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Objectives: This research aims to reveal the mechanisms of the effect of the
Paraoxonase 1 (PON1) gene on response to leflunomide (LEF) in rheumatoid
arthritis (RA) patients, in terms of single nucleotide polymorphism (SNP), DNA
methylation levels.

Methods: A total of 240 RA patients enrolled were categorized into the good
response group and the non-response group according to the difference in
DAS28 scores between baseline and 6 months after LEF administration. The
identified LEF-response cytosine-phosphate-guanines (CpGs) island
(cg17330251) and its internal SNPs (rs705379, etc.) located at the PON1
promoter were detected by Sanger sequencing and methyl target sequencing.

Results: A total of 12 CpG sites at cg17330251 could be identified in our RA
patients. There were significant difference between the responders and non-
responders in nine CpG sites: cg17330251_2, cg17330251_3, cg17330251_4,
cg17330251_6, cg17330251_7, cg17330251_8, cg17330251_9, cg17330251_10,
cg17330251_12, [OR (95CI%) = 0.492 (0.250, 0.969), 0.478 (0.243, 0.940), 0.492
(0.250, 0.969), 0.461 (0.234, 0.907), 0.492 (0.250, 0.969), 0.437 (0.225, 0.849),
0.478 (0.243, 0.941), 0.421 (0.212, 0.836), 0.424 (0.213, 0.843), P < 0.05,
respectively]. At all these nine CpG sites, the proportions of low methylation
levels in the responders were higher than those in the non-responders (P < 0.05).
In a dominant model, there was a significant difference in rs705379 wildtype CC
and mutant genotypes (CT + TT) between the responders and non-responders
(P < 0.05). The average methylation level of 12 CpG sites was lowest in rs705379-
CC (median 0.229, IQR 0.195–0.287), then rs705379-CT (median 0.363, IQR
0.332–0.395), and rs705379-TT (median:0.531, IQR:0.496–0.557). The average
methylation levels of 12 CpG sites were significantly negative correlated with
ΔDAS28 (r = −0.13, P < 0.05). The Logistic regression indicated that combined
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effect of rs705379, DNA methylation of the PON1 gene [OR (95CI%) = 1.277 [1.003,
1.626)], systemic inflammation index (SIRI) [OR (95CI%) = 1.079 (1.018, 1.143)]
served as protective factors on response to LEF in RA patients.

Conclusion: The RA patients with SNP-rs705379-CC, the low methylation level of
PON1-cg17330251 and more SIRI would be susceptible of response to LEF and
more suitable to choose LEF treatment.

KEYWORDS

rheumatoid arthritis, leflunomide, PON1, DNA methylation4, single nucleotide
polymorphism

1 Introduction

Rheumatoid arthritis (RA) is a persistent inflammatory
autoimmune disease influencing joint synovial tissue, and the
tendon sheath; it produces severe joint deformities as well as
disability. RA patients also exhibit extra-articular manifestations
and comorbidities, such as cardiovascular disease, respiratory
disease, and so on (Figus et al., 2021). Approximately 1% of the
world population has been diagnosed with RA, and this affliction is
more prevalent among women than men (Smolen et al., 2016). It is
currently recognized that RA patients have about a 50% increased
risk of premature mortality in comparison with the general
population, leading to an expected reduction in life expectancy of
3–10 years (Myasoedova et al., 2010). Sufferers of this disease often
experience low quality of life and reduced life expectancy, with a
simultaneous increase in usage of the healthcare system. They have a
higher likelihood of experiencing unemployment, and pose a huge
financial burden on individuals and society (Eriksson et al., 2015;
Roodenrijs et al., 2021).

Currently, RA cannot be completely cured and research
indicates that RA patients who receive timeous and effective
treatment, leading to significant symptom relief, experience a
reduced risk of disability and premature death (Scirè et al., 2014;
Ohta and Sano, 2024). The mainstay treatment for RA involves
the use of disease-modifying antirheumatic drugs, with
methotrexate (MTX) and leflunomide (LEF) being first-line
treatment medications among them (Abbasi et al., 2019) and
LEF has similar efficacy to MTX (Qi et al., 2021), Although
research indicated that LEF had a significantly lower incidence of
adverse reactions in the treatment of RA compared to MTX
(Wang et al., 2021), some RA patients might experience adverse
reactions such as abdominal pain, diarrhea, nausea, vomiting,
itching, and alopecia when taking LEF (Molina Molina et al.,
2015; Koller et al., 2019). Hence, it is necessary to identify
biomarkers predictive of LEF responses and ensure that
patients can be administered customized therapeutic regimens
that guarantee safety and efficacy.

In our previous research, LEF-related response signatures were
identified by a whole-genome DNA methylation profiling using
Illumina 850k methylation arrays and a targeted bisulfite sequencing
assay. Following the prognostic models developed by machine
learning algorithms, a seven-differentially methylated position
(DMP)-based prognostic signatu7gere consisting of cg17330251,
cg19814518, cg20124410, cg21109666, cg22572476, cg23403192,
and cg24432675 were identified and incorporated to predict RA
patients’ response to LEF following a 6-month treatment period;

these were located at paraoxonase 1(PON1), adenosine deaminase
RNA-specific B2 (ADARB2), ubiquitin-specific peptidase
16(USP16), U2AF homology motif kinase 1(UHMK1), and
disrupted-in-schizophrenia 1 (DISC1), respectively (Chen
et al., 2023).

Among these genes, PON1 is an esterase enzyme that
participates in maintaining the body’s oxidative balance. It is
involved in the metabolism of oxidized lipids and contributes to
the removal of free radicals. In 2020, J. Parada-Turska, G et al.
found that the PON1 concentration was reduced in the group
with high disease activity compared to the group with low disease
activity (Parada-Turska et al., 2020), based on the Disease
Activity Score of 28 joints (DAS28) and erythrocyte
sedimentation rate (ESR) (DAS28-ESR), suggesting a potential
association between PON1 and the prognosis of RA. DNA
methylation, a primary regulatory mechanism in epigenetics,
is reversible through a process known as demethylation. This
process can be influenced by various environmental factors
including diet and medication in a time and tissue-dependent
manner, so it can be used as a good therapeutic candidate. Some
studies found that the activity and concentration of PON1 may be
affected by both single nucleotide polymorphisms (SNPs) and
DNA methylation (Zaragoza-García et al., 2021; Huen et al.,
2015). K. Huen et al. showed that DNA methylation level might
be negatively correlated with PON1 enzyme activity (Huen et al.,
2015). In chlorpyrifos-resistant individuals with abnormal lipid
profiles, the DNA methylation level of the PON1 promoter was
found to be associated with reduced expression of PON1 mRNA
(Su et al., 2019). In renal cell carcinoma, it has also been found
that high methylation of PON1 was associated with
downregulation of mRNA and protein levels (Li and Yu,
2019). At 2021, research suggested that, the carriers with TT
genotype at the rs705379 (−108C>T) site of PON1 showed lower
PON1 levels and enzyme activity in RA patients (Zaragoza-
García et al., 2021).

Both SNP and DNA methylation not only serve as important
genetic biomarkers but also play important roles in gene regulation.
Thus, combining genetic and methylation data could enhance our
comprehension of disease causation and prognosis. Otherwise, some
studies have shown that changes in SNP sites affect the modification
of DNA methylation, thereby playing a role in gene transcriptional
regulation (Izzi et al., 2016; Chen et al., 2016; Hannon et al., 2018;
Ardicli et al., 2024). The relationship between SNP site specific CpG
and the pathogenesis of RA has been confirmed in multiple cell lines
(Frank-Bertoncelj et al., 2017; Julià et al., 2017; Ai et al., 2018; Clark
et al., 2020). In 2020, the research results of Alexander D et al. (Clark
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et al., 2020) confirmed that 37% of DNA sites associated with RA are
involved in regulating changes in cis CpGmethylation. Our previous
identified hypomethylated cg17330251 was located at the PON1
promoter, and interestingly, there were several functional SNPs such
as the −108C/T (rs705379) locus located inside cg17330251 island,
which may affect the binding of the transcription factor Sp1
(specificity protein 1, Sp1) (Deakin et al., 2003) It is worth
noting that, according to the literature, there are currently no
studies on the association between the PON1 gene DNA
methylation, SNP rs705379, and the response to LEF in RA patients.

To evaluate the interaction between the genetic variants and the
epigenetic aberration (cg17330251) of PON1 gene on predicting RA
patient’s LEF response status. We hypothesized that allele-specific
DNA methylation might affect the promoter activity of PON1,
thereby resulting in gene expression decreasing and subsequently
affecting the response of RA patients to LEF. Our study may prove
helpful to the individual treatment of the RA patients.

2 Materials and methods

2.1 Study design and patient population

This study received approval from the medical ethics committee
of the First Affiliated Hospital of China Medical University
[approval number: (2021)89]. Patients with RA (age >18 years
and of Han ethnicity) who fulfilled the 1987 revised criteria of
the American College of Rheumatology (ACR) (Arnett et al., 1988)
or the 2010 ACR/European League Against Rheumatism (EULAR)
(Aletaha et al., 2010) criteria for the classification of RA were
recruited from four Class A tertiary hospital hospitals in
Liaoning Province (the First Hospital of China Medical
University, Shengjing Hospital of China Medical University, the
First Affiliated Hospital of Jinzhou Medical University, Dalian
Municipal Central Hospital) between June 2018 to June 2020.
The exclusion criteria were other autoimmune diseases (e. g.

TABLE 1 Genotype frequencies and risk estimates of PON1 rs705379 in the RA responders and non-responders.

Model type Genotype Responders (n, %) Non-responders (n, %) χ2 Pa OR (95%CI) Pb

Codominant CC 50 (34.01) 20 (21.50) 4.404 0.111 Ref

CT 63 (42.86) 49 (52.69) 0.513 (0.270,0.973) 0.041

TT 34 (23.13) 24 (25.81) 0.572 (0.272,1.202) 0.141

Dominant CC 50 (34.01) 20 (21.50) 4.314 0.038 Ref

CT + TT 97 (65.99) 73 (78.50) 0.532 (0.291,0.973) 0.041

Recessive CC + CT 113 (76.87) 69 (74.19) 0.223 0.637 Ref

TT 34 (23.13) 24 (25.81) 0.879 (0.479,1.611) 0.676

Allele C 163 (55.4) 89 (47.8) 2.643 0.105 Ref

T 131 (44.6) 97 (52.2) 0.737 (0.510,1.066) 0.105

aChi-square test.
bLogistic regression adjusted for age, sex; OR, odds ratio; CI, confidence interval; Data are presented as n (%). Bold values indicate the positive locus determined by statistical analysis.

FIGURE 1
Correlations among rs705379, average methylation levels of cg17330251 of PON1 and ΔDAS28. ***P < 0.001. (A) ΔDAS28 in each genotype at
rs705379; (B) Average methylation level of cg17330251 in each genotype at rs705379; (C) Correlation between average methylation level of
cg17330251 and ΔDAS28.
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systemic lupus erythematosus, scleroderma, dermatomyositis, etc.);
RA patients whose main treatment drug is not LEF but MTX or
other DMARDs; pregnant or lactating patients, and patients with
malignant tumors who cannot cooperate with follow-up.

All the patients were mainly treated with LEF, and could also
receive combination therapy with non-steroidal anti-inflammatory
drugs and small doses of corticosteroids. All participants in our
study completed 6 months of follow-up. In this study, clinical data
on RA patients were obtained at baseline and month six follow-up
visits, as previously described, including 28-joint tender and swollen
joint counts (TJC28 and SJC28), pain visual analogue scale (pain
VAS), erythrocyte sedimentation rate (ESR). According to the above
indicators, we were able to calculate Disease Activity Score 28-joint
(DAS28) (DAS28 � 0.56 ×√(TJC) + 0.28 ×√(SJC) + 0.70 × ln
(ESR) + 0.014 × VAS), which assessed disease activity of RA
patients. Response status for LEF treatment was determined
based on changes in DAS28 (ΔDAS28 = DAS28 at baseline-
DAS28 at 6 months). A good response was defined by a
DAS28 improvement of >1.2 with a final DAS28 score ≤3.2,
while nonresponse was defined by an improvement in DAS28 ≤
0.6 or 0.6 ≤ DAS28 ≤ 1.2 with a DAS28 > 5.1 end-point after LEF
treatment for 6 months. Patients meeting criteria falling between
these categories were categorized as moderate responders (Atzeni
et al., 2009; Wells et al., 2009; van Riel and Renskers, 2016). Patients
exhibiting a good or moderate response were consolidated into a
category termed “responder”. For the 240 patients that underwent
LEF treatment for 6 months, 93 and 147 were non-responders and
responders, respectively, as per EULAR criteria.

After providing standardized training to the investigators, on-
site surveys were conducted in questionnaire form, covering the
following: (1): Patient demographics: age, gender, etc. (2) Behavioral
factors: smoking, alcohol consumption, etc. (3) Disease-related
factors: number of swollen joints, number of painful joints, VAS
scores, etc. Clinical indicator data, including biochemical and
immunological indicators, glucose and lipid metabolism
indicators, and complete blood count indicators, were collected
by retrieving medical records. The data were then grouped
according to the criteria established by each hospital center. We
computed the neutrophil-to-lymphocyte ratio (NLR), platelet-to-
lymphocyte ratio (PLR), systemic immune-inflammation index
(SII), and systemic inflammation response index (SIRI) using the
following formulas (Wang et al., 2023): NLR = neutrophil count/

lymphocyte count; PLR = platelet count/lymphocyte count; SII =
(neutrophil count × platelet count)/lymphocyte count; and SIRI =
(neutrophil count × monocyte count)/lymphocyte count.

2.2 DNA extraction and methylation analysis

Detection of methylation levels in the promoter region of the
PON1 gene using the Targeted Bisulfite Sequencing
(MethylTarget™) was conducted by the Genesky Biotechnologies
Inc. (Shanghai, China). Each RA patient provided a 5 mL venous
blood sample in the morning following an overnight fast. DNA was
extracted from peripheral blood using the QIAamp DNA Blood
Mini Kit (QIAGEN) within 72 h. Subsequently, bisulfite
transformation was performed using the EZ DNA Methylation-
Gold Kit (ZYMO, CA, United States). The samples were then
subjected to PCR amplification with HotStart Taq polymerase
(TaKaRa, Dalian, China), followed by library construction. The
final step involved high-throughput sequencing on the Illumina
Hiseq platform (Illumina, CA, United States) in 2 × 150 bp paired-
end sequencing mode.

2.3 SNP selection and genotyping

Inside the cg17330251 island located at PON1 gene promoter,
there were four polymorphisms, rs705379, rs705380, rs705381, and
rs553285883 in our population. SNP selection criteria include: (1):
minor allele frequency (MAF) ≥10% within Asian data; (2);
Hardy–Weinberg equilibrium (HWE) tests were performed on
the above four SNPs: the rs705379 and rs553285883 were in
HWE (P > 0.05), whereas the others deviated from it (P < 0.05)
(Supplementary Table 1); (3) the transcription factor binding site
prediction: on-line tools such as PROMO (https://alggen.lsi.upc.es/
cgi-bin/promo_v3/promo/promoinit.cgi?dirDB=TF_8.3) and
JASPAR (https://jaspar.genereg.net/) were used to predict the
transcription factors potentially binding. Both PROMO website
and JASPAR website suggesting that Pax-5, P53, Sp1, and ETF
might be the transcription factors binding to the rs705379 site
(shown in Supplementary Table 2). Transcription factor
Sp1 might bind to the rs705379 locus with a score value of 16.18,
and the predicted binding sequence was GGGGCGGGGG.

TABLE 2 The results of multifactor Logistic regression analysis combining patient genetic factors with traditional prognostic factors.

Model Indicators β S.E. Wald df OR (95%CI) P

Model 1

Genetic score 0.272 0.121 5.046 1 1.313 (1.035,1.665) 0.025

Constant −0.184 0.311 0.351 1 0.554 0.832

Model 2

Genetic score 0.244 0.123 3.927 1 1.277 (1.003,1.626) 0.048

SIRI 0.076 0.030 6.501 1 1.079 (1.018,1.143) 0.011

Constant −0.380 0.323 1.378 1 0.684 0.240

β, regression coefficient; S.E., standard error; df, degrees of freedom; OR, ratio of ratios; CI, confidence interval; Bold values indicate the positive locus determined by statistical analysis.
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Genotyping analysis of SNP was performed using Sanger
sequencing and then PCR primer were designed using Primer3
software, and synthesized by the Genesky Biotechnologies Inc.

(Shanghai, China). Primer sequences for rs705379 were: F: GGG
TGAGCGCAATCAGCTTC; and R: TGGACTAGGCACCTATTC
TCTGTCTTC.

FIGURE 2
Biological interaction network of PON1. Different colors represent diverse bioinformatics methods.

Frontiers in Pharmacology frontiersin.org05

Zhao et al. 10.3389/fphar.2025.1499723

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1499723


2.4 PON1 network analysis

To elucidate the role of PON1, GeneMANIA (http://www.
genemania.org/) was employed to discover genes exhibiting
analogous functions to PON1 and construct an interactive
functional-association network (Warde-Farley et al., 2010). The
network for PON1 was established including co-expression, co-
localization, physical interactions, genetic interaction and
predictions to analyze function.

2.5 Statistical analyses

HWE was assessed using Chi-square tests. All continuous
variables in this study exhibited non-normal distributions, so
they were presented as medians [interquartile range (IQR)].
Categorical variables were described using frequency and
percentages. Subsequent analyses included non-parametric tests
and chi-squared tests as appropriate. Significant differences
between groups were analyzed using the Kruskal–Wallis test. A
correlation analysis was conducted by calculating the Spearman

correlation coefficient (Spearman r). For variables with less than
10% missing data, multiple imputation methods were applied to
handle missing values.

The relationship between methylation, SNP, and other variables
with prognosis of RA with LEF was determined by logistic regression
adjusting for age and sex. The dependent variable was RA prognosis
after LEF-administering (non-responder was assigned as 0). PON1
methylation levels were divided into three groups (low, medium,
high) according to quartiles, the cut-offs were 25th percentile and
75th percentile. Methylation levels at cg17330251 (significant sites)
were assigned values of 0 for hypermethylation, 1 for intermediate
methylation, and 2 for hypomethylation. The TT, CT, and CC of the
PON1 rs705379 locus were assigned scores of 0, 1, or 2. The assigned
values were then summed up to derive the composite genetic
protective score (Score), which was further categorized into
quartiles for analyzing its association with the prognosis of RA
response to LEF. The score was incorporated into the logistic
regression analysis to estimate the impact of multiple omics loci
in the PON1 gene on predicting the response of RA patients to LEF.

Statistical analyses were performed using IBM SPSS Statistics for
Windows, Version 25.0 (Released 2017; IBM Corp., Armonk, New

FIGURE 3
GO enrichment analysis of PON1 gene.
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York, United States) and R software (Version 4.3.0, Vienna, Austria)
along with the RStudio interface (Version 2023.03.0, Boston, MA,
United States). GraphPad Prism 9.0.0 was used to plot the results.
The significance level was set at P < 0.05.

3 Results

3.1 Demographic characteristics of study
participants

A total of 240 patients with RA were enrolled in this study who
could be divided into the response group (n = 147) and the non-
response group (n = 93). Descriptive analysis was performed on the
basic information of the patients, and the results are summarized in
Supplementary Table 3. Monocyte (MONO) (P = 0.020) showed a
statistically significant difference between two groups. After
univariate Logistic analysis, the plateletcrit (PCT) (OR =
0.608 [0.309, 1.197)], MONO [OR = 1.900 (1.101, 3.278)],
platelet count (PLT) [OR = 0.642 (0.328, 1.256)], and systemic
inflammation response index (SIRI) [OR = 1.084 (1.022, 1.149)]
were potential risk factors for RA prognosis according to the
criterion of P < 0.2.

3.2 The relationship between the DNA
methylation level of PON1-cg17330251 and
prognosis of RA response to LEF

After detection of methylation levels, there were a total of
12 CpG sites at PON1-cg17330251 in our patients. There were
significant difference between the responders and non-responders
in 9 CpG sites, cg17330251_2, cg17330251_3, cg17330251_4,
cg17330251_6, cg17330251_7, cg17330251_8, cg17330251_9,
cg17330251_10, cg17330251_12, (OR (95CI%) = 0.492 (0.250,
0.969), 0.478 (0.243, 0.940), 0.492 (0.250, 0.969), 0.461 (0.234,
0.907), 0.492 (0.250, 0.969), 0.437 (0.225, 0.849), 0.478 (0.243,
0.941), 0.421 (0.212, 0.836), and 0.424 (0.213, 0.843),
respectively). At all these nine CpG sites, the proportions of low
methylation levels in the responders were higher than those in the
non-responders (P < 0.05). RA patients with low methylation levels
would be a significantly better prognosis than those with moderate
methylation levels. Specifically, at the cg17330251_6, RA patients
with low methylation levels would be also have a better prognosis
than those with highmethylation levels [OR (95CI%) = 0.478 (0.243,
0.940)] (Supplementary Table 4).

3.3 The association between PON1-
rs705379 and prognosis of RA response
to LEF

In dominant model, there was significant difference in
rs705379 wildtype CC and mutant genotypes (CT + TT) between
the responders and non-responders (P < 0.05). More CC-carriers
were found in the response group (34.01%) than in the non-response
group (21.50%) [OR (95%CI) = 0.532 (0.291, 0.973)]. In codominant
and recessive models, there were no significant differences in the

distribution of genotypes at the rs705379 locus of the PON1 gene in
responders and non-responders (P > 0.05). The results are shown
in Table 1.

3.4 The association among rs705379,
average methylation levels of cg17330251 of
PON1 and ΔDAS28

There were significant statistical differences observed in
ΔDAS28 among different genotypes at the rs705379
(Figure 1A). Notably, there were significant differences in
average methylation levels of 12 CpG sites between the
genotype CC, genotype CT and genotype TT at the rs705379
(P < 0.001, respectively) (Figure 1B). The average methylation
level was lowest in rs705379-CC (median 0.229, IQR 0.195–0.287),
then rs705379-CT (median 0.363, IQR 0.332–0.395), and
rs705379-TT (median:0.531, IQR:0.496–0.557). The results of
the correlation analysis indicated that the average methylation
levels of 12 CpG sites were significantly negatively correlated with
ΔDAS28 (r = −0.13, P < 0.05), as shown in Figure 1C.

3.5 Multifactor analysis for the prognosis of
LEF-taking RA patients

Two models were constructed by the Logistic regression
(Table 2). In Model 1, the genetic protective score was analyzed
by univariate logistic analysis and there was a significant association
with the prognosis of RA after LEF administration. In Model 2, the
genetic protective score and four potential risk factors for RA
prognosis (PCT, MONO, PLT and SIRI) were analyzed by
logistic regression, and the result showed that the genetic
protective score and SIRI were significantly associated with the
RA prognosis. In both the models, the increased protective score was
associated with better response to LEF in RA patients (OR = 1.313,
95%CI = 1.035–1.665, P = 0.025; OR = 1.277, 95%CI = 1.003–1.626,
P = 0.048). More SIRI was also related to better response to LEF in
RA patients (OR = 1.079, 95%CI = 1.018–1.143, P = 0.011). InModel
2, there was no issue of collinearity among the variables (P > 0.05,
Supplementary Table 5).

3.6 PON1 network analysis

A gene–gene interaction network for PON1 was constructed,
and its function was analyzed using the GeneMANIA database
(Figure 2). Functional analysis indicated that 20 proteins were
correlated with PON1, including PON3, PON2, NFIC, CLU, and
APOA1. These proteins showed the greatest correlation in terms of
the icosanoid metabolic process (False discovery rate = 1.986 × 10−5),
complement activation, lipoprotein particle, plasma lipoprotein
particle, protein-lipid complex (False Discovery Rate = 3.937 ×
10−5). Additionally, these proteins were correlated in terms of
fatty acid derivative metabolic process and fatty acid metabolic
process. Importantly, PON1 gene exhibits co-expression and co-
localization relationships with members of the cytochrome
P450 family, such as CYP2C8 and CYP2E1, as well as GPLD1
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gene, which were associated with the drug metabolic processes and
drug responses (Supplementary Table 6).

4 Discussion

In this study, the interactions between genetics, DNA
methylation at PON1 susceptibility cg17330251 and functional
SNP rs705379 were analyzed. We initially discovered that RA
patients with low methylation levels would be more responsive to
LEF than those with medium methylation levels. After that, RA
patients with the PON1-rs705379-CC genotype would be susceptible
to response to LEF and better suited to adoption of LEF treatment.
We then found that a reduction of methylation levels led to a
significant increase in ΔDAS28. More importantly, in the carriers of
rs705379-CC, the methylation levels of the cg17330251 significantly
decreased, and then ΔDAS28 would significantly increase. All these
suggested that functional rs705379 site can alter CpG site
modification and thus influence epigenetic regulation as
associated with prognostic response to LEF in RA patients. Our
results may represent a functional link between genetic variation and
an epigenetic modification for PON1 expression, and further effects
on patient susceptibility to LEF. To the best of our knowledge, this is
the first study to explore the mechanism of the PON1 gene on RA
patients’ response to LEF based on the integration of genetic and
epigenetic factors.

Our previous research revealed that PON1, ADARB2, USP16,
UHMK1, and DISC1might serve as biomarkers for predicting the
response to LEF in RA patients (Chen et al., 2023). Through Gene
Ontology (GO) bioinformatics enrichment analysis, we found
that the PON1 gene was primarily involved in the ester oxygenase
pathway (Figure 3). Its expressed product, PON1, is an esterase
that metabolizes oxidized lipids and organophosphates. It
participates in eliminating free radicals to maintain oxidative
balance, protecting both high-density lipoprotein (HDL) and
low-density lipoprotein (LDL) from oxidation, and playing a
crucial anti-inflammatory role (Aviram et al., 1998). Research on
the PON1 gene has mainly focused on cardiovascular diseases,
with relatively limited studies in RA at present. A study from
2020 proposed that the overexpression of the human PON1
transgene was linked to a decrease in inflammatory arthritis.
This effect may be closely related to increased circulating
PON1 activity, the upregulation of the hepatic glutathione
pathway, and a decrease in circulating biologically active
mediators. These findings suggested that targeting PON1 can
potentially be a therapeutic strategy for joint diseases, including
RA (Charles-Schoeman et al., 2020). The findings of this study
align with the aforementioned perspectives.

The current study implied that the hypermethylation pattern
within the promoter region of the PON1 gene might be a
contributing factor to the insufficient response to LEF in RA.
Methylation of CpG islands situated in the gene’s promoter
region is a consistently acknowledged mechanism for
expression silencing (Vanderkraats et al., 2013). The
inadequate response to LEF in RA might be attributed to
elevated methylation levels influencing aromatase activity (a
metric indicative of the amount of PON1 protein in the
bloodstream) (Huen et al., 2015; Diels et al., 2021; de la

Iglesia et al., 2014). SNP can affect the methylation of nearby
CpG sites, leading to differential methylation levels between
different genotypes, a phenomenon known as allele-specific
methylation (ASM) (Schalkwyk et al., 2010; Shoemaker et al.,
2010). The methylation levels of various CpG sites within the
cg17330251 methylation island differed significantly among
genotypes at the rs705379, providing robust evidence for the
occurrence of ASM, which is consistent with the findings
reported by Huen et al. (2015). More particularly, Diels et al.
(2021) found that TT-genotype carriers of the regulatory variant
rs705379 had higher DNA-methylation values at the PON1
promoter region and such a relationship was found in our
study. 22% of ASM genes also exhibited allele-specific gene
expression, and this expression was not tissue-specific (Gertz
et al., 2011). N. Gupta et al. demonstrated that individuals with
genotypes CT and TT exhibited a lower PON1 activity compared
to those with genotype CC (Gupta et al., 2011). Although we had
performed mRNA expression analysis of the PON1 gene in our
blood samples, unfortunately, due to the low expression of the
PON1 gene in these samples, the mRNA expression was only
detected in a few samples and could not be compared between the
responders and non-responders. M. J. Bonder et al. found a
negative correlation between DNA methylation levels in the
PON1 promoter region and its mRNA expression levels in
liver samples (Bonder et al., 2014). When verifying the mRNA
expression level of this gene, liver samples need to be collected,
which is very difficult in RA patients.

Recently, a number of studies proved that genetic and
epigenetic factors play a crucial role as prognostic biomarkers
in RA (Sánchez-Maldonado et al., 2021; Manuel Sánchez-
Maldonado et al., 2020; Gravand et al., 2023; Ravaei et al.,
2022). DNA methylation, as the most studied epigenetic
modification, is thought to play an important role in RA
disease pathogenesis and in mediating the relationship
between genetic variants and patient outcomes (Nair et al.,
2017; Srivastava and Rasool, 2024; Nair et al., 2020). The
regulatory mechanisms of gene expression are intricate and
remain not completely elucidated. we hypothesized that the
presence of the C nucleotide at the upstream C/T polymorphic
site could lead to low methylation of the adjacent C. Its
mechanism may be that rs705379-C had a stronger binding
affinity with the transcription factor Sp1, which initiated
transcription, forming a DNA-RNA hybrid. This can prevent
DNA methyltransferase from binding to the promoter region,
resulting in hypomethylation (Ginno et al., 2012; Höller et al.,
1988; Chen and Zhang, 2020). Delightfully, Deakin and others
have already verified, through a dual-luciferase assay,
rs705379 was located in the binding sequence of the
transcription factor Sp1 and the C allele exhibited a stronger
binding ability to the transcription factor Sp1 than the T allele
(Deakin et al., 2003). The results of the data analysis in this study
could confirm this mechanism, and we did not consider it
necessary to perform dual luciferase experiments to verify
it again.

A comprehensive analysis of genetic factors and traditional
clinical prognostic indicators prompted that higher genetic
protective score (SNP and DNA methylation) and SIRI were
related to the better response to LEF in RA patients. This
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indicates that there is significant potential for clinical application in
assisting physicians with the development of treatment plans for
patients with RA. By utilizing these insights, healthcare providers
can create more tailored and effective strategies to manage the
disease. Ultimately, this could enhance patient outcomes and
improve the overall management of RA. Considering that the
study population was limited to four hospitals in Liaoning
Province, China, the generalizability of the results obtained in
this study may be limited. Further validation in a larger and
more diverse population is necessary to enhance the robustness
and applicability of the findings. Besides, in this study, multiple
testing corrections for CpG site analysis (FDR or Bonferroni
adjustment) was not applied, due to the subtlety of the CpG site
effects and the aim is to broadly screen for methylation sites that
may be associated with prognosis in the initial exploratory stage.
This could introduce false-positive outcomes. Therefore, we intend
to validate the results in an expanded population sample.

5 Conclusion

In conclusion, to the best of our knowledge, this study represents
the first investigation into the prognostic implications of the
rs705379 of PON1, DNA methylation levels in patients with RA
undergoing LEF treatment. The conserved genotypes of
polymorphisms in PON1, hypomethylation of the promoter
region collectively exert a synergistic impact on the prognosis of
RA. The present study offers a novel perspective on the role of PON1
in the prognosis of RA.
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Glossary

ADARB2 Adenosine deaminase RNA-specific B2

Anti-CCP Anti-cyclic citrullinated peptide

ASM Allele-specific methylation

CpG Cytosine-phosphate-guanine

CRP Reactive protein

DISC1 Disrupted-in-schizophrenia 1

DAS28 Disease Activity Score of 28 joints

EULAR European League Against Rheumatism

ESR Erythrocyte sedimentation rate

GLU Glucose

GO Gene ontology

HDL High density lipoprotein

IgA Immunoglobulin A

IgG Immunoglobulin G

IgM Immunoglobulin M

LDL Low density lipoprotein

LEF Leflunomide

LY Lymphocyte

MONO Monocyte

NLR Neutrophil-to-lymphocyte ratio

MTX Methotrexate

OR Odds ratio

PCR Polymerase chain reaction

PCT Plateletocrit

PLR Platelet-to-lymphocyte ratio

PLT Platelet count

PON1 Paraoxonase 1

RA Rheumatoid arthritis

RBC Red blood cell

RF Rheumatoid arthritis factor

SII Systemic immune-inflammation index

SIRI Systemic inflammation response index

SNP Single nucleotide polymorphism

Sp1 Specificity protein 1

TC Serum total cholesterol

TG Triglyceride

TOL Tolerance

UHMK1 U2AF homology motif kinase 1

USP16 Ubiquitin-specific peptidase 16

VAS Visual analogue scale

VIF Variance inflation factor

95%CI 95%Confidence interval

TJC28 28-joint tender joint counts

SJC28 28-joint swollen r joint counts
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