
Drug-induced kidney stones: a
real-world pharmacovigilance
study using the FDA adverse event
reporting system database

Pan Ding, Qinghua Luo and Leihua Cao*

Department of urology, Nanchang People’s Hospital, Nanchang, China

Objective: This study aims to identify the drugs most commonly associated with
kidney stone-related adverse events using data from the FDA Adverse Event
Reporting System (FAERS), providing insights for clinical reference regarding the
use of these drugs.

Methods: We utilized the Medical Dictionary for Regulatory Activities (MedDRA
26.0) preferred term “nephrolithiasis” to identify drug-related adverse events
(ADEs) for kidney stones reported in FAERS from Q1 2004 to Q1 2024. Reporting
odds ratio (ROR) was used to quantify the signal strength of these ADEs, and new
risk signals for kidney stones were compared with drug labeling information to
identify any previously unreported risks.

Results: Out of 21,035,995 adverse events reported in FAERS, 38,307 were
associated with kidney stones. The top 5 drugs most frequently linked to
kidney stone cases were adalimumab (2,636 cases), infliximab (1,266 cases),
interferon beta-1a (920 cases), sodium oxybate (877 cases), and teriparatide
(836 cases). Notably, certain drugs like lansoprazole (ROR 7.2, 95% CI
6.62–7.84), Xywav (ROR 7.1, 95% CI 6.03–8.35), and teduglutide (ROR 5.54,
95% CI 4.83–6.36) showed significant risk signals. Of the 50 drugs identified,
33 were not previously labeled as carrying a risk of kidney stones.

Conclusion: Our analysis of FAERS data revealed new risk signals for kidney
stones not indicated in the labels of 33 drugs. Close monitoring is recommended
when using these medications, and further research is needed to investigate the
mechanisms behind drug-induced kidney stone formation.
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1 Introduction

Kidney stones are one of the most common diseases of the urinary system, with a rising
incidence globally. The prevalence of kidney stones in the United States is approximately
10.1% (Abufaraj et al., 2021; Chewcharat and Curhan, 2021; Hill et al., 2022; Tundo et al.,
2021), while in Europe it ranges between 5% and 10%, and in Asia, between 1% and 19%
(Liyanage et al., 2022; Safdar et al., 2021; Thongprayoon et al., 2020). Additionally, the
recurrence rate of kidney stones is notably high, with a 5-10 years recurrence rate of 50%
and a 20-year recurrence rate of up to 75% (Jia et al., 2022; Ranjan et al., 2023; Soliman et al.,
2017). Clinical studies have shown that approximately 80% of kidney stones are composed
of a mixture of calcium oxalate and calcium phosphate, with uric acid and struvite stones
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accounting for 9% and 10%, respectively (Evan, 2010; Halinski et al.,
2021; Nevo et al., 2020). Drug-induced kidney stones, though
relatively rare, constitute only 1%-2% of cases (Christakos et al.,
2019; Dobrek, 2020; Roedel et al., 2021) and are often overlooked
due to the vast number of drugs involved. However, drug-induced
kidney stones are largely preventable and can often be managed by
discontinuing the offending drug.

The mechanism of drug-induced kidney stone formation
primarily involves poor drug solubility, which leads to
crystallization in the urine, or interference with the metabolism
of calcium, oxalate, phosphate, uric acid, or purine, as well as
alterations in urinary pH (Dobrek, 2020; Sutthimethakorn and
Thongboonkerd, 2020; Wang H. et al., 2021). Currently, drug-
induced kidney stones are mainly detected through specialized
laboratory analyses of stone composition. However, the absence
of information on a patient’s medication history in stone analysis
can lead to an underestimation of the incidence of drug-induced
stones. In 1980, Ettinger et al. conducted the first large-scale study
on drug-induced kidney stones, finding that 0.4% of kidney stones in
50,000 U.S. cases contained triphenylmethane (Daudon et al., 2018;
Ettinger et al., 1980). Subsequent research identified that protease
inhibitors, sulfonamides, ceftriaxone, ephedrine-containing
medications, calcium/vitamin D supplements, and carbonic
anhydrase inhibitors can also induce stone formation (Blay et al.,
2020; Daudon et al., 2018; Laditi et al., 2021; Laurence et al., 2020;
Ma et al., 2021; Zhao and Angoff, 2019). With the continual
development of clinical therapeutics, new research has shown
that drugs such as benzopyridine, fructose, proton pump
inhibitors, and low-dose aspirin may also contribute to kidney
stone formation (Johnson et al., 2018; Pursnani and Streeper,
2024; Yang et al., 2023; Zhang et al., 2024). Urolithiasis and its
associated complications pose significant health risks and adversely
impact patients’ quality of life, while also placing a considerable
burden on public healthcare systems (Li et al., 2023; Thongprayoon
et al., 2020; Wang Q. et al., 2023). Therefore, it is imperative to pay
close attention to drug-induced kidney stones in clinical settings and
to identify potential drug-related risks in order to mitigate this
complication.

The FAERS (FDA Adverse Event Reporting System) database is
one of the largest voluntary reporting systems for adverse drug
events worldwide, covering large-scale data from 2004 to the
present. Maintained by the U.S. Food and Drug Administration
(FDA), the database aims to monitor post-marketing drug safety.
FAERS collects and analyzes reports of adverse drug events (ADEs)
and medication errors to help identify potential drug safety issues.
FAERS offers real-time updates, providing comprehensive data on
adverse drug events, covering a wide range of drugs and patient
populations, with high data transparency and accessibility (Cirmi
et al., 2020; Grace et al., 2020; Wang et al., 2018). Its robust signal
detection capabilities make it a critical tool in pharmacovigilance
research, particularly in uncovering drug-related adverse events and
evaluating drug safety. Although drug-induced kidney stones
account for only 1%–2% of all kidney stone cases, their clinical
impact is often underestimated. Manymedications can contribute to
kidney stone formation by altering urinary chemical composition or
interfering with drug metabolism processes. Identifying these high-
risk drugs and implementing appropriate preventive measures is
crucial for reducing the incidence of drug-induced kidney stones.

This study utilizes the FAERS database to systematically analyze
adverse events related to kidney stones, revealing potential high-risk
drugs and providing valuable references for clinical drug use.

2 Methods

2.1 Data source and extraction

The data for this study were sourced from the U.S. FDA Adverse
Event Reporting System (FAERS) database, which collects a vast
amount of information on adverse drug events (ADEs) and
medication errors voluntarily submitted by healthcare
professionals, manufacturers, and the public. We downloaded a
total of 80 quarterly ASCII data packages from the FAERS database
website, covering the period from 2004Q1 to 2024Q1 (https://open.

FIGURE 1
Flow chart for the identification of nephrolithiasis cases from the
US Food and Drug Administration Adverse Event System (FARES).
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fda.gov/apis/drug/event/). These data are organized into seven
tables: demographic information (DEMO), adverse event records
(REAC), drug usage records (DRUG), event outcomes (OUTC),
adverse event outcomes (OUTC), sources of adverse events (PRSP),
drug therapy duration (THER), and drug indications (INDI) (Banda
et al., 2016; Iyer et al., 2014).

Given that FAERS data are based on spontaneous reporting,
there is a risk of duplicate, withdrawn, or deleted reports. To ensure
the accuracy of our study results, we followed the FDA’s
recommended deduplication method. We selected the CASEID,
FDA_DT, and PRIMARYID fields from the DEMO table and
sorted the data by CASEID, FDA_DT, and PRIMARYID in that
order. When duplicate CASEIDs were identified, the report with the
most recent FDA_DT was retained. If both CASEID and FDA_DT
were identical, the report with the largest PRIMARYID was kept
(Jiang et al., 2014; Khaleel et al., 2022; Shu et al., 2022). This process
was implemented using R software (version 4.3.1). After
deduplication, each CASEID and PRIMARYID were unique,
ensuring that only the most recent report for each patient
was retained.

All adverse event (ADE) data in the FAERS database are coded
using Preferred Terms (PTs) from the Medical Dictionary for
Regulatory Activities (MedDRA), with PTs being the most
frequently used terms at the level 4 hierarchy in MedDRA. In
this study, we used the PT “nephrolithiasis” (MedDRA version
26.0 code: 10029148) to extract relevant personal information,
event outcomes, drug indications, and drug-related data for
adverse event reports associated with kidney stones. We then
used the generic name of the drug as the unique identifier for
statistical analysis (Figure 1).

2.2 Drug definition

The drug names reported in the FAERS database lack
standardization, as they are reported by a mix of healthcare
professionals (e.g., physicians and pharmacists) and non-
healthcare professionals (e.g., consumers and lawyers). This leads
to a wide variety of drug names being reported. Simply using brand
or generic names to search for drug-related adverse events poses a
high risk of missing signals. To minimize this risk, we used the
Medication Extraction System (MedEx), which has a name
normalization accuracy of up to 97% (Jiang et al., 2014; Xu et al.,
2010). We utilized the MedEx software (MedEx UIMA 1.3.8,
Vanderbilt University, United States) to standardize drug names
to their generic equivalents. Subsequently, we classified the top
50 drugs associated with kidney stones using the Anatomical
Therapeutic Chemical (ATC) classification system (https://www.
who.int/tools/atc-ddd-toolkit/atc-classification) endorsed by the
World Health Organization. For drugs lacking a clear ATC code,
we classified them according to their class or components listed in
their product labels.

2.3 Disproportionality analysis

Disproportionality analysis is an important tool for
evaluating potential causal relationships between drugs and

adverse reactions. It is widely recommended for research using
large databases (Barcelos et al., 2019; Beau-Lejdstrom et al., 2019;
Caster et al., 2020; Khouri et al., 2021) Proportional Reporting
Ratio (PRR), Reporting Odds Ratio (ROR), Information
Component (IC), and Empirical Bayes Geometric Mean
(EBGM) are four commonly used algorithms for signal
detection in pharmacovigilance databases. Among these, ROR
has demonstrated the best performance in pharmacovigilance
studies (Bae et al., 2020; Hoffman et al., 2012; Ji et al., 2021; Lee
et al., 2020). The ROR method is highly sensitive and can correct
for many biases. Therefore, in this study, we used the ROR
method to evaluate the top 50 drugs associated with kidney
stones. This method compares the proportion of the target
adverse event for a specific drug with the proportion for all
other drugs to detect potential risk signals for kidney stone-
inducing drugs (Huang et al., 2014). A positive signal is generated
when a ≥3 and the lower limit of the 95% confidence interval (CI)
of the ROR exceeds 1, indicating a statistically significant
association between the drug and kidney stones
(Supplementary Table S1). The higher the ROR value, the
stronger the signal, suggesting a greater likelihood of a
connection between the drug and kidney stones.

3 Results

3.1 Descriptive analysis

From Q1 2004 to Q1 2024, the FAERS database reported a total
of 2,103,599 adverse events (AEs). Among these, 38,307 cases were
identified as kidney stones after data deduplication. The data were
stratified by gender, age, reporting source, and country to explore
the potential associations between patient characteristics and kidney
stones. As shown in Figure 2, among the 38,307 drug-related kidney
stone cases, the age group of 18-65 years accounted for the highest
proportion, at 42.34% (approximately 16,219 cases), followed by the
66-85 age group at 17.07% (around 6,540 cases), those aged 17 and
below at 1.54% (about 590 cases), and those aged 86 and above at
0.7% (around 268 cases). In terms of gender, female patients
accounted for 53.16% of the total cases (approximately
20,365 cases), while males accounted for 39.46% (about
15,116 cases), and 37.77% of cases had unspecified gender.
Kidney stone cases reported by pharmacists, physicians, and
other healthcare professionals made up 11.35% of the total. Cases
reported by consumers (18.79%) exceeded those reported by other
sources. The country with the highest number of reported cases was
the United States, with 14,339 cases (37.43%), followed by Canada
(3,534 cases, 9.23%), Brazil (472 cases, 1.23%), the United Kingdom
(394 cases, 1.03%), and Germany (372 cases, 0.97%).

From 2004 to 2023, the number of reported drug-induced
kidney stone cases showed an upward trend, which may be
related to the increased use of kidney stone-related drugs,
heightened awareness of reporting adverse events associated with
kidney stones, and advancements in detection technologies. Among
all reports, 41.79% (approximately 16,078 cases) required
hospitalization, 2.58% (about 987 cases) resulted in death, 1.68%
(around 642 cases) were life-threatening, and 0.73% (about
280 cases) led to disability. Disproportionality Analysis.
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3.2 Disproportionality analysis

To assess the potential association between drugs and kidney
stones, a disproportionality analysis was conducted on the top
50 drugs ranked by the frequency of reports, using the Reporting
Odds Ratio (ROR) to quantify the strength of the association.
Supplementary Table S2 showed that the number of reported
cases ranged from 145 to 2,636, with ROR values ranging
from 0.54 to 33.29.

Among these drugs, adalimumab had the highest number
of kidney stone-related reports, with 2,636 cases, followed
by infliximab (1,266 cases), interferon beta-1a (920 cases),
sodium oxybate (877 cases), and teriparatide (836 cases). In
terms of signal strength, atazanavir had the highest ROR
value (Figure 4), reaching 33.29 (95% CI 29.4–37.7),
indicating a significant association with kidney stones. Other
drugs with strong positive signals included topiramate (ROR
8.35, 95% CI 7.66–9.12), lansoprazole (ROR 7.20, 95% CI
6.62–7.84), Xywav (ROR 7.10, 95% CI 6.03–8.35), and
teduglutide (ROR 5.54, 95% CI 4.83–6.36), which warrant
clinical attention.

According to the Supplementary Table S2, the analysis further
indicated that atazanavir exhibited the highest signal strength
among all the drugs, suggesting a significant association with
kidney stones. Additionally, Xywav, topiramate, and teriparatide
also showed high ROR signals, indicating that these drugs may have
a strong association with the occurrence of kidney stones.

A further classification of the drugs revealed that, among the top
50 drugs associated with kidney stones, as shown in Figure 3,
immunosuppressants accounted for 27.18%, making them the
most common drug category, followed by antineoplastic agents
(3.25%) and direct-acting antivirals (2.82%). A review of the
most recent drug package inserts found that only nine drugs
explicitly mentioned the risk of kidney stones, while the
remaining 33 drugs, although meeting the signal detection
criteria (≥3 cases and a lower limit of the 95% CI of the ROR
greater than 1), did not have kidney stone risks listed in their
package inserts. (Supplementary Table S3).

You may insert up to 5 heading levels into your manuscript as
can be seen in “Styles” tab of this template. These formatting styles
are meant as a guide, as long as the heading levels are clear, Frontiers
style will be applied during typesetting.

FIGURE 2
Clinical features of reported drug-induced nephrolithiasis. (a) Heatmap of Kidney Stone Cases by Age and Gender; (b) Geographic Distribution of
Kidney Stone Cases; (c) Yearly Trend of Kidney Stone Reports (2004-2003).
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4 Discussion

Our study identified and classified the drugs most closely
associated with the induction of kidney stones in one of the
largest adverse drug reaction reporting databases in the world,
covering nearly 20 years of data. The proportion of drug-induced
kidney stones has shown an increasing trend over the years, which
warrants our attention. Additionally, this study is the first to use the
FAERS database to reveal the potential association of 50 drugs with
kidney stones, providing an important reference for
pharmacovigilance and clinical risk management. In this study,
we described the clinical characteristics of these adverse events
and classified the drugs that induce kidney stones. Many of these
drugs do not have kidney stone warnings in their package inserts,
and their potential risk of inducing kidney stones is not widely
recognized, highlighting them as potential kidney stone risk drugs.

The upward trend in reported kidney stone cases over the years,
as depicted in Figure 2, may reflect increased drug usage, heightened
awareness of adverse event reporting, and advancements in
diagnostic technologies. This indicates that drug-induced kidney
stones have become a significant clinical concern, necessitating
enhanced monitoring and prevention efforts. Our age
distribution analysis showed that the 18–65-year age group had
the highest incidence of drug-induced kidney stones. Previous
studies have found that kidney stone incidence peaks between
20 and 40 years of age (Tseng and Preminger, 2011; Tseng and
Preminger, 2015), while others report a higher incidence in the 40 to
60 age group (Chewcharat and Curhan, 2021; Qiu F et al., 2021;

Safdar OY et al., 2021). The higher incidence rate in the 18-65 age
group may be related to the higher levels of drug exposure and
metabolic activity in this age range. The decline in incidence in older
age groups may be influenced by reduced drug use and physiological
changes in metabolism (Chen et al., 2022; Ouyang et al., 2020).
Further research is needed to understand how these factors influence
kidney stone formation.

Notably, 41.79% of patients with drug-induced kidney
stones required hospitalization (Figure 2), indicating a
substantial impact on patient health and healthcare
resources. Clinically, early identification and
intervention—such as timely adjustment of medication
regimens and enhanced patient education—are crucial for
reducing hospitalization rates and improving outcomes.

Interestingly, as shown in Figure 2, our study found a higher
incidence of drug-induced kidney stones in females, contrasting
with previous research where males exhibited higher prevalence
rates (Abufaraj et al., 2021; Chewcharat and Curhan, 2021; Tundo
et al., 2021; Vicedo-Cabrera et al., 2020). This discrepancy may be
due to differences in hormonal metabolism affecting stone
formation, as androgens can increase urinary oxalate excretion by
inhibiting osteopontin levels, leading to a higher incidence in males
(Fuster et al., 2022; Xu et al., 2023; Zhu et al., 2019). However, our
findings suggest that females may be more susceptible to drug-
induced kidney stones. Factors such as increased use of certain
immunosuppressants or hormonal medications among females
could contribute to this risk (Abufaraj et al., 2021; Gillams et al.,
2021; Knoll et al., 2022; Simonov et al., 2021). Further studies are

FIGURE 3
Classification of top 50 drugs associated with ADE of nephrolithiasis.
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needed to validate this finding and to explore the underlying
mechanisms.

Geographically, the majority of reports originated from the
United States (Figure 2), which could introduce reporting bias
due to uneven distribution across regions. This necessitates
cautious interpretation of the results and highlights the need for
more balanced global reporting.

Overall, the increase in kidney stone reports, along with high
hospitalization and mortality rates (Figure 2), indicates that drug-
induced kidney stones significantly affect patient health and quality
of life. Our demographic analysis suggests that individuals aged
18–65 years, female patients, and those in the United States are most
affected. These findings underscore the importance of strengthening
drug safety monitoring, conducting educational outreach, and
raising awareness among both healthcare providers and patients
regarding drug-induced kidney stones. Additionally, further
research into the mechanisms of drug-induced kidney stone
formation, particularly in high-risk populations, will aid in
developing effective prevention and intervention strategies to
reduce incidence and burden.

Among the top 50 drugs with the highest frequency of kidney
stone occurrence, only nine listed kidney stones as adverse reactions
in their package inserts. Adalimumab had the highest number of
cases (Figure 4); however, the mechanism by which it may cause
kidney stones remains unclear and requires further study.
Adalimumab is commonly used to treat inflammatory bowel
disease (IBD) (Papamichael et al., 2019; Rakowsky et al., 2022;
Tursi et al., 2023; Wang F. et al., 2023), and kidney stones are an
extraintestinal manifestation of IBD, often presenting with urinary
symptoms (Ganji-Arjenaki et al., 2017; Kumar et al., 2023; Rogler
et al., 2021). Therefore, some kidney stone cases may be
complications of IBD rather than direct adverse reactions to
adalimumab, potentially leading to reporting bias.

Immunosuppressants are a high-risk category, possibly related
to their metabolic pathways and immune-modulating effects.
Antiviral and anticancer drugs show higher kidney stone risks
due to their high urinary excretion rates. This is particularly
relevant in patients undergoing long-term treatment with
immunosuppressants or antivirals, where kidney function and
urinary composition can be significantly altered, thereby

FIGURE 4
Distribution of ROR signal intensity associated with ADE of nephrolithia in the top 50 drugs.
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increasing the likelihood of stone formation (Liu et al., 2020; Smith
et al., 2021; Chen et al., 2019; Huang et al., 2022).

As illustrated in the Supplementary Table S3, atazanavir had the
highest ROR value (33.29; 95% CI, 29.4–37.7), indicating the
strongest association with kidney stones. Atazanavir, a protease
inhibitor, induces kidney stone formation through crystallization
due to poor urinary solubility. Although orally administered
atazanavir is metabolized by the liver, approximately 7% is
excreted unchanged by the kidneys. It has maximal solubility at a
pH of 1.9, resulting in low solubility in urine and a propensity to
precipitate as crystals (Brunel et al., 2019; Couzigou et al., 2007).
Studies have shown that kidney stones generally appear after 2 years
of atazanavir use, with chemical analyses revealing that stones
consist of 40%–100% atazanavir without metabolites, sometimes
mixed with calcium phosphate (Dhabliya et al., 2022; Plawecki et al.,
2023; Santoriello et al., 2017). Most patients experience symptom
relief upon discontinuation of the drug (de Lastours et al., 2013;
Hamada et al., 2012). Recent studies (Singh et al., 2021; Harte et al.,
2019) have further validated the crystallization risk of atazanavir in
clinical use, emphasizing its stone formation mechanism in specific
patient populations. Future research could involve in-depth
exploration of the solubility changes of atazanavir in different
pH environments to further validate its crystallization
mechanism and investigate therapeutic strategies to improve
solubility and reduce the risk of stone formation.

Topiramate had the second-highest ROR value. Unlike
atazanavir, topiramate induces kidney stones by inhibiting
carbonic anhydrase in renal tubules, leading to renal tubular
acidosis, decreased plasma bicarbonate concentration, and
urine alkalization, which promote calcium phosphate stone
formation (Barnett et al., 2018; Daudon et al., 2018). Recent
studies (Wang Z. et al., 2021; Zhang et al., 2020) have further
validated the mechanism of topiramate-induced kidney stones,
especially with long-term use, where the correlation between
urine alkalinization and stone formation becomes more
pronounced. Understanding the composition of kidney stones
and the metabolic effects of medications can aid in exploring the
mechanisms by which drugs induce kidney stones and in
developing preventive strategies. Future research could
analyze the specific effects of topiramate use at different
doses and treatment durations on urine pH and stone
formation, to verify the causal relationship between urine
alkalinization and stone risk (Roh et al., 2018; Lo et al., 2020).

Furthermore, among the top 50 drugs not listing kidney stone
risks in their labels, 33 met the signal detection criteria—having at
least three reported cases and a lower limit of the 95% CI of the ROR
greater than 1. This suggests potential new risk signals for kidney
stones associated with these drugs, warranting attention. For
example, previous reports indicated that an HIV-infected
individual developed kidney stones and hydronephrosis after
initiating tenofovir-containing highly active antiretroviral therapy
(HAART) (Cicconi et al., 2004; Mangal et al., 2022). Given that
tenofovir is primarily excreted by the kidneys, its association with
kidney stones merits further investigation.

Zakaria et al. found an increased risk of kidney stones in patients
using vedolizumab (Alameddine et al., 2023). Compared to non-
biologic therapies, the combination of two or more
immunobiologics also increased the risk of kidney stones. Our

study similarly highlights immunosuppressants as the most
significant category in drug-induced kidney stones, reinforcing
their crucial role. Deferasirox, used for treating thalassemia, has
been associated with high incidences of hypercalciuria and kidney
stone formation (Aliberti et al., 2022; Capolongo et al., 2020).

Conversely, some drugs may have protective effects against
kidney stones. For instance, Hiroya et al. found that alendronate
sodium inhibits calcium stone formation, suggesting it may prevent
urolithiasis rather than promote it (Senzaki et al., 2004). Animal
studies have shown that atorvastatin can inhibit kidney stone
formation (Liu et al., 2022; Tsujihata et al., 2008). In our
analysis, atorvastatin’s ROR value was close to 1, indicating no
significant association, which could be due to differences in research
methods or sample characteristics. Since disproportionality analysis
only suggests associations rather than causal relationships, further
mechanistic studies and clinical validations are necessary.

It is important to note that disproportionality analysis only
suggests an association between a drug and an adverse event, but
does not establish causality. The voluntary nature of FAERS
reporting may lead to either underestimation or overestimation
of risks. Additionally, regional biases in the data should be
interpreted with caution. To further clarify the relationship
between drugs and kidney stones, more mechanistic studies and
clinical validations are needed.

This study provides valuable insights into pharmacovigilance,
particularly regarding drugs that may contribute to kidney stone
formation. However, several limitations exist. First, The
voluntary reporting mechanism of the FAERS database may
lead to incomplete or biased data. Second, most reports
originate from the United States, with relatively few from
other countries, potentially leading to statistical bias.
Additionally, The signal detection method used in this study
can only reveal associations, not establish causality. Future
research could combine prospective clinical trials and
biological mechanism studies to validate the causality of high-
signal drugs. Moreover, future research should focus on the long-
term effects of different drug combinations and the
comprehensive impact of metabolic factors on kidney stone risk.

5 Conclusion

From the FAERS database reports spanning from the first
quarter of 2004 to the first quarter of 2024, we identified
50 high-signal drugs associated with kidney stones, 33 of which
were not listed as a risk on the drug labels. This provides important
insights for drug risk assessment and clinical intervention. Given
that drug-induced kidney stones may lead to decreased adherence to
primary medications, clinicians should carefully evaluate the risks
when prescribing these drugs, particularly for high-risk populations.
Our list of drugs can serve as a valuable reference for clinicians,
assisting them in selecting more appropriate medications for
patients at high risk of kidney stones, thereby reducing the
incidence of kidney stones and improving patient outcomes.
Future research should combine biological mechanism validation,
prospective studies, and global collaborative databases to further
explore the causality of drug-induced kidney stones and potential
intervention strategies.
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