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Introduction: Sanqi oral solution (SQ) is a Chinese medicine that has been used
well to treat idiopathic membranous nephropathy (IMN). It has been
demonstrated to mitigate IMN proteinuria by inhibiting podocyte apoptosis.
however, the precise mechanism has not been fully elucidated.

Methods: A passive Heymann nephropathy (PHN) rat model was used to mimic
the in vivo disease characteristics of IMN. The PHN rats were intragastrically
administered SQ (12.6/6.3 mL/kg) or tacrolimus (0.315mg/kg) for 21 days. SQwas
applied to ADR-induced podocytes in vitro. The effects of SQ on IMN and its
underlying mechanisms were determined by measuring biochemical indices,
pathomorphological characteristics, membrane attack complex (MAC), cell
morphology, and protein levels.

Results: The SQ ingredients found in rat serum underscored their successful
absorption in rats. In PHN rats, SQ induced a significant reduction in proteinuria,
MAC, C5b-9, and glomerular basementmembrane thickness, alongwith a drop in
apoptotic podocytes. Similarly, SQ exerted a protective effect against ADR-
induced podocyte injury by inhibiting apoptosis. Furthermore, inhibition of the
ERK/CK2-α/β-catenin pathway-mediated epithelial-to-mesenchymal transition
(EMT) was found to be involved in the anti-apoptotic effect of SQ in PHN rats and
podocytes, marked by the reduction in vimentin and α-SMA and the induction of
Synaptopodin and Podocin protein levels.

Conclusion: Inhibition of EMT via the ERK/CK2-α/β-catenin pathway may be the
main mechanism by which SQ suppresses podocyte apoptosis in IMN.
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Highlights

1. The main active ingredients of SQ could be absorbed by rats,
which underlay the effectiveness of SQ.

2. The ERK/CK2-α/β-catenin pathway was required for EMT in
apoptosis podocytes.

3. SQ could reduce apoptotic podocytes in IMN by inhibiting
EMT via the ERK/CK2-α/β-catenin pathway.

1 Introduction

Idiopathic membranous nephropathy (IMN) is a
pathomorphologically defined proteinuric glomerular disease and a
common cause of adult nephrotic syndrome (Morelle et al., 2025).
IMN is typically characterized by a distinct thickening of the
glomerular capillary walls resulting from the subepithelial
embedding of immune deposits in the glomerular basement
membrane (GBM), together with podocyte foot process detachment
(Kistler and Salant, 2024). Immune deposits activate the complement
cascade to produce assembled C5b-9 in the course of IMN, and
podocytes are a major target in this process (Liu Z. et al., 2025).
Podocytes are important barriers to maintain glomerular filtration
function and are vulnerable to injury in IMN (Zhang et al., 2024).
Injured podocytes detach from the GBM, inducing proteinuria (Cai
et al., 2024). As specialized, highly differentiated terminal cells,
podocytes will die after being injured by C5b-9 (Jiang et al., 2023).
Apoptosis is the main type of podocyte death and directly associated
with the degree of proteinuria and renal hypofunction (Liu et al., 2023;
Wang et al., 2023). Therefore, preventing podocyte injury is of
importance to relieve proteinuria and inhibit IMN progression.

How nociceptive stimuli lead to podocyte injury and apoptosis in
the IMN remains debatable. In recent years, research on podocyte
injury has focused on the epithelial-to-mesenchymal transition (EMT)
process (Li et al., 2022; Dan Hu et al., 2023; Yue et al., 2024). During
EMT, podocytes undergo a phenotypic transformation from epithelial
cells to mesenchymal cells following stimulation, characterized by loss
of epithelioid marker proteins such as Nephrin, Podocin, and
Synaptopodin, while acquiring mesenchymal characteristics such as
increased vimentin and α-SMA expression (Zheng T. et al., 2025).
EMT will cause podocyte motion and affects adhesion to the GBM,
resulting in the loss of podocyte integrity, fusion of podocytes,
disappearance of the hiatal septum, and podocyte apoptosis (Huang
et al., 2025). Therefore, podocyte EMT plays a vital role in the
destruction of the glomerular filtration barrier.

Numerous studies have shown that traditional Chinese medicine has
distinctive benefits in treating glomerular disease (Miao et al., 2022;Wang
et al., 2024; Li et al., 2025;Wang et al., 2025). Sanqi oral solution (SQ) is a
classic traditional Chinese medicine developed by the famous doctor
Nizhi Yang from Guangdong Province, China. It is composed of Panax
notoginseng (Burkill) F.H. Chen (Sanqi), and Astragalus mongholicus
Bunge (Huangqi). SQ has been used to treat chronic kidney disease
(CKD) for several years and good therapeutic efficiency has been chieved
(Dai et al., 2013). Research has demonstrated that SQ or Sanqi-Huangqi
herb-pair exerted renal protective effect in CKD via inhibiting
macrophage inflammatory response (Wei et al., 2013; Tan et al.,
2020). It was also confirmed that SQ reduces renal injury in diabetic
nephropathy by inhibiting the inflammatory response of infiltrated

macrophages and upregulating autophagy (Wen et al., 2020; Lin et al.,
2022). According to traditional Chinese medicine, SQ has the function of
promoting blood circulation and invigorating Qi in CKD, including
diabetic nephropathy. Our previous study has shown that SQ could
alleviate fatigue in rats with Qi deficiency and blood stasis induced by
exhaustive swimming (Xu et al., 2019). As a type of CKD, IMN can also
be attributed to Qi deficiency and blood stasis; hence, Chinese physicians
have recommended to treat IMN with herbs that invigorate Qi and
promote blood circulation (Lang et al., 2020). SQ has been used to treat
IMN for many years, and SQ could effectively mitigate proteinuria and
slow down IMN progression. We also found that SQ inhibited podocyte
apoptosis in rats with passive Heymann nephropathy (PHN) and
inhibited IMN progression (Wang et al., 2021). However, the
underlying mechanism has not yet been fully elucidated.

In the present study, ERK was identified as a key protein that
regulates the EMT. The influence of SQ on podocyte apoptosis via
ERK-mediated EMT was also expored in IMN in vivo and in vitro.

2 Materials and methods

2.1 Analysis of SQ ingredients in rat serum
using UPLC-QQQ-MS/MS

SQ ingredients in rat serum were detected using UPLC-QQQ-
MS/MS with high sensitivity and specificity. Reference standard for
caylcosin-7-O-β-D-glucopyranoside, notoginsenoside R1, puerarin,
and saikosaponin a were purchased from the China National
Institute for the Control of Pharmaceutical and Biological Products
(purity 98%; Beijing, China). The reference standards for ginsenosides
Rb1, Rd, Re, Rg1, calycosin, and ononin were obtained from PUSH
BIO-TECHNOLOGY (Chengdu, China). UPLC-QQQ-MS/MS was
performed using Shimadzu LC-30A (Shimadzu Corporation, Kyoto,
Japan) and SCIEX Triple QuadTM 6500 (AB Sciex Pte. Ltd,
California, United States) coupled with a mass spectroscopy system
equipped with an Acquity UPLC BEH C18 column (1.7 µm, 100 ×
2.1 mm). The mobile phase consisted of 5 mM ammonium acetate
aqueous solution (A) and acetonitrile (B) in the gradient mode. The
injection volume for each sample was 3 μL. The preparation method
for the SQ-treated rat serum samples and detailed protocols are
provided in the Supplementary Material.

2.2 Preparation of SQ

SQ (Batch No. 210102; Cantonese Medicine Ratification No.
Z20071155), extracted from Astragalus mongholicus Bunge
(0.333 g/mL) and Panax notoginseng (Burkill) F.H. Chen (0.056 g/
mL), was provided and authenticated by Guangdong Provincial
Hospital of Chinese Medicine (Guangzhou, China). The botanical
entities of Astragalus mongholicus Bunge and Panax notoginseng
(Burkill) F.H. Chen can be identified at https://mpns.science.kew.
org/mpns-portal/. SQ was obtained via water extraction and alcohol
precipitation. The main components of SQ were analyzed using high-
performance liquid chromatography coupled with ultraviolet
spectroscopy, as described in our previously published study (Wang
et al., 2021). The lyophilized powder of Sanqi oral solution (SQL) was
prepared as described in our previously published study (Wang et al.,
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2021). Briefly, SQ solutions were frozen in 100 mm culture dishes
at −80°C for 48 h and dried under vacuum conditions at −60°C
to −70°C to obtain SQL. SQL was stored at −80°C until use. The
components and characteristic chromatograms of the SQ are shown in
Supplementary Table S1 and Supplementary Figure S1.

2.3 Animals and ethics statement

Specific pathogen-free (SPF) male Sprague-Dawley (SD) rats were
used in this study. Rats were purchased from theMedical Experimental
Animal Center of Guangdong Province (Production Certification No.
SCXK 2019-0035, Guangzhou), and maintained at the Experimental
Animal Center of Guangdong Provincial Hospital of ChineseMedicine
(Use Certification No. SYXK 2018-0094, Guangzhou). All rats were
acclimatized for 3 days before the experiment and housed under
standard conditions at a constant temperature (20°C ± 2°C),
humidity (50% ± 10% humidity), and artificial lighting from 07:
00 to 19:00. The rats had free access to standard laboratory food
and water. All animal experiments were conducted in accordance with
the guidelines of the International Association for Assessment and
Accreditation of Laboratory Animal Care and were approved by the
Animal Care andUse Committee of Guangdong Provincial Hospital of
Chinese Medicine (Ethics approval No. 2021079).

2.4 PHN establishment and
experimental design

The PHNmodel was established in rats weighing 180–220 g using a
single caudal vein injection of anti-Fx1A antiserum (#PTX-002S;
PROBETEX, San Antonio, CA, USA) in accordance with reagent
instruction and published studies (Wang et al., 2021; Zhao et al.,
2024). Thirty rats were randomly divided into five groups (n = 6 rats
per group): (1) control group (CON), (2) PHNgroup (PHN), (3) SQ low-
dose group (SQ-L), (4) SQ high-dose group (SQ-H), (5) the tacrolimus
group (TAC, Batch No. 22009252, Cantonese medicine ratification No.
H20083039). For animal experiment, we used equivalent doses that were
one and two times the clinical dose of SQ, 6.3 mL/kg and 12.6 mL/kg,
respectively. TAC was employed as the positive control (Fernández-
Juárez et al., 2021), and its dosage was determined based on clinical
dosage using the rat-human conversion coefficient (6.3). Rats in the
PHN, SQ-L, SQ-H and TAC groups were given anti-Fx1A antiserum
(0.5 mL/100g) to induce proteinuria. Rats of the SQ-L, SQ-H and TAC
groups were administrated with SQ (6.3 or 12.6 mL/kg) or TAC
(0.315 mg/kg) by gavage once a day in the morning for 21 days,
beginning on the day of modeling. During model establishment or
treatment, the rats in the CON and PHN groups received water.
Throughout the experiment, rats were weighed weekly and the doses
of SQ and TACwere adjusted accordingly. At the end of the experiment,
the rats were euthanized by intraperitoneal injection of pentobarbital
sodium (100 mg/kg) and blood and renal tissues were collected.

2.5 Biochemical parameters

To determine the protein levels in the urine, 24 h urine of rats
was collected and centrifuged. Blood samples were obtained and

centrifuged to obtain serum, which was stored at −80°C until
analysis. Albuminuria and serum albumin (ALB), total
cholesterol (TG), triglyceride (TC), and low-density lipoprotein
cholesterol (LDL-c) levels were measured using an automatic
biochemical analyzer in the clinical laboratory of Guangdong
Provincial Hospital of Chinese Medicine (Guangzhou, China).

2.6 Histological analysis

The abdominal aorta was perfused with PBS to clear blood, and
the kidneys of the rats were harvested. Renal specimens were fixed in
4% (w/v) paraformaldehyde, embedded in paraffin, and cut into 3-
µm sections, which were stained with hematoxylin and eosin (H&E).
General morphology was examined using a light microscope
(Olympus BX53, Japan).

2.7 Transmission electron microscopy

The electron density in the kidneys was examined by
transmission electron microscopy, as described in our previously
published article (Wang et al., 2021). In brief, cubes of the renal
cortex (1 mm3) were fixed in 5% glutaraldehyde for 2 h and
immersed in 1% osmic acid for 1.five to two h. After dehydration
with gradient alcohol and immersion in the embedding solution
overnight, cubes were dried and cut into 50–70 nm slices, which
were stained with uranyl acetate and lead citrate, and then scanned
using a transmission electron microscope (JEM1400 PLUS, Japan).

2.8 Periodic acid-silver
methenamine staining

A periodic acid-silver methenamine (PASM) staining kit
(Solarbio, G1790) was used to visualize the basement membrane
thickness of GBM. Briefly, paraffin sections were dewaxed in xylene
and rehydrated in alcohol, followed by incubation in oxidant for
15min, staining with Ammonium Ferric Sulfate Solution for 10min,
and staining with Methenamine Silver Working Solution at 60°C for
20–30 min until the sections turned black. The sections were soaked
in Hypo Solution for 1 min, stained with Gold Chloride Solution for
1 min, and re-dyed with a Light Green Solution for 1 min. Finally,
the stained sections were dehydrated using an alcohol gradient,
transparentized in xylene, and sealed with neutral gum. All the
sections were viewed under a light microscope (Olympus BX53,
Japan). The mean density of black metal gold was measured in five
randomly captured fields of six sections using Image Pro Plus (Bio-
Rad Laboratories, Hercules, CA, United States).

2.9 Hoechst 33342 staining

Apoptotic cells in the renal cryosections from each group were
visualized using Hoechst 33342 staining (Boster, AR0039) at room
temperature for 5 min. The stained renal cryosections were washed
with TBST solution and examined under a fluorescence microscope
(Nikon Eclipse E800).
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2.10 Cell culture

The conditionally immortalized temperature-sensitive mouse
podocyte cell line was a gift from Professor Peter Mundel (Medical
College, Harvard University, Boston, MA, United States). Podocytes
were induced to proliferate in RPMI 1640 culture medium containing
10% fetal bovine serum and 10 U/mL recombinant IFN-γ (Sigma, St.
Louis, MO, United States) at 33°C. Podocytes were induced to
differentiate at 37°C in the absence of interferon-γ for 10–14 days.
SQL was dissolved in PBS and stored at −20°C. Differentiated
podocytes were cultured overnight at 37°C and treated with
400 ng/mL ADR, with or without 600 μg/mL SQL, for 24 h. ADR
and SQL concentrations were chosen based on our previous study
(Wang et al., 2021).

2.11 Immunofluorescence and
cytoskeleton staining

OCT compound-embedded renal tissues were used for the
immunofluorescence analysis of C5b-9 and Nephrin. Frozen
sections (5 µm) were fixed with acetone, blocked with 5% bovine
serum albumin (BSA), and stained with anti-C5b-9, anti-
synaptopodin, and anti-vimentin antibodies overnight at 4°C,
followed by incubation with Goat Anti-Mouse IgG H&L (Alexa
Fluor® 488) and Goat Anti-Rabbit IgG H&L (Alexa Fluor® 594). The
sections were observed under a fluorescence microscope (Olympus
BX50). Fluorescence intensity was semi-quantitatively analyzed in
five randomly selected fields of six slices using ImageJ software (Bio-
Rad Laboratories, Hercules, CA, United States).

Cellular localization and expression of vimentin and α-SMA
were examined in podocytes fixed with paraformaldehyde (w/v).
After incubation with 5% bovine serum albumin (BSA) at 37°C for
30 min in the dark, podocytes were incubated with anti-vimentin or
anti-α-SMA at 4°C overnight. After washing, podocytes were
incubated with Goat Anti-Rabbit IgG H&L (Alexa Fluor® 594)
for 1 h and stained with DAPI for 5 min. To perform TUNEL
staining, the ADR-induced podocyte treated with or without SQL
were fixed with 4% paraformaldehyde (w/v) and incubated for 5 min
at room temperature in PBS containing 0.3% Triton X-100. The
One-step TUNEL Cell Apoptosis Detection Kit (Beyotime, C1089)
was employed to evaluate apoptosis. For cytoskeletal staining,

podocytes were fixed with 4% (w/v) paraformaldehyde for 5 min,
incubated with 0.2% Triton X-100 for 10 min, and stained with 5 μg/
mL phalloidin-iFluor 488 reagent (Cytoskeleton, Abcam) for 20 min
in the dark. After washing, podocytes were stained with DAPI for
5 min. Finally, stained podocytes were washed with PBS and
examined under a fluorescence microscope (Olympus BX50).
Two to Five fields from three independent experiments were
randomly selected for analysis, and the fluorescence intensity was
measured using ImageJ software (Bio-Rad Laboratories, Hercules,
CA, United States). Details of the antibodies are presented
in Table 1.

2.12 Western blot

Total protein was extracted from renal tissues and podocytes
using a tissue Protein Extraction buffer (Thermo Fisher Scientific,
Rockford, IL, United States) or RIPA Lysis buffer (Beyotime,
Shanghai, China) with proteinase and phosphatase inhibitor
tablets (Roche, Mannheim, Germany). The total protein
concentration was determined using a BCA assay kit. Next, 5 ×
Loading Buffer (CWBIO, Beijing, China) was added to the lysates,
which were then incubated for 10 min at 100°C. Proteins (Loading
volume: 5 μL) were separated by 10%–12.5% sodium dodecyl sulfate-
polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto
polyvinylidene difluoride (PVDF) membranes, which were blocked
and incubated overnight with the following primary antibodies: anti-
Caspase-3, anti-Bax, anti-Bcl-2, anti-vimentin, anti-α-SMA, anti-
ERK, anti-p-ERK, anti-CK2-α, anti-β-catenin, and anti-GAPDH.
The membranes were then washed, incubated with anti-rabbit or
anti-mouse IgG, and washed again. Protein bands were visualized
using an enhanced chemiluminescence detection system (Bio-Rad,
Laboratories, Hercules, CA, United States) and signal intensities were
quantified by Image Lab software 5.2.1 (Bio-Rad, Laboratories,
Hercules, CA, United States).

2.13 Statistical analysis

Statistical comparisons were conducted using SPSS software
version 19.0. Multiple sets of independent quantitative data that
follow a normal distribution are compared for mean using one-way

TABLE 1 Ingredient sources and retention times.

No. Ingredient Source MW MRM ion pair Retention time (min)

1 caylcosin-7-O-β-D-glucopyranoside Radix Astragali 446.41 m/z 447.3→285.1* 3.13

2 notoginsenoside R1 Radix Notoginseng 933.14 m/z 931.6→637.5# 3.44

3 ginsenoside Re Radix Notoginseng 947.15 m/z 945.3→637.4# 3.52

4 ginsenoside Rg1 Radix Notoginseng 801.01 m/z 799.5→637.5# 3.54

5 ononin Radix Astragali 430.40 m/z 431.0→269.1* 3.73

6 calycosin Radix Astragali 284.26 m/z 283.0→268.1# 3.92

7 ginsenoside Rb1 Radix Notoginseng 1109.3 m/z 1107.6→945.6# 3.95

8 ginsenoside Rd Radix Notoginseng 947.15 m/z 945.3 →621.5# 4.15

*Positive; # Negative.
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ANOVA. If the one-way ANOVA is statistically significant, pairwise
comparisons of mean values between groups are conducted. When
the variances are equal, the least significant difference t-test (LSD-t
test) is used to compare and analyze the differences in mean values
between groups; when the variance is uneven, statistical analysis is
performed using Dunnett’s T3. Results are expressed as the mean ±
standard deviation (SD). Differences were considered statistically
significant at p < 0.05, and differences were considered statistically
significant at p < 0.01.

3 Results

3.1 The main active ingredients in SQ are
absorbed by rats

In our previously published study, the main active
ingredients in commercialized SQ prepared by the water
extraction alcohol precipitation method according to the
Chinese Pharmacopoeia were determined (Tian et al., 2020),

and these ingredients were set as the standard for
commercialized SQ quality control. In this study, the main
absorbed ingredients of SQ in rat serum were identified using
UPLC-QQQ-MS/MS with high sensitivity and specificity.
Positive and negative ion switching - multi-reaction
monitoring (MRM) chromatograms were obtained using two
mobile phase systems (5 mM ammonium acetate aqueous
solution and acetonitrile) with gradient elution. All the
ingredients were separated within 5 min under optimized
chromatography and mass spectrometry conditions. The
representative MRM chromatogram of SQ-treated rat serum is
shown in Figure 1A, and the MRM chromatogram of blank rat
serum-containing standards is shown in Figure 1B. Eight
ingredients (caylcosin-7-O-β-D-glucopyranoside, notoginsenoside
R1, ginsenoside Re, ginsenoside Rg1, ginsenoside Rb1, calycosin,
ginsenoside Rd, and ononin) of SQ, assigned to Radix Astragali
and Radix Notoginseng, were identified based on their retention
times and MRM ion pairs (Table 1). These data indicated that the
main active ingredients of SQ could be absorbed into rat blood and
were a potential pharmacological basis for SQ efficacy.

FIGURE 1
The main active ingredients of SQ were absorbed by rats. (A, B)MRM chromatograms of the main active ingredients of SQ in SQ-treated rat serum
and blank rat serum-containing standards. (1) caylcosin-7-O-β-D-glucopyranoside, (2) notoginsenoside R1, (3) ginsenoside Re, (4) ginsenoside Rg1, (5)
ononin, (6) calycosin, (7) ginsenoside Rb1, and (8) ginsenoside Rd.
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FIGURE 2
SQ relieved albuminuria, hyperlipidemia, and glomerular histopathological injury in PHN rats. (A) Diagram of the animal experiments. (B, C)
Proteinuria was detected in rats from all groups, and the urinary protein/creatinine ratio and 24 h proteinuria were calculated (n = 6). (D–G) Serum
albumin, TG, TC, and LDL-c levels were measured in the peripheral blood of rats in all the groups (n = 6). (H) HE staining (magnification ×200) and
Transmission Electron Microscopy (magnification ×30000) showed overall histomorphological changes and microscopic electron dense deposits
in the kidneys of all groups, and PASM staining (magnification ×1000) indicated the thickness of GBM in the glomeruli of all groups (n = 6). (I) The thickness
of the GBM was semi-quantified (n = 6). Data are presented as the mean ± SD from independent groups. *p < 0.05 vs. the CON group. **p < 0.01 vs. the
CON group. #p < 0.05 vs. the PHN group. ##p < 0.01 vs. the PHN group.
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3.2 SQ relieved albuminuria and
hyperlipidemia in PHN rats

Figure 2A shows the procedure for performing animal experiments.
Albuminuria and hyperlipidemia, which are typical manifestations of
IMN, were examined in all rats. The urinary protein/creatinine ratio
and 24-h proteinuria in PHN rats markedly increased (Figures 2B, C).
However, treatment with SQ-L, SQ-H, and TAC inhibited the elevation
of these indicators. The anti-proteinuria effect of the SQ-Hwas superior
to that of the SQ-L. Consistent with proteinuria, serum albumin levels
were lower in PHN rats than in healthy rats, and higher in SQ-H rats
than in PHN rats (Figure 2D). Similarly, PHN rats had high serum TG,
TC, and LDL-c levels, and the therapeutic effect of SQ-H on the serum
levels of TG, TC, and LDL-c was significant (Figures 2E–G). SQ-L only
exerted therapeutic effects on serumTC and LDL-c levels, whereas TAC
had no significant effect on lipid metabolism biomarkers. Thus, SQ
could efficiently relieve albuminuria and hyperlipidemia in PHN rats in
a dose-dependent manner.

3.3 SQ reduced glomerular
histopathological injury in PHN rats

The typical pathological characteristics of IMN are obvious at the
subcellular level, including subepithelial glomerular immune complex
(electron dense) deposition and thickening of the GBM, whereas it is
difficult to detect histological glomerular changes at the cellular level

(H&E staining). As shown in Figure 2E, H&E staining did not reveal any
obvious differences in the glomerularmorphology. Transmission electron
microscopy images showed large amounts of subepithelial glomerular
electron-dense deposits in PHN rats compared to healthy rats, and
treatment with SQ and TAC significantly alleviated the pathology of
PHN rats (Figure 2H). Similarly, PASM staining indicated that PHN rats
had a thicker GBM than healthy rats, whereas a thinner GMB was
observed in SQ- and TAC-treated PHN rats (Figures 2H, I). The
mitigating effect of the SQ-H was better than that of the SQ-L. These
results indicated that SQ significantly reduced glomerular
histopathological injury in PHN rats in a dose-dependent manner.

3.4 SQ decreased glomerular apoptotic
podocytes in PHN rats

The immune complex activates the local complement system in
the glomeruli to produce C5b-9, which targets podocytes to exert
cellular destructive effects and is a classic type of cell death in IMN.
As shown in Figures 3A, B, deposition of C5b-9 deposition was
visible in the glomeruli of PHN rats after immunofluorescence
staining, and SQ decreased the expression of C5b-9 in PHN rats
in a dose-dependent manner. Moreover, an increase in apoptotic
podocytes was observed in PHN rats, SQ-H effectively reduced
apoptosis in PHN rats (Figure 3A). However, the antiapoptotic
effects of SQL were not evident. Therefore, the SQ-H was selected to
study the underlying mechanism.

FIGURE 3
SQ reduced glomerular apoptotic podocytes in PHN rats. (A, B)C5b-9 assembly was visualized by immunofluorescence staining (magnification ×1000)
and semi-quantified using the ImageJ software. A Hoechst 33342 staining (magnification ×400) revealed apoptotic podocytes. Data are presented as the
mean ± SD from independent groups. **p < 0.01 vs. the CON group. #p < 0.05 vs. the PHN group. ##p < 0.01 vs. the PHN group.
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3.5 SQ reduced podocyte apoptosis by
inhibiting EMT in PHN rats

EMT can cause highly differentiated podocytes to lose their epithelial
phenotype and irreversible injury. Podocyte apoptosis is most likely the

type of injury induced by cellular EMT. Increased Cleaved caspase-3,
vimentin, and α-SMA expression, and decreased synaptopodin
expression were observed in PHN rats. SQ-H and TAC significantly
inhibited the upregulation of vimentin, α-SMA, and Cleaved caspase-3,
and restored the downregulation of Synaptopodin in PHN rats

FIGURE 4
SQ reduced apoptotic podocytes by inhibiting EMT in PHN rats. (A–C) Synaptopodin (magnification ×1000) and Vimentin (magnification ×1000)
were visualized by immunofluorescence staining and semi-quantified using the ImageJ software. (D–G) Protein levels of cleaved caspase-3, Caspase-3,
vimentin, and α-SMA in the kidneys of all groups were detected byWestern blotting. Data are presented as themean± SD from independent groups. **p <
0.01 vs. the CON group. ##p < 0.01 vs. the PHN group.
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(Figures 4A–G). These data revealed that SQ might inhibit podocyte
apoptosis by inhibiting EMT in rats with PHN. It should be noted that
increasing β-catenin expression in diabetes nephropathy can trigger
mitochondrial-mediated apoptosis in podocytes by Bax/Bcl-2/caspase-
3 pathway (Wang et al., 2018). Besides, we have previously demonstrated
that SQ alleviates mitochondrial-mediated podocyte apoptosis in IMN
via Bax/Bcl-2/caspase-3 pathway (Wang et al., 2021). Thus, we believe
that SQ alleviated mitochondrial-mediated apoptosis in podocyte of
IMN. Bax and Bcl-2 will not be checked repeatedly in this study.

3.6 The ERK/CK2-α/β-catenin pathway
mediated the effects of SQ on EMT in
PHN rats

Next, the protein expression levels of ERK, CK2-α, and β-catenin
were determined. As shown in Figures 5A–E, ERK1/2, CK2-α, and β-
catenin were implicated in the EMT process in PHN rats. The levels of
p-ERK1/2, CK2-α, and β-catenin were strongly increased in PHN rats,
whereas SQ-H treatment significantly reduced p-ERK1/2, CK2-α, and
β-catenin protein levels. These data indicate that SQ may inhibit EMT
in podocytes of PHN rats via the ERK/CK2-α/β-catenin signaling
pathway in vivo.

3.7 SQ alleviated ADR-induced
podocyte injury

We used an ADR-induced podocyte model to validate the
protective effects of SQ against cell injury in vitro (Figure 6A).
Podocytes were treated with or without ADR/SQL, and cellular
morphology, nucleus and cytoskeleton were examined (Figures
6B–D). ADR significantly reduced podocyte size and led to
pseudopodia formation and podocyte detachment; SQL could
migrate these changes. Moreover, ADR caused nuclear DNA
fragmentation and a dramatic loss of cytoplasmic actin stress
fibers in the cytoplasm of podocytes, which was partially
recovered by SQL.

3.8 SQ reduced apoptosis in ADR-injured
podocytes by suppressing EMT

In parallel with the animal experiments, ADR increased the
levels of cleaved caspase-3, the mesenchymal proteins vimentin and
α-SMA, and the epithelioid marker protein podocin in podocytes
in vitro (Figures 7A–G). SQL reduced the protein changes
(Figures 7A–G).

FIGURE 5
The ERK/CK2-α/β-catenin pathwaymediated the effects of SQ on EMT in PHN rats. (A–E) Protein expression of p-ERK1, ERK1, p-ERK2, ERK2, CK2-α,
and β-catenin was evaluated in the kidneys of all groups byWestern blotting. Data are presented as themean ± SD from independent groups. *p < 0.05 vs.
the CON group. **p < 0.01 vs. the CON group. #p < 0.05 vs. the PHN group. ##p < 0.01 vs. the PHN group.
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3.9 SQ inhibited ERK/CK2-α/β-catenin
pathway in ADR-injured podocytes

The EMT-pathway proteins ERK, CK2-α, and β-catenin were
also measured in podocytes, with and without ADR/SQL
intervention (Figures 8A–E). ADR significantly affected the
protein expression levels of ERK, CK2-α, and β-catenin; however,
SQL blocked these increases.

4 Discussion

In the present study, SQ was shown to be absorbed by rats,
reduced albuminuria, and relieved hyperlipidemia and podocyte loss
in anti-Fx1A antiserum-challenged PHN rats in a dose-dependent
manner. Apoptosis was induced in PHN rat kidneys and cultured

podocytes and was alleviated by SQ treatment. Surprisingly, EMT
is activated, resulting in glomerular injury, which is significantly
reduced by SQ through the ERK/CK2-α/β-catenin signaling
pathway. These data suggest that SQ exerts protective effects
against podocyte apoptosis and renal pathological injury
by inhibiting EMT through the ERK/CK2-α/β-catenin
signaling pathway.

Apoptosis is considered a primary mode of cell death in diverse
cell types (Tian et al., 2020; Newton et al., 2024; Moyer et al., 2025),
and it is also the major cause of podocyte loss and albuminuria in
IMN(Yin et al., 2021). It was previously demonstrated that oxidative
stress (Gomaraschi et al., 2023), inflammation (Oh et al., 2023), and
mitochondrial dysfunction (Yang et al., 2024), could induce
apoptosis. However, the therapeutic strategies for oxidative stress,
inflammation, and mitochondrial disorders do not completely
inhibit apoptosis in podocytes. Therefore, there may be another

FIGURE 6
SQ alleviated ADR-induced podocyte injury. (A) Diagram of the cell experiments. (B–D)Morphological changes (magnification ×100) in podocytes
were recorded using a light microscope, the nuclear DNA fragmentation of the podocyte was visualized by TUNEL staining (magnification ×200), and the
podocyte cytoskeleton (magnification ×400) was visualized by immunofluorescence staining. Semi-quantified using the ImageJ software. Data are
presented as the mean ± SD from independent groups. **p < 0.01 vs. the CON group. ##p < 0.01 vs. the PHN group.
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mechanism that mediates podocyte apoptosis. EMT is a newly
discovered type of podocyte injury (Li et al., 2023). EMT causes
podocytes to transform from an epithelial phenotype to an
interstitial phenotype, leading to irreversible cell injury (Li et al.,
2022). Highly differentiated podocytes lose the support of key
proteins during EMT, resulting in insufficient adhesion,
apoptosis, and albuminuria. In the present study, SQ almost
completely inhibited the occurrence of EMT in podocytes while
mitigating apoptosis. These data indicate the widespread occurrence
of EMT in the kidneys of PHN rats, and suggest that EMT inhibition
may be a major factor underlying the pharmacological effects of SQ.

β-catenin is a multifunctional transcriptional regulatory protein
(Dai et al., 2009). While β-catenin and α-catenin at the podocyte foot
processes form a complex to maintain the tight adhesion between
podocytes, β-catenin in the cytoplasm of podocytes is quickly
degraded by GSK-3β-mediated phosphorylation. Elevated levels of
β-catenin correlate with increased foot process fusion and the loss of
foot process marker Nephrin in podocyte of human proteinuria
nephropathy, and β-catenin knockout led to a significant reduction
of podocyte damage and proteinuria (Dai et al., 2009; Chen et al.,
2023). Besides, increasing β-catenin expression in diabetes
nephropathy can trigger mitochondrial-mediated apoptosis in

FIGURE 7
SQ reduced apoptosis in ADR-injured podocytes by suppressing EMT. (A–D)Cleaved caspase-3, Caspase-3, podocin, and vimentin protein levels in
podocytes weremeasured byWestern blotting. (E–G)Vimentin (magnification ×200) and α-SMA (magnification ×200) in podocytes were visualized (E) by
immunofluorescence staining and semi-quantified using ImageJ software. Data are presented as the mean ± SD from independent groups. *p < 0.05 vs.
the CON group. **p < 0.01 vs. the CON group. #p < 0.05 vs. the PHN group. ##p < 0.01 vs. the PHN group.
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podocytes by Bax/Bcl-2/caspase-3 pathway (Wang et al., 2018). Thus,
β-catenin is closely related to the occurrence of apoptosis in podocyte
and proteinuria. Furthermore, it’s confirmed that β-catenin is a key
molecule that initiates podocyte EMT (Xiong et al., 2023). Inhibition
of β-catenin, which is a highly conserved and ubiquitous serine and
threonine protein kinase, effectively reduces EMT in apoptotic
podocytes, and delays CKD (Kang et al., 2020). The increase of β-
catenin in podocytes may be controlled by CK2-α. CK2-α is a highly
pleiotropic protein kinase and closely related to various glomerular
diseases (Li et al., 2024). CK2 is highly expressed in
glomerulonephritis and renal biopsy specimens of patients with
lupus nephritis, as well as in rat models of IgA nephropathy; and
application of CK2 inhibitors can effectively control proteinuria and
reduce podocyte apoptosis in rats with glomerulonephritis (Yamada
et al., 2005). It has been confirmed that CK2-α can elevate β-catenin
by inhibiting the phosphorylation of GSK-3β, but also release β-
catenin by binding to α-catenin, resulting in an increase in free β-
catenin in the cytoplasm (Seldin et al., 2005; Silva-Pavez and Tapia,
2020). More importantly, the activation of CK2-α is partially
dependent on ERK. ERK is a serine and threonine protein kinase
that belongs to the MAPK family (Liu J. et al., 2025). Activated ERK
leads to acute and chronic renal disease (Jung et al., 2020; Livingston
et al., 2024). An aberrant effect of ERK was also confirmed in
proteinuric glomerular diseases, such as diabetic nephropathy,

glomerulosclerosis, and nephritic syndrome (Das et al., 2019; Pan
et al., 2025; Zhang et al., 2025). Moreover, it has been demonstrated
that ERK has a key role in regulating EMT in renal tubular epithelial
cells (Juan et al., 2023). Researcher has demonstrated that activated
ERK can mutate S360/S362A residues to enhance CK2-α activity (Ji
et al., 2009). The present study indicated that ERK/CK2-α/β-catenin
signaling pathway is involved in podocyte EMT, and SQ alleviates
EMT-mediated podocyte apoptosis via the ERK/CK2-α/β-
catenin pathway.

Actually,the major components of SQ have also been reported
to target EMT-related molecules. Calycosin can target ERK-
mediated apoptosis in H9c2 cells to reduce heat shock, but also
directly regulate cell EMT to treat colorectal cancer (Wang et al.,
2019; Lai et al., 2024). Moreover, caylcosin-7-O-β-D-
glucopyranoside promotes osteoblast differentiation by
modulating β-catenin (Jian et al., 2015). Notoginsenoside
R1 can reduce heart damage caused by high altitude hypoxia in
rats by activating ERK1/2, in addition to increase Lgr5+ stem cell
and epithelial healing in colitis mice by stimulatingWnt/β-Catenin
signaling (Zhao et al., 2023; Yu et al., 2024). Ginsenoside Re
inhibits melanoma development by downregulating ERK and
reduces EMT in non-small cell lung cancer cells by interfering
with M2-like macrophage polarization (Hwang et al., 2023; Tang
et al., 2024). Ginsenoside Rg1 regulates cell apoptosis and

FIGURE 8
SQ inhibited the ERK/CK2-α/β-catenin pathway in ADR-injured podocytes. (A–E) Protein expression of p-ERK1, ERK1, p-ERK2, ERK2, CK2-α, and β-
catenin in podocytes was measured by Western blotting. Data are presented as the mean ± SD from independent groups. *p < 0.05 vs. the CON
group. **p < 0.01 vs. the CON group. #p < 0.05 vs the PHN group. ##p < 0.01 vs. the PHN group.
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improves Alzheimer’s disease via the Wnt/GSK-3β/β-catenin
signaling pathway (Yang et al., 2022). Ginsenoside Rb1 inhibits
porcine epidemic diarrhea virus replication by suppressing the
MAPK/ERK pathway and reducing cell apoptosis, and improves
Bavachin induced renal fibrosis by inhibiting EMT (Ni et al., 2022;
Zheng X. et al., 2025). Ginsenoside Rd promotes Differentiation of
Myeloid Leukemia Cells via modulating the ERK/GSK-3β
signaling pathway (Jiang et al., 2024). Ononin prevents
angiogenesis by inhibiting the MEK/Erk signaling pathway
(Gong et al., 2021). The research outcomes presented above
support our findings.

This study elucidated EMT activation in apoptotic podocytes of
IMN and the role of SQ in EMT activation, as well as performed a
correlation analysis on the signaling pathways that mediate EMT
activation utilizing previously published studies. However, the
mechanisms underlying EMT and the role of SQ in it have not
been thoroughly investigated. Specially, β-catenin is a crucial
molecule for EMT activation in podocytes and also a vital
molecule for tight adhesion of podocyte processes. The likely
mechanism of higher β-catenin protein levels in podocytes in
IMN is still unknown. All of these subjects should be investigated
further in subsequent research.

5 Conclusion

In the present study, we identified SQ as a potential candidate for
renoprotective effects in PHN rats by inhibiting podocyte apoptosis
by reducing podocyte EMT. Moreover, SQ had an eliminative effect
on podocyte EMT via the ERK/CK2-α/β-catenin signaling pathway.
These data confirm that SQ is a promising therapeutic traditional
Chinese medicine for IMN treatment.
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