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Background: Multidrug-resistant bacteria are associated with a high number of
deaths and pose a significant global concern. In recent decades, among these
resistant bacteria, Enterococcus faecium, a hospital-acquired pathogen, has
attracted more attention.

Objective: The present study aims to document the current state of resistance in
E. faecium globally by considering several variables, including geographical
locations, temporal trends, and sources of infection.

Methods: We searched studies in PubMed, Scopus, and Web of Science
(30 November 2022). All statistical analyses were carried out using the
statistical package R.

Results:Our meta-analysis of antibiotic resistance across various clinical isolates
revealed substantial heterogeneity and variability. The average resistance
proportions ranged from 2% for linezolid to 62.8% for erythromycin, with
significant differences observed across different time periods, countries, and
World Health Organization regional offices.

Conclusion: Our findings confirm the high antibacterial activity of linezolid
against E. faecium isolates. Additionally, our investigation reveals a gradual
increase and a concerning upward trend in resistance rates for nearly all
agents in recent years. However, the significant reduction in resistance rates
for certain antibiotics suggests that these drugs could potentially regain their
effectiveness in the future.
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Introduction

Multidrug-resistant (MDR) bacteria have emerged as a serious
global public health threat (Algammal A et al., 2023). These MDR
bacteria are associated with a high number of deaths and contribute
to increased costs for both patients and the healthcare system (Kilbas and
Ciftci, 2018). In recent decades, among these resistant bacteria,
Enterococcus spp. has attracted more attention (Bhardwaj, 2019; Fiore
et al., 2019). Enterococci are Gram-positive cocci, facultative anaerobic
bacteria commonly found in humans and animals and known as
dominant gastrointestinal flora (Kim and Koo, 2020; Lee et al., 2021).
Although Enterococcus species are part of the human microbiota, certain
species have emerged as significant pathogens in recent decades,
particularly among hospitalized and immunocompromised patients
(Výrostková et al., 2021). Enterococcus faecalis and Enterococcus
faecium account for over 90% of Enterococcus isolates recovered from
human patients (Kilbas and Ciftci, 2018; Woźniak-Biel et al., 2019).

E. faecium is a major nosocomial pathogen responsible for a
variety of infections, including bloodstream infections, urinary tract
infections (UTIs), and endocarditis, particularly in
immunocompromised and hospitalized patients (Jahansepas
et al., 2018; Gorrie et al., 2019). Its ability to colonize the
gastrointestinal tract makes E. faecium a significant reservoir for
infection, with studies estimating colonization rates in hospitalized
patients ranging from 10% to 40% (Saifi et al., 2008; Pidot et al.,
2018; Mirzaii et al., 2023). However, the global incidence of
colonization compared to infection remains underreported,
highlighting the need for comprehensive epidemiological studies
(Bhatt et al., 2015; Emaneini et al., 2016; Melese et al., 2020).

A significant proportion of UTIs in hospitalized patients are
caused by E. faecium, particularly in patients with risk factors such as
indwelling catheters, underlying comorbidities, or prior antibiotic
use (Codelia-Anjum et al., 2023). Codelia-Anjum et al. (2023) and
Codelia-Anjum et al. (2023) highlighted the growing burden of
enterococcal UTIs and their resistance to commonly used
antibiotics, posing challenges for effective treatment. In addition
to UTIs, E. faecium is a notable cause of infective endocarditis,
especially in patients with prosthetic heart valves or a history of
invasive cardiac procedures (Babeș et al., 2021). and Babeș et al.
(2021) described the severe clinical outcomes of infective
endocarditis caused by E. faecium, which often requires
combination antibiotic therapy and is associated with high
morbidity and mortality risks. Beyond these, E. faecium
contributes to bloodstream infections (BSIs), intra-abdominal
infections, surgical site infections, pelvic infections, and wound
infections, particularly in hospitalized or immunocompromised
patients (Arias and Murray, 2012; Sangiorgio et al., 2024). Its
ability to colonize the gastrointestinal tract often precedes these
infections, serving as a reservoir and entry point for systemic disease,
particularly under conditions of antibiotic pressure and
compromised immunity (Donskey, 2004; Arias and Murray,
2012). These diverse infection types underscore the importance
of targeted surveillance and appropriate antimicrobial strategies
to manage E. faecium-related diseases in both hospital and
community settings. While E. faecium was previously recognized
primarily as a pathogen in hospitalized patients, recent reports
indicate a significant increase in its role in community-acquired
infections (Agus et al., 2006).

In addition to its role in various infections, the inherent and
acquired resistance of E. faecium is an important consideration.
Generally, this bacterium can acquire resistance through different
mechanisms, including gene mutations and gene transfer from other
bacteria (Mirzaii et al., 2023). Gene transfer in this bacterium is one of
the main reasons for antimicrobial resistance among bacteria. The
development of resistance is associated with decreased antimicrobial
effectiveness and increased morbidity and mortality (Kim and Koo,
2020). In the 1970s, increased resistance to third-generation
cephalosporins and ampicillin was observed. Due to the increased
resistance rate, vancomycin is recommended as the first option for
the treatment of infection caused by enterococci. However, in 1986,
resistance to vancomycin was reported in the United Kingdom and
France (Emaneini et al., 2016; Jubeh et al., 2020). E. faecium has
garnered significant attention due to its resistance to vancomycin,
one of the last-resort antibiotics for treating severe Gram-positive
infections (Ahmed Mo and Baptiste, 2018). This resistance poses a
critical challenge in treating infections caused by this pathogen,
particularly in healthcare settings. Consequently, vancomycin-
resistant E. faecium (VRE) has been listed by the World Health
Organization (WHO) as a priority pathogen for which the
development of new treatment strategies is essential (Asokan et al.,
2019). Because infections caused by VRE are associated with more
hospitalization, generating enormous costs and increased mortality
(Melese et al., 2020), knowledge about control and treatment
strategies is necessary.

Previous systematic reviews have investigated resistance in
enterococci; however, all studies primarily reported local resistance,
vancomycin resistance, or strains of enterococci that were resistant and
recovered from specific infections (Emaneini et al., 2016; Kilbas and
Ciftci, 2018; Melese et al., 2020; Correa-Martínez et al., 2021; Yan et al.,
2023). To our knowledge, neither statistical analysis nor a
comprehensive assessment of enterococci resistance in all infections
was conducted in those meta-analyses. Therefore, in the present study,
we focused on documenting the current state of resistance in E. faecium
by analyzing relevant literature published worldwide. Also, we included
several variables such as geographical locations, time trends, and sources
of infection in the analysis.

Methods

This review is reported in accordance with the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses
guidelines (PRISMA) (Moher et al., 2009).

Search strategy and study selection

We systematically searched for relevant articles in PubMed,
Scopus, and Embase (Until 30 November 2022) by using the related
keywords: (“Enterococci” OR “Enterococcus faecium” OR “E.
faecium” AND “antimicrobial” OR “antibiotic” AND “resistance”
OR “susceptible” OR “susceptibility” OR “minimum inhibitory
concentration” OR “MIC”) in the title/abstract/keywords fields.
No limitation was used while searching databases. The search
strategy was designed and conducted by the investigators of the
study. The reference lists of all related studies were reviewed for
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additional publications. The records obtained through database
searches were merged, and duplicates were removed using
EndNote X8 (Thomson Reuters, New York, NY, United States).
One of the team members randomly evaluated the search results to
ensure that no relevant studies were overlooked. The authors
collaborated on all steps, resolving any disagreements about
article selection through discussion. Additionally, references from
the reviewed articles were also searched for further information.

Inclusion and exclusion criteria

The eligibility criteria for including articles in the meta-analysis
were as follows: 1) original studies investigating antibiotic resistance in
E. faecium isolates collected exclusively from human clinical samples; 2)
peer-reviewed articles published in English between 2000 and 2022; 3)
studies that specified the total number of E. faecium clinical isolates; and
4) studies that specified the number of antibiotic-resistant E. faecium
clinical isolates. The exclusion criteria were as follows: 1) studies that
contained duplicate data or were overlapping; 2) studies without clinical
isolates; 3) studies reporting antibiotic resistance of Enterococcus species
other than E. faecium; 4) reviews, cohort studies, pharmacokinetic
studies, and conference abstracts; 5) studies in which antibiotic
resistance rates were not clearly presented or reported; 6) studies
that included clinical samples from animals or the environment
(i.e., related to the One Health concept).

Data extraction

The following information was extracted from each included
study: first author, publication year, continent, country, number of
E. faecium clinical isolates, number of antibiotic-resistant E. faecium
clinical isolates, infection source (bloodstream, gastrointestinal tract,
urinary tract, or mixed), and antimicrobial susceptibility testing
(AST) methods (MIC-based methods and disk diffusion agar). Data
were collected by two independent reviewers and verified by a third
researcher. The resistance rate was calculated as the number of
resistant isolates divided by the total number of isolates tested.

Quality assessment

The quality of the included studies was independently assessed
by two reviewers using an adapted version of the Newcastle–Ottawa
scale. This adaptation was specifically tailored for cross-sectional
studies to evaluate key factors such as selection, comparability, and
outcome assessment in the context of observational research
(Modesti et al., 2016). A score ranging from 0 to 8 points was
attributed to each study (≥6 points: high quality, ≤5 points: low
quality). A higher score indicated a higher study quality. A third
reviewer was assigned (or adjudicated) in any cases of disagreement.

Statistical analysis

The studies presenting raw data on antibiotic resistance in E. faecium
clinical isolates derived from humans were included in the meta-analysis

that was carried out using the meta-prop (Schwarzer, 2007) command in
R statistical software on all prevalence statistics by antibiotic, region
(continents/countries), year, infection source, and AST. The meta-
analysis results consist of a prevalence statistic with 95% confidence
intervals calculated from the weighted prevalence statistics for all the
studies in the specified subgroup by antibiotic, region (continents/
countries), year, infection source, and AST. Publication bias was
assessed using Egger’s test. All statistical interpretations were reported
on a 95%confidence interval (CI) basis. All statistical analyseswere carried
out using the statistical package R 3.6.0 (R Foundation for Statistical
Computing: Vienna, Austria) (Team, 2013).

Study outcomes

Resistance data were interpreted according to the Clinical and
Laboratory Standards Institute (CLSI) Weinstein (2020) and The
European Committee on Antimicrobial Susceptibility Testing
(2025) (EUCAST) guidelines as stated in the included studies.
Subgroup analyses were performed based on the following
categories: 1) year (2000–2019, 2020–2022), 2) geographical area
(continents/countries), 3) infection source, 4) interpretation
standards (CLSI and EUCAST), and 5) AST methods.

Results

Systematic literature search

A total of 4,580 records were identified in the initial search. After
screening the titles and abstracts, 4,485 articles were excluded due to
irrelevance and duplication. The full texts of the remaining 95 articles
were then reviewed (Figure 1), and 41 were further excluded for the
aforementioned reasons. Finally, the 54 studies included (Luh et al.,
2000; Zouain and Araj, 2001; Richter et al., 2003; Udo et al., 2003; Boost
et al., 2004; Karmarkar et al., 2004; Brauers et al., 2005; Hsueh et al.,
2005; Kaçmaz and Aksoy, 2005; Kapoor et al., 2005; Oh et al., 2005;
Nicoletti et al., 2006; Quiñones-Pérez et al., 2006; Ghanem et al., 2007;
Sader et al., 2007; Saifi et al., 2008; Sader and Jones, 2009; Jain et al.,
2011; Liu et al., 2011; Olawale et al., 2011; Batistão et al., 2012; Djahmi
et al., 2012; Dworniczek et al., 2012; Kelesidis et al., 2012; Pourakbari
et al., 2012; Sibel et al., 2012; Balaei Gajan et al., 2013; Dadfarma et al.,
2013; Fernandes and Dhanashree, 2013; Kafil et al., 2013; Lee et al.,
2013; Jia et al., 2014; Bhatt et al., 2015; Li et al., 2015; Jahansepas et al.,
2018; Haghi et al., 2019; Zhang et al., 2019; Condò et al., 2020; Dave
et al., 2020; Davis et al., 2020; Dodson et al., 2020; Dong et al., 2020;
Erdem et al., 2020; Franyó et al., 2020; Friedman et al., 2020; Guo et al.,
2020; Jannati et al., 2020; Rostkowska et al., 2020; Tollu and Ekin, 2020;
Wang et al., 2020; Arbune et al., 2021; Boccella et al., 2021; Bogut et al.,
2021; Coombs et al., 2022) were published between 2000 and 2022
(Supplementary File S1). The screening and selection process are
summarized in the PRISMA flow chart (Figure 1).

Characteristics of included studies

Reports were collected from 21 countries across five continents:
Europe (Poland, Hungary, Italy, Germany, Romania), Asia (Iran,
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Turkey, China, South Korea, Kuwait, Israel, Taiwan, India, Lebanon,
and Hong Kong), the Americas (United States, Brazil, Cuba),
Oceania (Australia), and Africa (Algeria and Nigeria). Figure 2
presents forest plots of the proportions of resistant isolates to
selected antibiotics. The proportions for each antibiotic and
subgroup analyses by continent/country, genus, species, and AST
method are detailed in Supplementary File S2. Temporal changes in
resistance proportions to selected antimicrobials are displayed in
Figure 3. Figure 4 illustrates the changes in resistance proportions by
WHO regions for selected antibiotics. The trends in resistance rates
are summarized below.

Vancomycin

A total of 5,560 clinical isolates from 46 studies were included in
the analysis of vancomycin resistance. The estimated average
proportion using a random-effects model was 14% (95% CI:

8.5–22.2), with substantial heterogeneity observed between
studies (I2 = 96.45%, P < 0.001) (Supplementary File S2;
Figure 2). A subgroup analysis was performed for two periods:
2000–2019 and 2020–2022 (Supplementary File S2) to examine
trends over time. Vancomycin resistance increased from 13.3%
(95% CI: 6.4–25.4) during 2000–2019 to 17.5% (95% CI:
9.4–30.3) in 2020–2022 (Supplementary File S2; Figure 3; P =
0.741). Among the 20 countries reporting vancomycin resistance,
13 countries (Poland, Iran, China, United States, Brazil, Cuba, South
Korea, Hungary, Israel, Australia, Taiwan, India, and Nigeria)
reported resistance rates above 5%. A statistically significant
difference was observed in resistance rates between countries
(P < 0.001). The highest resistance proportion was recorded in
the western Pacific region, at 23.1%, whereas the lowest was in
Europe, at 9.3% (Figure 4). Urinary tract infections showed the
highest resistance proportion, at 37.4% (95% CI: 22.8–54.8), while
mixed infections had the lowest, at 7.1% (95% CI: 2.6–18)
(Supplementary File S2).

FIGURE 1
PRISMA flowchart of included studies.
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Teicoplanin

A total of 4,651 clinical isolates from 30 studies were included
in the analysis of teicoplanin resistance. The estimated average
proportion using a random-effects model was 14.3% (95% CI:
8.6–22.8), with substantial heterogeneity observed between
studies (I2 = 95.7%, P < 0.001) (Supplementary File S2;
Figure 2). Teicoplanin resistance gradually increased from
14.2% (95% CI: 7.9–24.2) in 2000–2019 to 17.9% (95% CI:
5.5–45.2) in 2020–2022 (Supplementary File S2; Figure 3; P =
0.619). Among 16 countries reporting teicoplanin resistance data,
10 countries (Iran, Turkey, Cuba, Hungary, Poland, China,
Australia, United States, Taiwan, and India) reported
resistance rates above 5%. The highest resistance proportion
was observed in the Americas, at 22.4%, while the lowest was
in Africa, at 1.3% (Figure 4). BSIs showed the highest resistance
proportion, at 20.2% (95% CI: 4.5–57.6), whereas gastrointestinal
tract infections had the lowest, at 4.9% (95% CI: 0–95.2)
(Supplementary File S2).

Penicillin

A total of 2,358 clinical isolates investigated in 16 studies
were included in the analysis of penicillin resistance. The
estimated average proportion based on the random-effects
model was 71.9% (95% CI, 52.6, 85.5) with substantial
heterogeneity (I2 = 97.14%%, P= <0.001) observed between
included studies (Supplementary File S2; Figure 2). In the case
of penicillin, we found a minor decrease in the percentage of
resistance between the two time periods as follows: from 73.3%
(95% CI 39.4–82.3) resistance among 972 strains in
2000–2019 to 70.3% (95% CI 38.6–89.9) resistance among
381 strains in 2020–2022. (Supplementary File S2; Figure 3;
P = 0.843). Among eight countries reporting resistance data for
penicillin, six (Iran, Turkey, China, Brazil, United States,
Australia, Taiwan, and India) reported that >70% of isolates
had penicillin resistance. There was a statistically significant
difference in the penicillin resistance rates between countries
(P < 0.001). The highest recorded proportion of resistance,

FIGURE 2
Forrest plots of included antibiotics.
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94.2%, was observed in Southeast Asia, while the western
Pacific region reported the lowest, 54% (Figure 4). The
subgroup analysis conducted on penicillin resistance based
on infection source revealed a significant difference in
resistance proportions (P = 0.002).

Ampicillin

A total of 5,720 clinical isolates investigated in 40 studies were
included in the analysis of ampicillin resistance. The estimated
average proportion based on the random-effects model was 58.9%
(95% CI, 46.5, 70.3), with substantial heterogeneity (I2 = 97.43%, P
= <0.001) observed between included studies (Supplementary File
S2; Figure 2). The proportion of ampicillin resistance gradually
increased from 51.2% (95% CI 38.2–64) of 3,585 strains in
2000–2019 to 72.3% (95% CI 50.9–86.8) of 2,135 strains in
2020–2022 (Supplementary File S2; Figure 3; P = 0.083).
Among 17 countries reporting resistance data for ampicillin,
only four countries (South Korea, Italy, and Lebanon) reported
that <25% of isolates had ampicillin resistance. There was a

statistically significant difference in the ampicillin resistance
rates between countries (P = 0.03). The highest recorded
proportion of resistance was observed in the African region, at
93.1%, while the eastern Mediterranean region reported the lowest
recorded proportion, reaching 33.7% (Figure 4). The subgroup
analysis conducted on ampicillin resistance based on infection
source observed a significant difference in resistance proportions.
Urinary tract infections reported the highest proportion of
resistance, at 60.7% (95% CI 17.7–91.7), while gastrointestinal
tract infections reported the lowest proportion, at 27.8% (95% CI
1.6–90.1) (Supplementary File S2).

Amoxicillin–clavulanic acid

A total of 195 clinical isolates investigated in four studies were
included in the analysis of amoxicillin-clavulanic acid resistance.
The estimated average proportion based on the random-effects
model was 20.4% (95% CI, 9.1, 39.7), with substantial
heterogeneity (I2 = 83.14%, P < 0.001) observed between
included studies (Supplementary File S2; Figure 2).

FIGURE 3
The changes in the proportion of antibiotic resistance over time.
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Imipenem

A total of 1,076 clinical isolates investigated in nine studies were
included in the analysis of imipenem resistance. The estimated
average proportion based on the random-effects model was 57%
(95% CI, 35.7, 75.9), with substantial heterogeneity (I2 = 96.08%, P <
0.001) observed between included studies (Supplementary File
S2; Figure 2).

Gentamicin

A total of 5,077 clinical isolates investigated in 31 studies were
included in the analysis of gentamicin resistance. The estimated
average proportion based on the random-effects model was 50.4%
(95% CI, 41.8, 58.9), with substantial heterogeneity (I2 = 95.86%, P <
0.001) observed between included studies (Supplementary File S2;
Figure 2). The proportion of gentamicin resistance gradually
decreased from 53.7% (95% CI 43–64) of 1,683 strains in

2000–2019 to 42.1% (95% CI 26.8–59.2) of 650 strains in
2020–2022 (Supplementary File S2; Figure 2; P = 0.262). Among
15 countries reporting resistance data for gentamicin, 13 (Poland,
Iran, Turkey, Cuba, United States, Italy, Australia, Taiwan, India,
Hong Kong, Algeria, Nigeria, and South Korea) reported that >25%
of isolates had gentamicin resistance. The highest recorded
proportion of resistance was observed in Southeast Asia, at
76.8%, while the region of the Americas reported the lowest,
reaching 34% (Figure 4). Urinary tract infections reported the
highest proportion of resistance, at 70.7% (95% CI 53.5–83.5),
while gastrointestinal infections reported the lowest proportion,
at 37.1% (95% CI 22.9–54) (Supplementary File S2).

Streptomycin

A total of 2,854 clinical isolates investigated in 18 studies were
included in the analysis of streptomycin resistance. The estimated
average proportion based on the random-effects model was 46.3%

FIGURE 4
The changes in the proportion of antibiotic resistance based on WHO regions.

Frontiers in Pharmacology frontiersin.org07

Huang et al. 10.3389/fphar.2025.1505674

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1505674


(95% CI, 36.1, 56.8), with substantial heterogeneity (I2 = 95.30%,
P < 0.001) observed between included studies (Supplementary File
S2; Figure 2). The proportion of streptomycin resistance gradually
increased from 40.5% (95% CI 31.3–50.4) in 2000–2019 to 54%
(95% CI 33.4–73.4) in 2020–2022 (Supplementary File S2; Figure 3;
P = 0.080). There was no significant difference in the streptomycin
resistance rates between countries (P = 0.882). The highest
recorded proportion of resistance was observed in the European
region, at 52.5%, while the eastern Mediterranean region reported
the lowest recorded proportion, reaching 39.2% (Figure 4).
Urinary tract infections reported the highest proportion of
resistance, at 71.2% (95% CI 34.4–92.1), while BSIs reported the
lowest proportion, at 33.2% (95% CI 28.3–38.5)
(Supplementary File S2).

Ciprofloxacin

A total of 3,295 clinical isolates investigated in 34 studies were
included in the analysis of ciprofloxacin resistance. The estimated
average proportion based on the random-effects model was 63%
(95% CI, 55.1, 71.8), with substantial heterogeneity (I2 = 94.21%,
P < 0.001) observed between included studies (Supplementary
File S2; Figure 2). The proportion of ciprofloxacin resistance
showed a minor decrease, changing from 63.5% (95% CI
52.2–73.5) in 2000–2019 to 60% (95% CI 46.2–78.1) in
2020–2022 (Supplementary File S2; Figure 3; P = 0.957).
Among 16 countries reporting resistance data for
ciprofloxacin, nine countries (China, Brazil, South Korea,
Turkey, United States, Australia, India, Hong Kong, and
Nigeria) reported that >45% of isolates had ciprofloxacin
resistance. The highest recorded proportion of resistance was
observed in Southeast Asia, exhibiting a proportion of 77.4%,
while the western Pacific region reported the lowest recorded
proportion of 50.1% (Figure 4). BSIs reported the highest
proportion of resistance, at 60.1%, while gastrointestinal tract
infections reported the lowest proportion, at 39.1%
(Supplementary File S2).

Levofloxacin

A total of 2,965 clinical isolates investigated in 13 studies were
included in the analysis of ciprofloxacin resistance. The estimated
average proportion based on the random-effects model was 75.1%
(95% CI, 64, 83.7) with substantial heterogeneity (I2 = 94.40%, P <
0.001) observed between included studies (Supplementary File S2;
Figure 2). The proportion of ciprofloxacin resistance significantly
increased from 63% (95%CI 53.5–71.7) in 2000–2019 to 92.7% (95%
CI 85.2–96.6) in 2020–2022 (Supplementary File S2; Figure 3; P <
0.001). Among seven countries reporting resistance data for
ciprofloxacin, six (China, United States, Germany, India, Hong
Kong, and Algeria) reported that >45% of isolates had
ciprofloxacin resistance. The highest recorded proportion of
resistance was observed in the African region, exhibiting 97.4%,
while Southeast Asia reported the lowest recorded proportion of
64% (Figure 4). A significant difference was found in the AST
method (P = 0.018).

Moxifloxacin

A total of 154 clinical isolates investigated in five studies were
included in the analysis of moxifloxacin resistance. The estimated
average proportion based on the random-effects model was 42.5%
(95% CI, 10.6, 82.3) with substantial heterogeneity (I2 = 92.50%, P <
0.001) observed between included studies (Supplementary File
S2; Figure 2).

Tigecycline

A total of 1,380 clinical isolates investigated in seven studies
were included in the analysis of tigecycline resistance. The estimated
average proportion based on the random-effects model was 0.5%
(95% CI, 0.2, 1.2) (Supplementary File S2; Figure 2).

Tetracycline

A total of 3,534 clinical isolates investigated in 18 studies were
included in the analysis of tetracycline resistance. The estimated
average proportion based on the random-effects model was 51.1%
(95% CI, 41.3, 60.9), with substantial heterogeneity (I2 = 94.80%, P <
0.001) observed between included studies (Supplementary File S2;
Figure 2). The proportion of tetracycline resistance decreased from
58.2% (95% CI 47.8–67.9) in 2000–2019 to 32.1% (95% CI
14.3–57.3) in 2020–2022 (Supplementary File S2; Figure 3; P =
0.016). There was a significant difference in the tetracycline
resistance rates between countries (P = 0.003). The highest
recorded proportion of resistance was observed in the region of
the Americas, exhibiting a proportion of 74.5%, while the European
region reported the lowest recorded proportion of 13.3% (Figure 4).
Urinary tract infections reported the highest proportion of
resistance, at 38.1%, while gastrointestinal tract reported the
lowest proportion, at 60.9% (Supplementary File S2).

Doxycycline

A total of 518 clinical isolates investigated in six studies were
included in the analysis of doxycycline resistance. The estimated
average proportion based on the random-effects model was 32.3%
(95% CI, 15.2, 55.9) with substantial heterogeneity (I2 = 93.73%, P <
0.001) observed between included studies (Supplementary File
S2; Figure 2).

Chloramphenicol

A total of 3,076 clinical isolates investigated in 19 studies were
included in the analysis of tetracycline resistance. The estimated
average proportion based on the random-effects model was 16.9%
(95% CI, 11.4, 24.4) with substantial heterogeneity (I2 = 93.53%, P <
0.001) observed between included studies (Supplementary File S2;
Figure 2). The proportion of tetracycline resistance gradually
decreased from 18.1% (95% CI 12.1–26.3) of 535 strains in
2000–2019 to 10% (95% CI 3.3–26.5) of 15 strains in 2020–2022
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(Supplementary File S2; Figure 3; P = 0.365). Among 10 countries
reporting resistance data for tetracycline, four (Kuwait, Italy, Hong
Kong, and South Korea) reported that >25% of isolates had
tetracycline resistance. There was no significant difference in the
tetracycline resistance rates between countries (P = 0.940). The
highest recorded proportion of resistance was observed in eastern
Mediterranean western pacific region, exhibiting a proportion of
18.7% and 16.7%, while the African region reported the lowest
recorded proportion of 2.6% (Figure 4). Urinary tract infections
reported the highest proportion of resistance, at 40.3% (95% CI
12.4–76.2), while BSIs reported the lowest proportion, at 9.2% (95%
CI 0.5–68.5) (Supplementary File S2).

Erythromycin

A total of 4,784 clinical isolates investigated in 28 studies were
included in the analysis of erythromycin resistance. The estimated
average proportion based on the random-effects model was 62.8%
(95% CI, 54.5, 70.4) with substantial heterogeneity (I2 = 95.84%, P <
0.001) observed between included studies (Supplementary File S2;
Figure 2). The proportion of erythromycin resistance gradually
increased from 66.6% in 2000–2019 to 55.4% in 2020–2022
(Supplementary File S2; Figure 2; P = 0.215). Among
17 countries reporting resistance data for erythromycin, four
countries (Cuba, Italy, Germany, and Lebanon) reported
that <45% of isolates had erythromycin resistance. There was an
insignificant difference in the erythromycin resistance rates between
WHO regional offices (P = 0.348). There was a significant difference
in the resistance rates between AST methods (P = 0.036).

Fosfomycin

A total of 495 clinical isolates investigated in five studies were
included in the analysis of fosfomycin resistance. The estimated
average proportion based on the random-effects model was 25.8%
(95% CI, 5, 69.9) with significant heterogeneity (I2 = 93.95%, P <
0.001) observed between included studies (Supplementary File
S2; Figure 2).

Linezolid

A total of 5,040 clinical isolates investigated in 27 studies were
included in the analysis of linezolid resistance. The estimated
average proportion based on the random-effects model was 2%
(95% CI, 0.5, 7.9) with substantial heterogeneity (I2 = 97.91%, P <
0.001) observed between included studies (Supplementary File S2;
Figure 2). The proportion of linezolid resistance gradually decreased
from 2.5% of 3,150 strains in 2000–2019 to 1.2% of 1,854 strains in
2020–2022 (Supplementary File S2; Figure 3; P = 0.556). Among
12 countries reporting resistance data for linezolid, two (Turkey and
Indian) reported that >5% of isolates had linezolid resistance. There
was no significant difference in the linezolid resistance rates between
countries and WHO regional offices.

Quinupristin-dalfopristin

A total of 1,397 clinical isolates investigated in 13 studies were
included in the analysis of quinupristin-dalfopristin resistance.
The estimated average proportion based on the random-effects
model was 24.1% (95% CI, 9.1, 50.2) with substantial
heterogeneity (I2 = 97.09%, P < 0.001) observed between
included studies (Supplementary File S2; Figure 2). The
proportion of quinupristin–dalfopristin resistance gradually
increased from 23.1% in 2000–2019 to 28.2% in 2020–2022
(Supplementary File S2; Figure 3; P = 0.854). Six countries
reported resistance data for quinupristin–dalfopristin. The
subgroup analysis revealed a statistically significant disparity
in the proportion of quinupristin–dalfopristin resistance
among various countries, WHO regional offices, and AST
methods (P < 0.029).

Nitrofurantoin

A total of 2,598 clinical isolates investigated in 12 studies were
included in the analysis of nitrofurantoin resistance. The
estimated average proportion based on the random-effects
model was 38.5% (95% CI, 29.1, 49) with substantial
heterogeneity (I2 = 94.5%, P < 0.001) observed between
included studies (Supplementary File S2; Figure 2). The
proportion of nitrofurantoin resistance gradually increased
from 35.4% in 2000–2019 to 41.9% in 2020–2022
(Supplementary File S2; Figure 3; P = 0.618). There was a
significant difference in the nitrofurantoin resistance rates
between countries and WHO regional offices (P < 0.001).

Rifampicin

A total of 2,133 clinical isolates investigated in 11 studies were
included in the analysis of rifampicin resistance. The estimated
average proportion based on the random-effects model was
49.1% (95% CI, 31.5, 67) with substantial heterogeneity (I2 =
97.34%, P < 0.001) observed between included studies
(Supplementary File S2; Figure 2). The proportion of
rifampicin resistance significantly increased from 38.7% in
2000–2019 to 76.1% in 2020–2022 (Supplementary File S2;
Figure 3; P = 036). There was a significant difference in the
rifampicin resistance rates over time and between WHO regional
offices (P < 0.036).

Trimthoprim–sulfamethoxazole

A total of 666 clinical isolates investigated in eight studies were
included in the analysis of rifampicin resistance. The estimated
average proportion based on the random-effects model was 61.8%
(95% CI, 40.6, 79.3) with substantial heterogeneity (I2 = 92.81%, P <
0.001) observed between included studies (Supplementary File
S2; Figure 2).
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Discussion

Understanding the prevalence of antibiotic resistance is essential
for developing effective strategies to prevent its spread. Globally, the
number of infections caused by E. faecium has increased
significantly in recent years (Melese et al., 2020). Previous studies
and systematic reviews on enterococci investigated prevalence and
resistance; however, all of the research focused on localized
prevalence or resistance, specifically examining vancomycin
resistance, or included enterococci strains isolated from specific
infections, such as BSIs or UTIs (Emaneini et al., 2016; Kilbas
and Ciftci, 2018; Correa-Martínez et al., 2021). However, a
comprehensive review of E. faecium resistance to different
antibiotics across various infections has not yet been conducted.
This study aimed to determine the global antimicrobial resistance
profile of enterococci in different infections. This systematic review
and meta-analysis included 56 eligible studies on antibiotic
resistance in E. faecium, published between 2000 and 2022.
Glycopeptides, including vancomycin and teicoplanin, are among
the last-resort options in our arsenal against Gram-positive bacteria
(Jakaria et al., 2022). However, resistance to this class has been
reported in E. faecium isolates (Melese et al., 2020).According to our
results, the overall resistance to vancomycin and teicoplanin in E.
faecium was 14%. European studies and the National Antimicrobial
Resistance Surveillance of Turkey (NAMRS-T) reported resistance
rates of approximately 11% and 17%, respectively (Agus et al., 2006;
Kilbas and Ciftci, 2018). Infection control programs and adherence
to hand hygiene by healthcare workers are likely the most effective
strategies for reducing the prevalence and resistance of E. faecium
(Kilbas and Ciftci, 2018).

Beta-lactams remain widely prescribed against infections due to
their broad spectrum of activity, established efficacy, and safety
profile. Despite high resistance rates in certain pathogens like E.
faecium, they are often used as first-line treatments, particularly
when susceptibility is confirmed or in combination therapy to
enhance efficacy. Among them, penicillin, ampicillin, and
imipenem show the greatest potency, but cephalosporins, as
monotherapy, have no activity against E. faecium (Miller et al.,
2020). However, susceptibility to these effective antibiotics has
decreased in recent decades. Results of the present review
demonstrated that the resistance rate to nearly all investigated
members of the beta-lactam group (penicillin, ampicillin, and
imipenem) was more than 57%. This high resistance rate is in
accordance with meta-analyses performed by Kilbas et al. in Turkey,
where their data were collected from 2000 to 2015 (Kilbas and Ciftci,
2018). This high resistance shows the necessity to create new
guidelines for treating E. faecium infections and replace these
antibiotics with others. However, resistance against amoxicillin-
clavulanic acid was lower than to other antibiotics in the beta-
lactam group (24%). It demonstrates that beta-lactamase enzymes
play an important role in E. faecium strains that are resistant to the
beta-lactam class, and implementing beta-lactamase inhibitors can
be used as an option for successful treatment and prevention of
increased resistance.

Aminoglycosides encompass a wide range of antibiotics. Among
them, gentamicin stands out as the most effective against E. faecium
when used synergistically with β-lactams (Miller et al., 2020).
However, the mechanism of reduced drug uptake by bacterial

cells leads to a low-level susceptibility within this class of
antibiotics (Kilbas and Ciftci, 2018). Our analysis demonstrates
that approximately half of the investigated strains showed
resistance to gentamycin and/or streptomycin. The presence of
aminoglycoside modifying enzymes (AMEs), such as AAC (6′)-
Ie-APH(2″)Ia enzyme and adenyltransferase, confers resistance to
these agents (Torres et al., 2018; Jubeh et al., 2020; Miller
et al., 2020).

The tetracycline family includes several active agents used
against both Gram-negative and Gram-positive bacteria (Torres
et al., 2018). In accordance with a meta-analysis reported by
Melese et al. (2020) in Ethiopia, a high rate of resistance to
tetracycline and doxycycline was observed in the present study.
Often, the use of tetracycline and doxycycline in veterinary and
human medicine has led to the development of resistance to these
antibiotics (Garcia-Migura et al., 2014). The best-known
mechanisms of tetracycline resistance in E. faecium are ribosomal
protection mediated by genes such as tet(M), tet(O), and tet(S).
These mechanisms have been extensively documented (Chopra I
and Roberts, 2001; Fiedler et al., 2016). However, in the current
study, resistance to tigecycline, a new generation of tetracyclines, is
very low (0.5%). Although most efflux pumps and ribosomal
protection proteins do not affect tigecycline, a previous study
suggests the role of tet(L) and tet(M) in the resistance of E.
faecium (Fiedler et al., 2016; Miller et al., 2020).

Ciprofloxacin, levofloxacin, and moxifloxacin agents are the
most used compounds in the fluoroquinolone family (Torres
et al., 2018). This family inhibits bacterial protein synthesis by
affecting DNA gyrase. Generally, mutations in gyrase enzymes
and efflux pumps are associated with resistance to this class of
antibiotics (Mirzaii et al., 2023). The elevated resistance rates
among fluoroquinolones align with findings from meta-analyses
conducted in Turkey (Kilbas and Ciftci, 2018) and China (Yan
et al., 2023). Most likely, misuse of these antimicrobial agents and
pressure selection have a vital role in the development and
distribution of resistant strains (Alcalde-Rico et al., 2016).
However, in another meta-analysis (Miller et al., 2020), the
frequency of resistance was lower than that reported by the
current study. The most likely reason for the variation in the
prevalence of resistant strains is related to differences in
antibiotic-prescribed patterns (Mirzaii et al., 2023).

The newer agent linezolid is the only antibiotic integrated into
the oxazolidinone family that has been approved by the FDA, and it
is capable of preventing bacterial protein synthesis. Generally, the
frequency of resistance is very low (Kim and Koo, 2020; Mirzaii
et al., 2023); thus, this agent is prescribed against infection caused by
enterococci strains (Miller et al., 2020). After analyzing 5,040 isolates
in 27 studies in this review, a low resistance rate was illustrated that
was relatively similar to those reported by Kilbas and Ciftci (2018).
However, a higher rate was reported from Ethiopia, but 30 isolates
and two studies were included in that study (Melese et al., 2020).

In addition, based on our analysis, the resistance rate to
vancomycin and teicoplanin varied in different regions, such that
the western Pacific region and European regions showed the highest
and the lowest proportion of resistance to vancomycin, respectively.
The highest recorded proportion of resistance was observed in the
western Pacific region. This region’s unique resistance drivers,
including high population density, widespread antibiotic use in
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agriculture and healthcare, and variable access to antimicrobial
stewardship programs, likely contribute to these elevated rates.

In addition, subgroup analysis revealed a gradual increase
in resistance rates in some agents like glycopeptides,
ampicillin, streptomycin, levofloxacin, and erythromycin.
Overuse and history of antimicrobial exposure are major
reasons for increasing and local differences in resistance
rates (Emaneini et al., 2016). Conversely, a decrease in
resistance rates was observed for penicillin, gentamycin, and
chloramphenicol.

Although antibiotic resistance poses a significant public health
threat, certain conditions can enable bacteria to regain susceptibility
to antibiotics. Reducing antibiotic usage and optimizing prescribing
practices can lessen selection pressure, promoting the resurgence
and spread of susceptible bacterial strains. In agreement with
another study (Melese et al., 2020), our findings also
demonstrated that the highest resistance to most antimicrobial
agents was observed in isolates recovered from UTIs. Notably,
over one-third of the E. faecium isolates from UTIs were
resistant to vancomycin. Given that the majority of urinary
infections caused by E. faecium are nosocomial in nature, the
extensive use of vancomycin in hospitals can lead to increased
selection pressure on nosocomial pathogens, resulting in greater
resistance to this antibiotic (Yan et al., 2023). Among the
20 countries reporting vancomycin resistance data, 13 nations
observed that more than 5% of their isolates presented resistance
to this critical antibiotic. Variations in healthcare systems, infection
control measures, and antibiotic stewardship initiatives across these
nations may contribute to the diverse resistance rates. Countries
with strong infection control practices may report lower resistance
rates, while those with higher antibiotic consumption or inadequate
surveillance systems might experience a more significant prevalence.

In addition to acquired resistance mechanisms, E. faecium is
naturally resistant to several classes of antibiotics, including
cephalosporins, low levels of aminoglycosides, and lincosamides.
These intrinsic resistance mechanisms result from structural
features of the bacterium, such as the lack of high-affinity
penicillin-binding proteins and alterations in ribosomal target
sites. This natural resistance significantly limits the range of
antibiotics that can be used to treat E. faecium infections and
complicates treatment regimens, particularly when E. faecium is
co-resistant to multiple other agents.

The inherent resistance of E. faecium to beta-lactams,
aminoglycosides, and lincosamides must be considered when
reviewing secondary data on antibiotic resistance patterns. While
the focus of this study was on acquired resistance, it is important to
note that the baseline, intrinsic resistance of E. faecium plays a
crucial role in shaping the overall resistance landscape. This natural
resistance should not be overlooked, as it influences the effectiveness
of antibiotic therapies, especially in regions where the prevalence of
E. faecium infections is high. The failure to account for intrinsic
resistance mechanisms during the review of secondary data may lead
to misinterpretations of the true scope of acquired resistance in E.
faecium. Therefore, it is essential that future studies incorporate both
acquired and intrinsic resistance data to provide a more
comprehensive understanding of the challenges posed by E.
faecium and to help guide the development of more effective
treatment strategies.

Understanding intrinsic resistance is critical for designing
effective antimicrobial stewardship programs. By recognizing the
baseline resistance of E. faecium, clinicians can make more informed
decisions regarding empirical treatment choices, particularly in
high-risk patients, such as those in intensive care units.
Additionally, the identification of intrinsic resistance highlights
the importance of early detection and targeted antimicrobial
therapy, which can help avoid unnecessary use of broad-
spectrum antibiotics and minimize the development of acquired
resistance.

Given the challenges posed by E. faecium, there is an urgent need
for novel therapeutic strategies that target its intrinsic resistance
mechanisms. Further research into the structural features that
confer this natural resistance could lead to the development of
new treatments that can overcome these barriers, potentially
restoring the efficacy of previously ineffective antibiotics.

Our findings confirm the high efficacy of linezolid against E.
faecium, emphasizing its role as a key treatment for MDR
infections, including BSIs and endocarditis. This underscores
the importance of antimicrobial stewardship programs to
preserve its effectiveness and informs evidence-based
treatment protocols. Additionally, the data highlight the need
for ongoing surveillance to guide empirical therapy and public
health policies targeting E. faecium-related infections. A key
strength of this study lies in its comprehensive search strategy
and clearly defined inclusion and exclusion criteria.

While our analysis focused on resistance patterns to individual
antibiotics, it is essential to also consider the multidrug resistance
(MDR) profiles of E. faecium isolates. Resistance to multiple classes
of antibiotics in E. faecium complicates treatment choices, especially
when isolates are resistant to commonly used first-line agents. Our
study will now include an analysis of the co-occurrence of resistance
to multiple antibiotics, highlighting the prevalence of MDR strains.
For example, E. faecium isolates resistant to vancomycin were
frequently also resistant to other antibiotics, such as
aminoglycosides and macrolides, leading to significant challenges
in selecting effective therapies. This pattern of multidrug resistance,
observed in both hospital and community-acquired infections,
underscores the importance of screening for MDR in
clinical settings.

The identification of MDR strains is critical for selecting
appropriate treatment regimens. Given the rise of multidrug
resistance, physicians should consider combination therapies
that target multiple resistance mechanisms, particularly in
severe infections where monotherapy may not be effective. For
instance, using linezolid or daptomycin in combination with
other antibiotics may provide better clinical outcomes for
patients infected with MDR E. faecium. Future studies should
investigate the interactions between antibiotics in multidrug-
resistant infections to guide evidence-based recommendations
for combination therapies. Monitoring and incorporating MDR
profiles into routine clinical practice will help ensure more
effective treatment options and prevent further escalation of
resistance.

The primary limitation of this study is the potential bias in
resistance rates due to the combination of resistance data from
patients of different genders. Additionally, our analysis is
constrained by the lack of detailed proportion data
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distinguishing between E. faecium colonization and infection.
Colonization frequently precedes infection, particularly in
hospital settings where antibiotic pressure and compromised
immune systems are significant contributing factors. To better
understand the clinical impact of E. faecium, future research
should prioritize clarifying colonization rates and their
progression to infection. In this study, both CLSI and
EUCAST standards were reported in the included articles,
reflecting the diversity in laboratory practices globally.
Resistance data were presented as per the original studies
without direct comparison between the two standards to avoid
inconsistencies arising from differences in breakpoints. While
this approach captures the real-world variation, it underscores
the need for globally harmonized antimicrobial susceptibility
testing criteria to ensure comparability and consistency
in reporting.

Another limitation of this meta-analysis is the lack of
stratification based on the source of E. faecium isolates (e.g.,
ICU, outpatient, and general hospital wards) in the studies
included. The resistance patterns of E. faecium may vary
considerably depending on the clinical setting of the patient,
and this factor was not sufficiently accounted for. Future studies
should aim to include these variables to provide more accurate
data on antibiotic resistance patterns and to refine strategies for
antimicrobial stewardship in different healthcare settings.

This study primarily analyzed phenotypic resistance
patterns, but it is important to recognize the genetic
mechanisms behind E. faecium resistance. Key resistance
genes, such as vanA (vancomycin), ermB (macrolides), and
aac (6′)-Ie-aph (2″) (aminoglycosides), contribute
significantly to acquired resistance. However, many studies
did not report molecular data, which limits our
understanding of the genetic underpinnings of resistance.
Incorporating molecular techniques like PCR and genome
sequencing in future studies will provide a clearer picture of
the genetic basis of E. faecium resistance, allowing for better-
targeted antimicrobial therapies.

Conclusion

Our findings confirm the high antibacterial activity of
linezolid against E. faecium isolates. This highlights the
importance of preserving linezolid as a key therapeutic
option through antimicrobial stewardship programs,
ensuring its prioritization for treating MDR E. faecium
infections, particularly in settings where alternative
treatment options are limited. Moreover, our investigation
reveals a gradual increase and a troubling upward trend in
the resistance rates of almost all agents in recent years. These
results highlight the importance of continuous surveillance, a
practice that should be applied by policymakers. However, our
analysis showed a significant reduction in resistance rates for
some antibiotics, so these drugs can make a strong comeback in
the future.
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