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Drug-induced changes in cardiac contractility (inotropy) can lead to
cardiotoxicity, a major cause of discontinuation in drug development.
Preclinical approaches to assess cardiac inotropy are imperfect, with in vitro
assays limited to stem cell-derived or adult human primary cardiomyocytes.
Human mechanistic in silico modelling and simulations are already successfully
applied for proarrhythmia prediction, contributing to cardiac safety assessment
strategies in early drug development. In this study, we investigated their ability to
predict drug-induced effects on cardiac inotropy. We considered a validation set
of 28 neutral/negative inotropic and 13 positive inotropic reference compounds
and simulated their effects on cell contractility via ion channel inhibition and
perturbation of nine biomechanical modelling parameters, respectively. For each
compound, a wide range of drug concentrations was simulated in an
experimentally calibrated control population of 323 human ventricular in silico
cells. Simulated biomarkers indicating drug-induced inotropic effects were
compared with in vitro preclinical data from the literature. Computer
simulations predicted drug-induced inotropic changes observed in vitro for
25 neutral/negative inotropes and 10 positive inotropes. Predictions of
negative inotropic changes were quantitatively in agreement for 86% of tested
drugs. Active tension peak was identified as the biomarker with highest predictive
potential. This study describes the validation and application of an in silico cardiac
electromechanical model for drug safety evaluation, combining ion channel
inhibition data and information on potential inotropic mechanisms to predict
inotropic changes. Furthermore, a route for its integration as part of a preclinical
drug safety assessment strategy is outlined.
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1 Introduction

Drug-induced changes in cardiac contractility (inotropy) can
lead to cardiotoxicity, a major cause of discontinuation of drug
development projects (Klein and Redfern, 2015; Mamoshina et al.,
2021). Accurate assessment of drug-induced effects on cardiac
inotropy during pre-clinical stages of drug development remains
challenging, without a consensus on gold standard biomarkers for
comparison of in vitro results to in vivo or clinical biomarkers for
model validation. In addition, non-clinical in vitro strategies to
assess changes in contractility for both small and large molecules are
limited to low/medium throughput assays, which do not always
translate to clinical outcomes. The most common in vitro human
models comprise stem cell-derived cardiomyocytes (Pointon et al.,
2015) and adult human primary cardiomyocytes (Abi-Gerges et al.,
2020; Nguyen et al., 2017). Despite both models offering valuable
insights into human heart function and pathology, they present
important limitations: stem cell-derived cardiomyocytes have an
immature phenotype, which impacts the Ca2+ dynamics, leading to
less robust predictions. Adult human primary cardiomyocytes have
short lifespans in culture, lack proliferative capacity, are not readily
available, pose ethical and legal considerations, and are expensive
and difficult to handle. Therefore, alternative approaches should be
considered to address some of the gaps in current cardiac
contractility assessment strategies, particularly in the context of
developing a high-throughput framework to inform dosing
strategies for in vivo/clinical studies.

Cardiac contraction is initiated by an increase in the intracellular
Ca2+ concentration ([Ca2+]i). Ca2+ binds to troponin C on the thin
filament, which causes tropomyosin to move out of the actin groove,
exposing actin-binding sites. The thick filament, composed of many
myosin molecules, has a central core of aligned myosin tails with
protruding myosin heads; these myosin heads bind to the exposed
actin-binding sites. Contraction then follows, as described by the
sliding filament theory (Huxley, 1953). The attached myosin heads
rotate in the power stoke, pulling the thick filaments past the thin
filaments and causing the sarcomere to contract. The myosin heads
then unbind and can reattach to actin to further contract the
sarcomere (Lewalle et al., 2022).

The sarcomere is situated within the selectively permeable cell
membrane, which aids in maintaining intracellular ionic
homoeostasis. Within this highly regulated space, disruption in
Ca2+ homoeostasis will impact normal contraction and relaxation.
Ca2+ diffuses from the dyadic space into the cytosol, which triggers
further release of Ca2+ from an intracellular Ca2+ store called the
sarcoplasmic reticulum (SR), and it then binds to the sarcomeric

proteins, activating contraction. As Ca2+ is removed from the
cytosol, [Ca2+]i decreases, causing Ca2+ to dissociate from the
sarcomeric proteins and leading to sarcomere relaxation. Ca2+

removal is achieved either through Ca2+ extrusion from the cell
or via Ca2+ uptake into the SR (Hall and Hall, 2021; Levick, 2009).

Block of the L-type Ca2+ channel and subsequent binding to the
ryanodine receptors (Ca2+-release channels located on the SR) will
prevent Ca2+ diffusion from the dyadic space into the cytosol from
the SR. At the same time, blocking the sodium–calcium exchanger
(NCX), the plasma membrane Ca2+ ATPase (PMCA), or the SR Ca2+

ATPase (SERCA) will prevent Ca2+ extrusion from the cytosolic
space. Sarcomere modulators are emerging as an important class of
compounds since the dynamics of sarcomeric proteins form the
foundation of myocardial contraction and relaxation. Sarcomere
modulators can alter myofilament Ca2+ sensitivity without altering
Ca2+ homoeostasis (Longobardi et al., 2022).

In the last decade, in silico approaches using human-based,
biophysically detailed models and multiscale simulations have
proven to be powerful tools for drug safety assessment,
particularly for predicting proarrhythmic risk (Lancaster and
Sobie, 2016; Passini et al., 2017; Li et al., 2019a; Passini et al.,
2019; Llopis-Lorente et al., 2022; Trovato et al., 2022). Human-based
electromechanical models have also been recently published for
simultaneous proarrhythmic and inotropic risk assessment of drug
action on ion channels and cross-bridge dynamics (Margara et al.,
2021). The use of in silico approaches has been supported by
regulators such as the United States Food and Drug
Administration (FDA), which led the Comprehensive in vitro
Proarrhythmia Assay (CiPA) initiative (Sager et al., 2014; Li
et al., 2019b), and the European Medicines Agency (Musuamba
et al., 2021), which established a task force on medical innovation to
facilitate the adoption of innovative products, methods, and
technologies in drug development. One of the main achievements
of these initiatives was the identification of general principles for
model design, development, and validation (Musuamba et al., 2021;
Li et al., 2019c), which go beyond proarrhythmia prediction and can
be applied to different contexts of use.

In this study, we investigated the feasibility of predicting and
explaining drug-induced effects on cardiac cellular inotropy, action
potential, and calcium dynamics using mechanistic, in silico human
multiscale modelling and simulations, with in vitro ion channel
measurements and known inotropic modes of drug action as input
(Figure 1A). First, we simulate hypothetical specific Na+, K+, and
Ca2+ channel blockers to assess model sensitivity and identify the
most informative biomarkers. Then, a set of 41 reference
compounds was considered a validation dataset. Among these
compounds, 28 inhibit specific cardiac ion channels and exhibit
negative or non-inotropic effects. Half-maximal inhibitory
concentration (IC50) values were used to describe the drug-
induced effects on ionic currents and served as a model input.
For each compound, a wide range of drug concentrations was
simulated in an experimentally calibrated population of
323 human ventricular in silico cells, representing a healthy
control population. For the remaining 13 compounds, the known
modes of action are more heterogeneous, thus requiring an
additional explorative step to be applied using the same in silico
framework. Simulated biomarkers were then compared with in vitro
preclinical data available in the literature and clinical observations of

Abbreviations: AP(s), action potential(s); APA, action potential amplitude;
APDx, AP duration at X% of repolarisation; AT, active tension; Ca2+, calcium
[Ca2+]i, intracellular Ca

2+ concentration; CaT, Ca2+ transient; BCL, basic cycle
length; dV/dtMAX, maximum upstroke velocity; EAD(s), early after-
depolarisation(s); EMw: electromechanical window; EOP, membrane
potential at the end of repolarisation; GX, IX conductance; IC50, drug
concentration for 50% channel inhibition; ICaL, L-type Ca2+ current; IK1,
inward rectifier K+ current; IKr, rapid delayed rectifier K+ current; IKs, slow
delayed rectifier K+ current; INa, fast Na+ current; INaK, Na+/K+ pump current;
INaL, late Na+ current; INCX, Na+/Ca2+ exchanger current; Ito, transient outward
K+ current; K+, potassium; MoA, mode of action; Na+, sodium; SS, steady state;
Vm, membrane potential.
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drug-induced inotropy effects for some compounds. The whole
study pipeline is depicted in Figure 1A.

2 Materials and methods

2.1 In vitro measurements of inotropy and
set of compounds

Two datasets of in vitro measurements of cardiac contractility
(Nguyen et al., 2017; Abi-Gerges et al., 2020) were considered to be
preclinical in vitro evidence of drug-induced inotropic effects. Both
datasets comprise optical recordings of sarcomere shortening from
isolated human adult primary cardiomyocytes. The list of

compounds and concentrations simulated in the present study
from each in vitro dataset is reported in Table 1. In the first
study, Nguyen and others investigated contractility and
proarrhythmia biomarkers for CiPA compounds (Li et al., 2019a;
Sager et al., 2014), resulting in a collection of negative or neutral
inotropic compounds. Drugs were tested in 3–8 samples from 1 or
2 donor hearts. In the second study, Abi-Gerges and others assessed
a set of 12 contractility parameters for compounds, leading to
positive inotropic effects through a variety of mechanisms of
action, including hypo/hypercalcaemia, ICaL increase, ryanodine
receptor (RyR) modulation, SERCA modulation, NCX inhibition,
β-adrenergic stimulation, adenylyl cyclase activation,
phosphodiesterase (PDE) inhibition, cardiac myosin activation,
Ca2+ sensitization, and Na+/K+ ATPase inhibition. We will refer

FIGURE 1
(A) Proposed pipeline for the in silico assessment of drug-induced changes in human cardiac electrophysiology and contractility. (B)Modelling and
simulation overview: structure of the Margara2021 model, combining the ToR-ORd model for human cardiac electrophysiology (top left) and the Land
model for cardiomyocytemechanics description (centre), as described byMargara et al. (2021). Exemplificativemodel outputs (bottom-left) and the list of
modes of action (MoA) tested to simulated positive inotropic compounds (right) are also shown.

TABLE 1 In vitro datasets used for comparison against model predictions: number of drugs simulated in this study, concentration ranges tested in vitro, and
compound names.

No. of
drugs

Concentration tested Compound

Dataset 1
(Nguyen et al., 2017)

28 Multiple of EFTPC [0.1x; 222x] Astemizole, bepridil, chlorpromazine, cisapride, clarithromycin, clozapine, sotalol,
diltiazem, diphenhydramine, disopyramide, dofetilide, domperidone, droperidol,
erythromycin, flecainide, ibutilide, loratadine, mexiletine, mibefradil, moxifloxacin,
nifedipine, nitrendipine, ondansetron, procainamide, quinidine, ranolazine, sematilide,

tamoxifen, terodiline, vandetanib, and verapamil

Dataset 2
(Abi-Gerges et al., 2020)

13 See Supplementary Table S2 in the
original study

CaCl2, Bay-K 8644, caffeine, N106, SEA-0400, isoproterenol, epinephrine, dobutamine,
omecamtiv mecarbil, EMD-57003, levosimendan, digoxin, and ouabain

EFTPC, effective free therapeutic plasma concentration.
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to the compound data from the first and second studies as “Dataset
1” and “Dataset 2,” respectively, throughout.

Combining selected compounds (see Section 2.2) from both
in vitro datasets, we obtained a collection of 41 compounds, of which
23 led to a negative inotropic effect, 13 to a positive inotropic effect,
and 5 had no effects on contractility. A complete description of the
in vitro experiments can be found in the original articles (Nguyen
et al., 2017; Abi-Gerges et al., 2020).

2.2 In vitro IC50 values of ion channel
inhibition for simulating negative
inotropic compounds

Drug-induced changes in cardiac electrophysiology are
routinely screened in the early stage of drug development, either
as primary (on-target) or secondary (off-target) pharmacological
signals. The most important signal is hERG since its inhibition can
lead to QT prolongation and Torsades de Pointes arrhythmia;
therefore, hERG screening is a regulatory requirement (as
detailed in ICH S7B). Other pharmacological signals include
in vitro recordings of other cardiac ion currents, such as the fast
sodium current (INa), the late sodium current (INaL), the L-type
calcium current (ICaL), the slow potassium rectifier (IKs), the
outward potassium current (Ito), and the potassium inward
rectifier (IK1). However, not all of these currents might be
routinely screened during early drug development, and not all of
them may be crucial for safety assessment (Zhou et al., 2020).

In this study, to simulate inotropic changes induced by the
compounds in Dataset 1, i.e., non-inotropic or negative inotropic
compounds, we used IC50 values, Hill coefficients, and free
therapeutic plasma concentrations available in the literature
(Crumb et al., 2016; Delaunois et al., 2021; Kramer et al., 2013;
Passini et al., 2019) and listed in Supplementary Table S1. Most
compounds are characterised by IC50 values and Hill coefficients for
IKr, INa, and ICaL, similar to what would happen during the early
stages of drug development (Figure 1A). For five compounds,
namely, ajmaline, azimilide, sematilide, diphenhydramine, and
tamoxifen, no homogenous (i.e., recorded as much as possible in
the same experimental settings and from the same source) IC50

values were available in the literature; therefore, these compounds
were excluded from this study. For the same reason, two negative
inotropic compounds from Dataset 2 (ryanodine and thapsigargin)
were excluded from this study.

2.3 Human modelling and
simulation framework

2.3.1 In silico electromechanical modelling for
human ventricular cardiomyocytes

The Margara2021 model (Margara et al., 2021) was selected as the
in silico model for simulating electromechanical dynamics in human
ventricular cardiomyocytes (Figure 1B). The main outputs of the
Margara2021 model are action potential (AP), intracellular calcium
transient (CaT), and active tension (AT) time courses over a single beat
or multiple beats at a given pacing frequency. Representative traces
(1 beat at 1 Hz pacing frequency) are shown in Figure 1B.

The Margara2021 model combines the human ventricular
electrophysiological ToR-ORd cellular model (Tomek et al., 2019)
with a model of human cardiomyocyte mechanics (Land et al.,
2017), both calibrated and validated with experimental data. In
addition to the already mentioned INa, ICaL, IKr, IKs, INaL, IK1, and Ito,
the ToR-ORd model in the Margara2021 model also includes a
mathematical description for the sodium–calcium exchange current
(INCX), the sodium–potassium ATPase current (INaK), the
sarcolemmal calcium pump current (IpCa), and sodium (Na+) and
potassium (K+) background currents. The model also incorporates a
detailed description of the calcium subsystem and
excitation–contraction coupling, including calcium release from
the ryanodine receptors, calcium uptake through SERCA pumps,
calcium buffers (calmodulin, troponin, anionic SR and
sarcolemmal-binding sites, and calsequestrin), and calcium-/
calmodulin-dependent protein kinase.

The Land model is based on measurements obtained from
human cardiomyocytes at body temperature, and it comprises a
three-state cross-bridge model to reproduce troponin C and
tropomyosin kinetics, accounting for cross-bridge distortion. The
bidirectional electromechanical coupling between ToR-ORd and
Land models in the Margara2021 model is based on the free
[Ca2+]i computed in the ToR-ORd electrophysiology model,
which serves as the input for the Land model. In turn, the
amount of Ca2+ bound to troponin C, computed in the Land
model, is fed back into the ToR-ORd electrophysiological model
and used to update the free [Ca2+]i.

2.3.2 Simulating human cardiac electromechanical
dynamics in a population of models

Using the Margara2021 model, we developed an experimentally
calibrated population of human cardiac ventricular cardiomyocytes,
incorporating cell-to-cell variability. The population was designed
as in previous studies (Passini et al., 2017; Passini et al., 2019;
Trovato et al., 2020; Trovato et al., 2022), following the population
of models methodology (Britton et al., 2013; Lancaster and Sobie,
2016; Muszkiewicz et al., 2015). The population was constructed
using Virtual Assay software (v.3.2 © 2018 Oxford University
Innovation Ltd. Oxford, UK), a user-friendly software program
to perform in silico simulations in a population of models (Passini
et al., 2021).

An initial population of 1,000 models was constructed by
sampling nine conductance values of the main ionic currents
mentioned above (INa, INaL, ICaL, Ito, IKr, IKs, IK1, INCX, and INaK)
and Ca2+ uptake and release maximal currents in the range
[50–150]% of their baseline values. All these models were paced
individually at 1 Hz for 500 beats to allow the models to reach Na+,
K+, and Ca2+ diastolic concentration stability (steady state), and the
last-beat output traces for each model were used to compute a set of
15 biomarkers. In particular, seven biomarkers characterised the AP
curve: AP duration at 40%, 50%, and 90% of repolarisation (APD40,
APD50, and APD90); AP triangulation, defined as the difference
between APD90 and APD40 (Tri90-40); maximum upstroke velocity
(dV/dtmax); peak voltage (Vpeak); and resting membrane potential
(RMP); four biomarkers characterised the CT curve: duration at 50%
and 90% of repolarisation (CTD50 and CTD90) and minimum/
diastolic and maximum calcium concentrations (CaiD and
CTpeak); and four biomarkers characterised the AT curve: AT
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peak (ATpeak), AT time to peak (ATttp), and AT relaxation times at
50% and 90% (ATrt50 and ATrt90). In addition to the
abovementioned biomarkers, the electromechanical window
(EMw, Passini et al., 2019) was computed as the difference
between CTD90 and APD90, and qNet was computed as the total
net charge (i.e., balancing inward and outward currents) flowing
through INaL, ICaL, Ito, IKr, IKs, and IK1 over an entire beat (Chang
et al., 2017).

The population was then filtered based on biomarker values
(Supplementary Table S2) from healthy human left ventricular
myocytes (Margara et al., 2021; Passini et al., 2019), and a total
of 322 models (out of the initial 1,000 models) whose biomarkers
were within experimental ranges were retained. These 322 models
constituted the experimentally calibrated population and were then
used for the simulations, along with the baseline model, resulting in
a total of 323 electrophysiological profiles.

Running a full population simulation involves concurrently
running the 323 models using their calibrated ion channel
parametrisations. Each model is paced for 1,000 beats at 1 Hz,
and the last-beat curves (AP, CaT, and AT) are regarded as the
model outputs. The simulated AP curve is then checked for the
occurrence of depolarisation and repolarisation abnormalities, as
defined by Passini et al. (2017): i) repolarisation abnormalities were
defined as the presence of a positive derivative of the membrane
potential following Vpeak (early after depolarisation) or when the
membrane potential did not reach the resting condition by the end
of the beat (repolarisation failure); ii) depolarisation abnormalities
occurred when the upstroke phase was compromised, i.e., when
Vpeak was lower than 0 mV or when the time needed to reach 0 mV
was longer than 100 ms. Finally, the biomarkers described above are
calculated from the output curves for all models where there was no
prediction of abnormalities.

Drug effects can be incorporated by further manipulating the
baseline parametrisation of all the population models for the ion
channels and/or other mechanisms before running a simulation. In
the next two sections, we will describe in detail how we performed
simulations for the compounds from experimental Dataset
1 and Dataset 2.

2.3.3 Incorporating drug effects via dose-
dependent ion channel inhibition

A simple pore-block model (Brennan et al., 2009) was used to
simulate ion channel inhibition under a compound effect. This
model provides the fraction of residual current Ires as a function
of compound-specific binding affinity parameters (the IC50 value
and Hill coefficient) at any given compound concentration C:

Ires � 1

1 + C
IC50
( )

Hill

For each compound in Dataset 1, we tested a wide range of
concentrations, taken as multiples of the compound’s EFTPC,
ranging from 0.1× to 100×. This range extended well beyond the
concentrations estimated/clinically measured for humans,
allowing for a broader exploration of any drug-induced effects
on electrophysiology and contractility. One of the main
advantages of using in silico modelling is that we can explore
a large number of concentrations, which would be unfeasible to

test experimentally, although caveated with further modelling
assumptions, such as neglecting the interplay of solubility and
metabolism. Therefore, for those compounds that did not reach a
50% reduction in peak tension, we additionally extended the
concentration range up to 100,000× the EFTPC to check for
saturating behaviours, for model verification purposes.

For each drug, dose–response curves were derived for the peak
tension biomarker. We used two methods to evaluate the impact of
different metrics on inotropy assessment: (1) a classic non-linear
least squares approach to fit a Hill curve through median
biomarker values from the full, simulated population and (2) a
Bayesian approach to fit the same type of curve by incorporating
biomarker variability across the full population of models.
Figure 2A illustrates the fitting process. In the first case using
biomarker medians, single IC50 and Hill values are obtained from
the sigmoid fit. In the second case, using all biomarker values, full
posterior distributions for the same parameters are derived
instead. We employed the same Bayesian framework as
described by Labelle et al. (2019). In brief, we used a normal
likelihood with a sigmoid deterministic mean function and an
isotropic Gaussian noise. Weakly informative normal priors were
used for all parameters, providing gentle constraints that allow the
data to dominate the inference. For the likelihood noise, a half-
normal prior was used to ensure non-negativity while maintaining
flexibility. The isotropic Gaussian noise assumption was
specifically chosen because the same 323 computer models were
run at each concentration, providing a consistent framework for
comparing responses. This setup implies that the variability
observed at each concentration arises from independent and
identically distributed noise across the models, rather than from
heteroscedasticity or concentration-dependent correlation
structures. By assuming constant variance and no correlation,
the model captures the intrinsic randomness in responses while
avoiding the need to introduce additional parameters to describe
noise patterns that are not evident in the data. From a performance
and robustness perspective, this assumption ensures that the
Bayesian framework can focus on characterising the true
variability across the model population without being
confounded by unnecessary complexity. It also simplifies the
computational process as the residual variance is treated
uniformly across concentrations. Finally, a Markov Chain
Monte Carlo approach (No-U-Turn sampler) was used to
derive posterior distributions. It is worth noting that the IC50

parameter was not fitted directly; instead, its negative logarithm in
base 10, the so-called pIC50, was fitted and then converted back
into the original units. A parameter called B was also included (and
fitted) in the model to account for the saturation level of the
negative inotropic effect at high concentrations. Unlike traditional
Hill-type models, where the response asymptotes are often fixed to
0 by default, B provides the flexibility to fit the observed data
without imposing a hard constraint on the lower asymptote. This is
particularly relevant for negative inotropes as experimental data
often indicate a non-zero saturation level that depends on the
pharmacological characteristics of the compound. By fitting B, the
model ensures that the predicted response aligns more accurately
with the experimental data, even at very high concentrations,
thereby improving the biological and mechanistic
interpretability of the curve. In practical terms, after fitting the
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curve for the set of compounds under investigation, we found that
(see Supplementary Figure S6; Supplementary Table S3) all
compounds identified as clearly negative inotropes exhibited B
values very close to 0 (in the Bayesian case, the posterior
distribution of B was observed to be very narrow around 0 for
the same compounds). This suggests that B effectively captures the
experimentally observed saturation behaviour while allowing
flexibility in cases where deviations might exist. The
convergence of the posterior distributions was assessed by
visually inspecting the trace plots of the four chains (see
Supplementary Figure S6) to ensure they were well-mixed and
overlapping, which is a standard preliminary check in Bayesian
analysis. All the IC50 values fitted using both the approaches and
enabling model simulations to match neutral/negative inotropic
compound effects are reported in Table 2.

2.3.4 Incorporating drug effects via dose-
independent mechanism perturbation

To investigate how perturbation of additional mechanisms may
affect contractility, a one-at-a-time sensitivity analysis was
performed on the Margara2021 model. We selected nine
parameters that could be altered in the model to mimic
functional effects induced by the positive inotropic compounds
(Dataset 2) tested by Abi-Gerges and collaborators on human
cardiomyocytes. The selected mechanisms were (1) extracellular
Ca2+ concentration increase; (2) ICaL activation; (3) RyR activation;
(4) SERCA pump activation; (5) Na+/Ca2+ exchanger inactivation;
(6) β-adrenergic stimulation; (7) Ca2+ sensitivity decrease; (8) Na+/
K+ pump inactivation; and (9) cardiac myosin activation.
Phosphodiesterase inhibitors (IBMX and milrinone) and adenylyl
cyclase activators (forskolin and NKH-477) could not be

FIGURE 2
Fitting dose–response and perturbation-response curves to biomarker values simulated using the full population of models. (A) The three main
parameters (including pIC50 and Hill values) of a sigmoid function (orange box) were fitted using two approaches: (1-top panel) non-linear least-squares
method to minimize the distance of the curve from median population biomarker values at the tested concentrations and (2-bottom panel) a Bayesian
method to incorporate population biomarker values’ variability. In the first case, pointwise estimates are derived for the three sigmoid parameters,
while in the second case, full posterior distributions are derived instead. (B) A linear regression model with degree equal to 2 (parabola) was fitted to
median population biomarker values at the different testedmechanism perturbations. An experimental sarcomere shortening value observed at the EC50

value for drugs represented by the mechanism is then projected on the parabola to find the intersection point corresponding to the mechanism scaling
factor needed to reproduce in silico the experimental observation.
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represented using available mechanisms in the Margara2021 model
and, therefore, were not included in this simulation study.

Selected model parameters were varied to represent these
modulations and are listed in Table 3. The scaling factors for these
parameters were defined in a dose-independent fashion to
qualitatively and quantitatively reproduce the positive inotropic
effects observed in vitro. Baseline parameter values were either
increased (from 1x to 3x–5x) or decreased (from 1x to 0.1x),
according to whether the selected direction of change would
correspond to an increase in active tension, with ranges chosen
arbitrarily. For each simulated mechanism representing one or
multiple drugs, perturbation-response curves were derived for the
peak tension biomarker. Given that the scaling factors for each
mechanism were varied in a dose-independent fashion, the
perturbation-response curves were not ensured to follow sigmoid
trends. For this reason, to still capture the non-linear nature of these
curves, we used a parabolic fit through the median biomarker values

from the full, simulated population. Figure 2B illustrates the fitting
process. After fitting, we projected the sarcomere shortening value
observed experimentally at the EC50 value for the compounds
represented in the model by the mechanisms under analysis and
found the intersection point (if any existed) with the parabola. This
intersection point corresponded to the exact perturbation that had to
be performed to the model parameters to achieve the same variation
in contractility, as observed experimentally. All the scaling factors
calculated using this procedure and enabling model simulations to
match positive inotropic compound effects are reported in Table 3.

2.4 Verification, validation, and uncertainty
quantification

We define our verification, validation, and uncertainty
quantification strategy based on the principles outlined for the

TABLE 2 Contractility IC50 values observed in vitro for sarcomere shortening and simulated for the active tension peak. The latter was computed both from
median concentration-response values and using a Bayesian approach. The IC50 and EFTPCmax ratio is reported between brackets.

Compound In vitro IC50 in µM (IC50/EFTPCmax ratio)

In silico IC50 in µM (IC50/EFTPCmax ratio)

Median
Bayesian

Mean STD

Bepridil 0.7 (22) 0.77 (22) 0.84 (24) 0.06

Chlorpromazine 1.02 (28) 2.5 (69) 2.9 (80) 0.13

Clarithromycin 16 (13) 3,336 (2,780) 2,795 (2,330) 251

Clozapine 1.5 (21) 1.5 (21) 1.6 (23) 0.07

Diltiazem 1 (8) 0.28 (2.3) 0.3 (2.46) 0.0077

Disopyramide 9.3 (13) 407 (549) 468 (631) 27

Domperidone 0.2 (10) 5 (250) 11 (542) 2.4

Droperidol 0.18 (11) 1.5 (95) 1.8 (114) 0.12

Flecainide 1.1 (2) 7.9 (14) 10 (19) 1.7

Ibutilide 2 (20) 16 (155) 27.8 (278) 10

Loratadine 0.017 (35) 5.6 (11,000) 5.7 (11,000) 0.34

Mexiletine 0.9 (0.4) 8.7 (3.5) 9.9 (4) 1.1

Mibefradil 0.18 (13) 0.28 (20) 0.30 (22) 0.01

Nifedipine 0.04 (5) 0.0038 (0.48) 0.0041 (0.51) 0.0001

Nitrendipine 0.06 (18) 0.0054 (1.6) 0.006 (1.8) 0.0003

Ondansetron 14 (34) 7.4 (18) 8.02 (19) 0.24

Procainamide 2,215 (38) 138 (2.4) 157 (2.7) 12

Quinidine 3.6 (1) 2.06 (0.64) 2.3 (0.72) 0.15

Ranolazine 17 (9) 61 (31) 62 (32) 12

Terodiline 0.7 (5) 2.4 (16) 2.5 (17) 0.11

Vandetanib 2.7 (9) 5.2 (17) 6.3 (21) 0.35

Verapamil 0.04 (2) 0.08 (4) 0.08 (4) 0.002

IC50, half-maximal inhibitory concentration; EFTPCmax, maximum effective free therapeutic plasma concentration; STD, standard deviation; µM, micromolar.
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CiPA in silico strategy by Li et al. (2019c), the ‘model validation flow’
described by Musuamba et al. (2021) (Figure 1), and the ASME
V&V40 standard as applied to in silico trials (Viceconti et al., 2021)
as follows.

The context of use is the assessment of drug-induced changes
in contractility through ion channel modulation and the
determination of the mechanisms of inotropy. This framework
has previously been validated for proarrhythmic risk assessment
(Passini et al., 2017); thus, the verification of software was
conducted by ensuring agreement (Supplementary Figure S2)
between simulation outputs using Virtual Assay software, the
MATLAB code provided by Margara et al. (2021), and
CellContraction.jl, the Julia package used in this study and
available open source (see Data Availability Statement). The
comparator dataset and algorithms utilised are described in
Sections 2.1, 2.3, respectively. The criteria for assessing the
predictivity of the simulations are defined in Section 2.3.
Simulated outputs are validated through comparison with
experimental recordings of drug-induced inotropic behaviour
in adult human primary cardiomyocytes. Uncertainty

quantification of the cellular model was addressed through a
population of models approach and the comparison of median
and Bayesian approaches for the estimation of IC50 values for
inotropy changes.

For validation, the comparison of simulated data with
experimental recordings of drug-induced effects on contractility
is interpreted in light of the following factors:

(i) quality and completeness of the input data (i.e., the
quantitative characterisation of drug-induced modes of
action, including ion channel screening and knowledge of
additional inotropic mechanisms);

(ii) the in silicomodel used, including equations and parameters
(i.e., the population of human cell models based on the
Margara2021 electromechanical model);

(iii) simulation protocols applied (including stimulation rate,
ionic concentrations, and duration); and

(iv) experimental conditions of in vitro data on contractility
(i.e., isolated cardiomyocytes affected by isolation
procedures; Yue et al., 1996).

TABLE 3 Comparison between in vitro positive inotropic effects and in silico mechanism perturbation responses for several modes of drug action:
mechanisms of positive inotropy considered in this study, compounds tested in vitro by Abi-Gerges et al. (2020), model parameters changed in silico,
scaling factor ranges, maximum sarcomere shortening observed in vitro, maximum active tension variation reached in silico, sarcomere shortening
observed at the EC50 value, and SF to simulate similar drug-induced inotropic effects observed at the EC50 value in vitro.

Main
known
MoA

Compound
tested
in vitro

Parameter
changed in

silico

Parameter
SF range in

silico

Max
sarcomere
shorteninga

in vitro

Max
active

tensiona

in silico

Sarcomere
shortening at
EC50 in vitro

SF to reproduce
in silico
observed

contractility
changes at the
EC50 value
in vitro

Extracellular
Ca2+

modulator

CaCl2 Cao [1, 3] 220% 362% 120% 1.24

Ca2+ sensitizer Levosimendan Ca50 [0.1, 1] 131% 414% 115% 0.85

ICaL activator Bay-K 8644 GCaL [1, 3] 180% 375% 138% 1.17

NCX inhibitor SEA-0400 GNCX [0.1, 1] 168% 452% 136% 0.79

Na+/K+

ATPase
inhibitor

Digoxin GNaK [0.1, 1] 250% 121% 177% —

Ouabain 237% 173% —

Myosin
activator

EMD-57003 Kuw [1, 5] 368% 242% 237% 4.53

Omecamtiv
Mecarbil

263% 181% 2.63

RyR activator Caffeine Jrel [1, 3] 261% 118% 188% —

SERCA
activator

N-106 Jup [1, 3] 148% 133% 124% 1.62

β-adrenergic
agonist

Dobutamine (GKs, GCaL) [1, 3] x [1, 3] 226% 450% 171% 1.22

Isoproterenol 434% 258% 1.56

Epinephrine 280% 193% 1.30

amean percentile variation from control. The dash symbol indicates the case when a scaling factor that reproduces experimental observation could not be identified using the proposedmodelling

and simulation approach.

MoA, mode of action; SF, scaling factor; EC50, half-maximal effective concentration; Kuw, cross-binding rate; GX, maximal conductance/permeability of channel X; ca50, calcium sensitivity.

‘Cao, extracellular calcium concentration’, Jrel, calcium release from RyR receptors; Jup, calcium uptake by SERCA. Also, Gx, put ‘x’ as normal text, not subscript given that in the table the

channels are not subscripted. Also, insert the word ‘ion’ in the phrase: maximal conductance/permeability of ion channel X.
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FIGURE 3
Drug-induced negative inotropic effects for the 22 compounds with variable modes of action. (A) Visual comparison between the in silico predicted
change in peak tension under drug effects at multiple concentrations (sigmoids) and in vitro IC50 values (red line/area) of sarcomere shortening
dose–response curvesmeasured in 3–8 samples from 1 or 2 donor hearts (Nguyen et al., 2017). (B)Quantitative comparison between in silico and in vitro
inotropic predictions expressed as the difference between the predicted and experimentally measured IC50 values’ order of magnitude. The colour
scale from dark blue to yellow refers to dose as a multiplier of EFTPCmax in both panels.
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3 Results

3.1 In silico predictions of negative inotropic
effects quantitatively match in vitro
observations

An analysis performing pure ion channel block simulations
(Supplementary Material) suggested ATpeak as the most informative
biomarker for predicting drug-induced effects on cardiac inotropy.
Simulation results focused on this biomarker show a quantitative
agreement with drug-induced neutral/negative inotropic effects
observed experimentally for the reference compounds from Dataset
1 (Nguyen et al., 2017).

Figure 3A shows predicted drug-induced changes in ATpeak for
the 28 reference compounds in Dataset 1. Predicted values are
shown as fractions of the control value (no drug) and reported
for the full population of models in the form of box and whisker
plots. To facilitate visual comparison with in vitro observations, IC50

values obtained from Nguyen et al. (2017) were either plotted as red
vertical lines if the associated compounds showed a negative
inotropic effect or indicated as a red area if the compounds
showed no effect. This approach aligns with the authors’
suggestion that any effect should arise only past the highest
tested concentration. On the other hand, to facilitate the
comparison with clinical EFTPCmax, boxplots were coloured
based on the ratio between the dose tested and EFTPCmax,
covering large concentration ranges, from 0.01× (dark purple) to
100,000× (yellow).

In silico and in vitro results were in agreement for 25 out of these
28 compounds, with 22 compounds showing a negative inotropic
effect (i.e., a median change from baseline of more than 25%, as
detailed by Nguyen et al. (2017) and 3 compounds (dofetilide,
moxifloxacin, and sotalol) showing no inotropic effect. Of the
remaining three compounds, two (astemizole and erythromycin)
showed a negative inotropic effect in silico at concentrations above
10× the EFTPCmax but not in vitro, and one (cisapride) showed a
negative inotropic effect in vitro but not in silico.

For the 22 compounds showing negative inotropic effects both
in vitro and in silico, a quantitative comparison was performed, as
discussed below. Table 2 reports both in vitro IC50 values obtained from
Nguyen et al. (2017) and in silico IC50 values computed from peak
tension dose–response curves, fitted using both the median and
Bayesian approaches, as described in Section 2.3.3. The ratios of
IC50 values and clinical EFTPCmax, which are often used to define
safety margins, are reported in brackets. To facilitate the numerical
comparison, Figure 3B shows the quantitative difference between the in
silico and in vitro IC50 values for the 22 negative inotropic compounds.
Each drug is represented as a coloured circle and classified based on the
difference between the in silico and in vitro IC50 values’ order of
magnitude. We will refer to this quantity as “delta” for simplicity. A
delta value of 0 indicates that the predicted IC50 value for a given
compound had the same order of magnitude as the experimentally
measured one. A negative delta value indicates that a smaller IC50 value
was predicted in silico (conservative/worst-case scenario prediction).
Finally, a positive delta value indicates that a larger IC50 value was
predicted (a more risky prediction).

Out of 22 compounds, 19 had a delta value lower than or equal
to 1 in absolute value, meaning that the predicted IC50 value was

either of the same order of magnitude as the experimentally
measured one or it was either 10 times larger (mismatch of 1) or
smaller (mismatch of −1). Nine compounds (bepridil,
chlorpromazine, clozapine, flecainide, mibefradil, quinidine,
ranolazine, vandetanib, and verapamil) had a delta value of 0;
five compounds (diltiazem, nifedipine, nitrendipine, ondansetron,
and procainamide) had a delta value of −1; and five compounds
(domperidone, droperidol, ibutilide, mexiletine, and terodiline) had
a delta value of 1. The remaining 3 out of 22 compounds
(clarithromycin, disopyramide, and loratadine) had a delta value
of 2 (100 times larger predicted IC50).

The mismatches presented in Figure 3B were calculated from the
IC50 values derived using the median approach. However, in Section
2.3.3, we also presented a second approach that uses a Bayesian
framework to calculate full posterior distributions for the IC50

values. Summary statistics (mean and standard deviation) of
these distributions are reported in Table 2. When calculating the
deltas using the IC50 distribution mean values, we obtained
consistent results throughout, except from two compounds,
namely, flecainide and domperidone, which, this time, were
predicted to have a higher delta value (from 0 to 1 and from
1 to 2, respectively).

Regarding safety margins, the comparison between in vitro and
in silico predictions reflects the same trends observed for IC50 values.
Therefore, for 19 compounds, in vitro and in silico margins are
quantitatively consistent, at least within an order of magnitude,
increasing confidence in those predictions and informing dose
selection for in vivo studies.

3.2 Predictions of positive inotropic changes
across several modes of action

Figure 4 shows a summary of the predicted changes in cardiac
contractility (peak active tension) induced by the simulation of
inotropic mechanisms considered in this study, beyond ion channel
inhibition. As described in Section 2.3.4, these mechanisms were
selected based on the compounds investigated by Abi-Gerges et al.
(2020) in human primary cardiomyocytes (Dataset 2) and
evaluation of the readiness of representing those mechanisms in
the model. Each panel of Figure 4A reports box and whisker plots for
the ATpeak fraction of control (model with no perturbed parameters)
simulated using the whole population of models, following the
modulation of single parameters corresponding to the first eight
mechanisms under study. Figure 4B shows summary statistics
(mean and standard deviation) of the ATpeak fraction of control,
following modulation of two parameters corresponding to β-
adrenergic stimulation. Selected parameters and specific
perturbation ranges used are reported in Table 3.

Simulations of the direct increase in extracellular Ca2+

concentration, ranging from 1.8 to 5.4 mM, led to an ATpeak

value of 362%, where 100% indicates the control condition. The
reduction in Ca2+ sensitivity, up to 90% of its baseline value, induced
an increase in contractility (ATpeak = 414%). Similarly, increasing
GCaL up to 3-fold its baseline values resulted in an ATpeak value of
375%. On the other hand, reducing the permeability of the Na+–Ca2+

exchanger induced an ATpeak value of 452%. Instead, reducing the
permeability of INaK led to a modest increase in contractility
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(maximum ATpeak = 121%). Increasing myosin activation up to 5-
fold its baseline value led to an ATpeak value of 242%. Increasing the
flux of Ca2+ through RyR channels up to 3-fold its baseline values
had mild effects on the tension peak, leading to a maximum ATpeak

value of 114%. Similarly, increasing SERCA Ca2+ uptake flux led to
an ATpeak of 133%. β-adrenergic stimulation was simulated with up
to a 3-fold increase in ionic conductances for ICaL and IKs (Dorian,
2005; Taggart et al., 2021), leading to an increase in peak tension of
450%. However, our simulations show that when altering both
conductances at the same time, changes in tension were mainly

driven by ICaL, while IKs modulation had little to no
contribution (Figure 4B).

A physiologically relevant parametrisation for seven out of nine
(all but Na+/K+ ATPase inhibition and RyR activation) model
parameters could be identified that quantitatively recapitulates
drug-induced positive inotropic effects for 10 out of 13 reference
compounds from Dataset 2 (Abi-Gerges et al., 2020). This means
that each parameter could be scaled via a specific factor to simulate
an increase in peak tension that matches exactly (as a percentile
variation from the control value) experimentally observed

FIGURE 4
Sensitivity analysis for nine model mechanisms corresponding to main known modes of action of positive inotropic drugs. (A) Boxplots report full
population variability in peak tension (as a fraction of control) when altering one parameter at a time to represent the first eight mechanisms. Red dotted
lines represent the baseline values. (B) Heatmaps show population summary statistics (left panel: mean; right panel: standard deviation) for peak tension
(as a fraction of control) when altering two parameters simultaneously to represent the ninthmechanism under study (beta-adrenergic stimulation).
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sarcomere shortening at the EC50 value for those compounds whose
main mode of action was represented by the mechanism. Calculated
scaling factors and parameters altered for each mode of action are
summarised in Table 3.

Extracellular Ca2+ modulation was investigated in vitro using
CaCl2, which led to a maximum sarcomere shortening of 220%. As
described above and reported in Table 3, simulations covered the
range observed experimentally for this mode of action. A scaling
factor of 1.24 was computed for the extracellular Ca2+ concentration
to obtain the same magnitude of change in contractility observed
in vitro at the EC50 value (120%). Levosimendan is a Ca2+ sensitizer,
which induced a mild increase in sarcomere shortening in vitro
(131%), smaller than the maximum increase obtained in silico
(414%). A scaling factor of 0.85 was computed to reproduce the
increase in contractility observed in vitro at the EC50 value (115%).

Bay-K 8644 was used in vitro to increase ICaL, leading to a
maximum increase in contractility of 180% and an increase of 138%
at the EC50 value, which was obtained in silico by applying a scaling
factor of 1.17 to ICaL conductance. To inhibit the Na+–Ca2+ exchanger
in vitro, Abi-Gerges and others used SEA-0400 and observed a
maximum sarcomere shortening of 168%. A scaling factor of
0.79 was computed for GNCX to simulate the same increase in
contractility observed at the EC50 value. Two compounds were
tested in vitro as Na+/K+ ATPase inhibitors, digoxin and ouabain,
which led to similar ATpeak values of 250% and 237%, respectively. In
this case, as described above, simulations were not able to reproduce the
samemagnitude of change, and the scaling factors to simulate the effects
of these two drugs at the EC50 value could not be computed.

Two drugs were also tested in vitro to investigate myosin
activation effects, namely, EMD-57003 and omecamtiv mecarbil,
which led to sarcomere shortening of 368% and 263% at the EC50

value, respectively. For this mode of action, simulations were able to
reproduce the changes observed at the EC50 value using 4.53 and
2.63 as scaling factors of myosin activation for EMD-57003 and
omecamtiv mecarbil, respectively.

In terms of excitation–contraction coupling mechanisms,
caffeine increases calcium-induced-calcium-release through RyR
activation, leading to maximum sarcomere shortening in vitro of
261%, which was not reached in silico as described above. N-106 is a
SERCA activator, which induced a maximum ATpeak value of 148%
in vitro. The maximum ATpeak obtained via simulations was 133%,
enough to compute a scaling factor of 1.62 to mimic the effects
observed in vitro at the EC50 value (124%).

Three β-adrenergic agonists were tested in vitro, namely,
dobutamine, isoproterenol, and epinephrine, which led to ATpeak

values of 126%, 334%, and 180%, respectively. As previously
described, modulation of IKs played no role as the cumulative
simulated positive inotropic effect was mainly ICaL-driven.
Therefore, we only reported ICaL scaling factors, amounting to
1.22, 1.56, and 1.30 for reproducing the changes observed
in vitro at the EC50 values for dobutamine, isoproterenol, and
epinephrine, respectively.

4 Discussion

In this study, we predicted drug-induced effects on cardiac
cellular inotropy using multiscale simulations on a population of

323 in silico human ventricular healthy cells, and the input included
in vitro data or assumptions related to drug-induced effects on ionic
currents and other mechanisms of inotropy. We considered a set of
41 reference compounds as a validation dataset: 28 drugs inhibiting
specific cardiac ion channels, leading to negative or non-inotropic
effects, and 13 compounds having heterogeneous modes of action,
leading to positive inotropic changes. In silico contractility
biomarkers were then compared with published in vitro data and
clinical observations of drug-induced inotropy effects (Gao et al.,
2023; Garg et al., 2024; Harmer et al., 2012; Pointon et al., 2015).

The main findings of this study are as follows:

• Simulations of pure ion channel blocks identify the active
tension peak as the best surrogate biomarker of sarcomere
shortening, with high predictive potential.

• In silico simulations using the human electromechanical cell
model described by Margara et al. (2021) and in vitro ion
channel data well-predicted drug-induced neutral/negative
inotropic changes for all tested compounds whose main
mode of action was ion channel inhibition. For 25 out of
28 compounds, in silico predictions were consistent with
in vitro observations. Of these, 19 out of 22 (86%) also
showed quantitative agreement within an order of magnitude.

• Simulations could qualitatively reproduce drug-induced
positive inotropic changes for all tested compounds, whose
main mode of action corresponded to any of the nine model
mechanisms tested. For 10 out of 13 compounds, in silico
predictions were qualitatively consistent with in vitro
observations.

Among the compounds from Dataset 1 (negative/neutral
inotropic effects), simulations with the Margara2021 model
replicated the trend observed in vitro for all compounds
(Figure 3A), except for cisapride, astemizole, and erythromycin.
Cisapride induced negative inotropic effects in vitro and predicted
no effects in silico. However, no clinical reports have highlighted the
significant effects of cisapride on cardiac contractility, and
concentrations eliciting a decrease in contractility in vitro far
exceed the anticipated therapeutic exposure. Astemizole, on the
other hand, did not induce a negative inotropic effect in vitro but it
did in silico at high concentrations (above 10× the EFTPCmax),
which is consistent with in vivo observations of negative inotropic
effects in dogs (Sugiyama et al., 1997a; Sugiyama et al., 1997b).
Erythromycin had no inotropic effect in vitro, but it reduced active
tension in silico at high concentrations (above 10× the EFTPCmax).
Erythromycin has been associated with arrhythmia and QT
prolongation, but no in vivo effects on cardiac inotropy have
been reported.

In vitro and in silico contractility IC50 values were quantitatively
in agreement (within an order of magnitude) for 19 of the
investigated compounds (Figure 3B). For quantitative predictions,
it is important to highlight that the outcome of simulations strongly
depends on the input data representing the drug action. For
example, a different set of ion channel data for simulating
diltiazem effects was available in the literature (Crumb et al.,
2016), leading to a more negative delta value (−2) compared to
simulations performed using ion channel data obtained from
Kramer et al. (2013). In this study, we used IC50 values obtained
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from Kramer et al. (2013) since they also include diltiazem-induced
inhibition of the INa current, which is significant (Mirams
et al., 2011).

For three compounds (clarithromycin, loratadine, and
disopyramide), the delta value between in vitro and in silico IC50

values was of two orders of magnitude. In silico, clarithromycin
induced significant positive inotropic changes at concentrations
10–300 times that of EFTPCmax and negative inotropic effects only
at extremely high concentrations (~2000× EFTPCmax). Therefore, it
could not be predicted as a negative inotropic drug. The biphasic
behaviour of clarithromycin is due to its multichannel effect: the initial
block of hERG leads to a positive inotropic effect as prolonging the AP
leads to more Ca2+ entering the cell, whereas at higher concentrations,
the block of INa becomes dominant, leading to lower AP amplitude and
plateau and, therefore, to less Ca2+ influx and reduced inotropy. The
ratio between the in vitro IC50 value and EFTPCmax was 13× (Table 2),
despite no clinical observations suggesting negative inotropic potential
for clarithromycin (Gluud et al., 2008; Suzuki et al., 2012; Wong et al.,
2016). The effects of clarithromycin on the cardiovascular system are
not clear and still debated. Clarithromycin has been associated in the
short termwith increased risks of myocardial infarction, prolonged QT,
arrhythmia, and cardiac mortality (Wong et al., 2016). In the long term,
clarithromycin increased 6-year mortality in coronary heart disease
patients (Gluud et al., 2008), but its inotropic effects have not
been assessed.

Similarly, simulations for loratadine show negative inotropic
effects only at concentrations thousands of times that of EFTPCmax,
consistent with the cardiac safety profile of this drug (Hey et al.,
1999; Nault et al., 2002). Disopyramide induced mild positive
inotropic changes at concentrations 10–100 times that of
EFTPCmax and negative inotropic effects only at higher
concentrations, leading to an in silico IC50 value of ~400 μM,
higher than in vitro observations in human (Nguyen et al., 2017)
and canine (Harmer et al., 2012) cardiomyocytes (9.3 µM and
44 μM, respectively). In vivo and clinical evidence highlighted the
significant effects of disopyramide on cardiac contractility (Coppini
et al., 2019; Kim and Benowitz, 1990; Pollick et al., 1982), suggesting
that in addition to ICaL inhibition, disopyramide might affect
contractility via other modes of action.

Regarding safety margins, there is no official threshold provided
by regulators for cardiac contractility assessment, although 100×
EFTPCmax (or 100× of the maximum free plasma concentration of a
drug) is usually considered a robust range to explore. In silico
predictions of contractility changes were quantitatively consistent
(within an order of magnitude) with in vitro observations for 86% of
negative/neutral inotropic compounds from Dataset 1 (Table 2).

The slightly worse performance of the Bayesian point estimates in
this study should not overshadow its broader utility. When using the
Bayesian method, posterior distributions highlight how uncertainty
might contribute to discrepancies, offering insights that a median fit
cannot provide. For example, wider uncertainty ranges observed for a
compound could signal experimental or model-specific variability
worth further investigation. Although the median fit approach offers
simplicity and computational ease, it is inherently limited in its ability to
handle variability, which is a hallmark of biological systems. The
Bayesian framework, although more computationally intensive,
provides a more comprehensive characterisation of uncertainty and
is, therefore, better suited for general application, especially when

variability is significant. We consider that the apparent superiority of
the median fit in this specific dataset is circumstantial and does not
detract from the overall advantages of the Bayesian approach.

Considering the inotropic effect of ion channel inhibition alone only
accounts for one specific mechanism of toxicity (mostly calcium
reduction), and therefore, any effects via other mechanisms would not
be predicted. Beyond ion channel inhibition, perturbation of other
inotropic mechanisms such as myosin activation or calcium sensitivity
could affect cardiac contractility. Simulations with the
Margara2021 model reproduced the drug-induced effects observed
in vitro (Table 3) for the following mechanisms: (1) extracellular Ca2+

concentration increase; (2) ICaL activation; (3) SERCA pump activation;
(4) Na+/Ca2+ exchanger inactivation; (5) β-adrenergic stimulation; (6)
Ca2+ sensitivity decrease; and (7) cardiac myosin activation. For Na+/K+

pump inactivation and RyR activation, simulations are qualitatively
consistent with in vitro observation but do not replicate the range
observed in vitro, due to the modelling approach chosen to describe
those twomodes of action. These results were obtained after perturbating
mostly only one selected parameter for each mode of action. In addition,
omecamtiv mecarbil, a myosin-activating drug, was simulated
perturbating only one selected parameter following the approach
described by Tewari et al. (2016), i.e., assuming that the drug
increases the rate of myosin head binding with the actin filament.
Specifically, Tewari and others simulated the omecamtiv mecarbil
mechanism of action by increasing their model parameter ka,
representing the rate of myosin-head attachment with actin. In our
specific case [cell contraction model from Land et al. (2017)], this was
translated into scaling the Kuw parameter, representing the transition rate
from a cross-bridge unbound state to a cross-bridge weakly bound state.
However, Kampourakis et al. (2018) describe omecamtiv mecarbil as
exhibiting a biphasic behaviour, which was not captured in our
simulations, but it might be reproduced using more sophisticated
modelling and simulation approaches (Campbell et al., 2018;
Forouzandehmehr et al., 2022). Overall, the rationale behind our
modelling approach was not to provide a detailed description of each
drug’s mode of action, but, instead, to use the simplest modelling
approach that could be more easily characterised and informed using
early in vitro data during the drug development process. Future studies
could explore more complex approaches to model these modes of action
and identify datasets to quantitatively understand drug effects on these
mechanisms (Terkildsen et al., 2007). The adoption ofmore sophisticated
models to describe cardiac mechanical contraction might also affect our
finding that the AT peak is the most informative biomarker for assessing
drug-induced effects on cardiac contractility. A systematic analytic
comparison of contractility biomarkers across several mechanical
models, however, goes beyond the scope of the present study. As a
future work, additional modes of action and/or biological mechanisms
(e.g., ATP hydrolysis) could also be implemented into the Margara et al.
(2021) model to expand the applicability of the proposed modelling
framework, including its use in studying disease-related/drug-induced
metabolic impairments.

As data from experimental assays quantifying the extent of
perturbation of these nine contractility mechanisms were not
available, a sensitivity analysis approach was adopted. This aimed to
gain an understanding of the extent of predicted changes in cardiac
contractility biomarkers in silico under different degrees of perturbation
for each of these mechanisms. When information on the potential
involvement of a particular mechanism is available, which may not be
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fully quantitative (e.g., predicted from the compound structure), it can
still be leveraged for the early prediction of its impact on cardiac
inotropy, either alone or in combination with other mechanisms (e.g.,
ion channel inhibition). If an IC50 value for a given mechanism is
known, it could be incorporated into simulations for a more
quantitative prediction of the expected effect on cardiac contractility.
Otherwise, a range of modulations can be explored to compute an early
therapeutic index and inform dosing strategies for in vivo/clinical
studies. The code provided allows for the simulation of any of these
mechanisms, alone or alongside ion channel inhibition, by varying
mechanism-specific model parameters. This enables predictions for
both positive and negative inotropic compounds.

To move toward quantitative predictions for positive inotropic
compounds, additional preclinical data are needed to characterise each
of the abovementioned mechanisms for positive inotropy in a dose-
dependent way. Similar to the CiPA initiative, a newly conceived,
hypothetical initiative could aim at identifying and accurately
characterising reference compounds affecting cardiac inotropy to
define in vitro/in silico approaches and dose-dependent input data for
modelling and simulations, similar to IC50 values for describing ion
channel inhibition and predicting arrhythmic risk. This ambitious
initiative could only arise from and will require a community effort
between academics, pharmaceutical companies, and regulators and is,
therefore, beyond the scope of the present study. Moreover, clinical data
on drug-induced changes on cardiac contractility for a set of reference
compounds will also facilitate the validation of new in vitro/in
silico assays.

On a final note, cardiac drugs and pathologies can potentially have
deleterious effects propagating from the cellular level to the organ scale,
which may cause contractile dysfunction and/or increase arrhythmic
risk. To capture this complex behaviour, theMargara2021model can be
incorporated into tissue and organ-scale frameworks (Zhou et al., 2024;
Margara et al., 2022), including representations of electrophysiology,
electromechanical coupling, and anatomical effects to further improve
predictive power and assess mechanistic pathways involved.

5 Conclusion

This study describes the validation and application of simulations
with an in silico human cardiac electromechanicalmodel integrating ion
channel inhibition data and information on potential inotropic
mechanisms for predicting primary or off-target effects on cardiac
contractility. The in silico approach was found to predict well inotropy
changes in both positive and negative/no effect inotropes. The outlined
in silicomodelling and simulation workflows (Figure 1A) could inform
how this model can be used as part of cardiac safety assessment
strategies, along with computational models for predicting drug-
induced changes in cardiac electrophysiology within pharmaceutical
research and development.
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