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Silicosis is an important occupational lung disease caused by exposure to
respirable crystalline silica dust particles, with the clinical manifestations from
asymptomatic forms to respiratory failure. The main pathological process
involves parenchymal lung injury, inflammation and lung tissue fibrosis, but
the exact pathogenesis remains elusive. Until now, there have been no
effective treatments for silicosis due to the complexity of pathogenesis and
irreversibility of pulmonary fibrosis. In this review we attempt to summarize
the advances in pathogenesis and treatment of silicosis and to explore the
current understanding of the molecular mechanisms involving in the initiation
and development of silicosis and potential therapeutic targets.
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1 Introduction

Silicosis, a fibrotic lung disease caused by the long-term inhalation of the dust
containing silicon dioxide (SiO2) in occupational activities (Wang M. et al., 2022), has
been a major occupational disease in many developing countries and resurged recently in
some developed countries (GBD 2013 Mortality and Causes of Death Collaborators, 2015)
It is reported that there are 3 million workers in Europe (Kauppinen et al., 2000) and
1.7 million workers in the United States (Li et al., 2002) exposed to silica dust. In China,
occupational pneumoconiosis is the most serious occupational disease. Totally
171,291 cases of silicosis have been documented up to 2021, representing 78.58% of all
pneumoconiosis cases (Liu et al., 2024). Therefore, silicosis has caused a heavy burden in
developing countries and seriously threatened the quality of life (QOL) of workers.

According to the exposure period and pathological progress, silicosis is categorized as
acute, accelerated and chronic types (Wang M. et al., 2022; Aloe et al., 2022). Acute silicosis
mainly manifests as silico proteinosis, typically occurring within a few weeks to years
following exposure to high concentrations of SiO2 (Krefft et al., 2020). Based on the chest
imaging, chronic silicosis can be divided into simple and complicated subtypes (Quan et al.,
2022). Complicated silicosis, also known as progressive macro fibrosis, is diagnosed by the
presence of an International Labour Organization-classified macro mixed image on a chest
radiograph or an aggregated chest high-resolution computed tomography (HRCT) image,
usually accompanying by calcification and fibrosis (Quan et al., 2022; Cox et al., 2014). The
onset of accelerated silicosis is within 5–10 years of exposure to dust, but the disease
progresses more rapidly than chronic silicosis. In recent years, accelerated and acute silicosis
has attracted more attentions, but the risk factors and molecular pathogenesis remain
elusive (Adamcakova and Mokra, 2021).
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Silicosis is characterized by persistent inflammation and
progressive fibrosis in the lung, which may cause breath difficulty
and respiratory failure, even death. Therefore, the treatment
strategies using drugs are mainly to block fibrotic factors, reduce
lung inflammation, inhibit the proliferation and activation of
interstitial cells, and regulate the synthesis and degradation of
extracellular matrix (ECM), thereby reducing the lung tissue
injury and formation of pulmonary fibrosis (Pang et al., 2019;
Liu et al., 2016). Current prescribed drugs for silicosis include
pirfenidone, poly-2-vinylpyridine-N-oxide (PVNO), nintedanib,
tetrandrine, etc. (Pang et al., 2019; Ernst et al., 2002). With the
understanding of the molecular mechanisms underlying silicosis,
more and more signal pathways have been identified and proposed
as the potential therapeutic targets.

As a surgical treatment, bronchoalveolar lavage and whole lung
lavage (WLL) are effective ways to relive the symptoms of silicosis by
removing the residual silica in the alveolar cavity (Cottin et al.,
2004). However, the actual therapeutic effect of this method needs to
be confirmed through long-term follow-up and documentation.
Although lung transplantation can be used for patients with
advanced silicosis, it is hard to be widely applied due to the
difficulty of donor source and high cost (George et al., 2019). In
recent decades, great progress has been made in stem cell technology
which may be the new and promising means for silicosis after
surgical and drug treatments (Chen et al., 2018a).

The aim of this article is to review the recent progress in
understanding the molecular pathogenesis of silicosis, current
treatment protocols, and potential therapeutic options.

2 Toxicity of silica dust

Free SiO2 particles or respirable crystalline silica (RCS) dust
particles with the diameter less than 5 μm could directly produce
cytotoxicity. The degree of lung injury caused by silica dust mainly
depends on the physical/chemical properties and toxicities, as well as
the exposure time and intensity. Silica, also called SiO2, has a
crystalline or non-crystalline (amorphous) structure (Lee et al.,
2020). In crystalline silica, silicon atoms and oxygen atoms are
arranged in a fixed geometric pattern. In contrast, there is no spatial
order of atoms in amorphous silicon (Woźniak and Wiecek, 1995).
It has been well documented that exposure to silica dust can cause
tissue injury, inflammation, and pulmonary fibrosis.
Epidemiological and laboratory studies showed that exposure to
silica dust could cause lung cancer and tuberculosis (Wang D. et al.,
2020). Amorphous silica is considered less toxic than crystalline
silica (Rubio et al., 2019) classified as group A carcinogens by the
International Agency for Research on Cancer (Guha et al., 2011;
Peters et al., 2017), although its carcinogenicity to humans has not
been confirmed.

In recent decades, artificial or engineered stones have been
increasingly popular materials used to fabricate kitchen and
bathroom bench tops. Exposure to RCS from artificial stones can
increase the risk of silicosis in developed countries, such as Italy,
Spain, Israel and United States (Kramer et al., 2012; Pérez-Alonso
et al., 2014; Paolucci et al., 2015). Compared with traditional
silicosis, artificial stone silicosis is more aggressive because of the
high content of silica (90%) in the RCS (Ophir et al., 2016). Studies

on the dust from artificial stones further confirmed the importance
of the physical/chemical properties in their toxicities and
consequent silicotic potency. It has been found that the higher
contents of SiO2 in the dust are, the more toxic to the lung tissue is
Lee et al. (2020); the higher dispersion of silica dust particles and the
larger proportion of fine particles are, the greater amount of silica
dust entering the deep respiratory tract is Fernández Álvarez
et al. (2015).

RCS can penetrate deep into the lung with various biological
activities. Silica particles with a diameter of less than 3.2 μm account
for 100% of the lung tissue in silicosis patients. The silanol groups on
the surface of silica dust can form hydrogen chains with secondary
lysosomal membrane proteins in macrophages, which can increase
the membrane permeability, reduce fluidity, and promote the
membrane lysis (Goumans et al., 2008). A subfamily of silanol
“nearly free silanol” is the major determinant of silica-induced
toxicity through interaction with the cell membrane or
phagolysosome promoting membranolysis (Pavan et al., 2020). In
addition, the silica dust can directly and indirectly induce reactive
oxygen species (ROS) in alveolar macrophages (AMs) to activate the
cell-signaling pathways launching cytokine release and apoptosis
(Hamilton et al., 2008). The human body mainly clears the dust in
the respiratory tract through the ciliary oscillation of the ciliary
adhesive device and the phagocytosis of AMs. However, long-term
inhalation of dust will reduce the body’s defense function, which can
lead to excessive deposition of dust to damage the lung tissue,
thereby causing the disease (Wildung et al., 2022; Noël et al., 2020).

3 The pathogenesis of silicosis

Although great efforts have been made to understand the
pathogenesis of silicosis, the molecular mechanism underlying
the initiation and development of the disease remains to be
elucidated. The pathological process is complex and involves
multiple cell types, cytokines and pathways. To simplify the
complexity, we divide this process into different stages, including
parenchymal lung injury, inflammatory response, and pulmonary
fibrosis (Krefft et al., 2020; Kawasaki, 2015) (Figure 1). It should be
noted that in real situations, these stages are not separated but
overlapped and interactive.

3.1 Parenchymal lung injury

The human respiratory system has a strong ability to defend and
remove dust through multi-level defense (de Lima Gondim et al.,
2019). The initial line of defense consists of the retention function of
nasal hairs and passages, which can block and trap larger particles.
The second line of defense is provided by the excretory action of the
mucosal ciliary system within the epithelium of the respiratory tract.
The mucosal epithelium contains mucus and cilia supported by
ciliated cells, which can rapidly swing toward the larynx and
transport mucus and attached particles to the pharynx, where
they are ultimately expelled from the body through coughing or
swallowing. This mechanism effectively removes the particles with
diameters ranging from 1 to 5 microns. The final line of defense is
established through the phagocytosis performed by lung
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macrophages. These macrophages, along with other immune cells,
are capable of engulfing and digesting smaller particulate matter,
particularly those smaller than 2.5 microns. They are present in
abundance in the alveoli and function as scavengers (Aloe et al.,
2022; Su Y. et al., 2020; Fèvre et al., 2022; Nardi et al., 2018). As the
resident cells in lung tissues, AMs play a major role in maintaining
immune homeostasis and host defense (Cui et al., 2022), and is the
critical line of defense against silica dust. AMs are derived from bone
marrow mononuclear cells, with the functions of engulfing foreign
bodies, anti-infection, regulating inflammatory and immune
responses (Hou et al., 2019). Silica dust is recognized by AMs
mainly through class A and B1 scavenger receptors, and then
swallowed by AMs (Hou et al., 2019; Yang et al., 2020). After
entering the alveoli, silica dust induces the aggregation and
phagocytosis of AMs. Moreover, the intracellular silica dust can
also damage the phagosomes and other organelles, such as
endosomes, lysosomes, endolysosomes, even DNA, thus inducing
cell injury and necrosis or apoptosis (Hou et al., 2019; Yang et al.,
2020). After cell death, intracellular silica particles are released
together with intracellular enzymes, leading to further cell death
and tissue damage (Gao et al., 2020). The above process is caught in a
vicious circle. Meanwhile, the secretion of inflammatory mediators
activated by AMs can lead to the recruitment of peripheral blood
monocytes, which subsequently differentiates into macrophages.
Some of these monocytes migrate into the lymph nodes through
lymphatic vessels, while others infiltrate the pulmonary interstices
(Kawasaki, 2015; Wang et al., 2016; Mu et al., 2020). In addition,
silica dust-induced ROS can also result in mitochondrial
dysfunction, forcing AMs to undergo mitochondrial apoptosis
(Aloe et al., 2022; Nardi et al., 2018).

Inhaled silica dust can affect alveolar epithelial cells by triggering
an inflammatory response mediated by AMs. This response leads to
degeneration, swelling, and shedding of alveolar epithelial type I
(ATI) cells, ultimately resulting in an incomplete alveolar structure
(Fang et al., 2018). Alveolar epithelial type II (ATII) cells with the
stem cell properties can replenish the lost ATI cells through
differentiation and proliferation to restore the alveolar integrity
(Wang et al., 2021). If ATII cells are unable to fill the loss timely,

the underlying basement membrane of ATI cells will be
compromised, exposing the matrix and triggering fibroblast
proliferation (Fang et al., 2018).

Multiple proteins and genes are involved in the regulation of
parenchymal lung injury. Cathepsin participates in fibrosis by
degrading the alveolar basement membrane and regulating
immune response (Xu et al., 2012). Toll-like receptor 4 (TLR4) is
involved in immune response through multiple pathways. Zanoni
et al. demonstrated that CD14 was required for TLR4 endocytosis to
activate the downstream signaling (Zanoni et al., 2011). The
CD14 core focusing defect could inhibit TLR4 endocytosis and
impair TLR4 signaling pathways in mouse embryonic fibroblasts
(Iijima et al., 2017). This receptor was also found to be critical for the
release of pro-inflammatory cytokines and for promoting the
deposition of collagens and fibronectins after bleomycin exposure
(Razonable et al., 2006; Yang et al., 2009). Therefore, TLR4 plays a
key role in the release of inflammatory factors, which provides a
basis for the formation of silicotic nodules and pulmonary fibrosis.
CLDN5 is an indicator of endothelial tight junctions and
permeability, and its downregulation is associated with disruption
of endothelial tight junctions in bleomycin-induced pulmonary
fibrosis and may be involved in epithelial-mesenchymal
transition (EMT) (Zhang et al., 2015). Furthermore, TGF-β also
disrupts alveolar epithelial and endothelial tight junctions by
downregulating CLDN5 expression (Ohta et al., 2012). ROS is
mainly produced by NADPH oxidase (NOX) in AMs. Choi et al.
identified that the subunits of NOX complex, such as NOX2
(gp91phox), P22phox, P47phox, P40phox, and P67phox, were upregulated
in silicosis rats. ROS destroyed pulmonary endothelial integrity and
increased vascular permeability through activation of P38 MAPK
signaling pathway (Choi et al., 2019) (Figure 2, tissue retention and
cell injury/death).

3.2 Inflammatory response

Silica dust enters the alveoli and interstitium of the lungs,
producing toxic effects on the tissues. This exposure activates

FIGURE 1
A general schematic diagram describing the different stages of silicosis. Silica dust exposure can activate macrophages, damage alveolar epithelial
cells and then initiate inflammation reactions. These inflammatory factors induce multiple signaling pathways, such as TGF-β/Smad and TNF-α signaling
pathways. As epithelial cells are damaged, they undergo autophagy and apoptosis. Repeated inflammation and cell death promote the formation of
fibroblasts and myofibroblasts, produce lots of extracellular matrices, accelerate the release of fibroblasts and epithelial-mesenchymal transition
process, thus resulting in the destruction of alveolar structures and fibrosis.
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macrophages, which subsequently interact with alveolar epithelial
cells to cause cellular dysfunction even cell death, thereby initiating
the inflammatory response. This process represents the primary link
in the development of pulmonary fibrosis. The continuous
phagocytosis and release of silica dust by macrophages constitute
a critical event that contributes to the amplification of inflammation
and initiation of pulmonary fibrosis. It is believed that the
phagocytosis and consequent lysosomal damage and rupture,
ROS, as well as cell injury and death can trigger activation of
nucleotide-binding oligomerization domain, leucine-rich repeat
and pyrin domain-containing protein 3 (NLRP3) in AMs, which
plays an essential role in silica dust-induced inflammatory response
(Hamilton et al., 2008; Li Z. et al., 2021). NLRP3, which is composed
of a C-terminal leucine-rich repeat domain, a central NACHT
domain and an N-terminal pyrindomain (Shen et al., 2021),
plays a fundamental role in various inflammation-related
diseases, including diabetes, atherosclerosis, metabolic syndrome,
cardiovascular and neurodegenerative diseases (Adamcakova and
Mokra, 2021; Zahid et al., 2019). Activation of NLRP3 primarily
involves two steps: priming or initiating step and oligomerization of
NLRP3, as well as subsequent assembly of inflammasomes in which
NLRP3 inflammasome binds to an adaptor protein (apoptosis-
associated speck-like protein with a caspase recruit domain) to
activate the caspase-1 (Yang et al., 2022). When caspase-1 is
activated, immature, pro-forms of interleukins (IL)-1β, IL-18, and
IL-33 are cleaved to mature and active forms, thereby facilitating
various inflammatory processes, including fever, T-cell survival
extension, B-cell proliferation, mediation of leukocyte
transmigration, etc. (Sims and Smith, 2010). These chemokines
and cytokines directly or indirectly cause acute and chronic

inflammation, and meanwhile the latter can also induce a variety
of particle- and fiber-related lung and pleural diseases (Sayan and
Mossman, 2016). Another important function of inflammasomes is
the induction of caspase-1-dependent pyroptosis, a highly
inflammatory type and programmed cell death characterized by
apoptotic and necrotic features (Stegmann et al., 2015). However,
the role of pyroptosis in the initiation and development of silicosis
remains to be fully understood.

For activation of NLRP3 inflammasome, a priming step is
required through activation of pathogen-associated molecular
patterns, damage-associated molecular patterns (DAMPs) or
TLRs via phosphorylation and subsequent activation of NF-κB,
which promotes the transcription of NLRP3, proIL-1β, and
proIL-18 in the nucleus. Environmental factors such as silica
particles may directly act as exogenous DAMPs, or indirectly as
endogenous DMAPs through ROS generation to initiate the
activation of NLRP3 (Land, 2020). A recent study has shown that
the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon
genes (STING) mediates the silica dust-induced activation of
NLRP3 inflammasome (Benmerzoug et al., 2018). The lysosome
proteases and DNA fragments released from injured and dead AMs
or lung epithelial cells are sensed by cGAS/STING, consequently
modulating the NALP3 inflammasome and subsequent events
(Benmerzoug et al., 2018) (Figure 2, Inflammatory response).

Macrophages can undergo remarkable functional plasticity. In
the pathological process of silicosis, macrophages are activated as
M1-type macrophages, which release a large number of cytokines
and chemokines, leading to neutrophil infiltration and activation of
innate immune system (Kawasaki, 2015; Zhao et al., 2020).
Meanwhile, macrophages act as antigen-presenting cells to

FIGURE 2
Multiple proteins and genes participate in the pathological process of silicosis. Silica-induced cell and tissue damage is the initial but critical stage for
the pathogenesis of silicosis. Moreover, silica dust can activate the apoptosis signaling pathways of AMs and induce cell apoptosis. It can also act on
alveolar epithelial cells to cause degeneration, swelling and shedding of alveolar epithelial type I cells, resulting in incomplete alveolar structures. Multiple
proteins and genes are involved in above stages. This figure is explained in the part 3 (3. The pathogenesis of silicosis) and part 4.1 (4.1.
Drug treatment).
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mediate cellular immune activation, promote initial T lymphocytes
in peripheral lymph nodes into effector T cells, and migrate to the
inflammatory site to secrete Thl type of cytokines such as IL-2,
IFN-γ and tumor necrosis factor α (TNF-α), thereby aggravating
inflammatory damage (Hou et al., 2019). M1 pro-inflammatory cells
contribute to infection clearance, and M2 anti-inflammatory cells
have a reparative phenotype and contribute to the resolution phase
of response to injury (Tang et al., 2019). M1-type macrophages
gradually transform into the M2-type, releasing cytokines such as
inhibitors of metalloproteinases, TGF-β and platelet-derived growth
factors (PDGF) that play an anti-inflammatory and fibrogenic roles
(Kawasaki, 2015). Meanwhile, effector T lymphocytes gradually
transform to secrete Th2 cytokines like IL-4 and IL-10, which
mainly regulate the fibrotic response.

Notably, in the early stage of silicosis, appropriate apoptosis of
AMs can remove the damaged cells, reshape the lung tissue
structure, and inhibit inflammation, but this effect disappears in
the later stage due to excessive apoptosis (Hou et al., 2019; Yang
et al., 2020). Therefore, AMs have the dual effects of defense and
inducing fibrotic lung injury. Intracellular silica dust can trigger the
release of inflammatory factors via the innate immune system,
including IL-1β, TNF-α and transforming growth factor
β (TGF-β) (de Lima Gondim et al., 2019). Furthermore, multiple
pathways are also induced, such as TGF-β/Smad signaling pathway,
NF-κB signaling pathway, etc. (Pang et al., 2021).

Lung epithelial cells play a key role in triggering inflammatory
response and promoting remodeling of the lung tissue (Huang et al.,
2022). Silica particles can destroy alveolar structures by stimulating
alveolar epithelial cells, leading to the release of pro-inflammatory
cytokines and recruitment of various inflammatory cells (Mercer
et al., 2009). The activation of TLR in epithelial cells may be the
trigger for epithelial-induced recruitment of immune cells to the
lung (Cho et al., 2022). Importantly, the chemokine response in the
lung epithelium can be reinforced by macrophage-derived
inflammatory mediators in a synergistic way (Barrett et al., 1998).

3.3 Fibrotic changes in the lung

The key pathological change of silicosis is the progressive and
irreversible pulmonary fibrosis. During the repetitive inflammatory
response, AMs, interstitial and recruited microphages can secrete
high levels of cytokines, chemokines and growth factors. Some of the
inflammatory mediators can also be fibrogenic factors causing the
dysfunction and destruction of epithelium and consequent fibrosis
(Ma X. et al., 2020). One of the hallmark changes is EMT, a process
in which epithelial cells gradually transform into mesenchymal-like
cells and lose the epithelial functions and characteristics (Zhu et al.,
2022). Normally, EMT is an important and irreversible process for
tissue organization during embryonic development, its
dysregulation is associated with a variety of diseases including
cancer and fibrosis (Scott et al., 2019). ATII cells play an
important role in lung injury through the synthesis and secretion
of pulmonary surfactants and conversion into ATI cells as an
alveolar repair (Olajuyin et al., 2019). However, due to the cell
death and inflammation by silica dust, the differentiation of ATII
cells into ATI cells is inhibited, and ATII cells can be transformed
into mesenchymal cells or have mesenchymal characteristics,

producing extra ECM (Fang et al., 2018; Wang et al., 2021).
Normally, ECM provides a supportive environment for cell
functions and communications, thus influencing the adhesin,
migration and proliferation (Peng et al., 2022).

However, the ECM in the fibrotic lung tissue has abnormal
biochemical and biomechanical characteristics, leading to increased
hardness of the lung tissue and decreased elasticity, thereby reducing
lung function (Aydemir et al., 2022). EMT is influenced and
regulated by the surrounding ECM (Scott et al., 2019). Therefore,
silica particle-induced aberrant EMT and ECM and their
interactions cooperatively induce tissue remodeling. A recent
study has shown that EMT, a direct contributor to the fibroblasts
transforming into myofibroblasts (Li et al., 2016), is considered the
main effector cells in silicosis (Li S. et al., 2019). Myofibroblasts are
derived from lung intrinsic fibroblasts, bone marrow fibroblasts, or
other mesenchymal cells under the action of cell growth factors (Li
et al., 2018). TGF-β1 plays an important role in the trans-
differentiation of all the above cell types (Piera-Velazquez et al.,
2016; Chen et al., 2011). Besides, myofibroblasts are contractile and
can synthesize smooth muscle actins including α-SMA, and their
contraction can lead to the structural deformation of lung
parenchyma (Leask, 2010; Wang R. et al., 2022). In the normal
repair process, the ECM protein will be degraded after eliminating
the damage and inflammation, thereby restoring the normal
structure of the tissue. However, in the pathological process of
silicosis, myofibroblasts can secrete a large amount of ECM and
deposit at the injured site (Liu et al., 2017) (Figure 2, Fibrosis).

EMT is regulated by multiple growth factors, ILs, and
inflammatory mediators, among which TGF-β has been the most
studied growth factor as a central mediator of tissue fibrosis and an
inducer of EMT (Pardali et al., 2017). TGF-β receptors can activate
Smad-dependent and Smad-independent pathways. In the Smad-
dependent pathway, type II TGF-β receptors are activated by ligands
and phosphorylate type I TGF-β receptors to form the SMAD
complex, which then enters the nucleus and subsequently

FIGURE 3
The dynamic interplay between the lung ECM and resident cells,
with TGF-β1 as the center. The active TGF-β1 protein in red is attached
to the ECM. The activation of this receptor results in the
phosphorylation of SMAD2/3, causing its translocation to the
nucleus, consequently resulting in the differentiation of the cells into
myofibroblasts. The cyclical relationship between TGF-β1 activation
via myofibroblasts and the resulting myofibroblast differentiation can
be visualized through the arrows.

Frontiers in Pharmacology frontiersin.org05

Yang et al. 10.3389/fphar.2025.1516200

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1516200


activates or inhibits the important transcription factors for EMT
(Nguyen et al., 2018). In Smad-independent pathway, PI3K/AKT
pathway is activated, and PI3K-activated mTORC2 has been
identified to be one of the drivers for the phenotypic
transformation of EMT. It has been found that inhibition of
AKT leads to downregulation of intracellular SNAIL activity and
inhibition of EMT (King et al., 2015). In addition, TGF-β-induced
activation of the Ras-Erk MAPK pathway, p38 MAPK and JNK
signaling, Rho GTPase signaling, as well as PI3K/AKT pathways is
all shown to contribute to EMT (Pardali et al., 2017; Gonzalez and
Medici, 2014). Although EMT is necessary for proper re-
epithelialization and ECM deposition, an uncontrolled,
continuous transition from epithelial cells to myofibroblasts can
result in fibrosis (Figure 3).

TGF-β1 is also reported to mediate the activation and
differentiation of myofibroblasts (Chen et al., 2022). Aberrant
ECM mechanical force can induce the release of TGF-β1, further
promoting the fibrosis (Upagupta et al., 2018). Recent studies have
indicated that the TGF-β signaling pathway can promote the
occurrence and development of pulmonary fibrosis by regulating
the expression of non-coding RNA molecules and epigenetic
modification, which can be the potential target for pulmonary
fibrosis (Zhang et al., 2021a; Bartczak et al., 2020).

The occurrence and development of silicosis involves multiple
signal pathways, including TGF-β, Wnt/β-catenin, Notch and AMP-
activated protein kinase (AMPK) pathways, etc. (Feng et al., 2019).
Wnt/β-catenin signaling pathway can inhibit the lung fibroblast
apoptosis, promote cell proliferation and differentiation (Ma J. et al.,
2020). It can also promote ECM deposition by inhibiting glycogen
synthase kinase 3-mediated phosphorylation and β-catenin
degradation (Gonzalez and Medici, 2014). In addition, the Wnt/
β-catenin signaling pathway can cooperate with TGF-β1 to induce
the deposition of ECM, thus promoting the production of
extracellular matrix metalloproteinase inducers and variations in

fibroblast activity. Activation of the Notch pathway could promote
the expression of collagens and α-SMA in alveolar epithelial cells
(Martins et al., 2020). During the process of EMT, Notch/CSL
activation could stimulate the expression of α-SMA in vascular
smooth muscle cells. In addition to directly regulating the
differentiation of myofibroblasts, Notch could also interact with
other signaling (Wnt, TGF-β, PDGF, etc.) pathways to regulate the
pulmonary fibrosis (Figure 4) (Feng et al., 2019).

4 Treatment of silicosis

4.1 Drug treatment

There are no effective drugs for silicosis at present. The drugs for
fibrosis including idiopathic pulmonary fibrosis (IPF) are usually
used to treat silicosis, such as PVNO, nintedanib, and pirfenidone
(Zhao et al., 1983). The in vivo and in vitro research showed that
PVNO could improve the lung clearance after exposure to silica dust
and prevent dust from invading the lung interstitium (Ernst et al.,
2002). Meanwhile, PVNO also could eliminate the free radicals
induced by SiO2 and protect macrophages, ultimately reducing the
silicosis nodules and delaying the development of silicosis. It has
been found that PVNO has a protective effect on silica-induced
pulmonary fibrosis, and shows good effects in animal models but no
obvious effects in silicosis patients (Idec-Sadkowska et al., 2006).

Nintedanib, an orally administered multi-target agent, was
approved for IPF in the United States in 2014 and in Europe in
2015 (Varone et al., 2018). Its main molecular targets are the
fibroblast growth factor receptors, PDGF receptors and vascular
endothelial growth factor receptors (Varone et al., 2018). Due to
potentially similar pathological characteristics between IPF and the
same tyrosine kinase receptors in progressive fibrosis (Allen and
Spiteri, 2002; Coward et al., 2010), nintedanib had been tested in

FIGURE 4
The progression of silicosis is regulated by multiple signaling pathways. Different signaling pathways play complex roles in the regulation of fibrosis,
and interact with other signaling pathways in a complex way. Signaling pathways, such as TGF-β, Wnt, MAPK and Notch, have themutual crosstalk, which
jointly participate in regulating the development of pulmonary fibrosis induced by silica dust.
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murine models of bleomycin- and silica-induced pulmonary
fibrosis, where it was demonstrated to reduce or prevent the
fibrotic process (Chaudhary et al., 2007; Wollin et al., 2015).
Additionally, nintedanib can also inhibit PDGF receptor
activation, fibroblast proliferation, and fibroblast-to-myofibroblast
transformation (Wollin et al., 2014). These results indicate that
nintedanib may impact the progression of fibrotic lung diseases,
such as silica-induced pulmonary fibrosis.

Pirfenidone is an oral anti-fibrotic agent, although it was initially
developed as an anti-inflammatory compound due to its capability
of diminishing accumulation of inflammatory cells and cytokines
(Lancaster et al., 2017). So far, the precise mechanisms underlying
the anti-fibrotic action of pirfenidone in the lung are not fully
understood. Some research demonstrate that pirfenidone may
attenuate the fibroblast proliferation, myofibroblast
differentiation, collagen synthesis, fibronectin production and
deposition of ECM through modulation of fibrogenic growth
factors (Ma Z. et al., 2018; Qin et al., 2018; Molina-Molina et al.,
2018; Pourgholamhossein et al., 2018). Additionally, pirfenidone
also could regulate and reduce oxidative stress markers (ROS, H2O2,
etc.) in the lung, which might be associated with its anti-fibrotic
effect (Pourgholamhossein et al., 2018; Gaggini et al., 2011). A
retrospective study including 186 subjects who were continuously
treated with pirfenidone or nintedanib for pulmonary fibrosis (of
any cause) showed similar drug tolerability and adverse event
profiles to the corresponding clinical trials, despite the presence
of more severe respiratory impairment (Galli et al., 2017).
Fortunately, both pirfenidone and nintedanib are promising in
the treatment of chronic lung inflammatory diseases, pulmonary
fibrosis and other similar diseases. However, future prospective
studies are still needed to elucidate the efficacy of the drugs with
expanded prescription.

Drug repurposing or repositioning for different diseases is an
efficient way for drug discovery because of low cost in the drug
development (Pushpakom et al., 2019). Metformin, a widely used
biguanide medication for type 2 diabetes, has been shown to inhibit
cardiac fibrosis induced by pressure overload in vivo. It may reduce
collagen synthesis in cardiac fibrosis by inhibiting the TGF-β/
Smad3 signaling pathway (Xiao et al., 2010). Moreover,
metformin has antifibrotic properties (Teague et al., 2022). It can
effectively reverse bleomycin-induced pulmonary fibrosis,
suggesting its role in IPF (Gamad et al., 2018). In our previous
study, metformin has been identified to have anti-silicosis effects
whether in rats or in vitro cultured human cells (Li S. X. et al., 2021).
Metformin could regulate autophagy by activating AMPK and
inhibiting mTOR pathways, providing the evidence for
metformin as the potential therapeutic drug for silicosis.

In recent years, a number of traditional Chinese medicine
compounds have been applied to treat pulmonary fibrosis,
including silica-induced pulmonary fibrosis (Li and Kan, 2017;
Occupational Lung Disease Group of Labor Hygiene, 2024).
These compounds/molecules exert their effects through targeting
different pathways as summarized in Figure 2. Liu et al. found that
Number 2 Feibi Recipe (N2FBR) with antioxidant effects could
promote autophagy through the GSK-3β/mTOR signaling pathway,
thereby exerting a protective effect on pulmonary fibrosis (Liu et al.,
2022). Xiaochaihu decoction showed anti-fibrotic functions by
reducing the collagen content and fibrogenic score, as well as

down-regulating TGF-β1, PDGF and TIMP-1 mRNA levels
(Figure 2, Orange) (Chen et al., 2004; Chen et al., 2005).
Fuzheng Huayu Formula could block the PI3K pathway related
to the progression of liver fibrosis, and downregulate the expression
of TGF-β1 and Smads (Li, 2020) (Figure 2, Green). Curcumin could
suppress EMT and inflammatory response via inhibition of TLR4/
NF-κB and PI3K/AKT pathways (Figure 2, Yellow) (Wang Z. et al.,
2020)]. Anluo Huaxian Pills could reduce the expression of collagens
I and III, TIMP-1, and TGF-β1 in mice with liver fibrosis (Xie et al.,
2018) (Figure 2, Blue). Moreover, treatment with salidroside could
also significantly decrease the release of inflammatory cytokines (IL-
1β, IL-6, TNF-α) and inhibit TLR4/NF-κB and MAPK signaling
pathways (Figure 2, red) (Li R. et al., 2019).

Tetrandrine, a bis-benzyl iso-quinoline alkaloid extracted from
the plant called Stephania tetrandra S. Moore (Su W. et al., 2020),
has been approved for the long-term treatment of silicosis (Liu et al.,
2016). Tetrandrine can effectively inhibit the transcription of
collagen genes, weaken the function of collagens before cell
secretion, reduce the synthesis and proliferation of collagen
fibroblasts, and degrade lung collagen fibers, thereby delaying the
progression of silica-induced pulmonary fibrosis (Su W. et al., 2020;
Xie et al., 2002; Droitcourt et al., 2018). Meanwhile, the compounds
from Chinese herbs, such as ginsenoside Rg1, Baicalin, and more,
can also reduce the degree of pulmonary fibrosis and improve lung
function (Yang et al., 2016; Yu et al., 2016; Liu et al., 2015). Notably,
the anti-silicotic effect of emodin was also observed in our in vivo
and in vitro studies, indicating that emodin could alleviate silica
dust-induced pulmonary fibrosis through regulation of the
inflammatory response and fibrotic process at multiple levels
(Pang et al., 2021).

Traditional Chinese medicine has been demonstrated
effective in various diseases, with fewer adverse effects, which
contributes to alleviating the clinical symptoms of patients and
enhancing their QOL (Kong et al., 2022; Zhang et al., 2021b;
Zhang et al., 2022). In addition, Chinese herbal formulae have
been widely prescribed as an adjunct to western medicine to treat
the disease (Li and Kan, 2017), which may be the future direction
of drug therapy.

4.2 Surgical treatment

4.2.1 Bronchoalveolar lavage
Bronchoalveolar lavage is mainly used to reduce the number of

dust particles in the lungs and improve the ventilation function of
lung tissues (Cottin et al., 2004). Alveolar lavage with 37°C saline
could not only remove the silica particles depositing in the alveoli
and the lung interstitium effectively, but also remove the
macrophages in the alveoli and slow the progression of silicosis.
After bronchoalveolar lavage, cough and discharge of foreign bodies
are enhanced, thereby improving tracheal obstruction and
ventilation function. Meanwhile, the bronchoscope can be used
locally to improve the availability of drugs, reduce local
inflammation, and improve the lung function of patients.
According to the amount of lavage fluid, bronchoalveolar lavage
can be divided into the WLL and small volume lung lavage, among
which small volume lung lavage is mainly suitable for the patients
with advanced silicosis who are unable to receive WLL. Notably,
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bronchoalveolar lavage can cause a high risk of trauma. More studies
are required to confirm its long-term efficacy.

4.2.2 Lung transplantation
Lung transplantation has become an accepted treatment option

for patients with various lung diseases irresponsive to conservative
treatments (George et al., 2019). It can improve the QOL of patients,
but cannot extend the survival. Although lung transplantation is the
most effective method for end-stage fibrosis, its application is
limited due to a shortage of liver donors, high incidence rates of
surgical complications, graft-versus-host diseases and high medical
costs (Hartert et al., 2014). Therefore, similar to bronchoalveolar
lavage, lung transplantation should not be used as a routine
treatment for silicosis.

4.3 Stem cell treatment

Mesenchymal stem cell (MSC)-based cell therapy is regarded
as an innovative experimental treatment (Maria et al., 2018).
MSCs, a population of multipotent stem cells, are originated from
various tissues and organs, including bone marrow, adiposes,
cord blood, and placentae. Multipotentiality is one of the
properties for these cells that not only differentiate into
adipocytes, chondrocytes and osteoblasts, but also vascular
smooth muscle cells and lung epithelial cells under particular
conditions (Li et al., 2017). At present, the anti-fibrotic effects
have been demonstrated in several types of MSCs, such as bone
marrow-derived MSCs (BMSCs), umbilical cord mesenchymal
stem cells (UC-MSCs), Sox9+ embryonic stem cells and adipose-
derived MSCs (AD-MSCs).

Based on the capability of differentiating into specific cell types,
BMSCs may promote the tissue regeneration (Peng et al., 2015), and
have immunomodulatory and anti-fibrotic activities that can be
significant in response to injury. In animal models of pulmonary
fibrosis, transplanted BMSCs home to sites of injury (Xu et al., 2015),
which can ameliorate the histological alterations (Ni et al., 2015),
inhibit production of proinflammatory mediators (Xue et al., 2013),
and decrease collagen deposition (Lan et al., 2015). In addition,
BMSCs also attenuate lung injury and pulmonary fibrosis by
secreting various factors with anti-apoptotic, anti-inflammatory,
and anti-fibrotic functions. Due to easy harvest, isolation and
purification, BMSCs have been considered to be a promising and
novel treatment (Maria et al., 2018). Our previous study showed that
BMSC transplantation could relieve silica-induced pulmonary
fibrosis in rats through attenuation of the Wnt/β-catenin
signaling pathway (Zhang et al., 2018).

Unlike BMSCs, UC-MSCs are characterized by a painless
collection process and a faster self-renewal (Tsai et al., 2021).
Inhibition of inflammation is one of the mechanisms for UC-
MSCs to treat silicosis. Sha et al. found that UC-MSCs could
effectively reduce SiO2-induced inflammatory cell infiltration and
inflammation-related cytokine levels in the lung, thereby reducing
fibrosis (Sha et al., 2019). UC-MSCs also might alleviate the degree
of pulmonary fibrosis in the rat model of silicosis by regulating the
secretion of hydroxyproline, TGF-β1 and IL-6 (Xu et al., 2020). In
addition, UC-MSCs could also play a role in the treatment of silicosis
by reducing cell apoptosis (Chen et al., 2018b), inhibiting the

autophagy of lung macrophages, and enhancing the repair after
injury (Tuo et al., 2017).

Embryonic stem cells with an enormous capacity for
regeneration can differentiate into a variety of tissues (Wu et al.,
2020). Sox9+, one of the key genes in early embryonic development,
is closely related to cell proliferation and differentiation, and plays a
role in balancing and regulating the homeostatic maintenance and
directional differentiation of stem cells (Gonen and Lovell-Badge,
2019; Hersmus et al., 2008; Jo et al., 2014). The normal expression of
Sox9+ gene determines the integrity of embryonic lung development
(Rockich et al., 2013). Lung stem cells involved in lung regeneration
and repair are closely related to the process of lung development
(Chen et al., 2021). Ma et al. found that after transplantation of
autologous Sox9+ airway basal cells for 3–12 months, the lung tissue
was repaired, and lung function was enhanced (Ma Q. et al., 2018).
In addition, Nichane et al. showed that in the mouse with
bleomycin-induced lung injury, endotracheal transplantation of
mouse Sox9+ embryonic lung progenitor cells could be integrated
into the injured lung tissue and mainly differentiated into alveolar
epithelial cells (e.g., ATI and ATII cells), endothelial cells and
mesenchymal cells (Nichane et al., 2017). These studies indicated
that Sox9+ embryonic lung stem cells could be integrated into the
injured lung tissue, with the ability to colonize and differentiate into
lung epithelial cells. Meanwhile, in clinical trials, autologous Sox9+

stem cell transplantation is also reported to have the ability to treat
lung injury, bringing hope for the treatment of pulmonary fibrosis.

Autologous AD-MSCs with multi-directional differentiation
potential can be obtained from mature adipose tissues (Chen
et al., 2018b), and differentiate into adipocytes, osteocytes,
chondrocytes, muscle cells and nerve precursor cells (Taghi et al.,
2012; Nakao et al., 2010). They are abundant in adipose tissues, easy
to obtain, relatively less painful and highly feasible (Chen et al.,
2018b), which ensure that AD-MSCs have a wider range of
applications in stem cell treatment. Studies have shown that Ad-
MSCs can effectively repair and regenerate lung tissues (Zhang et al.,
2014; Wang et al., 2013) and improve IPF (Jiang et al., 2015). Rubio
et al. demonstrated that AD-MSCs could mitigate bleomycin-
induced tissue damage and prevent terminal organ fibrosis,
manifesting as attenuation of lung and skin fibrosis, as well as
acceleration of wound healing (Rubio et al., 2018). In addition, AD-
MSC transplantation may also interfere with the formation of
silicosis by regulating the processes of inflammation and
apoptosis (Chen et al., 2018b).

For silicosis, stem cells can be promising candidates. However,
before the cells can be transferred to clinical research from basic
research, several issues remain to be resolved: 1) Establishing
regulatory guidelines and efficient, safe manufacturing
procedures; 2) Establishing a system for genetic testing and long-
term monitoring of donors; 3) Implementation of clinical trials to
determine the best and standard dose, time, approach, frequency,
and other technical issues of stem cell transplantation.

5 Conclusion

Although the etiology of silicosis is clear, the exact pathogenesis
is not fully understood. The pathological process of silicosis is
complex, involving the interaction of multiple cells and
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molecules, as well as abnormal regulation of multiple signal pathways
and cytokines. Several pathways or mediators playing a key role in
initiation and development of silicosis have been proposed to be
potential therapeutic targets, and meanwhile surgical treatments and
compounds have been used for silicosis. However, the actual clinic
effect of these methods on silicosis and possible applications have a
long way to go. Early diagnosis and timely monitoring are important
strategies in the treatment of silicosis. Currently, the examinations
used to diagnose silicosis include chest X-rays, computed tomography
scans, and lung function testing. However, such tests only recognize
the pathological changes at an organ level. When there have been
substantial fibrotic changes, no reliable methods are applied for the
diagnosis of silicosis, especially for accelerated silicosis. Although
several biomarkers of silicosis have been proposed, their reliability
and sensitivity remain to be confirmed and none of them is reported
in early diagnosis. Therefore, more work should be focused on the
identification of reliable and feasible biomarkers or the methods for
earlier diagnosis or health surveillance. To this end, in vitro research in
combination with epidemiological data is required with feasible
biological samples such as blood, saliva/sputum, and/or
urine samples.
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