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Background: Increasing evidence is showing that necroptosis has unique clinical
significance in the occurrence and development of multiple diseases. Here, we
systematically evaluate the role of necroptosis in clear cell renal cell carcinoma
(ccRCC) and analyze its regulatory patterns.

Methods: First, we evaluated the expression and enrichment of necroptotic
factors in ccRCC using gene set enrichment analysis (GSEA) and survival
analysis in the expression profile from The Cancer Genome Atlas (TCGA) to
demonstrate the overall mutation of necroptotic pathway genes. Then, we used
unsupervised clustering to divide the samples into two subtypes related to
necroptosis with significant differences in overall survival (OS) and
subsequently detected the differentially expressed genes (DEGs) between
them. Based on this, we constructed the necroptosis scoring system (NSS),
which also performed outstandingly in hierarchical data. Finally, we analyzed
the association betweenNSS and clinical parameters, immune infiltration, and the
efficacy of immunotherapy containing immune checkpoint inhibitors (ICIs), and
we suggested potential therapeutic strategies.

Results: We screened 97 necroptosis-related genes and demonstrated that they
were dysregulated in ccRCC. Using Cox analysis and least absolute shrinkage and
selection operator (LASSO) regression, a prognostic prediction signature of seven
genes was built. Receiver operating characteristic (ROC) curves and
Kaplan–Meier (KM) analyses both showed that the model was accurate, and
univariate/multivariate Cox analysis showed that as an independent prognostic
factor, the higher the risk score, the poorer the survival outcome. Furthermore,
the predicted scores based on the signature were observably associated with
immune cell infiltration and the mutation of specific genes. In addition, the risk
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score could potentially predict patients’ responsiveness to different chemotherapy
regimens. Specifically, Nivolumab is more effective for patients with higher scores.

Conclusion: The necroptosis-related signature we constructed can accurately
predict the prognosis of ccRCC patients and further provide clues for targeted,
individualized therapy.

KEYWORDS

clear cell renal cell carcinoma, necroptosis, necroptosis scoring system, survival analysis,
precise treatment

1 Introduction

Approximately 3% of malignancies in adults are renal cell
carcinomas (RCCs) which affect more than 400,000 people
worldwide each year (Scelo and Larose, 2018; Bray et al., 2018).
Approximately 70% of these patients are diagnosed with clear cell
renal cell carcinoma (ccRCC) (Shuch et al., 2015), which is more
aggressive and has a higher recurrence rate than other RCC
subtypes. Although early stage ccRCC can be treated with
surgical removal, nearly one-third of patients eventually have
tumor recurrence or metastasis (Jonasch et al., 2014; Choueiri
and Motzer, 2017). As a heterogeneous disease, it is unrealistic to
accurately predict the prognosis of ccRCC and stratify patients at
risk based only on existing clinicopathological features and models.
Therefore, finding promising markers in new areas that allow for
more accurate prediction is essential to not only improve survival
but also optimize individualized treatment regimens for patients
with ccRCC.

Multicellular organisms rely on regulatory cell death to
maintain metabolic or immune homeostasis. Necroptosis is a
caspase-independent form of programmed necrotic cell death,
mediated by mixed-lineage kinase domain-like proteins (MLKL)
and receptor-interacting protein kinases 1 and 3 (RIPK1 and
RIPK3), which is similar to apoptosis in mechanism and necrosis
in morphology (Gong et al., 2019). Activation of interferon
receptors (IFNRs), toll-like receptors (TLRs), tumor necrosis
factor receptors (TNFRs), and pathogen infections are all
recognized as necroptosis-inducing signals (Han et al., 2011).
In humans, through the recruitment and motivation of PIPK3, the
inhibited caspase 8 and RIPK1 initiate the process of necroptosis
and further phosphorylate MLKL at Thr-357 and Ser-358 (Sun
et al., 2012; He et al., 2009). The phosphorylated MLKL migrates
to the cell membrane and destroys its stability and physiological
structure, which then leads to diffusion of cellular components
within the dead cell (Nicole et al., 2022; Wang et al., 2014; Cai
et al., 2014). In 2005, necroptosis was found to promote the
occurrence of delayed ischemic brain injury in mice in vivo
(Degterev et al., 2005). Since then, its multifaceted role in
tumorigenesis and anti-tumor response has been continuously
investigated (Nicole et al., 2022; Fulda, 2014; Koo et al., 2015).
Necroptosis has been proven to be a double-edged sword for
cancer, not only preventing cancer progression by regulating cell
death (Hockendorf et al., 2016; Geserick et al., 2015) but also
promoting tumor development through relevant pivotal factor,
such as inducing an immunosuppressive response and stimulating
proliferative signals in tumor cells (Strilic et al., 2016; Seifert et al.,
2016; Liu et al., 2021). However, the specific impact of the

promising field of necrosis on urologic tumors, especially
ccRCC, remains unclear.

This necroptotic process involves a large number of molecules
and signaling pathways and has unique immunological,
physiological, and biochemical consequences. Together, these
implicated elements during the pathological process can be
effective biomarkers for predicting disease progression. For
example, Chen et al. (2022) developed a prognostic model on the
basis of three necroptosis-related genes (NRGs) and attempted to
accurately relate it to patient outcomes. However, most of the
prognostic models proposed for ccRCC are superficial and
limited, and therefore the performance achieved is suboptimal.
Hence, more comprehensive and effective studies are needed to
characterize the regulation of necroptosis in ccRCC.

In this study, based on The Cancer Genome Atlas (TCGA)
cohort, we comprehensively characterized the dysregulation of
necroptotic genes in ccRCC and explored the main pathways
regulated by necroptosis. By screening out the key differentially
expressed genes (DEGs), clustered subtypes were delineated, and
thus we constructed a necroptosis-related risk signature. In addition,
combining clinical parameters and copy number variation (CNV),
we comprehensively analyzed the predictive efficacy of prognosis,
immune infiltration, and prediction of response to immunotherapy
based on this model in patients with ccRCC. The aim of this study is
to understand the regulatory mechanisms of necroptosis in cancer
cells in more detail so as to provide reliable markers for risk
stratification and individualized treatment of ccRCC patients.

In order to describe the study more intuitively, we displayed the
research process in the form of a flow chart in Figure 1A.

2 Methods and materials

2.1 Data preparation and preprocessing

For the TCGA-ccRCC cohort, both the RNA-seq profiles, which
were downloaded in fragments per kilobase million (FPKM) format,
and genome CNV data of different samples were obtained from the
TGGA database (https://xenabrowser.net/datapages/). We
converted data from FPKM to transcripts per million (TPM)
format and normalized it to log2 (TPM+1). Data from
GSE167573 (Sun G. et al., 2021), including expression matrix and
clinical information, were downloaded from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/).
Utilized as the validation set, the E-MTAB-1980 dataset was
obtained from the ArrayExpress database (https://www.ebi.ac.uk/
arrayexpress/).
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The surgical specimens of four ccRCC patients who underwent
radical nephrectomy without neoadjuvant chemoradiotherapy in
the First Affiliated Hospital, Sun Yat-sen University (Guangzhou,
China) from 2010 to 2015 were collected for experiments. All
patients were accurately informed, and informed consent was
signed by all the participants. This study was approved by the
Medical Ethics Committee of the First Affiliated Hospital, Sun
Yat-sen University, consistent with the principles of the Helsinki
Declaration.

Additionally, based on data obtained from Braun et al. (2020)
(CheckMate 025, NCT01668784), potential applicability in predicting
immunotherapy responses of this signature was evaluated in ccRCC
patients. We also validated the necroptosis scoring system (NSS) with

the data by using the R package “IMvigor210CoreBiologies”
(Mariathasan et al., 2018) to demonstrate the feasibility and
generalizability of the signature for application in urologic tumors.
Overall survival (OS) was used as the prognostic endpoint, and the
Kaplan–Meier (KM) method was used to plot the survival curves to
compare survival differences across different groups. In all groups,
only patients whose survival data were available and OS > 0 were
considered for inclusion in the follow-up analysis. A log-rank test was
performed to evaluate the significance of survival differences in a
randomized trial, testing the null hypothesis that there is no difference
in survival between the groups.

Genes involved in necroptotic pathways were acquired from the
Kyoto Encyclopedia of Genes and Genomes (KEGG) database

FIGURE 1
Necroptosis is involved in the development of clear cell renal cell carcinoma (ccRCC). (A) Flow chart of this study. (B) Gene set enrichment analysis
(GSEA) of necroptotic factors between tumor and normal samples. (C) GSEA of necroptotic factors in N- and M-stages. (D) Kaplan–Meier curves of the
most significant six genes in necroptotic factors. (E) Interactions between necroptotic factors.
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(https://www.kegg.jp/) (Kanehisa and Goto, 2000); 97 genes in total
were identified as NRGs (Additional File 1:
Supplementary Table S1).

2.2 Information of gene expression,
mutation, CNV, and chromosome position

Using the R package “limma” (Ritchie et al., 2015), DEGs
between ccRCC and control samples were obtained. A Wilcoxon
test (Gehan, 1965) was used to analyze the expression differences
between groups with different clinical parameters. The R package
“maftools” (Mayakonda et al., 2018) was used to depict gene
mutations at a holistic level. The R package Circos (Krzywinski
et al., 2009) was used to demonstrate the specific distribution of
genes on chromosomes.

2.3 Enrichment analysis

The R package ClusterProfiler (Yu et al., 2012) was used for gene
set enrichment analysis (GSEA) on the basis of the expression profile
from the TCGA-ccRCC cohort in order to demonstrate the
difference between two groups in necroptotic pathways. The
enrichment results of necroptotic pathways were also
demonstrated in cancer samples among various clinical
parameters, such as age, sex, and stage. Multiple testing
correction was performed using the Benjamini–Hochberg method
to adjust the false discovery rate (FDR) and reduce false positives
that may arise from multiple comparisons.

Using the R package GSVA, gene set variation analysis (GSVA)
was performed to investigate whether different subtypes of ccRCC
differ in biological processes.

2.4 Correlation between necroptotic factors
and immune infiltrating cells

In the TCGA-ccRCC dataset, cell-type identification by
estimating relative subsets of RNA transcripts (CIBERSORT),
single-sample GSEA (ssGSEA), and XCELL were used to
calculate immune cell ratios and the correlation between the
expression levels of each necroptotic factor. Immune cell
abundance was evaluated using Pearson analysis, followed by
tumor purity, immune score, and stromal score assessed by
estimation of stroma and immune cells in malignant tumor
tissues using expression data (ESTIMATE).

2.5 Cancer subtypes based on
necroptotic factors

The R package ConsensusClusterPlus (Wilkerson and Hayes,
2010) was used for consistent clustering analysis, with Euclidean as
the clustering distance and km as the clustering method;
100 repetitions were performed to ensure the stability of
classification. The K-elbow method was combined to determine

the number of clusters and analyze the survival of samples between
different subtypes.

2.6 Establishment and verification of the
necroptosis scoring system (NSS)

Univariate Cox regression analysis was performed on the DEGs
to screen the genes associated with OS, followed by least absolute
shrinkage and selection operator (LASSO) regression to eliminate
redundancy and construct a prognostic signature which was named
“NSS.” The calculation formula follows; Genei is the key gene after
LASSO regression, and coefi is its weight.

NSS � ∑ Genei*Coefi( ).

After calculating the NSS scores of the samples, survival analysis
was performed by KM curves, and the predictive power of this
prognostic signature was evaluated by receiver operating
characteristic (ROC) curves using area under curve (AUC) in
both training and testing groups.

CNV data of the high- and low-NSS groups were used to detect
the amplification and deletion level using the Genomic
Identification of Significant Targets in Cancer 2 (GISTIC2) tool
on the GenePattern website (https://www.genepattern.org/#gsc.tab=
0). Using this, genes with high frequency mutation of the samples
were displayed.

2.7 Cell cultures, drug treatment, and
transfection assays

Human RCC cell line 786-O acquired from the American Type
Culture Collection was cultured in RPMI 1640 (Gibco,
United States) containing 1% penicillin–streptomycin (Gibco,
United States) and 10% fetal bovine serum (PAN-Seratech,
Germany). The cells were cultured under a controlled condition
of 37 °C and 5% CO2 in a humidified environment.

Necroptotic stimuli, including recombinant human TNF-α,
Smac mimetic, and z-VAD (TSZ), can induce TNF-mediated
necroptosis (He et al., 2009; Li et al., 2004). They were used for
24 h at 10 ng/mL, 10 nM, and 20 μM, respectively.

Small interfering RNAs (siRNAs) targeting BBOX1, PDK4,
SLC16A12, CDH2, TEK, PLS1, SLC40A1, and their negative
controls were designed and synthesized by RiboBio (Guangzhou,
China) following rigorous quality standards. They were all
transfected with Lipofectamine 3000 (Invitrogen, United States).
The related sequences are listed in Additional File 2 in
Supplementary Table S2.

2.8 The extraction of RNA and quantitative
real-time PCR (qRT-PCR)

The total RNA was extracted from the cells using TRIzol
(Invitrogen, United States) as per the manufacturer’s instructions.
Reverse transcription of RNA was performed using the PrimeScript
RT reagent Kit (Takara, China), and 2X SYBR Green Pro Taq HS
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Premix II (AGbio, China) was utilized for qRT-PCR according to the
specification. GAPDH was employed as an internal reference for
RNA normalization. Primer sequences are presented in Additional
File 2 of Supplementary Table S2.

2.9 Cell viability assay

We inoculated 2 × 103 cells in 100 μL culture medium on 96-well
plates treated with TSZ for 24 h. Then, the CellTiter-Glo®

Luminescent Cell Viability Assay kit (Promega, United States)
was employed as per the manufacturer’s instructions to assess
cell viability. The activity data were normalized to the untreated
control cells and presented as a percentage in all samples. The
experiments were conducted in triplicate, with three wells repeated
each time to ensure repeatability.

2.10 Cell proliferation assay

In a cell proliferation assay, 2 × 103 cells were seeded in 100 μL
culture medium on 96-well plates, and the relative number of cells
was determined at different time points using the Cell Counting Kit-
8 (CCK8) assay (Abbkine, China).

2.11 Western blot

Proteins were extracted from 786-O cells using RIPA buffer
(ThermoFisher, United States) supplemented with proteinase
inhibitor (Beyotime, China), and the concentration of each sample
was quantified by a Pierce™ BCA protein assay kit (ThermoFisher,
United States). These protein samples were then utilized for Western
blot analysis. The following antibodies were used in subsequent
experiments: anti-RIPK1 antibody (1:1,000 dilution, Abcam,
United Kingdom), anti-RIPK3 antibody (1:1,000 dilution, Abcam,
United Kingdom), anti-MLKL antibody (1:1,000 dilution, Abcam,
United Kingdom), anti-p-MLKL antibody (1:1,000 dilution, Abcam,
United Kingdom), anti-GAPDH antibody (1:1,000 dilution, Abcam,
United Kingdom), and HRP-conjugated goat anti-rabbit antibody (1:
5,000 dilution, Abcam, United Kingdom).

2.12 Statistical analysis

All analyses were conducted with R version 4.2.0 (http://www.R-
project.org) and relevant packages. Data were analyzed using
appropriate standard statistical tests. P < 0.05 was defined as
statistically significant.

3 Results

3.1 Necroptosis is involved in the
development of ccRCC

After screening the training group, the TCGA cohort contained
524 ccRCC samples and 71 normal control samples in total; the

clinical information of its ccRCC patients is shown in Table 1. First,
the fold changes (FC) between the two types of samples were
calculated, and GSEA analysis was performed by the R package
clusterProfiler, which showed that 97 NRGs were enriched more in
tumor samples than in normal ones (Figure 1B). Furthermore,
applying the same method in tumor samples, we found that
these NRGs were significantly enriched in the ccRCC samples
with N1 and M1 stage (Figure 1C), while there were no
differences among the age, gender, grade, TNM stage, and stage
T groups (Additional File 3: Supplementary Figure S1).

We then divided these ccRCC samples into high- and low-
expression cohorts on the basis of median expression levels of a 97-
NRGs expression profile, followed by univariate Cox regression
analysis to evaluate the survival disparities between these two
groups. Using P < 0.05 as the threshold, 50 factors observably
correlated with OS were identified (Additional File 4:
Supplementary Figure S2) from the cohort screened by univariate
Cox regression. KM curves of these 50 necroptotic factors were then
drawn, of which six genes with the most significant P-value were
plotted. It was evident that patients with high expression of these six
genes—ARHGAP42, SGPP2, HEG1, KLF10, MFAP3, and
SLCO2A1—had better survival (Figure 1D). We attempted to
analyze the association between the six-gene mutation and
patient survival. In the survival analysis, the mutation group
(MUT) was defined as patients having mutations in one or more
of these six genes, while the rest were categorized as the wild-type
group (WT). Although we intended to perform survival analysis for
individual gene mutations, subdividing MUT for each gene would
lead to insufficient patient numbers to maintain statistical validity.
Hence, we aggregated the mutations of these top-six genes to assess
the overall correlation between mutations and survival. Regrettably,
our findings did not reveal any statistical significance in this
correlation (P = 0.078) (Additional File 5:
Supplementary Figure S3A).

In addition, the peer-to-peer interactions among these
97 necroptotic factors were analyzed using the Search Tool for
the Recurring Instances of Neighboring Genes (STRING) database
(https://cn.string-db.org/), and only relationships with high
confidence scores (>0.9) were selected. It is evident that most
necroptotic factors interact with each other (Figure 1E).

3.2 Necroptosis-related gene transcription
and alteration in ccRCC

According to the expression differences of necroptotic factors in
ccRCC and in normal control samples, we screened 24 DEGs with a
threshold of |log2FC|>1 and P < 0.05 (Figure 2A). Similarly, the
Wilcoxon test was employed to examine the expression
discrepancies of necroptotic factors between groups with different
clinical characteristics, and it was found that BCL2, BID, CHMP3,
and CHMP4C showed distinct differences among samples at
different stages and grades (Figures 2B, C).

Subsequently, mutations of necroptotic factors in the TCGA
cohort were summarized. Mutation rates were generally low, and
JAK1, STAT2, and TLR3 were the top three genes with mutation
rates of 5%, 5%, and 3%, respectively (Figure 2D). In addition, the
analysis of the CNV of the top 30 genes showed that most of the
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factors had copy number amplification or deletion (Figure 2E). To
better describe this, we show the location of these 30 necroptotic
factors on human genome with a Circos plot (Additional File
5: Figure 3B).

3.3 Different regulation models of
necroptosis in ccRCC

Firstly, we attempted to type ccRCC samples using necroptotic
factors consisting of 24 DEGs—so-called “necroptosis-related
subtypes.” Consistent clustering analysis (Euclidean, km,
100 replicates) was performed by the R package
ConsensusClusterPlus. The K-elbow method was used to
determine the number of clusters, resulting in K = 2, which were
then labelled “subtype A” and “subtype B”, respectively. It was clear

that the necroptotic factors can effectively classify the samples into
two types, and there were remarkable differences in the survival
conditions of different subtypes (Figures 3A–E).

To investigate diverse biological behaviors among samples, we
conducted GSVA and also compared the differences between the
two subtypes, applied with a Wilcoxon test. We obtained
35 pathways exhibiting significant differences between the two
subtypes (Figure 3F). To provide a more comprehensive
characterization of the variances in immune infiltration between
subtypes, CIBERSORT, ssGSEA, and XCELL were utilized to
calculate the proportion of immune cells, while a Wilcoxon test
was employed to assess inter-group differences. The proportion of
diverse immune cells was markedly different between the subtypes
(Figure 3G). Subsequently, we used the same method to analyze the
expression diversity of different immune checkpoints across
subtypes, and all five immune checkpoints showed obvious

TABLE 1 Clinical characteristics of 680 eligible patients from TCGA, GSE167573, and E-MTAB-1980 cohorts.

Characteristics TCGA(N = 524) GSE167573(N = 55) E-MTAB-1980 cohort (N = 101)

Age(years)

≤60 261 NA 44

>60 263 NA 57

Sex

Female 182 33 24

Male 342 22 77

M-Stage

M0 416 49 94

M1 78 6 7

MX 28 0 0

NA 2 0 0

N-Stage

N0 239 42 94

N1 16 13 3

NX 269 0 4

T-Stage

T1 267 37 68

T2 68 9 11

T3 178 7 21

T4 11 2 1

Grade

G1 13 NA 13

G2 224 NA 59

G3 204 NA 22

G4 75 NA 5

NA 8 NA 0

TCGA, The Cancer Genome Atlas; GSE167573, Gene Expression Omnibus Series 167,573; E-MTAB-1980, cohort, 101 ccRCC, patients from ArrayExpress database.
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FIGURE 2
Gene transcription and gene alteration of necroptosis in clear cell renal cell carcinoma (ccRCC). (A) Abundance of 24 differentially expressed genes
(DEGs) between ccRCC and normal samples. (B, C) Differences in expression levels of factors between stage (B) and grade (C). (D) Mutations of
necroptotic genes in The Cancer Genome Atlas (TCGA) cohort. (E) Copy number variation (CNV) of the top 30 necroptotic genes. (NS, nonsignificant;
*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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FIGURE 3
Different regulation models of necroptosis in clear cell renal cell carcinoma (ccRCC). (A–C) K-elbow curve (A), sample matrix of consistent
clustering analysis (B), and PCA (C) of two clusters. (D–I) Kaplan–Meier curves (D), necroptotic factor expression (E), gene set variation analysis (GSVA) (F),
immune infiltration (G), immune checkpoint expression (H), and estimate scores (I) between subtypes. (J) Gene set enrichment analysis (GSEA) between
differentially expressed genes (DEGs). (NS, nonsignificant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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expression differences (Figure 3H). Finally, ESTIMATE was used to
calculate a stromal score, immune score, and tumor purity.
Combined with Wilcoxon testing, these three characteristics
exhibited significant differences between the two
subtypes (Figure 3I).

To further illustrate these two subtypes, we identified 142 DEGs
from the comparison between subtypes A and B using a threshold of
|log2FC|>log2 (Shuch et al., 2015) and P < 0.05 (Table 2). We found
via enrichment analysis that these DEGs were primarily enriched in
specific biological processes, including response to interferon-
gamma, regulation of vasculature development and regulation of
nitric oxide synthase biosynthetic process (Figure 3J). In line with
the former, subtypes were further classified on the basis of the 142-
DEG expression profile, and DEG-related subtypes were obtained
(Additional File 5: Supplementary Figures S3C, D). From the KM
curve, better OS was found in patients categorized as DEG-related
subtype A (Additional File 5: Supplementary Figure S3E). Then, we
ranked the 142 DEGs based on the magnitude of their |log2FC|
values in descending order and selected the top 30 genes for further

differential expression visualization analysis. From the violin plot,
these 30 genes were observed to exhibit higher expression levels in
DEG-related subtype A than B (Additional File 5:
Supplementary Figure S3F).

3.4 Construction and validation of NSS

The DEGs were subjected to univariate Cox regression analysis,
and a significance level of P < 0.05 was used as the threshold for
selecting OS-related genes, resulting in the identification of
111 genes. We then applied LASSO regression to eliminate
redundant genes and developed a scoring system (NSS) which
consisted of seven genes: PDK4, BBOX1, PLS1, SLC16A12,
CDH2, SLC40A1, and TEK (Figures 4A, B). The TCGA-ccRCC
cohort was stratified into high and low groups based on the median
NSS score of the samples (cut-off = −2.074461), and genes in the
signature also presented different distributions among the groups
(Figures 4C–E). Through survival analysis, a statistically significant

TABLE 2 Differentially expressed genes (142) between subtypes A and B.

Gene

CYP4A11 SLC27A2 PTPRB TNFRSF19 MFAP3 AOAH

SLC13A1 BHMT LRRK2 PODXL TGFBR2 MNDA

SLC5A8 HRH2 FLT1 S1PR1 CLIC4 HLADRB5

LRP2 QRFPR VWF PEG10 ZNF770 HLADPA1

ACE2 SLCO4C1 UBD SLC16A4 MRC1 SLCO2B1

SCGN TNFAIP6 PDGFD APLNR DDX60 HLADQA1

A1CF SLC3A1 CPA3 TGFA CYBB GBP1

UGT2A3 PRUNE2 SLC1A1 PCDHGC3 SGPP2 MSR1

SLC22A2 AOC1 TEK LYZ GPR34 MS4A7

SLC17A3 ZNF366 TLR3 ITGA4 HLADOA HLADRA

DDC KL PLS1 RGL1 CXCL10 F13A1

CUBN SPON1 SLC4A4 ARHGAP42 THBS1 C3AR1

GSTA2 TFEC DPP4 AKAP12 SLC40A1 RECQL

CYP2J2 ENPEP TMEM200A PPP1R16B EGFR LCP1

BBOX1 KDR SLCO2A1 GIMAP6 KLF10 ITGB1

NPR3 TIMP3 OR2I1P GBP4 CD84 FPR1

MGAM APOLD1 TSPAN12 CD93 MPEG1 FCGR3A

SLC16A12 PNMA2 CX3CR1 CP GJA1 STAT1

GSTA1 GATM HSPG2 EFNB2 CXCL9 VSIG4

ENPP3 PDK4 CALCRL TLR7 TLR4

UGT1A9 C4A ATP11A FPR3 CD163

HAVCR1 CDH2 EGLN3 ETS1 PTPRC

FMO2 VCAM1 CDH13 FGL2 ITM2A

CLDN2 PCSK6 PCDH17 ST8SIA4 HEG1
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FIGURE 4
Construction of necroptosis scoring system (NSS). (A, B) least absolute shrinkage and selection operator (LASSO) regression (A) and weight
coefficient of genes (B) ofmodel. (C, D)Distribution of NSS scores (C) and survival time and status of samples (D) in the training group. (E, F) Expression of
model genes (E) and Kaplan–Meier curves (F) between high- and low-NSS score groups. (G) Receiver operating characteristic (ROC) curves ofmodel. (H)
Univariate and multivariate Cox analyses in training group. (I) Nomogram to predict OS for 1/3/5 years.
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difference in OS was observed between these two groups (Figure 4F).
The ROC curve also demonstrated strong predictive performance of
the signature, as evidenced by a 1-year AUC exceeding 0.77
(Figure 4G). Similarly, in the testing set GSE167573, the samples
are grouped by the NSS median (cut-off = −2.9229). A statistical
difference in survival rates between the groups was observed. By
analyzing the ROC curve, the signature had better predictive
performance, with 1-year AUC valued 0.93 (Additional File 6:
Supplementary Figures S4A–E). When we further verified the
result in the E-MTAB-1980 cohort (cut-off = −2.773), NSS
played a comparably important role, with a more remarkable
survival difference and higher AUC value. Notably, the value of
AUC demonstrated a consistent increase over time (1-, 3-, 5-year),
indicating a progressive enhancement in the signature’s predictive
capacity (Additional File 6: Supplementary Figures S4F–J).
Therefore, the performance of NSS in both the training and
testing sets demonstrated its competence to serve as a survival
indicator for ccRCC patients. Moreover, univariate and
multivariate Cox analyses were conducted in both the training
(Figure 4H; Table 3) and testing (Additional File 6:
Supplementary Figures S4K, L; Additional File 7; Supplementary
Table S3) sets, showing that the NSS score was an independent
prognostic factor associated with adverse survival outcomes. To
clarify the link between NSS and clinical parameters, we developed a
nomogram that incorporated risk scores and various
clinicopathological features to predict overall survival at 1-, 3-,
and 5-years (Figure 4I).

In order to more clearly describe the information of the samples
in different categories, we used Sankey diagrams to show the

subtypes to which the samples belonged and their corresponding
survival conditions (Figure 5A). In addition, differences of NSS
between necroptosis- and DEG-related subtypes were also assessed,
among which subtype B had higher NSS scores (Figure 5B). We then
analyzed the NSS differences among groups with distinct clinical
parameters, and statistically different results were found in groups,
including grade, stage, stage-T, stage-M, and stage-N, except for age
and gender (Figure 5C); this indicated that NSS score can be
considered a good indicator for clinical risk stratification.

3.5 Analysis of molecular mechanisms
involved in NSS

To further explore deeper mechanisms of NSS, Pearson
correlation analysis between NSS was conducted, and enrichment
scores of hallmark pathways were calculated. The results showed
remarkable negative correlations between NSS and most hallmark
pathways (Figure 6A). Meanwhile, GSEA was conducted in high and
low NSS groups, revealing that in the high NSS group, genes with
high expression were significantly enriched in biological processes
related to renal system function, renal tubular secretion, regulation
of the renal system, and other physiological processes (Figure 6B).

Next, we used CIBERSORT, ssGSEA, and XCELL to calculate
the percentage of immune cells between groups with different NSS
scores, demonstrating that there were indeed differences in immune
infiltration between groups (Figure 6C). Then, we employed an
identical approach to examine the variations in expression of
multiple immune checkpoints between these groups. Three

TABLE 3 Univariate and multivariate Cox regression analyses on OS in the training group.

Parameters P value HR Lower 95%CI Higher 95%CI

Univariate analysis

Sex (male vs. female) 0.75806 0.95 0.7 1.3

Age (>60 years vs. ≤60 years) 0.00043 1.74 1.28 2.36

TNM stage (III + IV vs. I + II) <0.00001 3.83 2.79 5.27

Stage_T (T3+T4 vs. T1+T2) <0.00001 3.14 2.32 4.26

Stage_N (N1+N2 vs. NX + N0) <0.00001 4.32 3.16 5.89

Stage_M (M1 vs. MX + M0) <0.00001 3.85 2.09 7.12

Fuhrman grade (G3+G4 vs.G1+G2) <0.00001 2.63 1.87 3.7

NSS scores (high vs. low) <0.00001 3.25 2.32 4.54

Multivariate analysis

Age (>60 years vs. ≤60 years) 0.00445 1.57 1.15 2.14

TNM stage (III + IV vs. I + II) 0.02789 2.16 1.09 4.3

Stage_T (T3+T4 vs. T1+T2) 0.48924 0.81 0.44 1.47

Stage_N (N1+N2 vs. NX + N0) <0.00001 2.38 1.63 3.47

Stage_M (M1 vs. MX + M0) 0.19987 1.54 0.8 2.99

Fuhrman grade (G3+G4 vs.G1+G2) 0.03945 1.47 1.02 2.13

NSS scores (High vs. Low) <0.00001 2.47 1.74 3.51

OS, overall survival; HR, hazard ratio; CI, confidence interval.

Frontiers in Pharmacology frontiersin.org11

Yao et al. 10.3389/fphar.2025.1470145

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1470145


immune checkpoints—PDL1, PDL2, and CD86—displayed distinct
expression differences (Figure 6D). Finally, Wilcoxon testing was
used to show that the immune score differed between these two
groups (Figure 6E).

Beyond that, we identified high-frequency mutated genes
between the NSS groups (intersection of top 20; N = 13). The
mutation rate of the VHL gene was found to be higher in the low
NSS group (50%) than in the high group (41%). Similarly, the
mutation rate of PBRM1 was 52% in the low-NSS group whereas it
was only 27% in the high group. A Fisher test was used between the
groups to screen genes, which had mutation differences with P <
0.05; only PBRM1 and VHL had remarkable differences (Figure 6F).
CNV data of these two groups were used to detect amplification and
deletion levels. Finally, we found 477 genes with remarkable
differences, including CDKN2A, CDKN2B, PTPRD, CSMD3, and
DTWD2. (Figure 6G).

3.6 Reflection of potential therapeutic
strategies from NSS

To further evaluate NSS for daily clinical guidance, we
conducted Pearson correlation analysis between drug resistance
and NSS in the Genomics of Drug Sensitivity in Cancer (GDSC)
database. Five drugs powerfully associated with NSS were identified,
with P < 0.05 and |cor|>0.5 serving as a threshold. Drug resistance
was quantified using half maximal inhibitory concentration (IC50).
Ulixertinib, AZD6738, QL-VIII-58, and ZG-10 showed significant

negative correlation with NSS, while Navitoclax showed positive
correlation (Figure 7A). The drug resistance analysis of the five
objects revealed distinct differences between the high- and low-NSS
groups. Navitoclax was clearly higher in the high-NSS group, while
the other four drugs showed opposite phenomena (Figure 7B).

Next, we used the patient cohort treated with nivolumab from
Braun et al. (2020) to evaluate the efficacy of NSS in predicting
immunotherapy potency. In the case of the optimum threshold, OS
and progression-free survival (PFS) exhibited significant differences
when compared in different groups (Figure 7C), as did the NSS
scores of samples in the clinical benefit (CB) versus no clinical
benefit (NCB) groups (Figures 7D, E). Furthermore, the ROC curve
showed that NSS also played a pivotal role in predicting patient
survival (Figure 7F). Finally, when the signature was validated in the
IMvigor210CoreBiologies dataset, NSS was also found to have some
significance in other cancer types (Additional File 8: Supplementary
Figure S5A–E).

3.7 Panel of seven genes affecting the
viability of ccRCC cells

We then wanted to validate in vitro whether the expression of
these seven genes was consistent with the previous bioinformatics
analysis. First, CDH2, the only gene with a positive coefficient value
in the NSS, was noticed, and it was selected for validation of protein
expression between tumor and adjacent non-tumor tissues. The
results confirmed that CDH2 was significantly overexpressed in

FIGURE 5
Necroptosis scoring system (NSS) differences between subtypes and clinicopathological features. (A) Sankey diagram containing subtypes, NSS
group, and survival outcomes. (B) NSS differences between the necroptosis subtypes and differentially expressed gene (DEG) subtypes. (C) NSS
differences between clinical characteristics groups. (NS, nonsignificant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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FIGURE 6
Molecular mechanism analysis involved in necroptosis scoring system (NSS). (A)Correlation betweenNSS scores and enrichment scores of hallmark
pathways. (B) Gene set enrichment analysis (GSEA) of NSS groups in Gene Otology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). (C–E)
Differences of immune infiltration (C), immune checkpoint expression (D), and immune score (E) between groups. (F, G)Mutations (F), amplification and
deletion (G) in low and high NSS groups. (NS, nonsignificant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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FIGURE 7
Necroptosis scoring system (NSS) reflects potential therapeutic strategies. (A) Five drugs were significantly associated with NSS scores. (B–E)
Differences of drug resistance (B), overall survival, progression-free survival (C), immunotherapy efficacy (D, E) between high- and low-NSS groups. (F)
Receiver operating characteristic (ROC) curves of NSS in the immunotherapy patient cohort. (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).

Frontiers in Pharmacology frontiersin.org14

Yao et al. 10.3389/fphar.2025.1470145

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1470145


tumor tissues (Figures 8A, B). To investigate the involvement of this
seven-gene NSS in ccRCC cell necroptosis, RNA interference
(RNAi) to silence their expression in 786-O cells was applied.
The knockdown efficiencies were evaluated by qRT-PCR analysis
in transformed cells (Figure 8C). We firstly downregulated these
seven genes in 786-O cells, then used TSZ to induce necroptosis in
these cells, followed by an assessment of cell viability. In 786-O cells
with CDH2 knockdown, cell viability was significantly
downregulated, while viability of those cells with PDK4,
SLC16A12, TEK, and PLS1 knockdown was significantly
upregulated, indicating the different role that these genes may

play in the process of necroptosis (Figure 8D). However, when
we further detected the proteins involved in typical necroptosis
pathways using Western blotting, no change was found in protein
abundance (Additional File 9: Supplementary Figure S6). The full-
length gels can be found in Additional File 10: Supplementary Figure
S7. In addition, we observed in CCK8 assays that with the
knockdown of PDK4, SLC16A12, or TEK, cell proliferation was
inhibited, while knockdown of CDH2 can promote cell proliferation
(Figure 8E). Further evaluating the role of CDH2 in 786-O cells, we
found that CDH2 can effectively promote cell proliferation and
migration (Figures 8F, G).

FIGURE 8
Seven genes affecting the viability of clear cell renal cell carcinoma (ccRCC) cells. (A) Immunoblotting analysis of CDH2 protein expression in four
pairs of fresh tumors and normal adjacent tissues. (B) Comparison of CDH2 protein expression in ccRCC tissues and adjacent tissues via
immunohistochemistry (IHC) staining. (C) Knockdown efficiencies of seven genes. (D)Cell viability after treatment with TNF-α, Smacmimetic, and z-VAD
(TSZ). (E)Cell proliferation capacity of 786-O transfected with siRNAs or control vectors. (F) Proliferative abilities of 786-O cells measured by colony
formation after the knockdown and overexpression of CDH2. (G)Wound healing assay assessing the migration potential of 786-O cells transfected with
CDH2 siRNAs or si-NC. (NS, nonsignificant; *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001).
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4 Discussion

Although more biomarkers have been proposed, the prognostic
outcomes of ccRCC patients are quite inconsistent. Therefore, it is
essential to build a more effective signature to facilitate in-patient
risk stratification, with more accurate prognosis prediction and
better application of individualized treatment. Many studies have
been carried out on various phenotypes and mechanisms of ccRCC,
but the findings of prognostic factors and therapeutic targets are still
unstratified. In this study, a comprehensive study with profiles of
transcription, mutation, and immune infiltration was conducted
which attempted to construct a more valuable signature of the
emerging phenotype.

Necroptosis is a form of immunogenic cell death that has
recently attracted increased attention. It is characterized by
organelle expansion, lysis of membranes, and the release of
intracellular components, known as “damage-associated
molecular patterns” (DAMPs), and it can lead to secondary
inflammation (Khan et al., 2021). Necroptosis has been
demonstrated to be closely implicated in the pathogenesis of
numerous diseases, including through the activation or
regulation of key molecules such as RIPK3 (Nugues et al.,
2014; Afonso et al., 2021) and MLKL (Wang et al., 2014; Tan
et al., 2021; Jiang et al., 2025; Yu et al., 2025). In colorectal cancer,
Jiang et al. (2025) found that although MLKL promotes cell death
during necroptosis, the basal autophagy in colorectal cancer cells
is also supported, thereby protecting these cells from death. Yu
et al. (2025) also explored the regulatory function of the RIPK1/
RIPK3/MLKL pathway on necroptosis in pancreatic cancer
progression. They demonstrated that the extracellular
exocyotosis of p-MLKL can suppress necroptotic activity
in vitro and in vivo. Accordingly, this has been studied
extensively in terms of therapeutics (Koo et al., 2015; Niu
et al., 2022; Gao et al., 2024; Khan et al., 2024). Gao et al.
(2024) developed a necroptosis-related signature in pan-cancer
analysis using bulk RNA sequencing data. They found that this
signature can predict patients’ responses to ICIs. In addition,
Khan et al. (2024) also investigated necroptosis-based subtypes in
categorizing glioblastoma patients to predict their responses to
immunotherapy and their prognosis. Necroptosis has been
widely explored in tumors, presenting two distinct effects (Yin
et al., 2024). From our perspective, it is this double-sided role that
makes it urgent to solve the regulatory puzzle of necroptosis
in ccRCC.

According to our observation, necroptotic factors were
found to be enriched in tumor tissue, and the necroptotic
status of the tumor was linked to the OS of ccRCC patients.
Furthermore, based on CNV data, most of the key molecules
were amplified or deleted in tumor tissue. In fact, as expected,
analyses based on multiple omics data tended to produce distinct
outcomes in different degrees of necroptosis (Chen et al., 2022;
Xin et al., 2022). Next, a risk scoring system related to
necroptosis with outstanding performance was constructed
based on DEGs and epigenetic alterations. There are also
superior results when using the testing group for validation of
predictive performance.

In the NRG signature exploited by Chen et al. (2022), patients
who scored lower tended to have longer OS than those with higher

scores. However, the ROC curves of the signature suggested that
only considering the NRGs may not be good enough to predict
patient prognosis, with 1-, 3-, and 5-year AUC values of 0.707,
0.635 and 0.667, respectively. As an autonomous prognostic factor
for predicting the outcome of ccRCC patients, the 1-, 3-, and 5-year
AUC value of NSS signature was 0.77, 0.73 and 0.75, respectively.
Surprisingly, when the NSS signature was applied to the testing
group, its 1- and 3-year AUC value was 0.927 and 0.829, respectively.
In the same horizontal comparison, the NSS model built by us is
more efficient than some other models, such as that of Zhang et al.
(2023) (with 1-, 3-, and 5-year AUC values of 0.732, 0.680 and 0.709,
respectively) and Cai et al. (2023) (with 1-, 3-, and 5-year AUC
values of 0.73, 0.67, and 0.70, respectively).

Based on these distinct prognostic subtypes, we further
investigated treatment strategies. We investigated the correlation
between signature and immune infiltration, and the results showed
that it could work as a novel biomarker in immunotherapy. We also
performed validation analysis in two immune-treated patient
cohorts to support our conclusions. From a medication
standpoint, based on the calculated IC50, patients with high NSS
scores exhibited sensitive chemotherapy responses to ulixertinib,
AZD6738, QL-VIII-58, and ZG-10, while patients with low NSS
scores were sensitive to Navitoclax. Based on previous experience
and studies, some of these drugs have been proven to be useful for
cancer treatment. Ulixertinib is a novel extracellular signal-regulated
kinase (ERK) 1 and ERK2 inhibitor, and ERK enhances
inflammation by interacting with MLKL and promotes ribosomal
S6 kinase (RSK) activation by MAPK signaling (Zhao et al., 2019;
Peng et al., 2011; Frodin et al., 2000). AZD6738, an ataxia
telangiectasia and Rad3-related protein (ATR) inhibitor, induces
high loads of replication stress and forces premature mitotic entry,
which then drives mitosis in unreplicated genomes in cells, leading
to p53-independent (non-apoptotic) cell death (Lecona and
Fernandez-Capetillo, 2018; Blackford and Jackson, 2017). QL-
VIII-58, as a Torin2 analog, inhibits PI3K/AKT/mTOR signaling,
consequently inducing the accumulation of single-stranded DNA
and cell death due to mitotic failure or replication catastrophe
(Chopra et al., 2020; Liu et al., 2013). ZG-10 is an inhibitor of
c-Jun N-terminal kinase (JNK), which positively regulates
autophagy to counteract apoptosis by targeting mitogen-activated
protein kinase 8 (MAPK8) (Luo et al., 2021;Wu et al., 2019; He et al.,
2012). Navitoclax (ABT-263) is a classic B cell lymphoma 2 (BCL2)
inhibitor, while BCL2 has been reported to simultaneously inhibit
apoptosis, pyroptosis, and necroptosis (Zhu et al., 2016; Shi and
Kehrl, 2019). In summary, clinicians can more accurately select a
suitable treatment for patients with ccRCC based on the building
blocks of their tumor microenvironment, thus enabling
personalized treatment.

We also validated the effect of the genes which constituted the
NSS signature on the necroptotic phenotype of ccRCC cells in vitro.
In cell viability assays, after necroptosis induced by TSZ, excluding
BBOX1 and SLC40A1, the other five genes statistically altered the
cellular viability. The knockdown of CDH2 resulted in reduced cell
viability, whereas PDK4, SLC16A12, TEK, and PLS1 had the
opposite effect. Next, we detected the MLKL-dependent
necroptosis pathway in cells with different genes downregulated.
ThroughWestern blotting, the expression level of key proteins in the
MLKL-dependent necroptosis pathway was detected, including
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RIPK1, RIPK3, MLKL, and p-MLKL. As a result, no changes were
found in cells that downregulated these seven genes. This
phenomenon may imply that these genes do not regulate the
MLKL-dependent pathway. However, the regulation of the
MLKL-independent necroptosis pathway was more challenging to
validate. This is because the mechanisms underlying the MLKL-
independent necroptosis pathway are less well-defined in the
literature, making it more difficult to establish its direct links
between specific genes. Future studies focusing on these
alternative pathways may provide additional insights.

CDH2, known as “neural(N)-cadherin,” was found to
participate in the process of epithelial–mesenchymal transition
as a cell adhesion molecule (Simon et al., 2024; Nieto et al., 2016;
Goossens et al., 2017). In pancreatic ductal adenocarcinoma,
Simon et al. (2024) revealed that CDH2 was a specific target of
SMAD1; by encoding N-cadherin it can promote migration ability
in malignant cells. In addition to its role in necroptosis, CDH2 also
plays a role in other processes of programmed cell death (Chen
et al., 2023; Gao et al., 2018; Zhou et al., 2023; Ke et al., 2023; Gao
et al., 2019; Wang et al., 2025). For example, Chen et al. (2023)
found that CDH2 depletion can enhance the susceptibility to
ferroptosis by decreasing membrane tension and promoting
lipid peroxidation in cells. Gao et al. (2018) showed that
downregulation of CDH2 can facilitate apoptosis in prostate
cancer. In the context of cuproptosis, Wang et al. (2025)
identified the cuproptosis-related gene FDX1 as being
significantly associated with CDH2 in colorectal cancer.
Additionally, it was demonstrated that CDH2 can promote self-
seeding and facilitate the survival of circulating tumor cells in oral
cancer. Specifically, soluble CDH2 is able to trigger nature killer
(NK) cell functional exhaustion and thus help tumor cells to avoid
being killed by NK cells in the circulation (Lou et al., 2022).
Moreover, the tumor-infiltrating lymphocyte (TIL) is also an
important cell component within the tumor microenvironment.
Sun Y. et al. (2021) found that CDH2 can increase the level of
PDL1 and IDO1 as well as upregulate the concentration of free
fatty acids, enhancing the production of eTreg cells. Taken
together, the regulatory role of CDH2 in the tumor immune
microenvironment suggests that it could serve as a promising
target for anti-tumor immunotherapy.

However, there are still segmental limitations to our study. First,
we lack a cohort of ccRCC patients who have received
immunotherapy, including ICI therapy, to reveal more about the
relationship between NSS and immunotherapy. Second, more in
vivo and in vitro experimental validation is required to elucidate the
underlying molecular mechanisms. In summary, we identified hub
genes associated with ccRCC necroptosis and used this signature to
stratify risk and predict outcomes for ccRCC patients. The
universality of the signature is proved by various verifications.
We also made nomograms combined with other clinical
parameters and analyzed potential therapeutic strategies to prove
the clinical applicability of the signature. Therefore, the NSS
signature can increase the predictive value for ccRCC patients
and make treatment decisions more informed.

5 Conclusion

Based on the expression level, mutation, and CNV of necroptotic
factors, the subtypes of necroptosis patterns with remarkable
prognostic differences were identified in our research.
Furthermore, the DEGs between different subtypes were
excavated and the key genes associated with prognosis were
identified to construct the NSS model. Combined with
subsequent survival analysis, immune infiltration analysis,
immune checkpoints analysis, drug resistance assessment, and
prediction of immune efficacy, NSS is thus certified as a
favorable indicator of cancer prognosis and immunotherapy.
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