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Vascular endothelial cells (VEC) play a key role in the occurrence and progression
of vascular inflammation. VEC activation secretes powerful inflammatory
mediators and aggravates the development of rheumatoid arthritis (RA).
Angiogenesis plays a key role in the pathological processes of inflammation
and synovial infiltration, driving RA progression. A substantial amount of evidence
suggests that the VEC at the inflammatory site of RA is both an active participant
and a regulator of the inflammatory process. At present, the research progress of
VEC and inflammation in RA is still incomplete. In this review, we summarize the
role of VEC and angiogenesis in the development of RA, describe the relevant
cells, cytokines and signaling pathways involved in regulation, and provide
research clues on the role of post-translational modification (PTMs) in VEC
function and angiogenesis in RA, and classify and integrate these mechanisms
and therapeutic strategies. This review aims to synthesize current evidence to
support the established link between VEC and RA-related pathology, provide a
theoretical basis for clinical studies, and provide valuable insights into the
development of therapeutic drugs against RA.
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1 Introduction

Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease, and the incidence
of RA increases with age (Luo et al., 2023). Multiple genetic factors and environmental risks
are closely related to the development of RA. The pathological features of RA include
chronic inflammation of the synovium and destruction of bone and cartilage (Smolen et al.,
2016). Central to RA-related bone loss is the imbalance between osteoclast-mediated
resorption and osteoblast-mediated repair (Komatsu, 2022). In the progression of RA,
due to the rapid proliferation and activation of inflammatory cells such as vascular
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endothelial cells (VEC), fibroblast-like synovial cells (FLS), T cells,
B cells and macrophages, abnormal synovial tissue expansion,
angiogenesis and intimal hyperplasia occur. A large number of
inflammatory cytokines such as tumor necrosis factor (TNF-α),
interleukin-1β (IL-1β), and prostaglandins, as well as aggressive
proteases such as matrix metalloproteinases (MMPs), are infiltrated,
leading to injury of cartilage and bone tissue (Cho et al., 2007).

Vascular endothelial cells (VECs), positioned at the blood-tissue
interface, play dual roles in RA: they regulate immune responses and
vascular homeostasis but also contribute to pathological
angiogenesis and inflammation. Notably, synovial vascular
endothelial growth factor (VEGF) concentration was significantly
higher in male than in female RA patients. Despite this, the
responsiveness of vascular endothelium to SF priming was higher
in females, suggesting that gender differences in angiogenic
responses were mainly related to the endothelial genotype, sex-
specific differences in VEC function—potentially linked to
hormonal influences—may partially explain the higher RA
prevalence in women (Baggio et al., 2022; Clapp et al., 2016).
Under inflammatory conditions, activated VECs secrete
mediators that recruit immune cells (e.g., T/B lymphocytes,
macrophages) and perpetuate synovial hyperplasia, forming
invasive pannus tissue (Bloom et al., 2023; Zimmermann-Geller
et al., 2019). This tumor-like synovial proliferation, fueled by
aberrant angiogenesis, accelerates cartilage and bone destruction
through direct osteoclast activation and protease release (Jang et al.,
2022; Ortiz et al., 2020).

Angiogenesis is an early and critical event in the pathogenesis of
RA, and this process is regulated by angiogenesis stimulating factors
and angiogenesis inhibitors (Gao et al., 2024). Normally tightly
regulated, vascular growth becomes pathological in RA due to
imbalances between pro-angiogenic factors (e.g., VEGF) and
inhibitors (Dudley and Griffioen, 2023). Newly formed vessels
not only supply nutrients to hyperplastic synovium but also
recruit inflammatory cells, creating a self-perpetuating cycle of
joint damage (Wang et al., 2021a).

Tumor angiogenesis is dynamically regulated by infiltrating
bone marrow cells such as macrophages, myelo-derived
suppressor cells (MDSC), and neutrophils (Yang et al., 2024).
The pannus in the synovium of RA showed tumour-like
hyperplasia, and this abnormal angiogenesis led to cartilage
degradation and bone destruction. Endothelium-derived
exosomes interact with bone marrow-derived cells to inhibit
osteoclast formation and ultimately lead to joint destruction. In

addition, angiogenesis may directly stimulate osteoclast precursors
and osteoclasts, further aggravating joint destruction (Figure 1)
(Hu and Olsen, 2016). These pathological processes not only cause
damage to the joint structure, but also increase the number of local
pain receptors, thus causing pain. In addition, the invasion of
inflammatory cells and angiogenesis promote each other, forming
a vicious cycle that exacerbates inflammation and destruction of
the joint. Therefore, therapeutic strategies targeting angiogenesis
play an important role in the treatment of RA (Elshabrawy
et al., 2015).

Recent studies suggest a strong association between VECs and
RA-related pathology, highlighting their potential role in disease
progression.This review synthesizes mechanisms by which VECs
and angiogenesis drive RA progression, explores sex-specific
knowledge gaps, and evaluates emerging therapeutic strategies
targeting these pathways.

2 VEC mediates angiogenesis and
participates in RA pathology

Angiogenesis in RA synovium is a tightly regulated process
orchestrated by coordinated interactions between vascular
endothelial cells (VECs), vascular smooth muscle cells (VSMCs),
pericytes, and immune cells through interconnected signaling
networks (Jiang Y. et al., 2023). At present, it is believed that the
specific mechanism of angiogenesis in RA synovial tissue is that the
angiogenic medium activates VEC through protease. These
proteases degrade the basement membrane to make VEC grow
outward to form capillary buds. VEC mitosis in the bud, other cells
at the tip of the bud migrate but do not proliferate, forming a cavity.
The buds anastomosed with each other to form a capillary ring and
synthesize a new basement membrane (Szekanecz et al., 2009).

With vascular maturation and hemodynamic changes, VEC
secretes platelet-derived growth factor (PDGF-B) to recruit
pericardial cells and VSMC. These parietal cells bind to VEC by
expressing angiopoietin 1(ANG1), leading to TGF-β activation and
extracellular matrix (ECM) sedimentation, which stabilize the
growing vascular bed. Downstream effectors, including
phosphatidylinositol-3 kinase (PI3K), Src kinase, adhesion spot
kinase (FAK), p38 mitogen-activated protein kinase
(p38 MAPK), Smad2/3, and phospholipase Cγ (PLCγ)/Erk1/2,
promote VEC survival, vascular permeability, and migration/
proliferative phenotypes. Regulation of positive and negative
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transcription of these semigroups groups by microRNA (miRNA)
can further affect the blood vessels after angiogenesis (Figure 2)
(Adams and Alitalo, 2007; McColl et al., 2004). Exosomes,
extracellular vesicles critical for intercellular communication, play
a pivotal role in RA angiogenesis by shuttling bioactive molecules
such as miRNAs and proteins between cells (Zhang et al., 2015).
Expression of miR-200a-3p is significantly increased in TNF-α-
induced exosomes and in exosomes-treated human umbilical vein
endothelial cells (HUVEC), which suppresses the nuclear
transcription regulator KLF6 in human umbilical vein endothelial
cells (HUVECs). This inhibition elevates VEGFA expression,
enhancing HUVEC migration, invasion, and angiogenesis via the
miR-200a-3p/KLF6/VEGFA axis (Zhang et al., 2023). While
HUVECs provide critical insights into endothelial mechanisms,
limitations include their origin from umbilical veins rather than
synovial vasculature and the absence of RA-specific inflammatory
microenvironment cues (e.g., synovial fibroblast crosstalk, hypoxia
gradients). In RA FLS, adipokine apelin (APLN) inhibits miR-525-
5p synthesis through phospholipase Cγ (PLCγ) and protein kinase
Cα (PKCα) signaling, thereby promoting ANG1-dependent
endothelial progenitor cell (EPC) angiogenesis (Chang et al.,
2021). Beyond exosomal miRNAs, epigenetic regulation by long
non-coding RNAs (lncRNAs) further modulates angiogenesis. In
RA FLS-stimulated HUVECs, Long non-coding RNA (LncRNA)
HOTAIR is upregulated. Activation of PI3K/AKT pathway through
the miR-126-3p/PIK3R2 axis, which increases VEGF, FGF2, CD34,
and CD105 expression, promotes synovial angiogenesis (Liu et al.,
2023). And Ezrin regulates the HiPO-Yes-associated protein one
nuclear translocation and interacts with the PI3K/Akt signaling

pathway, affects VEC migration and angiogenesis (Chen
et al., 2021).

Synovial angiogenesis in RA consists of a cascade of multiple
events, which is fundamentally due to the imbalance between the
promoting mediators and inhibitors of angiogenesis. The cytokine
network is complex in RA, and the angiogenesis process is caused by
a variety of mediators, such as growth factors, mainly hypoxia-
inducible factor (HIF) and VEGF, and various pro-inflammatory
cytokines, various chemokines, matrix components, cell adhesion
molecules, proteases, etc (Latacz et al., 2020). In inflammatory or
hypoxic environments, HIF-1 expression is increased to mediate
angiogenesis. Hypoxia stabilizes HIF-1α, which translocates to the
nucleus to induce VEGF expression, linking angiogenesis to joint
inflammation. VEGF then promotes the activation of VEC to induce
inflammation, thereby establishing a crosstalk between angiogenesis
and joint inflammation in RA (Song et al., 2023).

In the process of angiogenesis, many inflammatory cells and
transmitters are produced, such as IL-1, IL-6, TNF-α, TGF-β, PG,
NO, CD40L-CD40, which can upregulate VEGF expression under
hypoxia. The upregulated expression of VEGF can promote the
formation of persistent synovial inflammation, release a large
number of inflammatory factors, aggravate joint hypoxia, and
then cause an irreversible vicious cycle. For example, TNF-α and
IL-1β upregulate VEGF-C in RA FLS, promoting
lymphangiogenesis and angiogenesis (Cha et al., 2007). IL-17
affects RA angiogenesis by up-regulating VEGF expression in RA
FLS (Ryu et al., 2006). IL-17 synergizes with TNF-α to enhance RA
FLS migration and reactive oxygen species (ROS production via
NADPH oxidase 4 (Lee et al., 2020). On the contrary, IL-35 can

FIGURE 1
Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. The pannus in the synovium of RA showed
tumour-like hyperplasia, and this abnormal angiogenesis led to cartilage degradation and bone destruction. In pathological conditions, different cells
interact with each other to aggravate joint destruction. Endothelium-derived exosomes interact with bone marrow-derived cells to inhibit osteoclast
formation and ultimately lead to joint destruction. Angiogenesis may directly stimulate osteoclast precursors and osteoclasts, further aggravating
joint destruction.
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inhibit the expression of VEGF, FGF-2, TNF-α and IL-6 in FLS, and
inhibit angiogenesis by affecting STAT1 signaling (Wu et al., 2018).
IL-4 has an anti-angiogenic effect, especially in the inflammatory
environment of RA, by inhibiting VEGF production in synovial
fibroblasts. When TGF-β stimulated FLS, IL-4 showed an inhibitory
effect on VEGF production. The combined treatment of IL-4 and IL-
10 inhibited TGF-β-induced VEGF production in an additive
manner (Hong et al., 2007). The expression levels of TLR3,
VEGF and IL-8 in RA synovium are significantly higher than
those in OA synovium. NF-κB inhibitors, such as pyrrolidine
dithiocarbamate and parthenolide, can eliminate the stimulation
of TLR3 ligand poly (I:C) on the production of VEGF and IL-8 in RA
FLS (Moon et al., 2010). Therefore, targeting the TLR3 pathway may
be a promising approach to prevent pathologic angiogenesis in RA.

Key regulators like CD147 and GATA4 offer therapeutic
potential.The SCID mouse coimplantation model of RA (SCID-
HuRAg: 6-8-week-old male NOD/SCID mice (SLAC) that had been
bred under specific pathogen-free conditions were used for the
experiments. A 1-cm incision was made in the left flank of each
mouse. Normal human cartilage and rheumatoid synovial tissue

were placed in the chamber in the muscle using fine forceps. The
entire procedure was performed under sterile conditions.) (Geiler
et al., 1994) was established, mice were treated with
CD147 monoclonal antibody, the expression of VEGF and HIF-
1α decreased more after CD147 inhibition than after infliximab
treatment (Wang et al., 2012). Transcription factor GATA4 is a key
regulator of cardiac differentiation-specific gene expression and is
highly expressed in the synovium of RA patients. GATA4 induces
angiogenesis factors VEGFA and VEGFC by directly binding to
promoters and enhancing transcription (Jia et al., 2018).
CD147 induces VEGF and HIF-1α in RA FLS via the PI3K/Akt
pathway, while GATA4 directly binds promoters of VEGFA/
VEGFC to enhance transcription.

3 Crosstalk between VEC and FLS in
RA process

During the course of RA, FLS leads to joint damage by
stimulating pro-inflammatory and tissue-destroying pathways.

FIGURE 2
Regulatory mechanisms of various cellular and molecular signaling pathways during angiogenesis: Parietal cells bind endothelial cells (EC) by
expressing ANG-1, leading to TGF-β activation and ECM sedimentation, thus stabilizing the growing vascular bed. Downstream effectors (including PI3K,
Src kinase, FAK, p38 MAPK, Smad2/3, and PLCγ/Erk1/2) promotes endothelial cell survival, vascular permeability, and migratory/proliferative phenotypes.
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FLS form the joint lining, epigenetically imprinted the aggressive
phenotype of RA, and play an important role in these pathological
processes (Tsaltskan and Firestein, 2022). In addition to producing
extracellular matrix and joint lubricants, FLS in RA also produce
inflammatory mediators, such as cytokines and proteases, which are
involved in the pathogenesis and continuation of RA (Nygaard and
Firestein, 2020). HOXA5 is a key regulator of class 3 semaphorins
expression in the synovial membrane of RA patients. TNF-α and IL-
1β can decrease the expression of HOXA5 in RA FLS and HUVEC,
and regulate FLS migration and invasion as well as VEC migration
(Martínez-Ramos et al., 2023).

Various immune cells interact with FLS to promote and
maintain local inflammation, and FLS in RA regulates the inflow
of inflammatory infiltrates through crosstalk with neighboring VEC
(Lei et al., 2024). The expression of cell adhesion molecules on the
VEC is increased, which facilitates the capture, rolling, and
stagnation of immune cells from the vasculature and the
migration of immune cells into tissues (Klein, 2018). When co-
cultured with VEC, FLS from inflamed joints in advanced RA
patients increased the expression of adhesion molecules on VEC
and promoted the adhesion of lymphocytes to VEC. Importantly,
when IL-6 was added to themodel, FLS from non-inflamed or fading
tissues inhibited lymphocyte adhesion, while FLS from very early RA
or late RA supported lymphocyte adhesion (Filer et al., 2017).

The expression of VEGF in RA joints is not only regulated by
inflammatory cytokines but also by the physical interaction between
activated white blood cells and FLS. The interaction of inflammatory
activated white blood cells (monocytes or polymorphonuclear
neutrophils(PMN)) with FLS leads to a synergistic increase in
VEGF expression and secretion, stimulating VEC proliferation
and endovascular formation in vitro. VEGF secretion levels
correlate with the expression of cell surface integrins (CD11b and
CD18) on monocytes and PMN in RA synovial fluid and are
strongly dependent on the contact between adhesion molecules
and cells (Kasama et al., 2001). Serum amyloid A (SAA)
promotes the proliferation of FLS in RA. SAA activity is
mediated by formylpeptide receptor-like 1 (FPRL1) receptors.
SAA stimulates the proliferation, migration, and tube formation
of VEC in vitro, and enhanced the germination activity of VEC
in vitro and angiogenesis activity in vivo (Lee et al., 2006). The
binding of SAA to FPRL1 may promote the destruction of bone and
cartilage by promoting FLS cell proliferation and angiogenesis, thus
providing a potential target for the control of.

The angiogenic factors are mainly produced by RA synovial
macrophages and FLS (Wei et al., 2020). In the process of pannus
formation in RA synovial tissue, FLS promotes the polarization of
resident macrophages and accelerates the secretion of pro-
inflammatory mediators and pro-angiogenic factors. The
abnormal proliferation of FLS amplifies the ECS response by
activating inflammation. VEC provides the pro-inflammatory
phenotype of FLS to promote the development of synovitis
(Figure 3) (Zhao et al., 2023). Notch signaling pathway is
involved in the stabilization and angiogenesis of VEC
differentiation. JAG1, DLL4, and Notch1 are highly enriched in
RA ST lining and sublining CD68CD14 MΦs. JAG1 and Notch3 are
overexpressed on all FLS subgroups. And it is primarily enhanced by
TLR4 connections. Interestingly, JAG1, DLL1/4, and Notch1/3 exist
on the RA VEC, and their expressions are reconfigured with each

other by TLR4/5 connections in the VEC (Zack et al., 2024). In
addition, Syntenin-1 upregulates the transcription of IRF1/5/7/9, IL-
1β, IL-6, and CCL2 via SRC-1 junction and HIF1α or mTOR
activation, thereby exacerbating the inflammation of VEC and
RA FLS. The VEGFR1/2 and Notch1 networks were found to be
responsible for crosstalk between Syntenin-1 reconnected VECs and
RA FLS (Meyer et al., 2024). Since current therapies are ineffective
against the expression of Syntenin-1 and SDC-1 in RA synovial
tissue and blood, targeting this pathway and its interconnected
metabolic intermediates may provide a new therapeutic strategy.
During the pathogenesis of RA, urokinase-type plasminogen
activator (uPA) secreted by neutrophils, chondrocytes and
monocytes interacts with uPAR, a receptor expressed on
macrophages, FLS, chondrocytes and VECs, thereby secreting a
variety of cytokines, chemokines, growth factors and MMPs to
promote the progression of RA (Dinesh and Rasool, 2018).
Crosstalk between VEC and FLS, macrophages affects the disease
course of RA, and targeting this pathway and its interconnected
receptors or ligands may provide a novel treatment strategy for RA.

4 Crosstalk between VEC and
lymphocytes (T cells, B cells, etc.)

The interplay between VECs and lymphocytes (T cells, B cells)
drives synovial inflammation and angiogenesis in RA (Floudas et al.,
2022). T cells activated by cytokines, endothelial transport,
extracellular matrix, or autoantigens can interact through cell
membranes mediated by β-integrins and membrane cytokines to
promote the production of TNF-α and MMPs by cytokines,
especially macrophages and FLS (Elshabrawy et al., 2017). This
interaction establishes a feedforward loop: VEC-derived cytokines
further activate T cells, amplifying synovial inflammation. Similarly,
in human synovial fibroblast cell line MH7A transfected with
SV40 T antigen, TNF-α increased the expression and
transcriptional activity of B cell-derived factors like BAFF (B cell-
activating factor) and VEGF. BAFF indirectly modulates VEC
function by stimulating synovial fibroblasts to release VEGF,
which sustains endothelial activation and vascular permeability
(Lee et al., 2013). TNF-α-induced BAFF expression and BAFF-
mediated VEGF expression in synovium may crosstalk to maintain
the ability of such cells to protect B cells from apoptosis and nutrient
and oxygen supply in the inflammatory microenvironment. Despite
targeting VEGF, current anti-angiogenic therapies still face
limitations. For example, compensating upregulation of
alternative angiogenic signals (e.g., BAFF, FGF2) through
lymphocyt-VEC crossinuations can reduce drug efficacy. In
microenvironmental adaptation, chronic TNF-α exposure induces
BAFF/c-Fos signaling in lymphocytes and FLS, maintaining VEGF
production even when VEGF is blocked. In addition, resistance
arises from overlapping FLS-lymphocyte-VEC interactions,
requiring a multi-target approach.

While this section emphasizes VEC-lymphocyte interactions,
fibroblast-like synoviocytes (FLS) act as critical intermediaries. RA
FLS cultured in the presence of CD40 ligand transfected (CD40L+) L
cells increased VEGF production by a factor of 4.1 compared to the
composition level of unstimulated FLS. CD40L on T cells
upregulates VEGF produced by FLS. The interaction between
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CD40 on FLS and CD40L expressed on activated T lymphocytes
may be directly involved in RA angiogenesis by enhancing VEGF
production (Cho et al., 2000). In addition, Activated CD4+ T cells
and FLS synergistically upregulate adhesion molecules (ICAM-1,
VCAM-1) on VECs, facilitating leukocyte recruitment and cytokine
release (TNF-α, IFN-γ, IL-17A, IL-6, IL-8) that perpetuate
angiogenesis (Petrasca et al., 2020).

5 Post-translational modifications
interfere with VEC function in RA

Post-translational modifications (PTMs) are chemical
modifications that play a key role in functional proteomes,
further contributing to increased proteomic complexity from the
genomic level (Lee et al., 2023). Due to the existence of a large
number of different PTMs, it is not possible to conduct a
comprehensive review of all possible protein modifications
here.This review focuses on PTMs, which are at the forefront of
protein research, exploring their role in VEC function and
angiogenesis in RA (Figure 4).

5.1 Ubiquitination

Ubiquitination fine-tunes endothelial barrier function by
modulating Rho GTPases and connexins (Majolée et al., 2019).
In RA, overexpression of Rho family GTPase 3 (RND3) reduces
proliferation, migration, invasion, and inflammation of RA FLS (Dai
et al., 2022). Ubiquitination may affect FLS and VEC function in RA
by regulating RND3. The ubiquitin-proteasome system (UPS) plays
a central role in fine-tuning the function of core pro-angiogenic
proteins, including VEGF, VEGFR-2, angiogenesis signaling
proteins (such as the PLCγ1 and PI3 kinase/AKT pathways), and

other non-VEGF angiogenesis pathways (Rahimi, 2012).
Dysangiogenesis of mesenchymal stem cells (MSCs) is closely
associated with inflammation and bone metabolism disorders in
patients with various autoimmune diseases. SMAD-specific
E3 ubiquitin ligase 2 (Smurf2) overexpression in RA may
destabilize PTX3 levels in VECs, exacerbating synovial
inflammation and vascular permeability (Ma et al., 2021; Boutet
et al., 2021). In RA, these results may provide new insights into
whether Smurf2 can similarly influence angiogenesis by acting as an
E3 ubiquitin ligase to regulate levels of PTX3 in VEC.

5.2 Glycosylation

Targeting metabolism is a new anti-angiogenesis paradigm,
particularly by inhibiting energy metabolism and glycosylation,
from the perspective of maintaining a delicate balance between
the beneficial and harmful effects of excessive angiogenesis in
patients (Bousseau et al., 2018). Monocyte chemoattractant
protein-1 (MCP-1/CCL2) is a potent monocyte chemoattractant,
mainly produced by macrophages and VECs. Patients with RA have
significantly higher levels of MCP-1/CCL2 in synovial fluid
compared to patients with osteoarthritis or other forms of
arthritis. Abnormal glycosylation of MUC3 and MCP-1/
CCL2 proteins enhanced monocyte chemotaxis and synovial
angiogenesis of RA (Korchynskyi et al., 2023). Mucins(MUC) are
a class of highly glycosylated proteins that protect epithelial
membranes and serve as ligands for cell adhesion. MUC3 was
highly expressed in RA macrophages and fibroblasts compared
with normal synovial endomyocytes. The expression level of
MUC5AC is low in synovial lining cells, macrophages and
endothelial cells of RA, and almost no expression in normal
synovial tissue (Volin et al., 2008). Two glycosylated proteins,
MUC3 and MUC5AC, play a role in the angiogenesis mechanism

FIGURE 3
The angiogenic factors are mainly produced by RA synovial macrophages and FLS. During the formation of pannus in RA synovium, FLS promoted
the polarization of resident macrophages and accelerated the secretion of pro-inflammatory mediators and pro-angiogenic factors.
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of RA, suggesting that novel pharmacological strategies targeting
glycosylation can be used to reduce excessive angiogenesis in
pathological conditions.

5.3 Lactylation

Lactic acid can promote a range of carcinogenic processes,
including angiogenesis, invasion, metastasis, and immune escape
(Zhang et al., 2019). The rate of lactic acid production is closely
related to the rate of cell anabolism and proliferation, but whether
the accumulated lactic acid can directly affect the proliferation of
VEC has not been reported. Lactylation has been demonstrated to
promote tumor progression by hinding the function of T cells and
natural killer (NK) cells or supporting the inhibition of tumor-
associated macrophages (TAMs), myeloid derived suppressor cells
(MDSCs), and regulatory T cells (Tregs) (Fan et al., 2023). Excess
lactic acid suppresses the T-cell-mediated immune response (Chen
et al., 2022). Lactate inhibits the production of IFN-γ, TNF-α, and
IL-2 triggered by T cell receptor (TCR) and impairs the function of
cytotoxic T lymphocytes by inhibiting the phosphorylation of the

p38 signaling protein. Lactic acid also induces T cell apoptosis by
reducing the level of nicotinamide adenine dinucleotide (NAD (+)).
In addition, histone lactylation promotes malignant progression by
promoting the expression of ubiquitin specific peptidase 39 (USP39)
targeting the PI3K/AKT/HIF-1α signaling pathway in endometrial
cancer (Wei et al., 2024). The study found that dexamethasone can
prevent asthma by regulating the HIF-1α-glycolytic-lactic axis and
protein lactylation (Chen et al., 2024). The regulation of the HIF-1α-
lactate axis by semasone highlights therapeutic potential, although
the RA-specific lactation mechanism remains under-explored.

5.4 Palmitoylation

Junctional adhesion molecule C (JAM-C) is an immunoglobulin
superfamily protein expressed in epithelial cells, VEC and
leukocytes. JAM-C underwent S-palmitoylation on two near-
membrane cysteine residues Cys-264 and Cys-265
(Aramsangtienchai et al., 2017). Leukocyte infiltration into RA
synovium is a multi-step process in which leukocytes leave the
blood and invade the synovium, and leukocyte transendothelial

FIGURE 4
Posttranslational modifications are involved in regulating VEC function and angiogenesis in rheumatoid arthritis.
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migration and adhesion to RA synovium require adhesionmolecules
on the surface of VEC and FLS. RA synovial VECs exhibit elevated
JAM-C, facilitating myeloid cell adhesion and inflammation. The
adhesion of myeloid U937 cells to RA synovial tissue FLS and RA
synovial tissue depended on JAM-C (Rabquer et al., 2008).
Inhibiting JAM-C palmitoylation could mitigate leukocyte
recruitment while preserving physiologic vascular functions.
However, whether S-palmitoylation of JAM-C is involved in
leukocyte infiltration and angiogenesis in RA deserves further
study. Furthermore, PTM/epigenetic drugs often lack cell-type
precision, risking off-target effects (e.g., HDAC inhibitors
impairing immune tolerance).

6 Targeted angiogenesis therapy for RA

Standard treatment for RA includes methotrexate and several
disease-modifying anti-rheumatic drugs that target key
inflammatory molecules that promote RA. These drugs have
significant therapeutic effects, but are often associated with
significant side effects, and these biologics do not bring sustained

relief after discontinuing (Abbasi et al., 2019). VEC-mediated
angiogenesis plays a key role in the pathogenesis of RA, and the
crosstalk between VEC and FLS and other cells affects the RA
process, so targeting angiogenesis related cells and cytokines or
pathways may be an important clinical therapeutic target for RA
(Figure 5; Table 1).

6.1 Conventional and biologic therapies

Tacrolimus(FK506) is a calcineurin inhibitor.
Tacrolimus(FK506) inhibits IL-1β-induced ANG1, Tie-2
receptors and VEGF by blocking phosphorylation of JNK and
p38, but not ERK phosphorylation (Choe et al., 2012). The
inhibitory effect of cyclosporin A on VEGF synthesis depends on
calcineurin. Inhibition of cyclosporin A is associated with reduced
binding activity of AP-1 to VEGF promoter in a CAMP-dependent
manner. cyclosporin A exerts anti-angiogenic effects by inhibiting
AP-1 mediated VEGF expression in RA FLS (Cho et al., 2002).
Tocilizumab is an anti-IL-6 receptor antibody. Tocilizumab
treatment decreased circulating EMMPRIN/CD147 levels in

FIGURE 5
Drugs inhibit the expression of pro-angiogenic factors such as VEGF and inhibit angiogenesis, thereby exerting anti-RA effects.
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serum samples from RA patients, enhanced the expression of
circulating miR-146a-5p and miR-150-5p, and reduced
angiogenic potential, which was manifested by a reduced number
of tubular structures formed by the EaHy926 endothelial cell line
(Zisman et al., 2021).

6.2 Natural and herbal agents

Traditional Chinese medicine and natural medicine have low
toxicity in treating RA (Huang et al., 2023). Chinese monkshood
Decoction alleviated RA by regulating PI3K/AKT/mTOR/HIF-1α
pathway, inhibiting the expression of VEGF, ANGI and other
angiogenic factors treating the decoction and inhibiting
angiogenesis in MH7A cells (Ba et al., 2021). Geniposide
improved the degree of arthritis and angiogenesis in AA rats,
inhibited the proliferation and migration of HUVEC and the
angiogenesis, and played an anti-angiogenic effect in vitro.
Geniposide upregulated the expression of PTEN and inhibited
the activation of PI3K-Akt signal, thereby inhibiting RA
angiogenesis in vivo and in vitro (Bu et al., 2022). At the cellular
level, TNF-γ enhanced VEGF/SphK1/S1P pathway activation in FLS
and VEC co-culture models in vitro. Geniposide could induce VEGF
downregulation in FLS, restore the dynamic balance of pro-/anti-
angiogenic factors, inhibit SphK1/S1P signal in VEC, and lead to the
decrease of proliferation activity, migration ability, tubeforming
ability and S1P secretion ability of VEC cells (Wang et al.,
2021b). Polyphenol curcumin has significant anticancer, anti-
inflammatory and pro-apoptotic properties. Curcumin can
effectively block the expression of IL-6 induced by IL-1β and
myristate (PMA) in MH7A cells and RA-FLS. Curcumin inhibits

NF-κB activation and induces ERK1/2 dephosphorylation (Kloesch
et al., 2013). In addition, curcumin, as a specific inhibitor of
transcription-activating protein 1(AP-1), dose-dependently
eliminates the effect of IL-18 on VEGF production. The dose-
dependent increase of IL-18 in VEGF production was associated
with increased binding activity of AP-1 to VEGF promoter sites
(Cho et al., 2006). Matrine exerts an anti-angiogenic effect by
regulating HIF-VEGF-Ang axis and inhibiting PI3K/Akt signaling
pathway, inhibits proliferation and migration of RA-FLS and
proliferation and lumen formation of HUVEC,and improving RA
symptoms (Ao et al., 2022). Shikonin significantly reduced
immature blood vessels in the synovial tissue of inflamed joints
in CIA rats. Shikonin inhibits TNF-α-induced HUVEC cell
migration, invasion, adhesion, and tube formation. Shikonin
downregulates PI3K and Akt while up-regulating PTEN in
synovial tissue and/or TNF-α-induced HUVEC cells. It also
inhibits the phosphorylation and gene levels of TNF-α-induced
signaling molecules. Shikonin has anti-angiogenic effects in RA
in vivo, in vitro and in vitro by blocking PI3K/AKT and MAPKs
signaling pathways (Liu et al., 2020).

6.3 Repurposed drugs

The antimalarial drug artemisinin and its derivatives have anti-
angiogenic effects. Artesunate reduces VEGF and IL-8 secretion and
HIF-1α translocation in TNF-α or hypoxic-stimulated RA FLS in a
dose-dependent manner. Artesunate prevents Akt phosphorylation.
PI3 kinase inhibitor LY294002 inhibits VEGF and IL-8 secretion
andHIF-1α expression induced by TNFα or hypoxia, suggesting that
inhibiting PI3 kinase/Akt activation may inhibit VEGF and IL-8

TABLE 1 Drugs used to treat rheumatoid arthritis by antiangiogenesis.

Drug Category Agent Mechanism/Target Key effects

Conventional
DMARDs

Tacrolimus(FK506) Inhibits JNK/p38 MAPK Reduces ANG-1, Tie-2, VEGF (Choe et al., 2012)

Cyclosporin A Suppresses AP-1/VEGF via cAMP Blocks calcineurin-dependent angiogenesis (Cho et al.,
2002)

Biologics Tocilizumab Anti-IL-6R antibody ↓ EMMPRIN/CD147; ↑ miR-146a-5p/miR-150-5p
(Zisman et al., 2021)

Natural Compounds Chinese monkshood
Decoction

PI3K/AKT/mTOR/HIF-1α pathway Reduces ANG-1, VEGF (Ba et al., 2021)

Geniposide Upregulates PTEN; inhibits PI3K/Akt Restores pro-/anti-angiogenic balance (Bu et al., 2022;
Wang et al., 2021a)

Polyphenol curcumin Inhibits NF-κB activation and induces ERK1/
2 dephosphorylation

Eliminates the effect of IL-18 on VEGF production
(Kloesch et al., 2013; Cho et al., 2006)

Matrine Targets HIF-VEGF-Ang axis ↓ IL-1β, VEGF, HIF-α in CIA rats (Ao et al., 2022)

Shikonin Downregulates PI3K and Akt while up-regulating PTEN inhibits TNF-α-induced HUVEC cell migration,
invasion, adhesion, and tube formation (Liu et al., 2020)

Repurposed Drugs Artesunate Inhibits PI3K/Akt/HIF-1α ↓ VEGF/IL-8 in hypoxic RA-FLS (He et al., 2011)

Arsenic trioxide (As2O3) Suppresses TSP-1, TGF-β1, VEGF Blocks RA-FLS/HDMEC crosstalk (Zhang et al., 2017)

Metabolic Modulators Dimethyl Malonate Inhibits succinate/HIF-1α Disrupts energy metabolism-driven angiogenesis (Li
et al., 2018)

Resveratrol Activates SIRT1 Suppresses glycolysis in RA-VECs (Jiang et al., 2023b)
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secretion and HIF-1α expression induced by TNFα or hypoxia (He
et al., 2011). Arsenic trioxide (As2O3) is an attractive drug for the
treatment of some cancers. TSP-1, TGF-β1, CTGF and VEGF were
increased in the supernatant of RA-FLS and human skin
microvascular endothelial cells (HDMEC) co-culture. Co-cultured
RA-FLS and HDMEC supernatants induced increased migration,
tube formation and microvascular germination of HDMEC.
As2O3 has a significant anti-angiogenic effect on the synovium
of RA-FLS and CIAmice by inhibiting the RA angiogenesis function
modules of TSP-1, TGF-β1, CTGF and VEGF, and may have the
potential to treat RA other than cancer treatment (Zhang
et al., 2017).

6.4 Metabolic and novel pathway inhibitors

Succinic acid can act as a signaling molecule that links metabolic
reprogramming to angiogenesis. Intracellular succinic acid
promotes VEGF production and induces HIF-1α-induced
angiogenesis in VEC, while extracellular succinate activates the
succinic acid receptor G protein-coupled receptor 91 and induces
VEGF production, jointly disrupting energy metabolism and
exacerbating inflammation and angiogenesis in RA synovium.
Succinate dehydrogenase inhibitors dimethyl malonate can
prevent succinic acid accumulation and inhibit angiogenesis by
blocking the HIF-1α/VEGF axis (Li et al., 2018). Metabolomics
studies revealed accelerated glycolysis of RA sero-treated HUVEC,
leading to ATP accumulation but not affecting GTP levels, a process
that can be inhibited by activation of SIRT1. Resveratrol can induce
SIRT1 activation to inhibit glycolytic-promoted angiogenesis in RA
independent of HIF-1α (Jiang TT. et al., 2023).

7 Conclusion and perspectives

VECs are central to maintaining vascular homeostasis, immune
regulation and tissue repair. Advances in single-cell RNA
sequencing (scRNA-seq) and lineage tracing have revealed VEC
heterogeneity, identified disease-associated endothelial
subpopulations, and clarified their role as mediators of innate
immune cell and synovial microenvironment imbalances in RA
(Zhao et al., 2024).

The targeted therapy of RA has not made a good breakthrough
at present. Therefore, through in-depth research on the important
role of VEC on the imbalance of RA synovial microenvironment,
especially the role of various cells and factors in mediating the
angiogenesis pathway, Exploring the relationship with other
pathways and studying the interaction between VEC, FLS and
other cells will provide new ideas and directions for the
pathogenesis and treatment of RA.

In addition to PTMs, epigenetic modifications have important
effects on VEC behavior in RA. Hypomethylation of pro-
angiogenesis genes (e.g., VEGFA, ANGPT2) in RA VEC
amplifies synovial angiogenesis. HDAC inhibitors (such as
Entesteat) reduce VEGF secretion by restoring acetylation-
dependent inhibition at inflammatory sites. As previously
mentioned, miRNAs and lncRNAs also affect VEC behavior, and
the exosome miR-200a-3p from RA-FLS silences KLF6 in vec and

enhances VEGF-driven angiogenesis. LncRNA HOTAIR promotes
PI3K/AKT activation through miR-126-3p sponge.

These breakthroughs catalyzed the discovery of novel targets
such as PTMs and epigenetic regulators that drive angiogenesis and
inflammation in RA. However, translating these insights into
effective treatments remains challenging.

In recent years, a large number of anti-angiogenesis drugs
targeting angiogenesis related proteins and cytokines have
appeared, but limited efficacy and drug resistance are still
prominent problems (Iragavarapu-Charyulu et al., 2020; Wu
et al., 2020). While anti-angiogenic drugs targeting VEGF,
PI3K/AKT, and other pathways have shown promise, their
clinical utility in RA is limited by (1) Drug resistance:
Complex signaling pathways (e.g., compensatory HIF-1α
upregulation during VEGF inhibition): enable escape
mechanisms (Musleh Ud Din et al., 2024; Lu et al., 2024); (2)
Systemic toxicity: Biologics such as bevacizumab (anti-VEGF)
often cause hypertension, impaired wound healing, and
immunosuppression, and complicate long-term use (Syrigos
et al., 2011); (3) Lack of specificity: Current treatments
extensively inhibit angiogenesis, disrupt physiologic vascular
repair and exacerbate synovial hypoxia; (4) Limited
persistence: Transient efficacy requires repeated dosing,
increasing the risk of toxicity without addressing the root
cause of VEC dysfunction.

To overcome the current barriers to treatment, a multi-pronged
strategy is essential. Precise targeting can be used to identify RA-
specific VEC subsets using scRNA-seq, enabling spatially-resolved
therapies such as nanoparticle-delivered siRNA against pro-
angiogenic lncRNA HOTAIR or lactation inhibitors. Dual
pathway inhibition - for example, co-targeting VEGF and IL-6/
IL-17 signaling pathways - may reduce drug resistance; tocilizumab
in combination with PI3K inhibitors disrupts cytokine-driven
inflammation and metabolic reprogramming. PTMs based
therapies, such as Smurf2 inhibitors that modulate ubiquitination
or dexamethasone analogues that target pathologic lactation, offer
pathways to restore VEC homeostasis with fewer off-target effects.
In addition, given the female predominance of RA, sex-specific
approaches are critical: Exploring estrogen regulation of VEC
glycosylation and miRNA networks could provide ideas for
gender-tailored treatments.

Furthermore, insights from RA VEC biology hold promise in
multiple areas. Angiogenesis plays an important role in tumor
growth and spread, and how to inhibit tumor angiogenesis to
block tumor blood supply and thus inhibit its growth may be a
promising treatment (Cai et al., 2024). Cardiovascular diseases such
as heart disease and coronary heart disease are related to vascular
dysfunction. Studying the mechanism of angiogenesis can help
develop new therapeutic strategies and improve the prevention
and treatment of cardiovascular diseases. Exploring how to
promote angiogenesis within artificial tissues and organs to
provide nutrients and oxygen to promote their function and
growth is of key significance for tissue engineering and organ
regeneration. Several inhibitors of angiogenesis have been
developed and are used to treat certain cancers and other
diseases. However, although there have been studies on drug
therapy mechanisms targeting VEC and angiogenesis pathway in
the treatment of RA, there is still no substantive breakthrough. It is
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exciting that the PTMs related to the function of VEC may
contribute to further research on the pathogenesis of RA and
explore new diagnostic and therapeutic targets for RA.
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