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Alzheimer’s disease (AD) is one of the most common diseases of the central
nervous system in the middle-aged and elderly population. It is a
neurodegenerative disorder, and its main clinical symptoms include the loss of
established memories, a decline in learning capacity, and the buildup of β-
amyloid peptides. The disease is often accompanied by neurodegenerative
changes and the formation of neurofibrillary tangles. However, the number of
drugs available for the clinical treatment of AD remains limited. Currently, existing
medications are not effective in completely curing the disease or stopping its
progression. Due to their excellent biocompatibility and biodegradability,
polymers have been widely used as drug delivery carriers in various fields
including cancer therapy and wound healing. The use of polymers enables
targeted drug delivery and prolonged release profiles. In recent years,
researchers have made significant progress in utilizing polymers such as
polyethylene glycol, poly (lactic-co-glycolic acid) (PLGA), and chitosan (CS) to
deliver drugs and blood-brain barrier receptor ligands for the treatment of AD.
Moreover, many polymers with inherent therapeutic properties have been
developed, including the already marketed GV-971 as well as experimental
polymers such as PLGA and CS oligosaccharide. This review summarizes the
applications of polymers in AD treatment over the past few years and highlights
their current limitations to help researchers better understand current
advancements in polymer development and identify future research directions.

KEYWORDS

Alzheimer’s disease, polymer, drug delivery systems, psychiatry, nanoparticle

1 Introduction

According to epidemiological surveys, there are more than 50 million patients with
Alzheimer’s disease (AD) worldwide, and this number will triple by 2050 (Scheltens et al.,
2021). AD is by far the main cause of dementia in people over the age of 60 years. In the first
few decades after a Bavarian psychiatrist Alzheimer discovered AD, researchers made little
progress in understanding the pathological changes of this disease. In the 1960s, with the
advent of electronic microscopy, researchers were able to observe senile plaques and
neurofibrillary tangles. Subsequently, additional pathological changes associated with AD
were documented, analogous to the appearance of mushrooms following a precipitation
event (Aston-Jones et al., 1985; Xu et al., 2020; Greenamyre and Young, 1989; Saito et al.,
1993). To date, a growing number of people regard AD as a syndrome caused by a collection
of neuropathological changes rather than a simple disease. Against the backdrop of this
setting, Jack and colleagues proposed a new bio-diagnostic hallmark of AD neuropathology,
namely, beta-amyloid deposition, phosphorylated tau and neurodegeneration (Jack et al.,
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2018). The three pathological changes are referred to as AT(N). The
diagnosis of AD requires the simultaneous presence of Aβ plaques
and tau protein aggregation. Neurodegeneration is often found, but
is not necessary for the development of AD. In addition to these
three most typical changes, there are also mitochondrial redox
abnormalities, N-methyl-D-aspartic acid receptor (NMDAR)
position shift, and acetylcholine transmitter release obstacles
(Kerr et al., 2017; Babaei, 2021; Saxena and Dubey, 2019). The
therapeutic effects of several drugs that have been put into clinical
practice are limited, and they cause various peripheral adverse
reactions due to the lack of effective brain targeting methods
(Birks and Harvey, 2018; Birks and Grimley Evans, 2015;
Reisberg et al., 2003; Loy and Schneider, 2006).

Nanoparticles (NPs) made of polymers are a type of particles
with a particle size between 10 and 1,000 nm, which can be loaded
with active compounds for drug delivery by adsorption or
intranuclear encapsulation (Hettiarachchi et al., 2019).
Nanospheres are based on a continuous polymeric network in
which the drug can be retained inside or adsorbed onto their
surface. The smaller particle size and better sealing of NPs can
help drugs cross the blood-brain barrier (BBB) in the body or extend
the sustained release curve and reduce the effect of drugs in tissues

outside the central nervous system (CNS). In particular, block
copolymers have both hydrophilic and hydrophobic activities and
offer significant advantages in drug encapsulation efficiency
(Ekladious et al., 2019; Cabral et al., 2018). These can bind to
resveratrol (Res), curcumin (Cur), insulin, ibuprofen, and other
medications. The high hydrophilicity, and soft consistency prevent
them from being coupled to macromolecules or degraded by
enzymes to improve the bioavailability of the drug and reduce
the metabolism in the liver. The advantages of some natural
polymers such as low cost and few peripheral side effects have
been developing rapidly in recent years, and since its introduction in
2019, GV-971 has been rapidly becoming more widely available on
the basis of these advantages (Wang et al., 2024). This review
summarizes the progress of AD related polymer drug delivery, as
well as the research findings on polymers as drug therapy. The types
of drug-loaded polymers are shown in Figure 1.

2 Pathophysiology of AD

The pathogenesis of AD has not yet been fully explored, but Aβ
is considered to be an important factor. This substance is derived

FIGURE 1
The types of drug-loaded polymers for the treatment of Alzheimer’s disease.
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from the amyloid precursor protein (APP), a neuronal membrane
protein. Abnormal postsynaptic acetylcholine receptor locations
and excessive sprouting of nerve endings have been reported in
APP-deficient mice. These clues suggest a role for APP in neural
development (Wang et al., 2005). APP is degraded during
metabolism by either α-secretase and γ-secretase or β-secretase
and γ-secretase, the latter produces two different amino acid
chain lengths, namely, Aβ40 and Aβ42, depending on the shear
position of γ-secretase (Huse et al., 2002). Aβ42 is thought to be the
more neurotoxic sequence among the two. The detailed shearing
process is shown in Figure 2. In summary, Aβ42 accumulates in the
brain, forming amyloid plaques. This is followed by the activation of
glial cells and the pathological phosphorylation of tau (Andronie-
Cioara et al., 2023). During this process, Aβ is recognized by pattern
recognition receptors in microglia, which produce neurotoxic
cytokines and chemokines, such as CCL-4, TNF, IL-6 and IL-1β.
This illustrates the importance of neuroinflammation in the
development of AD pathology (Martin et al., 2017). Furthermore,
Aβ has been demonstrated to impede long-term potentiation (LTP)
and dendritic spine density in a manner that is dependent on the
activation of NMDAR. The aberrant activation of extrasynaptic
NMDARs has been identified as a significant contributor to the
substantial decline in synapse number observed in patients with AD
(Fani et al., 2021).

3 Characteristics of polymer carriers

Polymers are macromolecular compounds formed by the
linking of a large number of repeating units through chemical
bonds. These assemblies are then subjected to further processing
to yield nanomicelles, vesicles, polymers and other products (Feng
et al., 2017). Polymers can have one or more of these forms at the
same time. Structurally, they can be composed of a single monomer
arranged in a repeating manner, or a variety of monomers of
different structures arranged in a random alternating manner,
with a high degree of customization and desirable
physicochemical properties such as solubility, amphiphilicity, and
biodegradability (Agrahari and Agrahari, 2018).

Since Abuchowski et al. first coupled monomethoxy-
polyethylene glycol (mPEG) to bovine serum albumin in 1977,
researchers have found that it is possible to couple polymers to
organic or inorganic drugs. This approach was first approved by the
US FDA in 1990 (Moncalvo et al., 2020). Although only PEG
couplers are commercially available today, much progress has
been made with other polymers over the last 3 decades. This is
largely due to advances in reversible radical polymerization
technology, which has made it possible to control chain length,
monomer content and, to some extent, monomer sequence in a
precise and reproducible manner (Guerassimoff et al., 2024).

FIGURE 2
Amyloid plaques, tau phosphorylation and neuroinflammation in Alzheimer’s disease. (A) Amyloid precursor protein differently shears to produce Aβ
and further deposits to form Aβ plaques. (B)Neuroinflammation and neurodegeneration due to cytokine release frommicroglia activation induced by Aβ
plaques. (C) Brain shrinkage in patients with Alzheimer’s disease.
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Block copolymers, comprising a hydrophilic shell and a
hydrophobic core, represent a promising class of carriers for
drug delivery (Pottanam Chali and Ravoo, 2020). They are
synthesized from blocks or fragments of monomers, and their
assemblies are classified according to their structural
characteristics, namely, linear, grafted, star-shaped or dense-
armed. The use of block copolymers as carrier systems has been
shown to extend the drug half-life and enhance the targeting of
drugs derived from natural plants. Furthermore, they are frequently
formulated as NPs, which typically have a diameter between 10 and
1,000 nm. The smaller particle size and the ability of NPs to load
drugs may be crucial in the treatment of cancer, wound repair, and
neuroendocrine diseases. Table 1 lists the drugs discussed in this
paper and their paired polymer delivery methods.

3.1 Poly (lactic-co-glycolic acid)

Poly (lactic-co-glycolic acid) (PLGA) has received extensive
research attention because of its excellent biocompatibility and
biodegradability (Hassan et al., 2024; Sonam Dongsar et al., 2024;
Hadley et al., 2023; Hamadani et al., 2023). PLGAs are typically
formed by ring-opening copolymerization of lactic acid (LA) and
glycolic acid (GA), with the monomers linked by lipid bonds. The
ratio of PLA to GA in the composition affects the hydrophobicity,
size and rate of biodegradation (Schliecker et al., 2003).
Incorporating GA reduces the polymer’s crystallinity while
increasing the water absorption rate of the nanomaterial.
Consequently, the degradation rate of PLGA can be finely tuned
by adjusting the LA-to-GA ratio in the amorphous polymer. LA is
crystalline, while GA exhibits more amorphous characteristics. A
higher GA content shifts the ratio of crystalline to amorphous

phases in PLGA particles toward the amorphous region, resulting
in faster hydrolysis of the polymer particles. The most common ratio
in the biomedical field is currently 50:50, because this ratio of
polymers has the lowest crystallinity and the highest
hydrophilicity, giving this ratio of PLGAs the fastest degradation
rate (Lü et al., 2009; Allahyari and Mohit, 2016). This ratio of PLGA
has been demonstrated to be particularly effective in facilitating drug
delivery across the BBB. A comparison of the neuronal uptake of
Cur, NPs-Cur 50:50, and NPs-Cur 65:35 revealed that SK-N-SH
cells exhibited a higher uptake of NPs-Cur 50:50 than NPs-Cur 65:
35 or free Cur (Djiokeng Paka et al., 2016).

The emulsification-solvent evaporation method is the most
widely used technique due to its simplicity, uniform particle size,
and high encapsulation efficiency. Thus, the method is particularly
suitable for controlled drug release and targeted delivery systems.
This method consists of two main stages, namely, emulsion
preparation and solvent evaporation. During the emulsion
preparation stage, emulsifiers can be formulated in various forms,
such as water-in-oil (W/O), oil-in-water (O/W), water-in-oil-in-
water (W/O/W), or solid-in-oil (S/O) emulsions (Sun et al., 2024).
Among these, W/O/W emulsions are considered optimal for
encapsulating water-soluble drugs such as peptides, proteins, and
vaccines, while O/W emulsions are more suitable for encapsulating
water-insoluble drugs such as paclitaxel and dexamethasone (Kias
and Bodmeier, 2024; Hu et al., 2023; Jain, 2000). In addition to the
emulsification-solvent evaporation method, other techniques such
as spray-drying, nanoprecipitation, and phase separation are also
employed for the preparation of NPs (Zhang et al., 2013; Makadia
and Siegel, 2011; Mundargi et al., 2008).

Recent studies have revealed entirely new applications for
PLGA, highlighting its potential not only as a drug delivery
system but also as a therapeutic agent in its own right.

TABLE 1 The applications of polymers in Alzheimer’s disease treatment.

Drug Particle
Size (nm)

Polymer’s
carrier

Modifier Major targets References (first author, published
year)

Curcumin 50–250 PEG-PLA B6 peptite Aβ Cascade
Tau protein
phosphorylati
on

Fan et al. (2018)

Resveratrol 20 Chitosan TG
(TGNYKALHPHN)

Akt/ERK/GSK3β
GLUT1/3
Gut
microbiome

Yang et al. (2023)

Insulin 95.2 ± 19.0 Chitosan Transfersulin PI3K-Akt Nojoki et al. (2022)

GV-971 NA NA NA Gut
microbiome/Gut-brain
axis

Wang et al. (2019)

PLGA 100 NA NA Aβ Cascade
Tau protein
CatD

Anand et al. (2022)
Wang et al. (2020a)

Ibuprofen 195.4 PEG-PLGA NA PCREB
Neuroinflammation

Sánchez-López et al. (2017)

Memantine 152.6 ± 0.5 PEG-PLGA NA NMDAR Sánchez-López et al. (2018)

Galanthamine 201 ± 1.2 Chitosan NA AchE El-Ganainy et al. (2021)

PEG, polyethylene glycol; PLGA, poly (lactic-co-glycolic acid); PLA, poly (lactic acid); CatD, cathepsin D; pCREB, phosphorylated cyclic AMP response element-binding protein; NMDAR,

N-methyl-D-aspartic acid receptor; AchE, acetylcholinesterase; NA, not available.
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Traditionally, PLGA has been used to transport drugs such as Cur,
donepezil, and quercetin, but its intrinsic medicinal properties have
often been overlooked. However, emerging research suggests that
PLGA itself holds significant therapeutic value, including the ability
to address pathological changes in AD (Fan et al., 2018; Jeon et al.,
2019; Ji et al., 2023).

3.2 PEG

As mentioned earlier, PEG therapy has been approved for
marketing as polymer-coupled drugs. Most PEGs used in clinical
applications are covalently bonded to form PEG couplings with the
target proteins (Grigoletto et al., 2016). PEG is themost commonly used
polymer for drug modification. It is often conjugated with ligands by
various methods, including physical absorption, chemical conjugation
and molecular self-assembly. The relative complexity and cost of each
method of synthesis differ (Shi et al., 2021). Although physical
absorption offers the advantages of simplicity and ease of control, it
requires a strong adsorption affinity between PEG or its derivatives and
the substrate. Furthermore, this strategy still faces the challenge of low
adsorption intensity (Kaur et al., 2008). The majority of PEGs are
currently assembled with drugs through chemical coupling and
molecular self-assembly. While the former entails covalent bonding
between the drug and PEG, the latter typically occurs through
nanoprecipitation or emulsification, enabling the synthesis of NPs
with enhanced PEG coverage but requiring more sophisticated
handling and conditions (Shi et al., 2020; Porte et al., 2019). Existing
PEG applications are mainly in the form of diblock or triblock
copolymers for drug delivery such as PEG-PLGA. Block copolymers
show better release kinetics than PEG alone (Cheng et al., 2007). PEG
has the ability to cover the lipophilic surface of PLGA, rendering the
NPs hydrophilic. This reduces the uptake of the NPs by the liver,
thereby prolonging their circulation time in the body and avoiding
phagocytosis by themononuclear phagocyte system (MPS). In addition,
PEG can be conjugated to proteins to increase their molecular weight
above the renal filtration threshold, thereby reducing renal clearance
and significantly increasing the half-life of the drug in the bloodstream
(in some cases by up to 20 times). Although it is now known that PEG-
protein conjugation can mask active sites, several injectable PEG-
protein conjugates are available (Gonçalves and Caliceti, 2024).
However, researchers have identified several limitations of PEG in
its current applications. These include immune reactions, which have
been reported with intravenous injection, oral administration and
topical application. High-molecular-weight PEG is nondegradable,
and its synthesis process inevitably produces by-products (Knop
et al., 2010).

3.3 Chitosan

Unlike the synthetic substances mentioned earlier, chitosan (CS)
is a natural polymer mainly derived from natural crustaceans,
namely, shrimps and crabs. CS is obtained from crustaceans after
deacetylation of chitin. This polymer is easily modified at the C-2
position due to its special chemical structure, naturally carries
cations that make it easier to be adsorbed by cells, has the ability
to form ionic cross-links leading to the formation of stable

complexes that release drugs slowly over a long period, thereby
achieving controlled drug release, and has excellent biocompatibility
and biodegradability (Younes and Rinaudo, 2015). The initial stage
of the preparation of CS NPs entails the creation of a CS solution
within an acidic milieu. The most common approach involves the
use of a 1% acetic acid or hydrochloric acid buffer solution, followed
by a pH adjustment in accordance with the specific derivative of CS
under consideration (Mistry et al., 2009; Kaiser et al., 2015; Zhang
et al., 2022). Once the CS solution is prepared, its combination with
NPs can be achieved in two steps: 1) by adding the CS solution to
preformed NPs, such as nanotubes, magnetic iron oxide NPs or
liposomes, or 2) by incorporating the CS solution during the NP
preparation process, which is commonly used for polymeric NPs,
such as PLGA NPs mentioned earlier (Elkomy et al., 2022; Reshma
et al., 2017). CS NPs are typically synthesized using a bottom-up
ionic gelation method. This involves the preparation of a solution of
an anionic crosslinker, such as sodium tripolyphosphate (TPP), and
CS. These two reactants self-assemble into CS NPs through the
action of electrostatic interactions between the positively charged
amine groups of CS and the negatively charged polyanions
(Baghdan et al., 2018). The biocompatibility and biodegradability
of TPP make this method widely used in pharmaceutical
preparation. In drug delivery, not only does CS improve the
biocompatibility of drugs, but more importantly, it loosens the
tight junctions of epithelial cells, thereby facilitating the
paracellular transport of drugs across the epithelial barrier. Due
to these same properties, CS has also been investigated for use in
intranasal insulin delivery (Abbad et al., 2015; Sung et al., 2012). CS
is now widely attempted to be used as a carrier for drug delivery (Hu
and Luo, 2021; Imran et al., 2023).

4 Polymers as carriers for targeting AD
drugs to improve bioavailability and
delivery modalities

4.1 Oral or injection administration

Cur is considered an investigational drug in the treatment of
AD. BACE-1 is one of the key enzymes for Aβ fiber production.
How it cleaves APP to produce Aβ has been mentioned earlier.
Chen et al. showed a significant reduction in BACE1 in mice with
simulated AD after gavage with Cur’s saline (15 mg/mL and 30 mg/
mL), with no change in the expression level of APP in the mice
tested (Zheng K. et al., 2017). This result illustrates the great
potential value of Cur in AD therapy. Its poor bioavailability, short
in vivo half-life and difficulty in passing the BBB have been
hindering the further application of this material. However,
polymeric NP complexes offer more possibilities to Cur.
B6 peptide is known to target Tfr in some capillary endothelial
cells and neurons in the brain and can enter the CNS via RMC (Liu
et al., 2013). On this basis, Cur-loaded PLA-PEG NPs conjugated
with B6 (PEG-PLA-B6/Cur) were administered to APP/
PS1A1 transgenic mice. In addition to reduced aggregation of
Aβ protein and phosphorylation of tau protein, protein analyses
also revealed the inhibition of BACE1, APP and PS1. PEG-PLA-
B6/Cur also showed a better slow release of the drug in vitro than
free Cur (Fan et al., 2018).
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In recent years, a growing number of researchers have tried to
target neuroinflammation to treat AD. However, due to problems
such as incomplete release and poor bioavailability, it is imperative
to improve drug delivery carriers (Bonabello et al., 2003; Kaehler
et al., 2003). Dexibuprofen (DXI) was used to synthesize PLGA
surrounded by PEG chains (DXI-PLGA-PEG nanospheres (NSs))
with a larger surface area and adhesion. Of note when using DXI-
PLGA - PEG NSs in mice, the expression of p-CREB, a protein
related to synaptic plasticity and memory increased (Benito and
Barco, 2010). Moreover, a reduction in fibrous plaques was observed
in mice treated with NSs. The authors noted that this may be due to
the ability of DXI to inhibit the associated inflammatory response,
while PEG can reduce amyloid-insoluble plaques by helping NSs to
cross the BBB through endocytosis. The increased expression of
p-CREB may be attributed to this as well. The weight of the gastric
mucosa in the NS group was second only to that of the untreated
mice, suggesting that loading the drugs with NPs attenuated the
gastric damage caused by the free drugs (Sánchez-López et al., 2017).
DXI-loaded NSs overcome many of the side effects of free drugs and
can be turned into a safe strategy for AD prevention.

Polyethylene glocalization of NPs prevents them from being
recognized by the reticuloendothelial system and reduces their rate
of clearance by decreasing the interaction with mucins (Knop et al.,
2010; Griffiths et al., 2015). PEG is a paired with a marketed drugs to
optimize their slow release profile. Memantine (MEM) is an NMDA
receptor inhibitor approved for AD treatment, NMDAR is present
on the postsynaptic membrane and its hyperactivation leading to a
large inward flow of Ca2+ is considered one of the main causes of
synaptic failure in AD patients (Johnson and Kotermanski, 2006). In
animal studies, transgenic APPswe/PS1dE9 mice were administered
with MEM-loaded PEG-PLGA NPs, and the results showed a slow
release of NPs using this delivery system; furthermore, a more
pronounced reduction in amyloid plaques was observed in the
brains of mice that received MEM-loaded PEG-PLGA NPs than
in those that received free drug solutions. A more direct path to the
platform was also demonstrated in the Morris water maze test
(Sánchez-López et al., 2018). MEM-PEG-PLGA is a more
promising alternative to free drugs.

Among the therapies targeting BACE-1, attempts have also been
made to reduce the expression of BACE-1 by delivering siRNAs that
target BACE-1 effectively and specifically to neurons (Singer et al.,
2005). Conventional adenoviral or lentiviral vector-based drug
delivery methods face great challenges due to their insecurity and
inconvenience. Researchers have experimented with the use of
nanocarriers for drug delivery. The cationic polymer poly (2-
(N,N-dimethylamino)ethyl methacrylate) (PDMAEMA) was used
for drug loading and to prevent unwanted interactions with
negatively charged DNA, as well as to avoid blood agglutination.
To enhance its stability, PEG was conjugated to PDMAEMA. The
PEG-PDMAEMA conjugate was subsequently identified as an
optimal vector for siRNA delivery, due to its low toxicity and
high transfection efficiency (Qian et al., 2013; van Steenis et al.,
2003). To help NPs cross the BBB and target amyloid plaques in the
brain, CGN peptide (d-CGNHPHLAKYNGT) and QSH peptide
were further synthesized. Both have good affinity for brain capillary
endothelial cells and Aβ (Zhang et al., 2014). The hybrid complex
CQ/siRNA, composed of 25% MPEG-PDMAEMA, 50% CGN-
PEG-PDMAEMA and 25% QSH-PEG-PDMAEMA, enters the

cell via lattice protein-mediated endocytosis and subsequently
escapes from the lysosome to act on the mRNA (Zheng X. et al.,
2017). It is unclear how NPs escape the lysosome, and the most
widely accepted theory is a proton sponge effect sowing to the
cationic PEG-PDMAEMA (Won et al., 2009). Another study
replaced QSH with the neuron-targeting ligand Tet1 on the
hemolytic effects of the drugs and found that PEG-PDMAEMA
effectively prevented erythrocyte interactions and aggregation,
which the authors indicated was due to the steric hindrance and
charge shielding achieved by PEG chain on the surface of the
complexes. The same study also investigated the effect of siRNA
against BACE-1 on the expression of myelin basic protein (MBP,
14–21.5 kDa), as myelin dysplasia was found inmice with deletion of
the BACE1 gene, and western blotting showed no significant adverse
effect of CT/siRNA on myelin sheaths (Wang P. et al., 2018). The
study has presented compelling evidence that PEG-PDMAEMA
carriers can effectively deliver siRNA across the BBB and be used in
the treatment of AD.

CS has been shown to increase the stability of bioactive
molecules exposed to the gastrointestinal tract for oral
administration. Res was attempted to treat AD via the brain-gut
axis to increase Res activity in the organism. CS was cross-linked
with sodium TPP to encapsulate poorly water-soluble Res to
enhance its solubility and stability. (Wu et al., 2017). The
subsequent modification of the brain-targeting peptide (TG:
TGNYKALHPHNG) resulted in the synthesis of TG-Res-CS/
TPP-NPs. The CS-modified drug was subjected to in vitro
simulation of gastric and intestinal fluids and it was found to
have slower release profiles and higher stability than Res (Yang
et al., 2023).

4.2 Intranasal administration

CS can deliver drugs to the CNS bypassing the BBB through
intranasal administration, thereby reducing the side effects of drugs
in peripheral tissues or organs. This is because CS can open the tight
junctions between epithelial cells by inhibiting PKC activity and
transferring proteins such as ZO-1 therein from the cell membrane
into the cytoplasm (Casettari and Illum, 2014; Smith et al., 2005). CS
has a pH of 6.5, which makes it positively charged in the nasal cavity
with a pH between 5.5 and 6.5. This leads to a longer retention time
of CS-based drugs in the nasal cavity (Kazemi Shariat Panahi et al.,
2023). Compared with traditional oral drug delivery, intranasal drug
delivery can increase the bioavailability of encapsulated drugs in the
brain by transcellular or paracellular pathways that cross the nasal
epithelium to deliver drugs directly to the CNS via the olfactory
bundle or trigeminal nerve (Lee and Minko, 2021; Jamshidnejad-
Tosaramandani et al., 2024).

Insulin therapy is a novel treatment modality for AD, and there
is evidence that diet-induced obesity and insulin dysregulation are
closely linked to a range of pathological changes such as Aβ amyloid
deposition and Tau protein aggregation in AD (Kellar and Craft,
2020; Flores-Cordero et al., 2022). Deficiency of GLUT1 and glucose
transporter protein 3 in the BBB has been observed in AD patients.
Insulin delivery using intranasal administration has been tried for
the treatment of memory disorders, leading to enhanced memory in
mice (Mao et al., 2016). In recent years, there have been clinical trials
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of intranasal administration of insulin, but because of the limitations
of the dose, the effect is not particularly satisfactory, which puts
forward higher requirements for the insulin delivery device (Shibata
et al., 2000). To further improve the bioavailability of insulin by
increasing its intranasal residence time, CS has been attempted as a
drug carrier for insulin drug delivery. Using the membrane
hydration method, researchers have achieved success in loading
insulin into transfersome vesicles, which are ultra-deformable
vesicles containing phospholipids and an edge activator (EA)
(Opatha et al., 2020). The prepared transinsulin was added to
0.6% CS formamide salt buffer for hydration, and a CS-
Transfersulin (CTI) with a CS film attached to the surface was
prepared. The average size of the finished CTI was 137.9 ± 28.2 nm.
In addition, 5-isothiocyanate (FITC) was added for staining, and
fluorescence imaging showed that FITC-CTI conjugated with CS
gradually entered the brain and entered the nasal cavity and
olfactory vesicles in a short period of time. However, FITC-INS
gradually dispersed to the peripheral organs after a short period
(15 min). After 4 h, the fluorescence in other internal parts
disappeared, and the fluorescence intensity of the lower organs
increased. Morphological improvement of pyramidal cells in the
highest hippocampus area after CTI treatment was observed in
pathological tissue sections (Nojoki et al., 2022), suggesting a better
brain-targeted delivery of insulin therapy using CS loading than
free insulin.

Intranasal administration has the added advantage of avoiding drug
contact with peripheral tissues. Galantamine, a marketed therapeutic
drug for AD, loaded onCS, is an acetylcholinesterase (AchE) inhibitor. In
the past, galantamine was commonly administered orally in the clinical
setting, but in addition to the corresponding therapeutic effects, patients
experienced adverse effects such as nausea, vomiting, diarrhea, and
weight loss, which were presumed to be caused by the nonspecific
binding of galantamine to peripheral AchE (Prvulovic et al., 2010).
Intranasal administration provides a viable alternative mode of drug
delivery. GH/CS complex NPs (CX-NPs) have been reported to show
good biocompatibility in in vivo experiments (Duan et al., 2024). Inmice
with scopolamine-induced AD, CS loaded with galantamine was
administered intranasally, intravenously and orally. Of the three
modes of administration, the rats administered intranasally had the
lowest plasma concentrations and the highest brain concentrations (El-
Ganainy et al., 2021). It is important to note that care needs to be taken in
the incorporation of other groups to alter the properties of CS.
Researchers attempting to add alginate to drugs to improve the
solubility of CS in environments with pH > 6.5 found that CS loaded
with galantamine alone showed a slower release profile than GH-loaded
CS/alginate NPs in in vitro experiments at pH = 7.2 where a gradual
release of the drug was observed after 8 h, suggesting that alginate and CS
shortened the release time of the drug (Georgieva et al., 2023). The above
experiments demonstrated the delivery efficiency and slow-release profile
as well as the excellent biocompatibility and biodegradability of the CS-
loaded different drugs for intranasal administration.

4.3 Limitations of polymeric carriers in
AD therapy

Although polymeric drugs, led by PEG, PLGA and CS, have
made great progress in recent years in a variety of anti-AD drug

delivery systems, most of them are still at the stage of animal
testing where the combination of polymer and drug makes the
metabolism kinetics of the drug in vivo more complex. For
example, compared with traditional drugs, the ratio of
polymer to drug substrate, molecular weight, degree of
crystallinity, particle size and even the preparation process all
affect the release of the drug in the bio-endogenous environment
(Sun et al., 2024). This adds to the complexity of polymeric drugs
in drug discovery and preparation. It has been shown that drug
type, drug distribution and drug loading rate affect the drug
release behavior of drug-loaded PLGA NPs, and that uniform
drug distribution within the polymer matrix can lead to an early
burst of drug release. To address this issue, researchers have
designed a drug gradient distribution, with a higher
concentration at the core and a lower concentration at the
periphery, allowing for more stable drug release (Kakish et al.,
2002). The metabolic pathways of polymeric drugs in the body
remain unclear. To date, applications of PLGA-PEG block
copolymers in cancer treatment have shown that the metabolic
pathway of PEG is still unknown. However, no long-term studies
have yet determined whether PEG can be cleared from the body,
where it accumulates, or what effects it may have at the sites of
accumulation (Knop et al., 2010). A recent review has shown that
patients receiving PEG-based treatments experience prolonged
neutropenia and coagulation dysfunction, with hepatotoxicity
being significantly associated with PEGylated products compared
with non-PEGylated counterparts. The study has also highlighted
other notable adverse events associated with PEG-based
therapies, such as hypersensitivity reactions and an overall
increase in the risk of infection (Lee et al., 2024). CS also faces
comparable challenges in the management of AD, particularly
during intranasal administration. Further experimentation is
required to confirm the safety of CS within the body,
particularly within the CNS.

5 Native polymers as AD drugs

5.1 PLGA

According to Kar et al., PLGA NPs can protect neurons
subjected to Aβ aggregation without being functionalized by any
drug, and this material reduces the toxic effects produced by Aβ on
the cells (Wang Y. et al., 2020). These researchers focused on
cathepsin D (CatD), a cathepsin present in normal cellular
lysosomes. Abnormal release of CatD from lysosomes led to the
release of cytochrome c frommitochondria in the presence of dATP/
ATP, which was capable of activating caspase-9, followed by
activation of the caspase-3 apoptotic pathway (Wang F. et al.,
2018; Repnik et al., 2012; Stoka et al., 2016). By observing
defective Aβ catabolism in neurons of CatD-knockout mice,
another study from the same period concluded that CatD was
phagocytic toward Aβ proteins under physiological conditions
(Suire et al., 2020). Given that the cytotoxic effects of CatD were
observed by Kar et al., in 5XFAD mice, and that excess intracellular
Aβ led to lysosomal damage, the source of this discrepancy may lie in
whether or not the integrity of the lysosome is compromised. Once
the permeability of the lysosomal membrane is increased, CatD is
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abnormally released into the cytoplasm inducing the apoptotic
pathway. Several studies have been conducted on CatD for disease
cure (Marques et al., 2020; Hossain et al., 2021). Lysotracker is a
weakly basic stain that labels cellular compartments in cells with low
pH (Wolfe et al., 2013). A reduction in neuronal death was observed
in Aβ1-42-treated neurons exposed to 200 μg/mL PLGA for 12 h and
this treatment reversed the diffuse staining of Lysotracker in Aβmice,
with most of the natural PLGA entering the neuronal cell via a lattice
protein/vesicle-dependent pathway and internalizing through
macrophage action. Subsequently, the PLGA was transported to
the lysosomes via endosomes (Wang Y. et al., 2020). Another
report indicated that PLGA could restore the pH of lysosomes
damaged by alkalinization and to some extent improve lysosomal
function (Baltazar et al., 2012). Using immunoblotting, a significant
reduction in carbonyl levels in Aβ neurons was observed and it was
hypothesized that the protective effect of PLGA on neurons may be
mediated by a reduction in reactive [oxygen species (ROS)] (Wang Y.
et al., 2020). In addition, it has been found that PLGA could reduce the
expression of APP, α-secretase and β-secretase, however, further
experiments are still needed to elucidate the specific mechanism by
which PLGA regulates the transcription/processing of APP (Wu
et al., 2022).

PLGA not only protects against intracellular toxicity caused
by Aβ, but it also prevents Aβ aggregation and depolymerizes
already aggregated Aβ. A significant reduction in the number of
Aβ aggregates was obtained in neurons treated with PLGA. The
results of fluorescent labeling showed PLGA-induced
depolymerization of Aβ in a dose-dependent manner,
suggesting that the direct interaction between the two is the
basis for the unraveling of the chains, as shown in Figure 3.
Spectroscopic studies, biochemical analyses and molecular
dynamics simulations describing the interaction of PLGA NPs
predominantly with the hydrophobic structural domains of
Aβ1–42 corroborate this conclusion (Paul et al., 2022). By
adjusting the proportion of PLGA to GA, an equimolar PLGA
of 75:25 isomers, 50 μM LA, 50 μM GA or a mixture of 50 μM LA
and GA was found not to change the aggregation of Aβ
illustrating the specificity of the results (Anand et al., 2022).
The above experiments demonstrate the promise of the
therapeutic effects of PLGA when used alone as a drug for the
range of impairments caused by Aβ in AD. Recent reports have
indicated that PLGA may have the potential to inhibit the
formation of neurofibrillary tangles associated with tau
phosphorylation (Paul et al., 2024).

FIGURE 3
Specific mechanisms of PLGA in the treatment of Alzheimer’s disease. (A) PLGA inhibits Aβ1-42 and tau protein aggregation. (B) PLGA is present in
early and late endosomes and lysosomes and restores damaged lysosomes by internalisation upon cell entry and reduces the expression of genes
involved in APP processing such as APP, Bace1, Psen2, and Ncstn.
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5.2 CS oligosaccharide

CS oligosaccharide (COS) is a hydrolyzed product of CS.
Because of its lower molecular weight, COS has higher solubility
and lower viscosity under physiological conditions than CS (Zhou
et al., 2010). COS and its derivatives have been used in a large
number of biomedical and pharmaceutical applications, and most of
the derivatives developed for COS are directed toward the hydroxyl
and/or amine/acetamide groups (Naveed et al., 2019). Previous
studies have shown that COS has an outstanding role in against
oxidative stress, inhibits β-secretase and exerts anti-inflammatory
effects (Ouyang et al., 2017). Sun et al. used COS in rats treated with
Aβ1-42, and three doses (200, 400, and 800 mg/kg) were found to
reduce neuronal death in the Aβ1-42-exposed rats (Jia et al., 2016).
Modification of COS using different groups to obtain caffeic acid
conjugated-COS enhanced its inhibition of β-secretase (Eom et al.,
2013). Neuroinflammation is also one of the important therapeutic
targets for AD. Peracetylated COS (PACOS) may significantly affect
the PI3K-Akt signaling pathway and cell proliferation-related
pathways, and alleviate the aggregation of Aβ protein in a dose-
dependent manner. Improved the repair of β-amyloid-induced
cognitive deficits in rats. After the same PACOS treatment (25,
50, 100 mg/kg), compared with untreated rats, the phosphorylated
tau protein levels were significantly different to approximately 1,660,
1,500, and 1,350 pg/mL (P < 0.05), and a significant decrease in the
levels of inflammatory factors TNF-α and IL-6 was observed (Hao
et al., 2023). COS also inhibited the MAPK and NF-κB pathways by
upregulating heat shock protein 70 (HSP 70) and downregulating
HSP 90, thereby attenuating oxidative stress in neurons and
preventing subsequent apoptosis (Joodi et al., 2011). In summary,
COS is another drug that may be used in the treatment of AD.

5.3 GV-971

Another oligosaccharide, GV-971, was approved for marketing
in China in November 2019. It is a natural oligomer with amolecular
weight of around 1,000 Da and targets the gut flora to alleviate AD
neuroinflammation. This substance is derived from natural alginate,

and is produced by depolymerizing propylene glycol alginate
sodium sulfate followed by oxidation, leaving the carboxyl group
at the reduced end (Gao et al., 2019). It can cross the BBB via
GLUT1 carrier protein translocation or the paracellular pathway (Lu
et al., 2022;Wang et al., 2019). As AD progresses, Aβ protein and tau
phosphorylation may lead to disturbed gut metabolism in patients,
which in turn causes an inflammatory response and brain
infiltration by immune cells (Alkasir et al., 2017). GV-971 can
reduce inflammatory responses by normalizing the disordered
gut metabolism. Specifically, by regulating the metabolism of
phenylalanine and isoleucine in the intestinal flora, inhibition of
phenylalanine-induced Th1 cell proliferation further reduces
microglial cell activation, as shown in Figure 4 (Wang et al.,
2019). In the 5XFAD experiment, the reduction in Aβ load in
the brain of male mice with administered different doses of GV-
971 (40 mg/kg, 80 mg/kg, 160 mg/kg) was most pronounced in the
80 mg/kg group. Interestingly, this therapeutic effect was only found
in male mice. The same sex-specificity was found in studies on
neuroinflammation via astrocytes and microglia, which is consistent
with previous therapeutic results using antibiotic cocktail (ABX),
Both ABX and GV-971 target the gut microbiota, and speculation
that this phenomenon may be due to a variety of complex causes
such as ovarian hormones and other causes (Lopez-Lee et al., 2024;
Dodiya et al., 2019; Bosch et al., 2024). However, gender specificity
has not been reported in previously completed clinical trials. No
amyloid or tau protein biomarkers have been used in any of the
currently completed clinical trials on GV-971. The treatment effect
in question was primarily reflected in AD Cooperative Study-
Activities of Daily Living (ADAS-cog12), Neuropsychiatric
Inventory and CIBIC-plus responses. All three scales showed
significant improvement compared with the placebo
group. Patient compliance with GV-971 in the trial was good,
with no large-scale adverse reactions reported (Xiao et al., 2021;
Wang T. et al., 2020; Chen et al., 2024). However, the bioavailability
of GV-971 does not appear to be optimal. In the experimental
pharmacokinetic study of GV-971, it was found that the
bioavailability of GV-971 was very low in rats (0.6%–1.6%) and
dogs (4.5%–9.3%), and most of the drug that had been taken into the
bloodstream was rapidly metabolized by the kidneys and excreted in

FIGURE 4
GV-971 relieves neuroinflammation in the middle brain GV-971 further reduces Th1 cell activation by modulating amino acid metabolism in the gut
flora, ultimately reducing neuroinflammation.
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the urine. The rest was likely absorbed by the intestinal flora as
nutrients and then eliminated in the feces (Lu et al., 2022).

Although GV-971 has been approved for marketing, there are
many controversies concerning its use. There is no apparent AD-
relevant molecular target, bioavailability is low, understanding of the
brain–gut axis is still in its infancy, and many questions about GV-
971 have been raised (Lu et al., 2022; Yeo-Teh and Tang, 2023).
Furthermore, thus far clinical trials of GV-971 have not included
AD-related biomarkers as part of the subject selection criteria,
because amyloid positron emission tomography was not widely
available in China at the time the trial was planned and initiated.
However, AD biomarkers were included as part of the diagnostic
criteria in a clinical trial initiated in the USA. The results of this trial,
which is scheduled to be completed in 2026 (NCT04520412), may
fill a gap in the knowledge of the effects of GV-971 on amyloid
plaques in humans. We expect that GV-971 will be able to go further
to the international market through this trial and bring benefits to
more patients.

6 Conclusion and future prospects

To date, polymers have demonstrated the capacity to address
numerous challenges that traditional drugs are unable to surmount
in the treatment of AD, thereby illustrating their prospective value in
the domain of medicine. Researchers have modified the release
profiles and half-lives of various pharmaceuticals within the body
by altering particle size, material distribution, polymer molecular
weight, and shape.

Given the numerous advantages of polymers and polymer drugs
that have been outlined earlier, many polymers have progressed to
clinical trials. In the future, the development of polymeric drugs for
AD will have to overcome the following challenges: 1) It is unclear
whether the metabolic destination of polymer drugs in the body is
consistent with that of pure polymers. If these large molecules are
not filtered by the glomeruli, it is necessary to determine where they
will accumulate in the body, how they will be cleared, and what
impact they will have on the body. Further long-term observations
are required to determine the toxic effects of polymers in the body.
2) The reason for the additional permeability of the BBB to of
polymer drugs, the mechanism of their passage through the BBB,
and the subsequent metabolism of these drugs in the CNS must be
elucidated. 3) siRNA therapy is already being used in clinical trials to
treat cancer, transthyretin amyloidosis and primary hyperoxaluria
type I (Zatsepin et al., 2016). However, the annual cost of this
therapy can be in the hundreds of thousands of dollars per patient, a
problem shared by other drugs. Given the large number of people
with AD this high cost could put treatment out of reach for
most families.

With regard to native polymers, the number of fundamental
studies pertaining to their mechanisms and pharmacokinetic
processes remains inadequate, despite the considerable
advantages they offer, including straightforward and cost-effective
preparation methods. It is recommended that further research be
conducted by additional researchers to gain a more comprehensive

understanding of the role of these substances in AD therapy. This
should include studies on bioavailability and cytotoxicity when the
substances are administered orally or by injection.
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