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Background: Glycolysis plays a crucial role in fibrosis, but the specific genes
involved in glycolysis in idiopathic pulmonary fibrosis (IPF) are not well
understood.

Methods: Three IPF gene expression datasets were obtained from the Gene
Expression Omnibus (GEO), while glycolysis-related genes were retrieved from
the Molecular Signatures Database (MsigDB). Differentially expressed glycolysis-
related genes (DEGRGs) were identified using the “limma” R package. Diagnostic
glycolysis-related genes (GRGs) were selected through least absolute shrinkage
and selection operator (LASSO) regression regression and support vector
machine-recursive feature elimination (SVM-RFE). A prognostic signature was
developed using LASSO regression, and time-dependent receiver operating
characteristic (ROC) curves were generated to evaluate predictive
performance. Single-cell RNA sequencing (scRNA-seq) data were analyzed to
examine GRG expression across various cell types. Immune infiltration analysis,
Gene Set Enrichment Analysis (GSEA), and Gene Set Variation Analysis (GSVA)
were performed to elucidate potential molecular mechanisms. A bleomycin
(BLM)-induced pulmonary fibrosis mouse model was used for experimental
validation via reverse transcription-quantitative polymerase chain reaction
(RT-qPCR).

Results: 14 GRGs (VCAN, MERTK, FBP2, TPBG, SDC1, AURKA, ARTN, PGP, PLOD2,
PKLR, PFKM, DEPDC1, AGRN, CXCR4) were identified as diagnostic markers for
IPF, with seven (ARTN, AURKA, DEPDC1, FBP2, MERTK, PFKM, SDC1) forming a
prognostic model demonstrating predictive power (AUC: 0.831–0.793). scRNA-
seq revealed cell-type-specific GRG expression, particularly in macrophages and
fibroblasts. Immune infiltration analysis linked GRGs to imbalanced immune
responses. Experimental validation in a bleomycin-induced fibrosis model
confirmed the upregulation of GRGs (such as AURKA, CXCR4). Drug
prediction identified inhibitors (such as Tozasertib for AURKA, Plerixafor for
CXCR4) as potential therapeutic agents.
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Conclusion: This study identifies GRGs as potential prognostic biomarkers for IPF
and highlights their role in modulating immune responses within the fibrotic lung
microenvironment. Notably, AURKA, MERTK, and CXCR4 were associated with
pathways linked to fibrosis progression and represent potential therapeutic targets.
Our findings provide insights intometabolic reprogramming in IPF and suggest that
targeting glycolysis-related pathways may offer novel pharmacological strategies
for antifibrotic therapy.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive
pulmonary fibrosis characterized by unexplained fibrosis and
scarring of lung tissue, This condition is marked by the
abnormal proliferation and activation of fibroblasts, which
leads to extensive lung remodeling and ultimately results in
impaired lung function (Podolanczuk et al., 2023; Moss et al.,
2022; Wang et al., 2022). IPF relies primarily on antifibrotic
treatments and various palliative and supportive care. Lung
transplantation remains the only effective option for extending
survival, but its accessibility and success rates are constrained by
donor organ availability (Glassberg, 2019; Maher et al., 2021;
Shah Gupta et al., 2023). Despite substantial research into the
pathophysiological mechanisms underlying IPF, the precise
etiology of this debilitating disease remains elusive, and
effective therapeutic interventions remain scarce.

Glycolysis, the primary pathway of glucose metabolism, plays a
central role in cellular energy production and is intricately linked to
various cellular processes such as cell proliferation, inflammatory
responses, and apoptosis (Bose and Le, 2018; Koppenol et al., 2011).
The process of glycolysis is not only critical for maintaining cellular
homeostasis but also for fueling the metabolic demands of activated
fibroblasts and other cells in fibrotic tissues. Recent studies have
underscored the importance of glycolysis in the development and
progression of a wide range of diseases, including tumors, chronic
inflammatory conditions, and fibrotic diseases such as IPF
(Mulukutla et al., 2016; Vander Heiden et al., 2009; Lunt and
Vander Heiden, 2011). In IPF, glycolysis is thought to be
upregulated, providing the energy required for the activated
fibroblasts that contribute to lung fibrosis. However, despite
growing evidence of its involvement, the precise molecular
mechanisms linking glycolysis to IPF pathogenesis are still not
fully understood (Wang et al., 2024).

Bioinformatics approaches are crucial for analyzing complex
biological networks and understanding disease mechanisms. By
using genomic, transcriptomic, and proteomic data,
bioinformatics allows for the systematic analysis of gene
expression patterns and their functional relationships in disease
contexts. This study applies bioinformatics methods to examine
glycolysis-related genes in IPF. By integrating multi-omics data, we
aim to identify key genes and pathways involved in glycolysis that
may contribute to the pathogenesis of IPF. These findings could
identify potential biomarkers or therapeutic targets for the disease,
suggesting that targeting glycolysis-related pathways may offer novel
pharmacological strategies for managing IPF.

Materials and methods

Data source of bulk RNA sequencing (RNA-
seq) and single-cell RNA sequencing
(scRNA-seq)

In this study, we used both bulk RNA sequencing (RNA-seq)
and single-cell RNA sequencing (scRNA-seq) data to explore gene
expression profiles related to IPF. The bulk RNA-seq data were
obtained from the Gene Expression Omnibus (GEO) (https://www.
ncbi.nlm.nih.gov/gds/) database (Goddard et al., 2000; Jorge et al.,
1978). The GSE70866 dataset contains 196 samples, including
176 IPF samples and 20 normal samples. Gene expression
profiling was carried out on cells from bronchoalveolar lavage
(BAL) fluid collected during regular clinical procedures, with
normal samples from healthy individuals undergoing
bronchoscopy for reasons not related to IPF to ensure proper
controls. The GSE218997 dataset consists of 137 samples from
the lung tissues of male C57 mice. The subjects were divided into
two age groups: young mice aged 8–12 weeks and aged mice at
21 months. Among these samples, 59 were assigned to the
bleomycin (BLM)-induced fibrosis group, and the remaining
78 were used as control samples. Single-cell RNA-seq data on
IPF and normal samples were also acquired from the GEO
database (GSE128033). Lung tissues were collected during
transplant surgeries in line with approved protocols, enabling a
detailed examination of gene expression at the single-cell level
(Morse et al., 2019). However, detailed patient characteristics like
age, sex, and treatment status were not provided in these datasets
and thus were not considered in our analysis. Specifically, the
datasets did not indicate whether IPF patients were undergoing
any treatments at the time of sample collection, so the potential
effects of treatment on the studied pathways could not be evaluated.
Our main focus was to identify gene expression patterns associated
with IPF itself (Supplementary Table 1). GRGs were obtained from
the Molecular Signatures Database v7.0 (MSigDB) (https://software.
broadinstitute.org/gsea/msigdb/index.jsp) (Supplementary Table 2;
Supplementary Data 1) (Male et al., 1987; Zacho et al., 1975;
Wheeler, 1973).

Function enrichment analysis of GRGs

The “limma” R package was used to analyze the expression
differences of GRGs in IPF (Burch and Varkey, 1985). Differentially
expressed genes were identified using thresholds of log fold-change
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(logFC) >1 and adjusted p-value (adj.P.Val) <0.05 to ensure robust
selection of significant genes. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) (https://www.kegg.
jp/) pathway enrichment analyses were conducted using the
“clusterProfiler” R package (Fenster and Downey, 2000; Vobecky
et al., 1988). The threshold for each analysis was set at P < 0.05.

IPF characteristic genes screening

The least absolute shrinkage and selection operator (LASSO)
regression was performed under 10-fold cross-validation for
deeper disease-specific gene selection. The optimal λ generated
a minimum cross-validation error (Friedman et al., 2010). We
also applied the support vector machine-recursive feature
elimination (SVM-RFE) model using the “SVM” R package. In
this model, each feature’s score was sorted, and the next iteration
was performed, followed by removing the minimum value until
the best features were selected. Glycolysis-related differentially
expressed genes (GRDEGs) for IPF were identified by
overlapping the results of the above algorithms. Moreover, the
diagnostic value of GRDEGs was assessed by calculating receiver
operating characteristic (ROC) curves using the “pROC” R
package (Robin et al., 2011).

Gene regulatory network and potential
therapeutic drug prediction

Gene regulatory network analysis comprises twomain components:
miRNAs and transcription factors (TFs). Then, the intersection
between differential genes was identified in the DEG-miRNA and
TF-DEG regulatory networks using NetworkAnalyst (https://www.
networkanalyst.ca/home.xhtml) (Xia et al., 2015). TarBase (https://
www.microrna.gr/tarbase) and miRTarBase (https://mirtarbase.cuhk.
edu.cn/) were used to explore DEG-miRNA interaction networks
(Karagkouni et al., 2018). The JASPAR database (https://software.
broadinstitute.org/gsea/msigdb/index.jsp) was used to analyze TF-
DEG interaction networks (Fornes et al., 2020; Vergoulis et al., 2012;
Huang et al., 2020). The DGIdb database (https://www.dgidb.org/) was
used to identify potential therapeutic agents for IPF (Miyadera and
Iwai, 1964).

Prognostic model construction

Candidate GRDEGs were used in the univariate Cox and
LASSO regressions to construct the prognostic signature using
the “glmnet” R package. The formula risk score = (each gene’s
expression × corresponding coefficient) was used to classify IPF
patients. Patients with a risk score above the median were placed
in the high-risk group, and the rest were placed in the low-risk
group. The “timeROC” R package was used to construct 1-, 2-
and 3-year ROC curves analyses, and the results were quantified
by the area under the ROC curve (AUC). Meanwhile, the
Kaplan–Meier survival analysis was conducted using
‘‘survival” and ‘‘survminer” R packages. The universal
datasets were divided into train and test sets, keeping the

ratio to about 1:1. The above analyses were conducted for the
whole, train, and test sets.

Single gene set enrichment analysis and
gene set variation analysis

The GSEA was conducted using the “GSEABase” R package
(Subramanian et al., 2005). According to the log2[Fold Change (FC)]
value from the differential analysis, genes were ranked from high to
low to be defined as the test gene set. Then, the KEGG signaling
pathway set was used to detect the possible relevance between hub
genes and the gene set.

This analysis was complemented using the “GSVA” R package
(Hänzelmann et al., 2013). The KEGG pathway set was used to
conduct the GSVA of hub genes. The “limma” R package was used to
identify the GSVA score differences between high and low-
expression samples, with P < 0.05 as the cut-off. The pathway
was classified as active if t > 0 in the high expression group and
if t < 0 in the low expression group.

Immune infiltration analysis

CIBERSORT (Cell-type Identification By Estimating Relative
Subsets Of RNA Transcripts) is a computational method for
estimating the composition of complex tissues from gene expression
profiles (Newman et al., 2019). In this study, we applied CIBERSORT to
analyze the proportion of 22 types of infiltrating immune cells in the
GSE70866 dataset, which comprises gene expression profiles derived
from BAL fluid samples of both IPF patients and healthy controls.
Additionally, Pearson correlation coefficients were calculated to
quantify the association between the relative abundance of immune
cells and the expression levels of hub genes.

Processing and analysis of single cell
transcriptome data

We obtained the raw data from the GEO database (GSE128033)
and processed it using the “Seurat” R package (Hao et al., 2021). The
data preprocessing steps included normalization, scaling, and cell
clustering, resulting in the identification of four predominant cell
types. To ensure data quality, we applied specific criteria: nFeature_
RNA >200, nFeature_RNA <5500, percent.mt <10, nCount_
RNA >1000, nCount_RNA <35,000 (Ilicic et al., 2016). Single cells
were extracted while excluding doublets and dead cells based on these
criteria. Next, we performed principal component analysis (PCA) on
the highly variable genes and reduced the dimensions of the data. The
resulting clusters were identified using the functions “FindNeighbors,”
“FindClusters,” and ‘runTSNE’.

Validation of expression of prognostic genes
in mouse model

We initially identified 14 glycolysis-related genes using
LASSO and SVM-RFE. LASSO regression then narrowed the
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list to seven genes with prognostic significance, minimal
redundancy, and reduced multicollinearity. To validate these
genes in vivo, we used a bleomycin (BLM)-induced pulmonary
fibrosis model in 24 male C57 mice (8–12 weeks old), randomly
assigned to either the PBS group (n = 12) or the BLM group (n =
12; 2.5 U/kg, intratracheal). After 21 days, pulmonary fibrosis
was confirmed by histology (HE and Masson staining) and
Western blot (Col1a1, Fibronectin). We subsequently
measured the expression of the seven selected genes by qPCR
(primer sequences in Supplementary Table 3). All animal
procedures were approved by the Ethics Committee of Wuhan
University (No. WP20220442).

Statistical analysis

R software (version 4.0.3) was used for statistical analyses and
visualization of results. ALL group’s difference calculated by Mann-
Whitney U test. A P < 0.05 was considered statistically significant.
Significance correlation coefficients were defined by absolute
values >0.2 and P < 0.05.

Results

Identification and functional analyses
of GRDEGs

The analysis of GRGs in the GSE70866 dataset revealed
significant expression differences between IPF patients and
healthy controls, including 63 upregulated genes and
55 downregulated genes. Key glycolytic enzymes, such as ENO1,
were significantly upregulated in IPF (P = 0.028), indicating
enhanced glycolytic activity, while genes involved in oxidative
metabolism, such as DLD and ADH1C, were markedly
downregulated (P < 0.05), suggesting impaired energy
homeostasis (Figure 1A; Supplementary Data 2). GO analysis
further highlighted their localization to key cellular
compartments, including the lysosomal lumen and vascular
lumen, emphasizing roles in cellular transport and energy
regulation (Figure 1B). Functional enrichment analysis
demonstrated that differentially expressed GRGs were involved in
critical processes, including energy generation, carbohydrate
metabolism, and oxidative stress regulation, with significant

FIGURE 1
Differentially expressed genes of Glycolysis in IPF and functional analysis for these genes. (A) Heatmap showing the differential expression of GRGs
between IPF patients and healthy controls. Each row represents a gene, and each column represents a sample. Red indicates upregulation, and blue
indicates downregulation. Distinct clustering of gene expression profiles highlights significant differences between the two groups. *P < 0.05, **P < 0.01,
***P < 0.001. Mann-Whitney U test. (B) Gene Ontology (GO) enrichment analysis of differentially expressed GRGs, categorized into biological
processes (BP), cellular components (CC), and molecular functions (MF). (C) KEGG pathway enrichment analysis of differentially expressed GRDEGs.
(Con:Healthy Volunteer, IPF: Idiopathic Pulmonary Fibrosis patients).
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FIGURE 2
Identification of key diagnostic genes in IPF using LASSO and SVM-RFE regression. (A) Binomial deviance curve for LASSO regression. The optimal
lambda (λ) value was selected based on the minimum binomial deviance with 10-fold cross-validation, reducing the number of candidate features to 37.
(B) LASSO coefficient profiles for the 37 features, showing the shrinking of coefficients as the penalty increases. (C) Cross-validation accuracy of SVM
regression, with the highest accuracy of 0.969 achieved when selecting 19 features. (D) Cross-validation error of SVM regression, with the lowest
error (0.0308) corresponding to 19 features. (E) Venn diagram showing the overlap of selected genes from the LASSO and SVM-RFE models, identifying
14 overlapping genes. (F) ROC curves showing the diagnostic performance (AUC) of the 14 signature genes in distinguishing IPF patients from controls.
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enrichment in biological pathways such as glycolysis/
gluconeogenesis, HIF-1 signaling, and carbon metabolism.
These findings indicate a hypoxia-driven metabolic
reprogramming in IPF (Figure 1C). Collectively, these results
suggest that metabolic alterations in GRGs contribute to
fibroblast activation, extracellular matrix remodeling, and disease
progression, offering potential targets for therapeutic
intervention in IPF.

GRDEGs were diagnostic genes for IPF

To identify robust biomarkers for IPF, a combination of LASSO
regression and SVM-RFE algorithms was applied to optimize feature
selection. LASSO regression analysis, guided by 10-fold cross-
validation, selected 37 candidate genes with minimal binomial
deviance, as shown in Figure 2A. The corresponding coefficient
profiles (Figure 2B) highlight the effect of regularization, where
increased λ progressively reduced the number of retained variables.
SVM-RFE further refined the selection to 19 genes, achieving the
highest cross-validation accuracy (0.969) and the lowest error rate
(0.0308), as depicted in Figures 2C, D. The overlap between the
LASSO and SVM-RFE methods was visualized in a Venn diagram
(Figure 2E), revealing 14 genes shared by both models. These shared
genes, including PFKM, AURKA, CXCR4, and SDC1, were
prioritized for their diagnostic potential. ROC curve analysis
(Figure 2F) demonstrated the diagnostic performance of each
gene, with AUC values ranging from 0.704 (PFKM) to 0.887
(VCAN), underscoring their utility in distinguishing IPF patients
from controls. Overall, this integrated computational approach
identified a robust panel of 14 genes with high diagnostic

accuracy, providing a basis for further experimental validation
and mechanistic exploration in IPF pathogenesis.

Identification of candidate drugs

To identify potential therapeutic agents targeting the 14 key
genes (PFKM, PKLR, FBP2, AGRN, ARTN, AURKA, CXCR4,
DEPDC1, MERTK, PLOD2, SDC1, TPBG, VCAN, and PGP)
implicated in IPF, we used the DGIdb. Through Cytoscape for
visualization, the analysis showed a comprehensive network of drug-
gene interactions, providing practical insights for targeted
therapeutic strategies (Figure 3). AURKA was related to a variety
of inhibitors, including Tozasertib, Alisertib, and Barasertib, which
are known to control mitosis and cellular proliferation (Dickson
et al., 2016; Wang-Bishop et al., 2019). CXCR4, a crucial chemokine
receptor, was connected to antagonists like Plerixafor, Mavorixafor,
and CTCE-9908, which might suppress fibrosis by adjusting
immune cell migration and inflammation (Hassan et al., 2011;
Kwong et al., 2009). MERTK was recognized as a target of
inhibitors such as Paclitaxel and Cisplatin, indicating its function
in apoptosis regulation and tissue remodeling (Choi et al., 2020;
Kang et al., 2015). Other notable interactions included VCAN,
targeted by agents such as Cyclosporine and Balixafortide, which
could influence extracellular matrix dynamics (Luo et al., 2023;
Choocheep et al., 2010), and SDC1, which was linked to drugs like
Heparin and Indatuximab, emphasizing its involvement in cell
adhesion and matrix interactions (Schönfeld et al., 2018; Floer
et al., 2010). TPBG was targeted by antibody-based therapies
such as Naptumomab, underlining its potential in immune
modulation (Sun et al., 2024; Hu et al., 2015). Additionally,

FIGURE 3
Potential target drugs were predicted using the DGIdb database and are represented by green nodes. Genes are depicted as red nodes, while the
dotted lines indicate predicted interactions. Specific drug classes, such as inhibitors, antagonists, and antibodies, are annotated to show the type of
interaction with their corresponding genes.

Frontiers in Pharmacology frontiersin.org06

Gao et al. 10.3389/fphar.2025.1486357

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1486357


metabolic regulators FBP2 and PGP were associated with
chemotherapeutic agents such as Etoposide and Docetaxel,
suggesting their roles in stress response pathways (Kemper et al.,
2004; Roy et al., 2014). These discoveries emphasize the therapeutic
significance of the identified genes and their druggable targets,
providing a basis for precision medicine approaches in IPF.

TF-gene and miRNA-gene networks

To elucidate the regulatory mechanisms of the 14 key genes
involved in IPF, we used NetworkAnalyst to construct miRNA-
gene and TF-gene interaction networks. These analyses show the
complex layers of transcriptional and post-transcriptional
regulation that might contribute to the pathogenesis of IPF.
The miRNA network found many regulatory miRNAs
interacting with the target genes, with VCAN, AURKA, and
TPBG emerging as central hubs. Key miRNAs (Figure
Figure4A), such as hsa-mir-125a-5p, hsa-mir-146a-5p, and hsa-
mir-335-5p, were predicted to target multiple genes, indicating
their roles as important post-transcriptional regulators (Cheng
et al., 2024; Zhou et al., 2024; Li et al., 2014). These miRNAs
probably affect processes crucial to IPF, including extracellular
matrix remodeling, immune modulation, and cellular
proliferation. The TF network revealed major transcriptional
regulators such as TP53, STAT1, and GATA2, which are
connected to multiple target genes like CXCR4, VCAN, and
AURKA (Figure 4B) (Dauch et al., 2016; Feng et al., 2020;
Rugge et al., 2010). Additional TFs like PPARG, RELA, and
NRF1 are linked to immune responses, oxidative stress
pathways, and metabolism, emphasizing their role in

coordinating the gene dysregulation in IPF (Koudstaal and
Wijsenbeek, 2023; Tian et al., 2023). Genes like CXCR4 and
AURKA are identified as key targets for these regulatory TFs,
highlighting their functional significance in IPF pathophysiology
(Smadja et al., 2014; Jaffar et al., 2020). These findings offer a
detailed regulatory framework for the key genes related to IPF,
emphasizing the interaction between miRNAs and TFs in
regulating their expression. The networks identify potential
upstream regulators, providing valuable insights into disease
mechanisms and potential therapeutic targets.

Establishment of the GRDEG
prognostic signature

We constructed a survival model using LASSO regression based
on 7 genes (PFKM, FBP2, ARTN, AURKA, DEPDC1, MERTK, and
SDC1) selected from an initial pool of 14, integrating survival data
from IPF patients (Figures 5A, B). The results demonstrate the
model’s predictive accuracy and effective risk stratification. In the
overall cohort, the model demonstrated predictive performance,
with AUC values of 0.831, 0.824, and 0.793 at 1, 2, and 3 years,
respectively (Figure 5C). Kaplan-Meier survival analysis revealed
significant survival differences between high- and low-risk groups
(P < 0.001, Figure 5F). After a 1:1 split into training and testing
cohorts, the model performed well in the training set, achieving
AUC values of 0.878, 0.845, and 0.873 at 1, 2, and 3 years,
respectively (Figure 5D). Survival analysis confirmed the model’s
ability to stratify patients effectively (P < 0.001, Figure 5G).
Validation in the testing cohort yielded consistent AUC values of
0.785, 0.819, and 0.749 at 1, 2, and 3 years, respectively (Figure 5E).

FIGURE 4
Prediction ofmiRNA and transcription factor (TF)-RNA interactions for the 14 identified genes. (A)miRNA-gene interaction network generated using
NetworkAnalyst. Red nodes represent the 14 key genes, blue square nodes represent miRNAs, and red edges indicate predicted regulatory relationships.
The network illustrates the potential post-transcriptional regulatory roles ofmiRNAs inmodulating the expression of these genes. (B) TF-gene interaction
network, where red nodes indicate the key genes and blue diamond nodes represent transcription factors. The red edges represent predicted
regulatory interactions, providing insights into the transcriptional regulation of these genes.
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Kaplan-Meier analysis further demonstrated significant survival
differences between risk groups (P < 0.001, Figure 5H). Risk
scores, derived from the survival model, stratified patients into
high- and low-risk groups. Risk scores correlated positively with
mortality, as visualized in the scatterplots and gene expression
heatmaps. In the overall cohort (Figure 6A), as well as the
training (Figure 6B) and testing subsets (Figure 6C), higher risk
scores were associated with a greater number of deaths. The
heatmaps further demonstrated the differential expression of the

7 genes across risk groups, reinforcing their contribution to
the model.

Marker genes were connected with various
IPF-related pathways

To further explore the potential function of marker genes to
distinguish IPF from normal samples, we conducted a single-GSEA-

FIGURE 5
Construction and validation of a survival model based on 14 genes in idiopathic pulmonary fibrosis (IPF) patients using LASSO regression. (A) Partial
likelihood deviance for LASSO regression. The optimal lambda (λ) value was selected based on the minimum deviance. (B) Coefficient profiles of the
genes as a function of the log-transformed lambda (λ) value. (C, F)Model performance for the entire cohort: (C) Receiver operating characteristic (ROC)
curves with AUC values of 0.831, 0.824, and 0.793 for predicting 1-, 2-, and 3-year survival, respectively. (F) Kaplan-Meier survival curves showing
significant differences in survival between high- and low-risk groups (P < 0.001). (D, G) Performance in the training set: (D) ROC curves with AUC values of
0.878, 0.845, and 0.873 at 1, 2, and 3 years, respectively. (G) Kaplan-Meier curves indicating significant survival differences between risk groups (P < 0.001).
(E, H) Validation in the testing set: (E) ROC curves demonstrating AUC values of 0.785, 0.819, and 0.749 at 1, 2, and 3 years, respectively. (H) Kaplan-Meier
analysis confirming significant survival differences between high- and low-risk groups (P < 0.001).
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KEGG pathway analysis. The top six pathways enriched for each
marker gene were presented in Figures 7A–G. ARTN was enriched
in cytokine-cytokine receptor interaction, lysine degradation,
neuroactive ligand-receptor, glycan biosynthesis, olfactory
transduction, and tight junction. AURKA was enriched in the cell
cycle, DNA replication, nucleotide excision repair, olfactory
transduction, P53 signaling pathway, and the ribosome. FBP2
was also related to the P53 signaling pathway, olfactory
transduction, and ribosome. Besides, FBP2 was enriched in other
pathways, including adherens junction, colorectal cancer, and the
proteasome. DEPDC1 was enriched in DNA replication,
homologous recombination, neuroactive ligand-receptor
interaction, olfactory transduction, P53 signaling pathway, and

the ribosome. MERTK was enriched in bladder cancer, cardiac
muscle contraction, cytokine-cytokine receptor interaction, Fc
gamma R-mediated phagocytosis, hematopoietic cell lineage, and
olfactory transduction. PFKM was enriched for cardiac muscle
contraction, glycosaminoglycan biosynthesis, chondroitin sulfa-,
maturity-onset diabetes of the young, neuroactive ligand-receptor
interaction, olfactory transduction, and ubiquitin-mediated
proteolysis. Finally, SDC1 was enriched in bladder cancer,
neuroactive ligand-receptor interaction, nod-like receptor
signaling pathway, olfactory transduction, pathogenic Escherichia
coli infection, and sphingolipid metabolism.

Moreover, the GSVA showed that the low ARTN expression
might induce IPF by activating ECM receptor interaction, ascorbate

FIGURE 6
(A) In all groups, risk score and survival status of low-and high-risk patients, and heatmap of 7 glycolysis-related genes expression levels. (B) In the
train group, risk score and survival status of low-and high-risk patients, and heatmap of 7 glycolysis-related genes expression levels. (C) In the test group,
risk score and survival status of low-and high-risk patients, and heatmap of seven glycolysis-related genes expression levels.

FIGURE 7
Figure: Gene Set Enrichment Analysis (GSEA) of the seven selected genes in idiopathic pulmonary fibrosis (IPF). (A–G) GSEA results for the seven
genes: ARTN (A), AURKA (B), DEPDC1 (C), FBP2 (D), MERTK (E), PFKM (F), and SDC1 (G). Each panel displays the enrichment plots for significantly
associated KEGG pathways, ranked by enrichment score.
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and aldarate metabolism, and maturity-onset diabetes of the young,
while ARTN overexpression activated mismatch repair, DNA
replication, and primary bile acid biosynthesis (Figure 8A).
Moreover, AURK upregulation activated the taurine and
hypotaurine metabolism and olfactory transduction, while Its
downregulation activated DNA replication and homologous
recombination (Figure 8B). High DEPDC1 expression activated
neuroactive ligand-receptor interaction and phenylalanine
metabolism, while low DEPDC1 expression activated DNA
replication (Figure 8C). Riboflavin metabolism, steroid hormone
biosynthesis, and linoleic acid metabolism were enriched in the high
SDC1 expression group, while NOD-like receptor signaling, ECM
receptor interaction, glycosaminoglycan biosynthesis chondroitin
sulfate, and glycosaminoglycan biosynthesis keratan sulfate were
enriched in the low-expression group (Figure 8D). High MERTK
expression was related to riboflavin metabolism, while its
downregulation was associated with glycosaminoglycan
biosynthesis heparan sulfate- (Figure 8E). Notably, for FBP2,
various pathways related to IPF pathogenesis were enriched,
including limonene and pinene degradation, aminoacyl tRNA
biosynthesis, and biosynthesis of unsaturated fatty acids. Low
FBP2 expression was related to taurine and hypotaurine
metabolism and olfactory transduction (Figure 8F). Furthermore,
PFKM, whose expression was limited in IPF, was more closely
related to one carbon pool by folate, glycosylphosphatidylinositol
GPI anchor biosynthesis, and the mammal circadian rhythm.
Noteworthy, high PFKM expression activated the pathways such
as taste transduction, maturity-onset diabetes of the young,
neuroactive ligand-receptor interaction, and allograft rejection
that might induce IPF (Figure 8G).

Immune landscape analysis

Then, we evaluated the relationship between the infiltration
of immune cells in IPF and normal samples (Figure 9A). Nine of

the 22 immune cell types differed between the two groups: naive
B cells, resting CD4 memory T cells, activated CD4 memory
T cells, monocytes, M1 macrophages, M2 macrophages,
activated dendritic cells, activated mast cells, and neutrophils.
Next, we assessed the relationship between immune cells and
risk scores using Pearson correlation analysis (Figures 9B–I).
Naive B cells (r = −0.26, P = 0.00057), M0 macrophages (r = −0.2,
P = 0.0093), resting mast cells (r = 0.39, P = 8.4e-08),
CD4 memory T cells (r = −0.15, P = 0.049), and NK memory
T cells (r = 0.4, P = 7e-08) were negatively correlated with the
risk score. Meanwhile, activated mast cells, neutrophils, and
activated NK cells were positively associated with risk scores.
Pearson’s correlation analysis also revealed the relationships
between immune cells and hub genes. MERTK had a positive
correlation with activated mast cells and a negative correlation
with resting mast cells. SDC1 had a positive correlation with
activated NK cells and negative correlations with resting NK
cells. AURKA was positively correlated with M0 macrophages
and negatively correlated with gamma delta T cells. DEPDC1 was
positively correlated with resting CD4 memory T cells. PFKM
was negatively correlated with activated CD4 memory
T cells (Figure 9J).

Identification of hub gene expression levels
and diagnostic value

To validate the expression trends and diagnostic value of the
seven selected genes in IPF, we analyzed an external dataset
(GSE218997). Differential expression analysis revealed that Artn,
Aurka, Mertk, Pfkm, and Sdcl were significantly upregulated in the
lung tissue of mice induced with bleomycin compared to saline
controls (P < 0.001, Figures 10A, B, E–G), while Fbp2 also showed
increased expression with moderate statistical significance (P =
0.0031, Figure 10D). Depdc1 exhibited a marginally higher
expression trend in bleomycin groups, though this did not reach

FIGURE 8
Figure: Gene Set Variation Analysis (GSVA) of seven key genes in idiopathic pulmonary fibrosis (IPF). (A–G) GSVA results for ARTN (A), AURKA (B),
DEPDC1 (C), FBP2 (D),MERTK (E), PFKM (F), and SDC1 (G). Each plot displays the KEGG pathways significantly associated with each gene, categorized as
upregulated (red), downregulated (green), or not significantly changed (gray). The x-axis shows the t-values of the GSVA scores for each pathway.
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FIGURE 9
Immune cell infiltration analysis and correlation with the risk score in IPF. (A) Violin plots representing the proportion of immune cell subtypes in the
control group (blue) and treatment group (red). (B–I) Scatter plots showing the correlation between immune cell proportions and the risk score: (B)B cells
naïve demonstrated a negative correlation (R = −0.26, P = 0.00057). (C) Macrophages M0 also showed a significant negative correlation (R = −0.2, P =
0.0093). (D)Mast cells activatedwere positively correlatedwith the risk score (R = 0.39, P= 8.4e-08). (E)Neutrophils displayed a negative correlation
(R = −0.15, P = 0.049). (F)Mast cells resting exhibited a negative correlation (R = −0.31, P = 4.3e-05). (G)NK cells activated were positively correlated with
the risk score (R = 0.4, P = 7e-08). (H) T cells CD4 memory resting showed a negative correlation (R = −0.17, P = 0.028). (I) NK cells resting also
demonstrated a negative correlation (R = −0.21, P = 0.0053). Each scatter plot includes density distributions for the proportion of immune cells and the

(Continued )
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statistical significance (P = 0.053, Figure 10C). These results align
with the findings from our primary dataset, supporting the
robustness of these genes’ expression patterns. ROC analysis
further confirmed the diagnostic value of these genes. Artn
(AUC: 0.926, Figure10H), Sdcl (AUC: 0.961, Figure10N), and
Pfkm (AUC: 0.889, Figure10M) demonstrated excellent diagnostic

accuracy, while Aurka (AUC: 0.766, Figure10I) and Mertk (AUC:
0.780, Figure10L) showed good performance. Fbp2 and Depdc1 had
lower diagnostic utility, with AUCs of 0.648 and 0.597,
respectively(Figures 10K, J).These findings further validate the
clinical relevance of the survival model and its utility for IPF
diagnosis and prognosis.

FIGURE 9 (Continued)

risk score along the axes, along with a regression line to visualize trends. (J)Heatmap illustrates the correlation between the expression levels of key
genes (rows) and immune cell infiltration levels (columns). The correlation coefficients are color-coded, with significant associations denoted by asterisks
(*P < 0.05, **P < 0.01, ***P < 0.001, Con:Healthy Volunteer, IPF: Idiopathic Pulmonary Fibrosis patients).

FIGURE 10
Expression of the target genes and diagnostic value in the verification set. Validation of the expression trends and diagnostic value of seven key genes
using the external dataset GSE218997. (A–G) Differential expression analysis for the seven genes (Artn, Aurka, Depdc1, Fbp2, Mertk, Pfkm, and Sdc1)
between the control group (Con, blue) and treatment group (Treat, red). Significant differences were observed for most genes (P < 0.05), confirming
consistent expression trends across groups (All data arepresented as the mean ± IQR. *P < 0.05, **P < 0.01, ***P < 0.001. Mann-Whitney U test).
(H–N) Receiver Operating Characteristic (ROC) curve analysis evaluating the diagnostic value of the seven genes for identifying IPF. (H), Artn (I), Aurka (J),
Depdc1 (K), Fbp2 (L), Mertk (M), Pfkm and Sdc1 (N). (Con:Healthy mice, Treat: bleomycin (BLM)-induced pulmonary fibrosis model in C57BL/6 mice).
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Hub gene expression levels in scRNA-seq

Single-cell RNA sequencing analysis was performed to
investigate the cell-type-specific expression patterns of the
selected genes in IPF. The t-SNE plot (Figure 11A) identified
major cell populations, including epithelial cells, fibroblasts,
macrophages, and endothelial cells, providing a comprehensive
cellular landscape. Gene expression mapping (Figures 11B–F)
revealed distinct cellular localization for each gene. DEPDC1
(Figure 11B) and AURKA (Figure 11C) showed expression in
macrophages, suggesting their roles in inflammatory and immune

responses. SDC1 (Figure 11D) was predominantly expressed in
epithelial cells, indicating its involvement in maintaining
epithelial integrity and extracellular matrix interactions. PFKM
(Figure 11E) and MERTK (Figure 11F) were primarily expressed
in fibroblasts and macrophages, implicating them in metabolic
pathways and tissue remodeling processes. Violin plots (Figures
11G–K) further quantified gene expression across cell types,
confirming these patterns. DEPDC1 and AURKA exhibited
significantly higher expression in macrophages, reinforcing their
roles in immune regulation. SDC1 was highly expressed in epithelial
cells, while PFKM and MERTK were enriched in fibroblasts and

FIGURE 11
Single-cell RNA sequencing analysis of the expression patterns of key genes across distinct cell types. (A) t-SNE plot visualizing the distribution of
major cell populations, including endothelial cells (red), epithelial cells (green), fibroblasts (blue), and macrophages (purple). (B–F) t-SNE feature plots
displaying the expression levels of DEPDC1 (B), AURKA (C), SDC1 (D), PFKM (E), and MERTK (F) across the identified cell clusters. Higher expression
intensities are shown in darker colors. (G–K) Violin plots showing the expression levels ofDEPDC1 (G), AURKA (H), SDC1 (I), PFKM (J), andMERTK (K)
in endothelial cells, epithelial cells, fibroblasts, and macrophages.

Frontiers in Pharmacology frontiersin.org13

Gao et al. 10.3389/fphar.2025.1486357

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1486357


FIGURE 12
Validation of gene expression in a bleomycin (BLM)-induced pulmonary fibrosis model in C57BL/6 mice. (A) Representative histological images of
lung tissues stained with Hematoxylin and Eosin (H&E) and Masson’s trichrome. BLM-treated mice exhibited extensive fibrosis and collagen deposition
compared to the PBS-treated control group. Scale bar: 2.5 mm. (B) Western blot analysis of fibrotic markers Col1a1 and fibronectin in lung tissues,
showing increased protein expression in the BLM group. β-actin was used as a loading control. (C) Relative body weight changes over 25 days in PBS
and BLM-treated mice, with significant weight loss observed in the BLM group (P < 0.05). (D–J) Relative mRNA expression levels of Artn, Aurka, Depdc1,
Sdc1, PfkM, Mertk, and Fbp2, as measured by qRT-PCR. All genes were significantly upregulated in the BLM group compared to the PBS group (P < 0.05),
n = 12 of each group and data are represented as the means ± SEM, Mann-Whitney U test.
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macrophages, aligning with their respective roles in metabolism and
reparative functions. These findings provide a detailed
characterization of the cellular distribution of these genes,
highlighting their contributions to IPF pathophysiology and their
potential as cell-type-specific therapeutic targets.

Validation of expression of prognostic genes
in bleomycin-induced pulmonary fibrosis
mouse model

In order to further verify the results of cell experiments
in vitro and simulate the pathological process of patients with
pulmonary fibrosis as much as possible, we successfully
constructed a bleomycin-induced pulmonary fibrosis mouse
model for in-vivo experiments. The results of HE, Masson
staining and Western blot showed that compared with the
control group, the bleomycin group had significantly increased
lung tissue inflammation and collagen deposition (Figures 12A,
B). And Body weight changes showed that compared with the
control group, the bleomycin group manifested a significant
weight loss (Figure 12C). RT-qPCR results indicated that the
glycolysis-related genes Artn, Aurka, Sdc1, Mertk, and Fbp2 were
significantly upregulated in bleomycin-induced mouse lung
tissue, whereas Pfkm was significantly downregulated. These
findings are in agreement with our previous datasets,
suggesting that these six differentially expressed glycolysis-
related genes may play an important role in the development
of pulmonary fibrosis. In contrast, the expression level of Depdc1
was markedly elevated compared to the earlier datasets, which
may be attributable to differences in the timing or grouping
criteria for bleomycin intervention in the animal models
(Figures 12D–J).

Discussion

In this study, we analyzed the relationship between IPF and
GRGs using the GEO dataset. Our initial analysis identified
14 potential marker genes (PFKM, PKLR, FBP2, AGRN, ARTN,
AURKA, CXCR4, DEPDC1, MERTK, PLOD2, SDC1, TPBG, VCAN,
and PGP). ROC analysis demonstrated that these genes had
diagnostic potential for IPF. To further investigate the prognostic
significance of these genes, we incorporated survival data from IPF
patients and constructed a survival model using LASSO regression.
This analysis revealed that seven of the genes (PFKM, FBP2, ARTN,
AURKA, DEPDC1, MERTK, and SDC1) exhibited predictive value
for IPF prognosis. These results highlight the prognostic relevance of
various GRGs in IPF. The selection of these seven genes was a
pragmatic approach aimed at improving the efficiency and
interpretability of the model, while ensuring the retention of
essential prognostic information. Further investigation through
immunoreactivity and single-cell sequencing analyses revealed a
association between GRGs and immune cell infiltration in the IPF
microenvironment. Notably, DEPDC1, AURKA, and MERTK
displayed the highest expression levels in macrophages, among
the four major cell types analyzed. To verify these findings, we
constructed a bleomycin-induced pulmonary fibrosis mouse model.

In line with our predictions, the expression of the seven prognostic
genes was significantly increased in fibrotic lung tissue, reinforcing
the potential link between glycolysis-related gene expression and
pulmonary fibrosis. These findings provide a foundation for further
exploring the role of glycolysis in the progression of
pulmonary fibrosis.

Metabolic reprogramming, specifically the shift towards
glycolysis, has emerged as a critical driver of fibrotic processes,
facilitating the activation of fibroblasts and the deposition of ECM
(Baudo et al., 2023; Yan et al., 2023) Previous studies have shown
that key glycolytic enzymes such as PFKM and PKM2 are
upregulated in fibrotic tissues and contribute to myofibroblast
differentiation, a hallmark of fibrosis (Zhang et al., 2023; Xie
et al., 2015; Gao et al., 2022). Our findings support this, as we
observed a significant differential expression in PFKM expression in
IPF tissues, suggesting a crucial role of glycolysis in the fibrotic
process. Moreover, genes like ARTN and FBP2, identified in our
study, have also been implicated in regulating fibroblast activity and
ECM production, reinforcing the idea that glycolysis not only meets
energy demands but also drives fibroblast activation and fibrosis
progression (Sontake et al., 2017; Ding et al., 2017; Kasam et al.,
2020).These findings align with the work of Xie et al., who showed
that glycolytic enzymes are upregulated in lung fibroblasts during
the fibrotic process, suggesting that glycolysis promotes fibroblast
activation through both metabolic and signaling pathways (Yan
et al., 2023; Xie et al., 2015).

It is well-established that immune cell infiltration and activation
are pivotal in driving the inflammatory and fibrotic responses
observed in IPF (Tiwari et al., 2024; Nuovo et al., 2012; Yang
et al., 2009). A growing body of evidence suggests that glycolysis
is central to the regulation of immune cell function. For instance,
Tina Tylek et al. demonstrated that glycolysis supports macrophage
polarization towards a pro-inflammatory and pro-fibrotic
phenotype, which exacerbates ECM remodeling and fibrosis
(Tylek et al., 2024; Cheng et al., 2020; Widiapradja et al., 2024).
Similarly, studies by Xia et al. have highlighted that glycolysis
promotes the formation of neutrophil extracellular traps (NETs),
contributing to tissue damage and fibrosis in inflammatory diseases
(Xia et al., 2024; Wu and Yang, 2024). Our study provides further
support for this link, as we observed that the glycolysis-related genes
DEPDC1, AURKA, and MERTK were highly expressed in
macrophages within the IPF microenvironment. This suggests
that these genes may modulate macrophage activation and
function through glycolytic pathways, contributing to fibrosis.
The role of macrophages in IPF is particularly relevant, as they
are key players in the initiation and progression of fibrosis (Zhang
et al., 2018; Ge et al., 2024; Qin et al., 2022). Macrophages not only
promote inflammation but also stimulate the fibrotic response
through the secretion of profibrotic cytokines and the regulation
of fibroblast function (Jeny et al., 2021; Wynn and Barron, 2010).
Recent studies have demonstrated that glycolytic reprogramming
enhances macrophage activation and the release of pro-
inflammatory cytokines, contributing to the overall fibrotic
process. Our findings suggest that targeting these glycolysis-
related genes may offer a novel strategy for modulating
macrophage activity in IPF.

In addition to their role in immune modulation and fibroblast
activation, glycolysis-related genes directly contribute to the fibrotic
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microenvironment by regulating ECM remodeling and cellular
interactions (Ezhilarasan, 2021; Willette et al., 2021; Wei et al.,
2024). Genes likeVCAN and PLOD2 are involved in ECM regulation
and have been implicated in fibrotic diseases. VCAN, for example, is
known to promote ECM deposition and fibroblast activation
(Kasam et al., 2020; Harten et al., 2021). In our study, we
observed that several glycolysis-related genes, including VCAN,
were upregulated in IPF tissues, indicating that these genes might
contribute to ECM remodeling through metabolic and signaling
pathways. This is consistent with the previous findings of Jeremy
Herrera et al., who showed that ECM components like versican and
collagen are regulated by metabolic pathways, including glycolysis,
in the context of fibrosis (Brotman et al., 1988; Wight, 2017; Herrera
et al., 2018). The significance of the ECM in fibrosis is extremely
important. The ECM not only provides structural support to tissues
but also regulates cell behavior through interactions with integrins
and other cell surface receptors (Watson et al., 2016; Ford and
Rajagopalan, 2018; Hudson et al., 2017). By influencing ECM
production and turnover, glycolysis-related genes may play a
crucial role in regulating tissue homeostasis and fibrosis. Our
identification of these genes in the context of IPF further
highlights their potential as key regulators of the fibrotic
microenvironment.

In conclusion, this study highlights the role of glycolysis-related
genes in IPF, suggesting potential biomarkers and therapeutic
targets. However, several limitations exist. First, reliance on GEO
datasets and animal models may not fully reflect human IPF
complexity. Although associations between glycolysis-related
genes and macrophage activation were observed, the exact
molecular mechanisms remain unclear. Future research should
focus on elucidating how glycolytic reprogramming affects
macrophage polarization and ECM production. Clinical trials are
also needed to evaluate the therapeutic potential of targeting these
genes in IPF, offering insights into the feasibility of metabolic-based
treatments.

Conclusion

In summary, our study is important in understanding
glycolysis’s role and the interaction between glycolysis and
immune function in IPF. Additionally, GRDEGs might be a
potential target for future IPF diagnosis and treatment.
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