHD) and learning disabilities (LD) (Ou et al., 2024). There
is also an association between cotinine exposure andADHD.Consistent
with the increased ADHD risk, prenatal SHS and postnatal maternal
distress alter the efficiency of the cingulo-opercular (CO) network,
which is involved in task control and executive function (Freedman
et al., 2020). In addition to SHS, third hand smoke, consisting of residual
tobacco smoke pollutants that remain on surfaces and in dust after
tobacco has been smoked, which are re-emitted into the gas phase or

react with oxidants and other compounds in the environment to yield
secondary pollutants and include nicotine, three-ethenylpyridine (3-
EP), phenol, cresols, naphthalene, formaldehyde, and tobacco-
specific nitrosamines that have detrimental effects on the developing
brain (Matt et al., 2011). Third hand smoke can be inhaled through
inhalation, ingestion, or dermal uptake from the air, dust, and from
surfaces. Consistent with the human data, third hand smoke for 4 weeks
in mice increased inflammatory cytokines in plasma and increased
epinephrine and aspartate aminotransferase, a biomarker of liver
damage (Adhami et al., 2017). These detrimental effects are more
pronounced when the mice were chronically exposed to third hand
smoke for 8, 16, and 24 weeks.With longer third hand smoke exposure,
mice become hyperglycemic and hyperinsulinimic, indicating an
important role for impaired insulin sensitivity after third hand

FIGURE 5
Effect of vapors or SHS generated by e-cigarettes and conventional cigarettes (respectively) on the developing and mature CNS. Adapted from
Merecz-Sadowska et al. (2020), Prasedya et al. (2020), Chan et al. (2020), and Garza et al. (2023). Images were generated using BioRender software.

FIGURE 4
Potential pathways affected by exposure of the CNS to vapors or SHS generated by e-cigarettes and conventional cigarettes. Adapted from Vivarelli
et al. (2024), Arfaeinia et al. (2023), Addissouky et al. (2024), and Auschwitz et al. (2023). Images were created using BioRender software.
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smoke exposure. Pre- and post-natally, there can also be a combination
of SHS and third hand smoke.

6 Conclusion

The above studies of SHS exposure in animals and humans
demonstrate that the brain is a key target of nicotine and other
constituents following exposure to tobacco products. Early life
exposure to SHS disrupts brain development to increase the risk for
neurodevelopmental disorders (ADHD, learning disabilities). On the
other hand, exposure of the mature brain to SHS is considered a risk
factor mild cognitive impairment and dementia. A common target for
SHS in the developing and adult brain is oxidative stress, inflammation
responses and genomic stress that might be responsible for triggering
both neurodevelopmental disorders as well as dementia (Figure 6).
Given theworld-wide exposure of pregnant women, children and adults
to SHS, additional research will be required to pinpoint the mechanism
by which SHS is a risk factor for both neurodevelopmental and
neurodegenerative disorders with the goal of protecting the most
vulnerable to these environmental exposures.
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