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Background: Splicing factor 3b subunit 6(SF3B6), a subunit of the SF3B complex,
regulates the process of RNA splicing by recognizing the branch point adenosine
in pre-mRNA and facilitating the interaction between U2 snRNA and the branch
point sequence. Currently, there is no systematicmulti-omics study exploring the
diagnostic, prognostic, and immunotherapy predictive value of SF3B6 in pan-
cancer, nor is its role in hepatocellular carcinoma (HCC) clear.

Methods:We utilized various databases to systematically examine the expression
and genetic variation of SF3B6 across multiple cancer types, assessing its
relationship with diagnosis, prognosis, immune infiltration, immunotherapy
response, and associated signaling pathways. Additionally, we investigated the
correlation between SF3B6 and prognosis, clinicopathological features, and
treatment responses in HCC, as well as the roles of its related alternative
splicing isoforms. Finally, we conducted in vitro experiments to validate the
effects of SF3B6 on the proliferation, migration, invasion, apoptosis, and cell
cycle progression of liver cancer cells.

Results: Results indicate that SF3B6 was highly expressed in various cancers and
regulated by copy number variations and DNA methylation. The elevated
expression of SF3B6 demonstrated predictive value for cancer diagnosis,
prognosis, and responses to immunotherapy. Functional enrichment analysis
suggests that SF3B6 was closely associated with pathways related to tumor
immunity, tumor metabolism, and cell cycle. Additionally, high
SF3B6 expression was an independent risk factor for overall survival and
correlated with poor alpha-fetoprotein levels, pathological grading, clinical
staging, and reduced responses to sorafenib and transarterial
chemoembolization treatment in HCC. Interestingly, SF3B6 was associated
with variant splicing isotypes of genes involved in the G2M checkpoint and
DNA repair pathways, including NEIL3, NEK2, KIF4A, TROAP, and FANCD2.
Moreover, SF3B6 was highly expressed in liver cancer cells, promoting the
proliferation, migration, and invasion of cancer cells, inhibiting apoptosis, and
regulating the transition from the S phase to the G2M phase of the cell cycle.

Conclusion: We emphasize that SF3B6 has the potential to serve as a biomarker
for predicting cancer diagnosis, prognosis, and immunotherapy responses,
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especially in HCC. SF3B6 and its related alternative splicing isoforms promote the
occurrence and progression of HCC andmay serve as potential therapeutic targets.
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1 Introduction

Cancer represents a critical global health issue that poses a
substantial threat to public health across the globe (Sung et al.,
2021). GLOBOCAN data reveals that in 2020, there were
19.3 million new cancer cases worldwide, resulting in nearly
10 million fatalities (Sung et al., 2021). By 2040, the incidence of
new cancer cases is projected to increase by 47% (Sung et al., 2021). In
2020, primary liver cancer was the sixth most prevalent cancer and the
third leading cause of cancer-associated mortality worldwide (Llovet
et al., 2021b). Hepatocellular carcinoma (HCC), which makes up 75%–
85% of these cases, is the predominant type of primary liver cancer
(Llovet et al., 2021b). Treatment options for patients vary depending on
their stage of cancer (Brown et al., 2023). Surgical and local therapies,
such as transarterial chemoembolization, are the primary treatment
options for early and intermediate-stage HCC patients, while systemic
therapies, primarily consisting of targeted therapies and immune
checkpoint inhibitors, provide survival benefits for advanced HCC
(Llovet et al., 2021a; Yang et al., 2023). Despite advancements in
medical technology, the prognosis for cancer patients remains
unfavorable due to limited drug efficacy, side effects, and
resistance.With the advancements in high-throughput sequencing
and bioinformatics, numerous studies have utilized transcriptomic
data from authoritative databases such as TCGA and GEO to
investigate the molecular mechanisms and resistance pathways of
HCC (Gao et al., 2024; Yuan et al., 2024). These studies have
identified potential biomarkers that provide a more comprehensive
understanding of the intrinsic transcriptional characteristics and genetic
heterogeneity of HCC, thereby advancing personalized diagnostic and
therapeutic strategies (Gao et al., 2024; Yuan et al., 2024).

Alternative splicing (AS) is the process of selectively removing
introns and joining exons from the same precursor mRNA to
generate different mature RNA splice variants (Wilkinson et al.,
2020). This process is primarily executed by the spliceosome and
other trans-acting splicing factors that modulate its activity
(Wilkinson et al., 2020). Dysregulation of alternative
splicing—resulting from mutations or expression changes in key
splicing factors, trans-acting splicing regulators, and mutations in
cis-acting sequences—is prevalent in various cancers and facilitates
tumor development (Bradley and Anczuków, 2023). Small-molecule
inhibitors, siRNAs, and splice-switching oligonucleotides (ASOs)
aimed at AS drivers, splicing factors, and pathological AS hold great
therapeutic potential (Rogalska et al., 2023).

During mRNA splicing, the U2-type spliceosome comprises U1,
U2, U4, and U6 small nuclear ribonucleoproteins (snRNPs), which
specifically recognize GT-AG splice sites and facilitate the removal
of approximately 99% of introns (Wilkinson et al., 2020). The
Splicing Factor 3b (SF3B) complex, a critical component of the
U2 snRNP, consists of seven subunits: SF3B1, SF3B2, SF3B3, SF3B4,
SF3B5, SF3B6, and PHF5A (Du et al., 2021). These subunits play key
roles in recognizing branch point sequences (BPS) and facilitating the

assembly and activation of the spliceosome (Sun, 2020). Notably,
SF3B1 and PHF5A participate in regulating various biological events,
including maintaining embryonic stem cell pluripotency, chromatin
remodeling, DNA damage repair, and cell growth and differentiation
(Li et al., 2023; Samy et al., 2023). They achieve this by modulating the
aberrant selective splicing of target genes or through their non-
spliceosome-related functions, thus promoting tumorigenesis.
Inhibitors targeting the SF3B complex or its SF3B1 subunit can
precisely calibrate the constitutive or selective splicing of precursor
mRNA by altering the ability of SF3B1 and PHF5A to recognize
different intron branch point sequences, thereby exerting anti-tumor
activity (Larsen, 2021; Yamauchi et al., 2022).

Previous studies have demonstrated that the SF3B complex
recognizes the branch site (BS) of splice-supporting sequences in
pre-mRNA through Splicing factor 3b subunit 6(SF3B6), thereby
facilitating and maintaining the interaction between U2 snRNA and
these sequences (Lee et al., 2020; Sun, 2020). Despite being an
important subunit of the SF3B complex, SF3B6 has relatively few
functional studies in tumors. Research has indicated that
phosphorylated SF3B6 affects alternative splicing, inducing a
carcinogenic phenotype in pancreatic ductal adenocarcinoma
(PDAC) (Li J. et al., 2021). In breast cancer, upregulation of
SF3B6 expression is related to worse prognosis (Peng et al.,
2022). Additionally, silencing SF3B6 has been shown to increase
p53 levels, resulting in cell cycle arrest and apoptosis in non-small
cell lung cancer (NSCLC) (Siebring-van Olst et al., 2017). However,
comprehensive multi-omics analyses on the role of SF3B6 in
diagnosis, prognosis, immune infiltration, and responses to
immunotherapy across various cancers are lacking. Furthermore,
the role of SF3B6 in HCC remains inadequately defined.

This research aims to conduct a thorough analysis of
SF3B6 expression and genetic variation across various cancers using
multi-omics data. It will evaluate the correlation of SF3B6 with cancer
diagnosis, prognosis, immune infiltration, immune therapy response,
and signaling pathways. The study will further explore the clinical
value and function of SF3B6 and its related alternative splicing events
inHCC, validating the biological function of SF3B6 onHCC cells using
in vitro experiments. The goal is to clarify its viability as a biomarker for
predicting cancer diagnosis, prognosis, and immune therapy, while
also establishing its potential as a therapeutic target. This research will
provide a foundational experimental basis and innovative ideas for
future studies on SF3B6 in HCC.

2 Results

2.1 Differential expression of SF3B6 in
pan-cancer

We initially obtained gene expression data for SF3B6 from the
TCGA database and conducted unpaired differential analysis
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FIGURE 1
Differential expression analysis of SF3B6 between normal and tumor tissues in pan-cancer. (A) Unpaired analysis of SF3B6 mRNA expression
between normal and tumor tissues based on TCGA database. (B) Paired analysis of SF3B6mRNA expression between normal and tumor tissues based on
TCGA database. (C) SF3B6 mRNA expression level between normal and tumor tissues based on TCGA and GTEx database. (D) SF3B6 protein expression
level between normal and tumor tissues based on CPTAC databases. TCGA, The Cancer Genome Atlas Program; GTEx, Genotype-Tissue
Expression; CPTAC, Clinical Proteomic Tumor Analysis Consortium. *p < 0.05, **p < 0.01, ***p < 0.001. ns not significant.
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FIGURE 2
The genetic alterations of SF3B6 in pan-cancer. (A) Summary of SF3B6 genetic alteration in TCGA PanCancer Atlas Studies. (B) Scatter plot
illustrating the results of Spearman correlation analysis between mRNA expression and DNA copy number variation of SF3B6 based on TCGA and GTEx
database. (C) Heatmap displaying the results of Spearman correlation analysis between mRNA expression and methylation levels of multiple sites of
SF3B6 based on TCGA and GTEx database. Scatter plots showing the results of Differential expression analysis of (D) cg15544402 and (E)
cg01493198 between normal and tumor tissues based on TCGA and GTEx database. *p < 0.05, **p < 0.01, ***p < 0.001. ns not significant.
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between tumor tissues and adjacent non-tumor tissues. The
abbreviations of 33 cancer types in TCGA are listed in
Supplementary Table S1. The results indicated that SF3B6 gene
expression was significantly upregulated in 14 cancer types (BLCA,
BRCA, CESC, CHOL, COAD, ESCA, HNSC, LIHC, LUAD, LUSC,
PRAD, READ, STAD, UCEC), but downregulated in KICH
(Figure 1A). Paired differential analysis of tumor and adjacent
samples further revealed that SF3B6 expression was significantly
upregulated in tumor tissues of BLCA, BRCA, COAD, ESCA,
HNSC, LIHC, LUAD, LUSC, and STAD, but downregulated in
KICH tumor tissues (Figure 1B). Due to the unavailability of
adjacent samples for certain tumor types, we obtained
SF3B6 gene expression data from both the TCGA and GTEx
databases to perform unpaired differential analysis between
tumor tissues and normal tissues. The results showed that
SF3B6 gene expression was significantly upregulated in 24 cancer
types (ACC, BLCA, BRCA, CESC, COAD, DLBC, ESCA, GBM,
KIRC, KIRP, LGG, LIHC, LUAD, LUSC, OV, PAAD, PRAD, READ,
SKCM, STAD, TGCT, THYM, UCEC, UCS), but downregulated in
KICH and LAML (Figure 1C). Additionally, we retrieved protein
expression data for SF3B6 from the UALCAN database, which
indicated a significant increase in SF3B6 protein levels in liver
cancer, glioblastoma, head and neck cancer, lung cancer, ovarian
cancer, colon cancer, and breast cancer compared to normal
tissues (Figure 1D).

2.2 Genetic variation analysis of SF3B6 in
pan-cancer

To investigate the underlying mechanisms for the increased
expression of SF3B6, we explored the genetic variations and DNA
methylation status of SF3B6 using the TCGA dataset. Analysis via
the cBioPortal database revealed that amplification, deep deletion,
and structural variants were the primary types of genetic alterations
affecting SF3B6. Among these, DLBC exhibited the highest mutation
frequency at 4.17%, with amplification and deep deletion noted at
2.08% (Figure 2A). Given that amplification and deep deletion
represent copy number variations (CNVs), we further explored
the correlation between SF3B6 expression and CNVs across
different cancer types. The results suggested a positive association
between SF3B6 expression and CNVs in most cancer types
(Figure 2B), which may partially explain the elevated expression
of SF3B6 observed in these cancers.

DNA methylation is a crucial epigenetic regulatory mechanism
that can modulate gene expression levels without altering the DNA
sequence (Meng et al., 2015; Mattei et al., 2022). High levels of
methylation in DNA promoter regions are often associated with
gene silencing and downregulation. Thus, we conducted further
analysis to assess the association between SF3B6 expression and
DNA methylation levels. Our findings indicated a positive
association between SF3B6 gene expression and methylation
levels at various sites in the DNA promoter region across
11 cancer types, suggesting that increased SF3B6 expression may
be regulated by DNA methylation (Figure 2C). Notably, the
methylation levels of cg15544402 and cg01493198 were
negatively associated with SF3B6 gene expression in more than
half of the cancer types. Furthermore, in PRAD, LUSC, KIRP, LIHC,

and SARC, the methylation levels of cg15544402 were significantly
increased (Figure 2D). Similarly, In KIRP, LUSC, and PRAD, the
methylation levels of cg01493198 were also significantly elevated
(Figure 2E).

2.3 Diagnostic value of SF3B6 in pan-cancer

To investigate the clinical relevance of SF3B6, we conducted a
receiver operator characteristic (ROC) analysis to assess its
diagnostic potential across various cancer types. The analysis
demonstrated that SF3B6 exhibited good diagnostic value in
26 tumor types (AUC >0.7). Specifically, it showed strong
diagnostic capability in the following cancer types, with AUC
values ranging from 0.7 to 0.9: BLCA, BRCA, DLBC, ESCA,
HNSC, KICH, PRAD, SKCM, THCA, and UCEC (Figures 3A-J).
Furthermore, SF3B6 exhibited excellent diagnostic capability in the
following cancers, with AUC values exceeding 0.9: CESC, CHOL,
COAD, GBM, LAML, LGG, LIHC, LUAD, LUSC, OV, PAAD,
READ, STAD, TGCT, THYM, and UCS (Figures 3K-Z).

2.4 Prognostic value of SF3B6 in pan-cancer

We conducted univariate Cox regression analysis to assess the
prognostic predictive value of SF3B6 for overall survival (OS),
progression-free interval (PFI), disease-free interval (DFI), and
disease-specific survival (DSS). The analysis indicated that
elevated SF3B6 expression was associated with shorter OS in
several cancers, including ACC, HNSC, KIRP, LIHC, LUAD, and
PAAD. Conversely, low SF3B6 expression was linked to shorter OS
in ovarian cancer (OV) (P < 0.05) (Figure 4A). Additionally,
elevated SF3B6 expression was correlated with shorter DSS in
ACC, KICH, KIRP, LIHC, LUAD, MESO, PAAD, and PRAD,
while low expression in OV was associated with shorter DSS
(P < 0.05) (Figure 4B). Elevated SF3B6 expression consistently
correlated with shorter DSS in ACC, KICH, KIRP, LIHC, LUAD,
MESO, PAAD, and PRAD, while lower expression was linked to
shorter DFI in OV (P < 0.05) (Figure 4C). Furthermore, elevated
SF3B6 expression was associated with shorter PFI in ACC, HNSC,
KICH, KIRP, LIHC, LUAD, LUSC, PAAD, PRAD, and UVM (P <
0.05) (Figure 4D).

2.5 Immune infiltration analysis of SF3B6 in
pan-cancer

We initially examined the correlation between SF3B6 gene
expression and the infiltration of immune and stromal cells across
various cancer types utilizing the ESTIMATE algorithm. The
findings revealed that in the majority of cancers, SF3B6 gene
expression exhibited a negative relationship with both immune
scores and stromal scores while showing a positive relationship
with tumor purity scores (Figure 5A). Next, we analyzed the
association of SF3B6 expression with various cell infiltrations in
the tumor microenvironment by applying the XCELL algorithm. The
results were consistent with those obtained from the ESTIMATE
algorithm, indicating that SF3B6 gene expression was negatively
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FIGURE 3
Receiver operator characteristic (ROC) analysis of SF3B6 in pan-cancer. (A) BLCA. (B) BRCA. (C) DLBC. (D) ESCA. (E) HNSC. (F) KICH. (G) PRAD.
(H) SKCM. (I) THCA. (J) UCEC. (K) CESC. (L) CHOL. (M) COAD. (N) GBM. (O) LAML. (P) LGG. (Q) LIHC. (R) LUAD. (S) LUSC. (T) OV. (U) PAAD. (V) READ.
(W) STAD. (X) TGCT. (Y) THYM. (Z) UCS.
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linked to tumor microenvironment scores, stromal scores, and
immune scores in most cancer types (Figure 5B). Additionally,
SF3B6 was positively related to CD4+ T helper (Th) two cells and

common lymphoid progenitors in most cancer types, while it
demonstrated a negative association with the infiltration of other
immune cell types (Figures 5C,D). Specifically, in ACC,

FIGURE 4
Analysis of the prognostic value of SF3B6 in pan-cancer. Forest plots show the results of univariate COX regression analysis of SF3B6 expression in
pan-cancer for (A) OS, (B) DSS, (C) DFI, and (D) PFI. OS, Overall Survival. DSS, Disease Specific Survival. DFI, Disease Free.
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FIGURE 5
Correlation analysis between and with immune infiltration in pan-cancer. (A) Heatmap showing the correlation between SF3B6 and Immune
infiltration in pan-cancer based on the ESTIMATE algorithm. (B) Heatmap showing the correlation between SF3B6 and various immune cell infiltration in
pan-cancer utilizing the XCELL algorithm. (C) Scatter plot showing the correlation between SF3B6 and type 2 helper CD4 + T cells in pan-cancer. (D)
Scatter plot showing the correlation between SF3B6 and common lymphoid progenitors in pan-cancer. (E-I) Scatter plots showing the top 5
strongest negative correlations between SF3B6 and immune cell infiltration utilizing the XCELL algorithm.
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SF3B6 showed a negative relationship with effector memory
CD4 T cells (R = −0.527) and natural killer T cells (R = −0.41)
(Figures 5E,I). Moreover, negative correlations were observed with

central memory CD4 T cells (R = −0.55) in KICH (Figure 5F),
granulocyte-monocyte progenitors (R = −0.437) in UCS (Figure 5G),
and M2 macrophages (R = −0.429) in LIHC (Figure 5H).

FIGURE 6
Analysis of the predictive value of SF3B6 in response to immunotherapy in pan-cancer. (A) Heatmap showing the correlation of SF3B6 with eight
immune checkpoints. (B) Heatmap showing the correlation between SF3B6 and the six MMR genes. (C) Radar plot showing the correlation between
SF3B6 and tumor mutation burden. (D) Radar diagram showing the correlation between SF3B6 and microsatellite instability. Differences in
immunophenotype scores in (E) COAD, (F) KIRC, (G) LIHC, (H) LUAD, (I) STAD, (J) THCA, (K) UCEC.
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2.6 Immunotherapy predictive value of
SF3B6 in pan-cancer

Considering the association of SF3B6 with the tumor
microenvironment and immune cell infiltration across various
cancer types, we executed a further analysis of the predictive
value of SF3B6 in immunotherapy. Previous studies have
identified several biomarkers, such as mutation burden (TMB),
microsatellite instability (MSI), mismatch repair system (MMR)-
related genes, and immune checkpoint molecules, that can predict
tumor response to immunotherapy (Ellegren, 2004; Baretti and Le,
2018; Steuer and Ramalingam, 2018). Initially, we examined the
relationship between SF3B6 gene expression and eight well-known
immune checkpoint molecules: CD274, CTLA4, HAVCR2, LAG3,
PDCD1, PDCD1LG2, SIGLEC15, and TIGIT. Our findings
indicated that SF3B6 was positively linked to the majority of
immune checkpoint molecules in LIHC, LGG, KIRP, BLCA,
PCPG, and KICH, whereas it exhibited negative associations with
most immune checkpoint molecules in THYM, HNSC, ESCA,
LUAD, LUSC, TGCT, and OV (Figure 6A).

Next, we assessed the association of SF3B6 gene expression with
MSI, TMB, and the expression of six MMR-related genes (EPCAM,
PMS2, MSH, MSH2, MLH1). SF3B6 gene expression was positively
linked to most MMR-related genes across all tumor types, except in
DLBC and UCS (Figure 6B). In 17 cancer types, including BLCA,
BRCA, CESC, DLBC, ESCA, GBM, HNSC, KIRP, LGG, LIHC,
LUAD, LUSC, OV, PRAD, READ, SKCM, STAD, SF3B6 gene
expression demonstrated a positive relationship with MSI, while
a negative relationship was detected in THYM (Figure 6C).
Additionally, in nine cancer types, including ACC, BLCA, BRCA,
LGG, LUAD, LUSC, PAAD, SKCM, and STAD, SF3B6 gene
expression showed a positive relationship with TMB. Conversely,
it demonstrated a negative relationship with TMB in KIRP, THCA,
THYM, and UCEC (Figure 6D).

The immune phenotype scores, developed based on the
expression of immune-related genes, including MHC molecules,
immune regulators, effector cells, and suppressor cells, can predict
patient responses to CTLA-4 and PD-1 blockade therapies
(Charoentong et al., 2017). We assessed the association of
SF3B6 gene expression with immune phenotype scores. Results
indicated that in COAD, KIRC, LIHC, LUAD, STAD, THCA,
and UCEC, patients with low SF3B6 expression were expected to
achieve better immunotherapy outcomes when treated with CTLA-4
or PD-1 blockade (Figures 6E–K).

2.7 Functional enrichment analysis of
SF3B6 in pan-cancer

To investigate the role of SF3B6 across pan-cancer, we initially
retrieved a network interaction diagram of proteins and genes that
interact with SF3B6 from the BioGRID database (Figure 7A). This
network comprised 190 interacting proteins or genes and
283 interaction relationships. Using Metascape, we conducted
GO and KEGG analyses on the acquired genes, revealing that the
genes associated with SF3B6 were primarily enriched in pathways
involved in RNA splicing, DNA replication, and the cell cycle
(Figure 7B). The KEGG analysis demonstrated that the genes

interacting with SF3B6 were enriched in pathways related to
splicing, mismatch repair, DNA replication, RNA degradation,
and several cancer-related pathways. Notable pathways included
the prolactin signaling pathway, proteoglycans in cancer, Fanconi
anemia pathway, PI3K−Akt signaling pathway, ErbB signaling
pathway, and MAPK signaling pathway, among others (Figure 7C).

We then employed Gene Set Variation Analysis (GSVA) to
examine the correlation of SF3B6 with HALLMARK pathways
across different cancers. The analysis suggested that SF3B6 was
significantly related to several immune response pathways,
including the IL2-STAT5 signaling pathway, IL6-JAK-
STAT3 signaling pathway, and inflammatory response pathways.
Additionally, SF3B6 demonstrated associations with tumor
metabolic pathways, such as the unfolded protein response,
reactive oxygen species pathways, oxidative phosphorylation,
mTORC1, glycolysis, fatty acid metabolism, and protein
secretion. Furthermore, it was linked to classic tumor-related
pathways, including KRAS, PI3K-AKT-mTOR, and MYC, as well
as cell cycle and DNA repair pathways, such as the G2M checkpoint
and E2F targets. SF3B6 also exhibited correlations with intercellular
adhesion pathways, such as apical surface and tight junctions, in the
majority of tumors (Figure 7D).

2.8 Analysis of SF3B6 differential expression
in HCC, correlationwith clinical pathological
features, prognosis, and treatment response

In addition to the TCGA-LIHC and CPTAC datasets, we further
utilized the ICGC-LIRI-JP dataset as the validation cohort to
investigate the differential expression of SF3B6 in patients with
HCC. Consistently, both paired and unpaired differential expression
analyses demonstrated significantly elevated levels of
SF3B6 expression (Figure 8A). Moreover, immunohistochemical
staining results from the Human Protein Atlas (HPA) database
showed stronger SF3B6 staining intensity in HCC tissues than in
normal liver tissues (Figure 8B). To validate the reliability of these
findings, we performed Western blot analysis on six paired samples
of HCC and adjacent normal tissues, which further confirmed the
upregulation of SF3B6 expression in human HCC tumor
tissues (Figure 8C).

Next, we explored the relationship between SF3B6 expression
and clinical pathological features using TCGA-LIHC data. Results
showed a positive correlation between elevated SF3B6 expression
and alpha-fetoprotein (AFP) levels (p = 1.6e−05), TNM stage (p =
0.014), and histological grade (p = 2.2e−05), with no correlations
found for age, gender, liver fibrosis score, or vascular invasion
(Figures 8D–J). Kaplan-Meier survival analysis of the ICGC-
LIRI-JP and TCGA-LIHC datasets indicated that higher
SF3B6 expression was associated with shorter OS in HCC
patients (Figures 8K,L). To control for confounding factors, we
conducted univariate and multivariate Cox regression analyses,
confirming that elevated SF3B6 expression is an independent risk
factor for OS (Figure 8M). Additionally, we analyzed the
GSE109221 cohort (sorafenib treatment) and the
GSE104580 cohort (TACE treatment), revealing that patients
with higher SF3B6 expression showed significantly greater
resistance to both treatments (Figures 8N,O).
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FIGURE 7
Functional enrichment analysis of SF3B6 in pan-cancer. (A) PPI network of SF3B6 and its interacting genes based on the BioGRID database. (B) GO
function enrichment analysis of SF3B6-interacting proteins based on Metascape. (C) KEGG functional enrichment analysis based on SF3B6-interacting
proteins by Metascape. (D)Heatmap showing the correlation between SF3B6 and HALLMARK pathway enrichment scores based on GSVA in pan-cancer.
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FIGURE 8
Differential expression of SF3B6, association between SF3B6 expression and clinicopathologic characteristics, and the prognostic predictive value of
SF3B6 in HCC patients. (A) Unpaired and paired differential analysis of the mRNA expression of SF3B6 in tumor samples and adjacent normal samples
based on the ICGC-LIRI-JP dataset.(B) Representative images of immunohistochemical staining for SF3B6 in normal liver and HCC tissues from the
Human Protein Atlas database. (C) Protein expression levels of SF3B6 in six paired humanHCC tumor specimens (T) and adjacent non-tumor tissues
(N) were determined byWestern blotting. Correlation analysis ofmRNA expression of SF3B6 based on the TCGA-LIHC dataset with (D) age, (E) gender, (F)
AFP, (G) vascular invasion, (H) liver fibrosis, (I) pathological grade and (J) TNM stage in HCC patients. KaplanMeier curve of SF3B6 expression based on (K)
ICGC-LIRI-JP dataset and (L) TCGA-LIHC for OS in HCC patients. (M) Forest plot showing the univariate and multivariate COX analyses of OS based on

(Continued )
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2.9 Functional enrichment analysis of
SF3B6 in HCC

To examine the potential mechanisms underlying SF3B6 in HCC,
we performed GSEA based on the TCGA-LIHC database, comparing
patients with high versus low expression of SF3B6. The HALLMARK
pathway enrichment analysis demonstrated a positive association
between increased SF3B6 expression and pathways involving
ribosomes, DNA replication, the cell cycle, spliceosomes, and motor
proteins. Conversely, SF3B6 expression was significantly negatively
correlated with various signaling pathways that influence tumor
immunity, including platelet activation, vascular smooth muscle
contraction, chemokine signaling, cytokine-cytokine receptor
interaction, B cell receptor signaling, viral protein interactions with
cytokines and their receptors, malaria, the coagulation complement
cascade, and C-type lectin receptor signaling pathways. Additionally,
SF3B6 expression exhibited negative correlations with tumor
metabolism-related pathways, including alcoholic liver disease, the
PPAR signaling pathway, the AMPK signaling pathway, primary
bile acid synthesis, adipokine biosynthesis, valine/isoleucine/leucine
degradation, arginine biosynthesis, mineral absorption, glycine/
serine/threonine metabolism, peroxisome metabolism, cGMP-PKG
signaling pathway, and fatty acid degradation (Figure 9A).

The KEGG pathway enrichment analysis results indicated
significant positive relationships between high SF3B6 expression
and pathways linked to cell proliferation, including E2F targets, the
G2M checkpoint, spermatogenesis, MYC target V1, and mitosis/
spindle pathways. By comparison, increased SF3B6 expression was
significantly negatively related to apoptosis and tumor immunity-
related pathways, such as complement activation, oxidative
phosphorylation, allograft rejection, heme metabolism, NF-κB/
TNF-α signaling, coagulation, interferon-gamma response, and
interferon-alpha response. SF3B6 also negatively correlated with
tumor metabolism-related pathways, including fatty acid synthesis,
xenobiotic metabolism, bile acid metabolism, oxidative
phosphorylation, and fatty acid metabolism. These findings
corroborated the results from Gene Set Variation Analysis
(GSVA) utilizing the TCGA-LIHC dataset (Figure 9B).

2.10 Construction and functional analysis of
the protein-protein interaction (PPI)
network of SF3B6-related survival
alternative splicing events (SF3B6-SASEs)

Considering the importance of SF3B6 as a splicing factor in RNA
splicing, we further identified key alternative splicing events associated
with SF3B6. We obtained the splicing percentage in (PSI) values of
ASEs for HCC from the TCGASplicingSeq database. The paired
sample differential analysis results showed that, under the set

threshold, we identified 1,177 differential alternative splicing events
(DASEs) from 704 genes (Figure 10A; Supplementary Table S2).
Based on the DASEs, we identified 379 SASEs from 241 genes using
univariate Cox regression analysis (p < 0.05) (Figure 10B;
Supplementary Table S3). To identify SF3B6-SASEs, we carried out
a correlation analysis to evaluate the association between the PSI
values of the SASEs and the gene expression levels of SF3B6.
Ultimately, we identified 17 SF3B6-SASEs from 11 genes
(Figure 10C; Supplementary Table S4). To investigate the potential
biological functions of SF3B6-SASEs, we retrieved the PPI network of
the parent genes from the STRING database (Figure 10D). We then
calculated and visualized the five hub genes with the strongest
interactions within the PPI network utilizing the MCC algorithm,
including NEIL3, NEK2, KIF4A, TROAP, and FANCD2 (Figure 10E).
Utilizing Metascape for functional enrichment analysis of these hub
genes, we observed that they were primarily enriched in pathways
associated with the G2M checkpoint, DNA repair, and
phosphorylation (Figure 10F). Spearman correlation analysis
suggested a markedly positive relationship of the SF3B6 expression
with the five hub genes (Figure 11A).

Furthermore, we validated the correlation of the hub genes with
the clinical characteristics and prognosis of HCC patients. The
differential expression analysis suggested that the hub genes
showed increased expression in HCC (Figure 11B), and their
expression showed a positive relationship with histological
staging (Figure 11C). Kaplan-Meier survival curve analysis
suggested that elevated expression levels of the hub genes were
associated with worse patient prognosis (Figure 11D).

2.11 Knockdown of SF3B6 suppressed
proliferation, migration, and invasion of
HCC cells

To investigate the expression of SF3B6 in liver cancer cell lines,
we conducted RT-qPCR and Western blotting on a normal human
liver epithelial cell line (THLE-3) and three liver cancer cell lines: Sk-
hep1, Huh7, and HCCLM3. The RT-qPCR results displayed that the
mRNA levels of SF3B6 were markedly elevated in the Sk-hep1,
Huh7, and HCCLM3 liver cancer cell lines (Figure 12A). Similarly,
the Western blotting results displayed that the protein expression
levels of SF3B6 were elevated in these liver cancer cell lines (Figures
12B,C). Based on the higher expression of SF3B6 in SK-HEP1 and
Huh7 cells, these two cell lines were selected for subsequent
functional validation experiments.

To explore the impact of SF3B6 on HCC cell functions, we
employed siRNAs to silence SF3B6 expression in Sk-hep1 and
Huh7 cells. Both RT-qPCR and Western blotting demonstrated
that siRNA2 exhibited the greatest knockdown efficiency. Thus,
siRNA2 was chosen for further functional validation (Figures

FIGURE 8 (Continued)

the TCGA-LIHC dataset in HCC patients. (N) Distribution of patients with different sorafenib therapy response statuses across high and low
SF3B6 expression groups. (O) Distribution of patients with different TACE therapy response statuses across high and low SF3B6 expression groups. *p <
0.05, **p < 0.01, ***p < 0.001. ns not significant.
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12D–F). CCK-8 proliferation assays and colony formation assays
demonstrated that silencing SF3B6 markedly reduced the
proliferation capacity of HCC cells (Figures 12G–I). Furthermore,
Transwell assays indicated that silencing SF3B6 markedly inhibited
the migration and invasion abilities of HCC cells (Figures 12J–O).

2.12 Knockdown of SF3B6 increased
apoptosis and caused S phase arrest in
HCC cells

Previous analyses of functional enrichment suggested a
significant relationship between SF3B6 expression and both
apoptosis and cell cycle processes. Therefore, we assessed the

influence of SF3B6 on apoptosis and the cell cycle in HCC cell
lines using flow cytometry. The results demonstrated that silencing
SF3B6 markedly elevated the apoptosis rate in HCC cells (Figures
13A–C). Additionally, following the knockdown of SF3B6, there was
an increase in the proportion of cells in the S phase, a reduction in
the G2/M phase, and no significant change in the G1 phase. This
result indicated that knocking down SF3B6 led to S phase arrest in
HCC cells (Figures 13D–F).

3 Discussion

Dysregulation of alternative splicing is prevalent in multiple
cancers and facilitates tumor development (Choi et al., 2023a; Choi

FIGURE 9
Functional enrichment analysis of SF3B6 in LIHC. (A) KEGG enrichment analysis on SF3B6 based on GSEA. (B) HALLMARK enrichment analysis on
SF3B6 based on GSEA.
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et al., 2023b). RNA splicing factors and their splice variants can serve
as biomarkers and therapeutic targets in cancer. During mRNA
splicing, SF3B6, a crucial subunit of the SF3B complex, promotes the
assembly, activation, and catalysis of the spliceosome by recognizing
and binding to the branch point adenosine in pre-mRNA, thus
facilitating stable interactions between U2 snRNA and the branch
point sequence (Dybkov et al., 2006; Schellenberg et al., 2011;
Tholen et al., 2022; Zhang et al., 2024). Previous studies of
SF3B6 in tumors have been limited to PDAC, breast cancer, and
NSCLC (Siebring-van Olst et al., 2017; Wu et al., 2019; Li J. et al.,
2021; Peng et al., 2022). Furthermore, little is known about the role
of SF3B6 in other cancer types. This research is the first to provide a

comprehensive analysis of SF3B6 expression levels, clinical
relevance, and potential roles across pan-cancer, further
exploring its mechanisms in HCC through bioinformatics and
in vitro experimental methods.

Our findings align with earlier research, demonstrating that
SF3B6 was significantly elevated in the majority of tumor tissues,
including those from breast cancer, pancreatic cancer, lung cancer,
liver cancer, and so on. This upregulation could be regulated by copy
number variation and DNA methylation. SF3B6 exhibited high
diagnostic value in 16 types of tumors, including LIHC and
LUAD, and so on (AUC >0.9). Prognostic analyses indicated that
elevated SF3B6 expression served as a risk factor for OS, DFI, DSS,

FIGURE 10
SF3B6-SASE parent-gene protein interaction network (PPI) construction and functional enrichment analysis. (A) The Upset plot showing the
differential alternative splicing events (DASE) in the LIHC. (B) Volcano plot showing the result of the univariate COX analysis of DASE in LIHC. (C) The
interaction network between SF3B6 and SF3B6-SASEs. (D) The PPI network of the SF3B6-SASE parental genes. (E) PPI network of core parental genes
with the top 5 strongest interactions in SF3B6-SASEs. (F) Functional enrichment analysis of the SF3B6-SASE core parental genes based on
Metascape.SF3B6-SASE, SF3B6-related survival-alternative splicing events. PPI, Protein-Protein Interaction.
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FIGURE 11
Differential expression analysis survival and clinical case characteristic analysis of hub genes. (A) Correlations between hub genes and SF3B6. (B)
Differential expression analysis of hub genes between normal and tumor tissues in HCC. (C) Correlations between hub genes and clinical features. (D)
Kaplan–Meier survival curves for patients with HCC malignancies stratified by hub genes expression levels.
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FIGURE 12
Knockdown of SF3B6 inhibited the proliferation, migration, and invasion ability of HCC cells. (A) The mRNA expression levels of THLE 3, Sk-hep1,
Huh7, andHCCLM3 cells were determined by RT-qPCR. (B, C) Protein expression levels of THLE 3, Sk-hep1, Huh7, andHCCLM3 cells were determined by
Western blotting. (D) RT-qPCR was used to detect the mRNA expression of SF3B6 in Sk-hep1 and Huh7 cells transfected with siRNA. (E, F)Western blotting
was used to detect the protein expression of SF3B6 in Sk-hep1 and Huh7 cells after siRNA transfection. (G) CCK8 reagent was used to detect the
proliferation of Sk-hep1 and Huh7 cells after knocking down SF3B6. (H, I)Colony formation assay detected the proliferation and colony formation of Sk-hep1
andHuh7 cells after knocking downSF3B6. (J–L)Transwellmigration and invasion assaywas used to detect themigration and invasion ability of Sk-hep1 cells
after knocking down SF3B6. (M–O) Transwell migration and invasion assay was used to detect themigration and invasion ability of Huh7 cells after knocking
down SF3B6. Data are shown as mean ± SD (n = 3 biologically independent samples per group). *p < 0.05; **p < 0.01; ***p < 0.001. ns not significant.
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and PFI in patients with ACC, KIRP, LIHC, and LUAD. Functional
enrichment analyses yielded consistent results across various
cancers, indicating that SF3B6 expression was closely related to
RNA splicing, DNA replication, cell cycle regulation, DNA damage

repair, pathways associated with multiple cancer types, immune
response pathways, tumor metabolic pathways, and classical tumor-
related pathways (e.g., KRAS, PI3K/AKT/mTOR, MYC). These
results strongly suggest that SF3B6 promotes tumorigenesis and

FIGURE 13
Knockdown of SF3B6 increased apoptosis and caused S phase arrest in HCC cells. (A–C) Flow cytometry detected the apoptosis rate of Sk-hep1 and
Huh7 cells after knocking down SF3B6 (D–F) Flow cytometry was used to detect the cell cycle. Data are shown as mean ± SD (n = 3 biologically
independent samples per group). *p < 0.05; **p < 0.01; ***p < 0.001. ns not significant.
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progression, indicating its potential as a biomarker for guiding
cancer diagnosis and prognosis.

The tumor microenvironment comprises various cells within the
tumor (tumor cells, immune cells, stromal cells), vascular systems,
extracellular matrices, and secreted factors, all of which are closely
linked to immunotherapy. Immune infiltration analyses based on the
XCELL and ESTIMATE algorithms suggested that SF3B6 showed a
negative relationship with the levels of infiltration by immune and
stromal cells across various cancer types. In most cancer types,
SF3B6 displayed a positive relationship with CD4+ Th2 T cells and
common lymphoid progenitors, while demonstrating a negative
correlation with various other immune and stromal cells.CD4+
Th2 T cells are a major subclass of helper CD4+ T cells [32].
Cytokines produced by Th2 cells, including IL-10, IL-4, and TGF-
β, can promote the dissemination and metastasis of cancer cells in
various cancers. An imbalance between the Th1/Th2 cell ratio and
their associated cytokines is linked to reduced PFI and OS in patients
with breast cancer, melanoma, ovarian cancer, esophageal cancer, and
colorectal cancer (Saravia et al., 2019). Our study indicates that
SF3B6 may induce tumor immune suppression by promoting the
differentiation of Th2 cells.

Considering the correlation between SF3B6 and the tumor
microenvironment along with cell infiltration, we analyzed the
predictive significance of SF3B6 for immunotherapy responses.
Elevated expression of inhibitory immune checkpoints in the
tumor microenvironment is linked to diminished T cell-mediated
anti-tumor immune responses. Immune checkpoint inhibitors are
monoclonal antibodies that selectively block these inhibitory immune
checkpoints, promoting T cell-mediated anti-tumor immune
responses (Wang et al., 2024). Our results demonstrated that
SF3B6 expression was positively related to many immune
checkpoint molecules in six types of cancer, including LIHC, while
demonstrating a negative correlation with most immune checkpoint
molecules in seven additional cancers, including LUAD and HNSC.
Previous studies have shown that TMB, MSI, and MMR status have
predictive value for tumor immunotherapy response (Ellegren, 2004;
Baretti and Le, 2018; Steuer and Ramalingam, 2018). We
demonstrated that SF3B6 was positively related to the majority of
MMR-related genes across all tumor types except for DLBC and UCS.
In specific cancer types, SF3B6 showed a significant association with
MSI and TMB. Additionally, correlation analysis of immune
phenotype scores indicated that in COAD, KIRC, LIHC, LUAD,
STAD, THCA, and UCEC, tumor patients with low SF3B6 expression
were anticipated to experience improved immunotherapy responses
following treatment with CTLA-4 or PD-1 blockade (Van Allen et al.,
2015; Hackl et al., 2016). This finding reveals that SF3B6 has the
potential to function as a biomarker for predicting responses to
immunotherapy in various cancers, including LIHC and LUAD.

We further explored the potential function of SF3B6 in HCC.
Our results indicated that increased SF3B6 expression was positively
associated with AFP levels, TNM staging, and histological grading in
HCC. High expression of SF3B6 was associated with poor OS in
HCC and was an independent risk factor for the disease. GSEA
results suggested that SF3B6 was enriched in pathways associated
with the cell cycle, DNA replication, apoptosis, tumor immunity,
and tumor metabolism in HCC, indicating that SF3B6 may
contribute to tumor cell proliferation, tumor microenvironment
formation, and tumor metabolic reprogramming. Furthermore, in

the GSE109211 and GSE104580 treatment cohorts for HCC, we
observed that patients with high SF3B6 expression exhibited more
pronounced resistance to sorafenib and TACE treatment. These
findings indicate that SF3B6 is involved in the occurrence and
progression of HCC, and it has the potential to serve as a
prognostic biomarker and therapeutic target for this cancer.

Studies have shown that SF3B6 is vital for the regulation of
alternative splicing, yet there is limited research on the target pre-
mRNA of SF3B6. Therefore, we identified 17 SF3B6-related
prognostic alternative splicing events from 11 parent genes, with
the primary splice variant being alternative terminators.
Subsequently, we employed the MCC algorithm to screen five
hub genes with the strongest interactions: NEIL3, NEK2, KIF4A,
TROAP, and FANCD2, all of which showed significant positive
correlations with SF3B6 expression.NEIL3, a member of the DNA
glycosylase family, plays a role in base damage repair and promotes
hepatocellular carcinoma (HCC) advancement through
mechanisms including telomere damage repair, enhanced
phosphorylation of TWIST1, and activation of the PI3K/AKT/
mTOR pathway (Chen et al., 2022). NEK2, a serine/threonine
kinase, is essential in the cell cycle, and its dysregulation can lead
to chromosomal instability, aneuploidy in cancer cells, activation of
oncogenic signaling pathways, selective mRNA splicing, p53 loss,
cilia disassembly, and tumor immune evasion (Xia et al., 2024).
KIF4A, a kinesin family member, is essential for FOXM1-mediated
proliferation of HCC cells, with its depletion linked to suppressed
Akt kinase activity and induction of endogenous apoptotic signaling
pathways (Hu G. et al., 2019).TROAP is critical for maintaining
centriole integrity and spindle assembly during mitosis; its aberrant
elevation enhances cyclin D1’s stability and nuclear localization
through the DYRK1/Akt/GSK-3β signaling pathway, accelerating
cell cycle progression and promoting malignant proliferation of HCC
cells (Hu H. et al., 2019; Li L. et al., 2021). FANCD2, a key protein in
the Fanconi anemia (FA) pathway, participates in DNA damage
repair, cell cycle regulation, apoptosis, and chromatin remodeling,
playing an important role in cancer via phosphorylation or
ubiquitination (Brunner et al., 2023). In agreement with prior
research, our study identified that these hub genes were enriched
in the G2M checkpoint and DNA repair pathways, all being
upregulated in HCC and strongly linked to worse prognosis and
pathological staging in HCC patients. In conclusion, our findings
demonstrate that SF3B6 may facilitate HCC development and
progression by modulating the variable splicing of genes related to
the G2M checkpoint and DNA repair pathways. Suppressing
SF3B6 or targeting its associated splice variants with ASOs could
represent a potential therapeutic approach for HCC.

Furthermore, we confirmed the high expression of SF3B6 in
HCC tissues and cell lines. By establishing SF3B6 knockdown
models and conducting cellular functional assays, we verified that
SF3B6 enhanced the proliferation, migration, and invasion
capabilities of HCC cells. Flow cytometric analysis also confirmed
that SF3B6 inhibited apoptosis in HCC cells and modulated the
transition from the S phase to the G2M phase in the cell cycle. These
experimental findings validate the reliability of our bioinformatics
analysis and lay the groundwork for future investigations of
SF3B6 in HCC.

Despite these findings, several limitations and future directions
warrant attention. First, pan-cancer analyses based on public
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databases such as TCGA and GTEx may be influenced by potential
biases arising from sample heterogeneity, batch effects, and
incomplete clinical annotations. Although experimental validation
confirmed SF3B6 overexpression in HCC tissues and cell lines, the
limited sample size may restrict the generalizability of diagnostic and
prognostic models. Future studies should integrate multicenter
clinical cohorts to systematically validate the correlation of
SF3B6 expression patterns with clinical features, therapeutic
responses and survival outcomes in HCC patients. Additionally,
although in vitro experiments have confirmed the regulatory role
of SF3B6 in the proliferation, migration, and apoptosis of HCC cells,
the lack of animal models to validate its in vivo oncogenic function
and its impact on the tumor microenvironment limits a
comprehensive evaluation of its clinical translational potential in
HCC. To address this issue, future research should employ
conditional knockout or overexpression mouse models, syngeneic
or xenograft models with genetically modified HCC cells, as well as
patient-derived xenograft models. These models will facilitate the
dynamic exploration of SF3B6’s regulatory networks in tumorigenesis,
metastasis, and immune evasion, thus providing a more
comprehensive theoretical foundation for its potential clinical
applications. Furthermore, although bioinformatics analysis
identified SF3B6-SASEs enriched in G2/M checkpoint and DNA
repair pathways, the direct RNA targets of SF3B6 and its
functional synergy with other SF3B complex subunits (e.g., SF3B1,
PHF5A) remain to be elucidated. Advanced approaches such as CLIP-
seq and RIP-seq are needed to map the RNA-binding sites of SF3B6.
Additionally, the use of ASOs targeting key splice variants (e.g., NEK2,
KIF4A) could provide insights into their downstream effects on cell
cycle regulation and genomic stability. Moreover, proteomic and
structural studies should explore the interaction interfaces between
SF3B6 and other SF3B subunits, as well as their roles in spliceosome
assembly. From a translational perspective, the development of
SF3B6 inhibitors, along with their potential synergistic effects when
combined with existing therapies (e.g., sorafenib, PD-1 inhibitors,
chemotherapy drugs), could substantially accelerate the progress of
personalized therapeutic strategies for HCC.

To summarize, this study represents the first comprehensive
analysis of the correlation between SF3B6 expression and diagnosis,
prognosis, immune infiltration, and immunotherapy response at the
pan-cancer level. It explores the clinical significance and potential
functions of SF3B6 and its related splice variants in HCC through
bioinformatics and in vitro experimental approaches. This research
lays a foundation and provides direction for future studies on the
mechanisms and therapeutic implications of SF3B6 in cancer.

4 Materials and methods

4.1 Differential expression analysis of
SF3B6 across pan-cancer

Gene expression data for SF3B6 was sourced from UCSC Xena
(https://xenabrowser.net/datapages/) (Wang et al., 2016), normalized
using the formula log2 (TPM+1), and combined with transcript
expression data and clinical phenotype information. The R package
“ggplot2” was utilized to examine and visualize the differences in
SF3B6 expression between tumor and non-tumor samples. Tumor

samples were obtained from the TCGA tumor dataset, while non-
tumor samples were sourced from TCGA and GTEx. For the analysis
of SF3B6 protein expression across different cancer types and their
adjacent normal tissues, the “Proteomics” section of UALCAN
(http://ualcan.path.uab.edu/) (Chandrashekar et al., 2022) was
utilized, based on the CPTAC dataset (Uhlén et al., 2015).

4.2 Genetic variation analysis of SF3B6 in
pan-cancer

The cBioPortal (http://www.cbioportal.org/) was employed to
visualize the frequency of genetic alterations across various cancers
sourced from TCGA (Cerami et al., 2012). Data on the CNV of the
SF3B6 gene, along with gene expression and clinical features, were
collected from UCSC Xena and integrated for analysis. Differences
in SF3B6 gene CNV between tumor and non-tumor samples were
evaluated and visualized using the R package “ggplot2.”
Furthermore, correlations between SF3B6 gene CNV and
expression levels were determined, with results illustrated using
the “ggrepel” and “ggplot2” packages. Additionally, DNA
methylation data for the SF3B6 gene, combined with its
expression data from UCSC Xena, were analyzed to explore their
relationship, employing “ggplot2” and “ggrepel” for visualization.

4.3 Diagnostic value analysis of SF3B6 in
pan-cancer

Data on SF3B6 gene expression, obtained from UCSC Xena,
were integrated with clinical phenotype information. The diagnostic
potential of SF3B6 in differentiating tumor samples from non-tumor
samples across various cancers was assessed using the ROC curve,
computed with the “pROC” R package, and visualized using
“ggplot2.” An AUC value approaching 1 indicates superior
diagnostic accuracy. AUC values ranging from 0.5 to 0.7 suggest
limited accuracy, those between 0.7 and 0.9 reflect good accuracy,
while values from 0.9 to 1 signify high accuracy.

4.4 Prognostic value analysis of SF3B6 in
pan-cancer

SF3B6 gene expression data obtained from UCSC Xena were
merged with clinical information, focusing on samples that provided
complete survival status and survival time data exceeding 30 days.
Their relationships with OS, PFI, DFI, and DSS were examined
through univariate Cox regression analysis, visualized using the
“ezcox,” “survival,” “Survminer,” and “forestploter” R packages.

4.5 Immune infiltration analysis of SF3B6 in
pan-cancer

Immune cell infiltration data obtained from TIMER2.0 (http://
timer.cistrome.org/) (Li et al., 2017; Li et al., 2020), were combined
with SF3B6 mRNA expression data from TCGA, focusing on data
processed by the XCELL algorithm (Aran et al., 2017). The
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association of SF3B6 mRNA expression with various types of
immune cell infiltration was calculated and visualized using the R
package “ggplot2.” The ESTIMATE algorithm was employed to
estimate the stromal score and immune score from the gene
expression data. The sum of these two scores yields the
ESTIMATE score, which is utilized to assess tumor purity. The
correlation between SF3B6 mRNA expression levels and various
ESTIMATE scores was examined and visualized with the R packages
“ESTIMATE” and “ggplot2.”

4.6 Predictive value of SF3B6 for
immunotherapy in pan-cancer

The TMB within tumor samples was calculated utilizing the
“maftools” R package, and MSI scores were collected from prior
studies. TMB, MSI scores, MMR-related genes, and immune
checkpoint genes were integrated with SF3B6 gene expression data
to assess their correlations, with results visualized using the “ggplot2”
and “ggradar” R packages. The TCIA database (https://tcia.at/)
provided comprehensive immunogenomic analysis results for
20 types of solid tumors from TCGA, including immunophenotype
scores calculated from the expression of representative genes or gene
sets related toMHCmolecules, immunemodulators, effector cells, and
suppressor cells, which predict responses to anti-CTLA-4 and anti-PD-
1 antibodies (Van Allen et al., 2015; Hackl et al., 2016; Charoentong
et al., 2017). Immunophenotype scores for the 20 types of tumor
samples were downloaded, and differences between groups with high
and low levels of SF3B6 were calculated and visualized utilizing the
“ggplot2” package in R.

4.7 Functional enrichment analysis of
SF3B6 in pan-cancer

The BioGRID database was utilized to identify proteins or genes
that interact with SF3B6. Metascape was employed to conduct Gene
Ontology (GO) and KEGG enrichment analyses. The selection
criteria included a minimum overlap of 3 and a minimum
enrichment factor of 1.5, with a significance threshold set at P <
0.01. GSVA was performed and visualized using the R packages
“GSEAbase,” “GSVA,” and “ggplot2.” This analysis yielded
pathway-scoring results for each tumor sample, which were
subsequently correlated with SF3B6 gene expression levels.

4.8 SF3B6 expression differential analysis
in HCC

Gene expression profiles, along with phenotypic data were sourced
from the ICGC-LIRI-JP dataset (https://dcc.icgc.org/), comprising
235 tumor samples and 202 corresponding normal samples. The gene
expression profiles were standardized with the formula (TPM+1). The R
package “ggplot2”was employed to analyze and visualize the SF3B6 gene
expression levels. The HPA database (http://www.proteinatlas.org) was
consulted to obtain information on SF3B6 immunohistochemistry
staining, aiming to investigate the protein expression of SF3B6 in
both HCC tissues and healthy control samples.

4.9 Correlation analysis of SF3B6 with
clinical pathological features and treatment
response in patients with HCC

The Kruskal-Wallis test or Wilcoxon test was employed to assess
the relationship between SF3B6 and clinical pathological characteristics
based on the TCGA-LIHC dataset. The study incorporated the
GSE109221 cohort, which focused on sorafenib treatment for HCC,
along with the GSE104580 cohort, which concentrated on TACE
treatment for HCC. Differences in SF3B6 expression between the
response and non-response groups were evaluated by employing the
Chi-Square Test. The R package “ggplot2” was used for visualizations.

4.10 Functional enrichment analysis of
SF3B6 in HCC

Using the TCGA-LIHC dataset, GSEA was executed employing
the “clusterProfiler” package with the HALLMARK gene set
(“h.all.v2023.2.Hs.symbols.gmt”) and the KEGG gene set
(“c2.cp.kegg_legacy.v2023.2.Hs.symbols.gmt”) as reference
datasets (Subramanian et al., 2005; Liberzon et al., 2015). A false
discovery rate (FDR) of <0.25, an absolute normalized enrichment
score (NES) > 1, and an adjusted P-value <0.01 were established as
thresholds for statistical significance. The top 15 enriched terms
were presented in a bar chart using the “ggplot2” package.

4.11 Screening of SF3B6-related survival
alternative splicing events in HCC

The PSI values for splicing events of TCGA-LIHC were retrieved
from the TCGASplicingSeq database (http://bioinformatics.
mdanderson.org/TCGASpliceSeq). The PSI value is utilized to
quantify each AS event, reflecting the ratio of normalized reads that
include AS event transcript elements to total normalized reads, with a
range from 0 to 1 (Ryan et al., 2016). To identify DASE in HCC, we
employed theWilcoxon paired sample non-parametric test to evaluate
the Percent Spliced In PSI values in tumor samples compared to paired
normal samples. DASEs were defined as samples where the change in
the median PSI value between tumor samples and paired normal
samples exceeded 0.1, along with a p-value of less than 0.05. To
determine SASEs, we filtered DASEs utilizing univariate Cox
regression analysis, defining DASEs with a P-value <0.05 as SASEs.
We identified SF3B6-SASEs by conducting a Spearman correlation
analysis to assess the association between SF3B6 gene expression and
the PSI values of SASEs. SASEs with a p-value <0.05 and a correlation
coefficient (R) > 0.4 were classified as SF3B6-SASEs.

4.12 Functional analysis of SF3B6-SASEs and
construction of PPI network

To investigate the possible biological functions of SF3B6-SASEs,
we used a minimum interaction score of >0.400 as the screening
criterion to obtain the protein-protein interaction (PPI) data for the
parent genes of SF3B6-SASEs from the STRING database. The top
5 hub genes within the PPI network were computed and visualized
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using the CytoHubba plugin in Cytoscape. Functional enrichment
analysis for the hub genes was conducted utilizing Metascape.

4.13 Functional analysis of SF3B6-SASEs and
construction of PPI network

To investigate the possible biological functions of SF3B6-SASEs,
we used a minimum interaction score of > 0.400 as the screening
criterion to obtain the protein-protein interaction (PPI) data for the
parent genes of SF3B6-SASEs from the STRING database. The top
5 hub genes within the PPI network were computed and visualized
using the CytoHubba plugin in Cytoscape. Functional enrichment
analysis for the hub genes was conducted utilizing Metascape.

4.14 Cell culture and siRNA transfection

The normal human liver cell line THLE3 was acquired fromATCC
(Manassas, VA, United States), while human liver cancer cell lines Sk-
Hep1, Huh7, and HCCLM3 were sourced from the Institute of
Biochemistry and Cell Biology (Shanghai, China). Cells were
cultivated in DMEM containing 10% fetal bovine serum (FBS)
incubated at 37°C with 5% CO2. siRNA transfection was conducted
utilizing the Lipo2000 transfection reagent (Invitrogen, United States)
following the manufacturer’s protocol. The sequences for the siRNA
used in this study are detailed in Supplementary Table S5.

4.15 Patient samples collection

This study included 6 paired fresh-frozen tissue samples,
consisting of hepatocellular carcinoma (HCC) and adjacent non-
tumorous tissues, all obtained from patients who underwent
hepatectomy at the Second Affiliated Hospital of Chongqing
Medical University. The surgeries were performed between 10/
2023 and 09/2024. Inclusion criteria: (1) Histologically confirmed
HCC; (2) No preoperative chemotherapy or radiotherapy.
Immediately after resection, both tumor and paired adjacent
non-tumorous tissue samples were rapidly frozen in liquid
nitrogen and stored at −80°C until protein extraction. The study
protocol was approved by the Ethics Committee of the Second
Affiliated Hospital of Chongqing Medical University (Approval No.
220/2022), and all participants provided written informed consent.

4.16 RNA extraction and real-time
quantitative polymerase Chain
PCR(RT-qPCR)

The RNA purification kit (ESScience, ES-RN001) was utilized to
isolate total RNA from the cells in accordance with the
manufacturer’s guidelines. The reverse transcription kit (Takara,
RR047A) was utilized for reverse transcription. RT-qPCR was
performed utilizing the qPCR kit (Accurate Biology, AG11701).
The mRNA concentration for target genes was normalized utilizing
the 2−ΔΔCT method. The primer sequences employed in this
experiment are provided in Supplementary Table S6.

4.17 Western blotting

To extract total protein from cells or tissues, a combination of
RIPA lysis buffer and PMSF (Beyotime) was utilized. The extracted
proteins were separated by 20% SDS-PAGE and then transferred to
a PVDF membrane. The membrane was blocked by incubating it at
room temperature for 2 h in 5% non-fat dry milk diluted in 1×
TBST. Subsequently, the membrane was incubated overnight with
primary antibodies diluted at a ratio of 1:2000 against SF3B6
(ProteinTech, 19677-1-AP) and beta-actin (ZENBIO, 380,624).
After a 2-h incubation with the secondary antibody, the bands
were exposed using ECL chemiluminescent substrate in a gel
imaging system. Band intensity was analyzed utilizing
ImageJ software.

4.18 CCK8 cell proliferation assay

After 36 h of siRNA transfection, 200 µL of cell suspension
(totaling 4000 cells per well) was allocated to a 96-well plate. Cells
were cultured overnight, after which a fresh CCK-8 working solution
(100 µL DMEM high glucose medium +10 µL CCK-8) was poured
into each well. After incubating at 37°C for 2.5 h, the absorbance at
450 nm was measured, representing the absorbance value at 0 h.
This procedure was repeated every 24 h to record subsequent
absorbance values.

4.19 Colony formation assay

After 36 h of siRNA transfection, 200 µL of cell suspension
(totaling 4000 cells per well) was allocated to a 6-well plate. The cells
were cultured at 37°C with 5% CO2 for 7–14 days, with daily
observation and medium changes as necessary. When most
individual cell colonies contained 50 cells or more, the culture
was terminated. Cells were then fixed in 4% paraformaldehyde
for 30 min, followed by staining with 1% crystal violet for an
additional 30 min. Photographs of the cell colonies were taken
and counted.

4.20 Transwell assay

Matrigel was purchased from Corning, and 8 μm 24-well
Transwell chambers were obtained from BD Biosciences.
Transwell chambers without Matrigel coating were employed to
assess the cells’migratory capacity, while Matrigel-coated Transwell
chambers were used to evaluate cell invasion by mimicking the
extracellular matrix (ECM) barrier. Medium supplemented with
20% FBS was used as the chemoattractant in the lower chamber. For
the migration assay, cells were transfected with siRNA for 36 h,
followed by a 12-h starvation in DMEM basal medium. The cells
were then harvested and resuspended in serum-free DMEM at a
density of 3 × 10̂5 cells/mL. Next, 200 µL of the cell suspension
(containing 6 × 10̂4 Huh7 or Sk-hep1 cells) was added to the upper
chamber, while the lower chamber was filled with DMEM
supplemented with 20% FBS. After 48 h of incubation at 37°C,
cells were fixed with 4% paraformaldehyde for 20 min, stained with
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1% crystal violet for 20 min, and imaged under a light microscope.
Cell counts were determined from five randomly selected fields. For
the invasion assay, Matrigel was diluted 1:8 in DMEM and applied to
the upper chamber. After solidification at 37°C for 3 h, excess
Matrigel was removed, and the membrane was rehydrated with
pre-warmed serum-free medium. The subsequent steps, including
cell seeding, fixation, staining, and quantification, were performed as
in the migration assay. Both siRNA-negative control (siRNA-NC)
and siRNA-SF3B6 groups were tested in triplicate to ensure
statistical reliability. Data are expressed as mean ± SD (n =
3 biologically independent samples per group), and statistical
significance was determined using Student’s t-test.

4.21 Cell apoptosis detection

The cell apoptosis rate was measured using an apoptosis
detection kit (Elabscience, E-CK-A320). Briefly, after 36 h of
siRNA transfection, cells were digested with 0.25% trypsin
without EDTA. Following the manufacturer’s guidelines, Annexin
V-FITC and propidium iodide (PI) staining reagents were added to
each tube containing 5 × 10̂5 cells. The mixture was incubated for
20 min in the dark. Subsequently, the apoptosis rate was assessed
using a flow cytometer within 1 hour.

4.22 Cell cycle detection

After 48 h of siRNA transfection, a cell cycle detection kit
(Elabscience, E-CK-A351) was utilized to determine the
distribution of cells across different phases following the
manufacturer’s guidelines. The cell cycle distribution was assessed
with a flow cytometer within 1 hour.

4.23 Statistical analysis

For celluar experiments, all quantitative measurements were
obtained from a minimum of three independent biological
replicates. Experimental results are presented as mean ± standard
deviation (SD). R version 4.3.1 and GraphPad Prism 9.0 software
were used for statistical analyses and plotting. Student’s t-test or
ANOVA was employed for normally distributed continuous
variables, while Wilcoxon or Kruskal-Wallis tests were applied
for non-normally distributed variables. Spearman correlation
analysis was conducted to determine the relationship between the
two groups. The Kaplan-Meier curve was utilized to assess survival
differences between high and low expression groups, with log-rank
tests applied to evaluate statistical significance. To identify
prognostic factors, univariate and multivariate Cox regression
analyses were performed using a significance threshold of P < 0.05.
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