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Owing to its high mortality rate, lung cancer (LC) remains the most common
cancer worldwide, with the highest malignancy diagnosis rate. The
phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/mammalian target
of rapamycin (mTOR) signaling (PAM) pathway is a critical intracellular pathway
involved in various cellular functions and regulates numerous cellular processes,
including growth, survival, proliferation, metabolism, apoptosis, invasion, and
angiogenesis. This review aims to highlight preclinical and clinical studies
focusing on the PAM signaling pathway in LC and underscore the potential of
natural products targeting it. Additionally, this review synthesizes the existing
literature and discusses combination therapy and future directions for LC
treatment while acknowledging the ongoing challenges in the field.
Continuous development of novel therapeutic agents, technologies, and
precision medicine offers an increasingly optimistic outlook for the treatment
of LC.
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1 Introduction

The International Agency for Research on Cancer (IARC) predicts that in 2022, lung
cancer (LC) will have the highest global rates of incidence at 12.4% and mortality at 18.7%
(Bray et al., 2024). The 2022 report from the China National Cancer Center indicated that
the number of LC cases in China will increase to 1,060,600, with 733,300 deaths. LC
remains the leading cause of both incidence and mortality (Figure 1) (Han et al., 2024).
Smoking is the most significant risk factor that markedly increases the incidence of LC. In
China, smoking is responsible for approximately 44.7% of reported LC deaths in males
and 6.4% in females (Xia et al., 2019). Based on the morphological characteristics of LC
cells, LC is classified into small-cell lung cancer (SCLC, approximately 15%) and non-
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small-cell lung cancer (NSCLC, approximately 85%) (Li et al.,
2023). SCLC, with its small cellular morphology, is distinguished
by its rapid proliferative kinetics and propensity for swift
metastasis to organs, such as the liver and brain, through
lymphatic and hematogenous routes. Consequently, the
prognosis of SCLC is poor, with a 5-year survival rate less than
7% (Siegel et al., 2022). In contrast, the two predominant
histological subtypes of NSCLC are adenocarcinoma (ADC;
approximately 50%) and squamous cell carcinoma (SCC;
approximately 40%) (Davidson et al., 2013).

The high incidence and mortality rates of LC pose significant
global health challenges. Therefore, understanding these factors is
essential to improve patient outcomes. The incidence of LC largely
mirrors smoking rates with a latency period of several decades.
Consequently, smoking cessation is considered the most effective
strategy to reduce the risk of LC. Other important risk factors
include environmental exposure to radon, occupational
carcinogens, and preexisting nonmalignant lung diseases.
Addressing this challenge requires a comprehensive approach to

the various treatment modalities available for managing the
complexities of LC.

Therapeutic strategies for LC can be classified into five main
categories: surgery, chemotherapy, radiotherapy, immunotherapy,
and targeted therapy. Multimodal treatment approaches have been
used to improve patient survival. However, owing to the challenges
of early diagnosis, the overall 5-year survival (OS) rate of LC remains
low at only 19%, and therapeutic outcomes are unsatisfactory (Bray
et al., 2024). In recent years, targeted therapy for LC has undergone
rapid evolution with significant advancements. Given the high
mutation rates in LC, progress in genetic and biomarker
detection has made personalized, targeted therapies for individual
patients increasingly feasible (Zappa and Mousa, 2016). As the
treatment landscape evolves, personalized approaches driven by
molecular and genetic insights have become pivotal in improving
patient outcomes. Advances in molecular biology hold promise for
developing chemopreventive agents that prevent the onset of LC
(Bilello et al., 2002). Notably, the phosphatidylinositol-3-kinase
(PI3K)/protein kinase B (AKT)/mammalian target of rapamycin

FIGURE 1
Worldwide Lung Cancer Incidence and Mortality Rates by Region in 2022 This figure consists of twomaps showing the age-standardized incidence
(A) andmortality rates (B) of lung cancer (per 100,000 population) across different regions of theworld in 2022. The color gradient in (A), from light blue to
dark blue, represents increasing incidence rates, with darker blue regions indicating higher lung cancer incidence. In (B), the color gradient from light red
to dark red represents increasing mortality rates, with darker red regions indicating higher lung cancer mortality.
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(mTOR) signaling (PAM) pathway has emerged as a key target for
the development of effective therapies.

The PAM signaling pathway is a key driver of carcinogenesis
and drug resistance in patients with solid tumors. Abnormalities in
the PAM signaling pathway are present in approximately 50% of
tumors, making it the most frequently activated signaling pathway
in human cancers (Martini et al., 2014). This pathway is regulated by
various upstream signaling proteins and plays a crucial role in
modulating downstream effectors through interactions with
compensatory signaling pathways, particularly the RAF/MEK/
ERK pathway. The limited clinical success of targeted therapeutic
agents highlights the importance of addressing alterations in the
PAM signaling pathway when designing effective personalized
treatment strategies (Ersahin et al., 2015). The use of inhibitors
targeting key molecules within the PAM signaling pathway has
garnered significant interest in targeted LC therapy. Indeed, several
studies have developed promising inhibitors of this pathway,
particularly for NSCLC (Fumarola et al., 2014). Several targeted
therapies aimed at the PAM signaling pathway, including buparlisib
(a PI3K inhibitor), MK2206 (an AKT inhibitor), sirolimus (an
mTOR inhibitor), and perifosine (a dual PI3K/AKT inhibitor),
are currently undergoing clinical trials for the treatment of LC
(Moran et al., 2017; Primo N. et al., 2011; Novartis Pharmaceuticals,
2013a; AEterna Zentaris, 2006). Furthermore, several preclinical
studies on natural compounds have garnered interest, with findings
highlighting their potent inhibitory effects on the PAM signaling
pathway (Zhang et al., 2021; Han et al., 2019; Niu et al., 2023). The
high incidence and mortality rates of LC highlight the need for
further research and treatment development.

In this review, we explored the role of the PAM signaling
pathway in tumorigenesis and disease progression and reviewed
recent advancements in preclinical studies and clinical trials
targeting the PAM signaling pathway, focusing on the potential
of natural products as therapeutic agents.

2 Biological characteristics of the PAM
signaling pathway

PI3K, an enzyme comprising a large family of lipid and serine/
threonine kinases (Koundouros and Poulogiannis, 2020), is a
heterodimeric protein comprising a p110 catalytic subunit and a
p85 regulatory subunit (Figure 2) (Engelman et al., 2006).
P110 catalytic subunits (p110α, p110β, p110δ, and p110γ) are
encoded by PIK3CA, PIK3CB, PIK3CD, and PIK3CG,
respectively (Fu et al., 2023). All p85 regulatory subunits (p85α,
p85β, p55α, p55γ, p50α) are encoded by PIKR1 (Mazloumi Gavgani
et al., 2018). Three types of PI3K (classes I, II, and III) have been
identified in mammals. Class I PI3K is further divided into two
subtypes: class 1A (p110α, p110β, p110δ) and 1B (p110γ), the most
common type of cancer, is normally activated by RTKs, such as
Epidermal Growth Factor Receptor (EGFR), insulin-like growth
factor receptor (IGF1-R), and human epidermal growth factor
receptor 2 (HER2/neu) (Higgins et al., 2016). Conversely, Class
IB consists of one of the two regulatory subunits, p101 or p87, and
the PIK3CG-encoded isoform, p110γ (Mazloumi Gavgani et al.,
2018). Class II PI3K comprises three distinct enzymes: PI3K-C2α,
PI3K-C2β, and PI3K-C2γ. In contrast, class III PI3K has only one
known member, Vacuolar Protein Sorting 34 (Vps34, also known as
PI3K-C3), the sole PI3 kinase expressed in all eukaryotes (Martini
et al., 2014). PI3K signaling is one of the most commonly
dysregulated pathways in cancer, promoting cell growth,
proliferation, and survival (Koundouros and Poulogiannis, 2020).
Activation of the receptor tyrosine kinase recruits PI3Kα to the
plasma membrane, where it phosphorylates phosphatidylinositol
4,5-bisphosphate (PIP2) to phosphatidylinositol 3,4,5 triphosphate
(PIP3). As a second messenger, PIP3 binds to and recruits various
lipid-binding domains of downstream targets, such as the pleckstrin
homology (PH), FYVE, phox (PX), C1, and C2 domains, to the cell
membrane (Manning and Cantley, 2007). The PIK3CA mutation,

FIGURE 2
Schematic Representation of the PI3K/AKT/mTOR Pathway. This figure illustrates the PI3K/AKT/mTOR pathway involved in cell growth, protein
synthesis, lipid biogenesis, and autophagy regulation. Upon activation of receptor tyrosine kinases (RTKs) such as EGFR, IGF1-R, and HER2/neu, PI3K is
activated, converting PIP2 to PIP3. This leads to the activation of AKT via phosphorylation at T308 by PDK1 and S473 bymTORC2. Activated AKT regulates
the TSC1-TSC2 complex, which controls Rheb GTPase, thereby activatingmTORC1.mTORC1 promotes protein synthesis (via 4E-BP1 and S6K), lipid
biogenesis (via SREBP1 and PPARγ), and autophagy regulation (via ULK1).

Frontiers in Pharmacology frontiersin.org03

Qiang et al. 10.3389/fphar.2025.1516583

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1516583


which activates PI3K α, is one of the most common PI3K/AKT
activation mechanisms in cancer. Distortion of NF1, MET, ERBB2,
and RIT1 can also activate the PI3K signaling pathway (The Cancer
Genome Atlas Research Network, 2014).

The AKT/mTOR signaling pathway is initiated by PI3K
activation. AKT, also known as PKB, is a 57-kDa serine/
threonine kinase that is a key mediator of growth factor-nduced
cell survival. In the mammalian genome, three AKT isoforms have
been identified: AKT1, AKT2, and AKT3. AKT1 is the primary
subtype crucial in regulating cell apoptosis (Datta et al., 1999).
AKT1 binds to PIP3 and facilitates the activation of 3-
phosphoinositide-dependent protein kinase 1 (PDK1) and mTOR
complex 2 (mTORC2). PI3K activation leads to the phosphorylation
of two critical residues in AKT1: threonine 308 (T308) in the
activation loop and serine 473 (S473) in the C-terminal
hydrophobic motif (Alessi et al., 1996). The phosphorylation of
these two residues is a critical step in the maximal activation of
AKT1. The corresponding residues in AKT2 (T309 and S474) and
AKT3 (T305 and S472) regulated this activation process.
PDK1 plays a key role in AKT activation by phosphorylating
AKT1 at T308 (Alessi et al., 1997; Stokoe et al., 1997). Maximal
activation of AKT requires phosphorylation at S473 in the
hydrophobic motif, and mTORC2 is the primary kinase
responsible for this phosphorylation (Sarbassov et al., 2005).
Although AKT retained some activity without
S473 phosphorylation, its activity was significantly reduced.
Phosphorylation of S473 stabilizes T308 phosphorylation and
maintains AKT in its fully active state (Alessi et al., 1996; Yang
et al., 2002). EGFR-Y1068 self phosphorylates to provide a docking
site for SH2 containing adaptor proteins, directly activating the
PI3K/AKT pathway to maintain cell survival (Rodrigues et al.,
2000). Phosphorylation of EGFR at Y992, Y1148, and Y1173 sites
leads to recruitment of SHC to activate the MAPK/ERK pathway,
thereby promoting cell proliferation (Okabayashi et al., 1994).
IGF1R promotes cancer cell proliferation and differentiation by
inducing phosphorylation of PI3K and AKT (Hua et al., 2022).

mTOR is a serine/threonine protein kinase that is the primary
catalytic subunit of two protein complexes, mTOR complex 1
(mTORC1) and mTORC2. mTOR was originally discovered as a
cellular target of rapamycin and is involved in the checkpoint
regulation of cell cycle regulation and regulates various biological
processes, including cell proliferation, survival, autophagy,
metabolism, and immunity (Saxton and Sabatini, 2017; Harwood
et al., 2018). Inhibition of mTOR can effectively inhibit the growth,
proliferation, cell cycle progression, migration, and invasion of
NSCLC cells, while inducing apoptosis activation (Yang et al., 2020).

The mTORC1 complex, which comprises mTOR, mLST8,
Raptor, and PRAS40, is highly sensitive to rapamycin, making it
a key target for mTOR inhibitors, particularly first-generation
inhibitors (Hay and Sonenberg, 2004).

mTORC1 and mTORC2 are intricately linked. mTORC1 exerts
feedback inhibition on mTORC2 through S6K1, one of its
substrates. Upon activation by mTORC1, S6K1 phosphorylates
Rictor at T1135 and mSin1 at T86 and T398, leading to the
disruption of mTORC2 integrity (Dibble et al., 2009; Julien et al.,
2010; Liu et al., 2013). mTORC2 activates the IGF-IR–AKT axis,
thereby upregulating mTORC1 (Yin et al., 2016). Phosphatase and
tensin homolog (PTEN) is a negative regulator of mTOR, which

inhibits signal transduction via the PI3K/AKT signaling pathway.
Other regulatory factors include the tuberous sclerosis complex
(TSC) comprising TSC1 (hamartin) and TSC2 (tuberin) (Tewari
et al., 2022). AKT inactivates the TSC1-TSC2 complex, thereby
promoting the activation of RHEB GTPase, activating mTORC1
(Inoki et al., 2002). Subsequently, active mTORC1 promotes protein
synthesis by inactivating the translation inhibitor 4E-BP1 and
activating the kinase S6K; (ii) induces lipid biogenesis by
activating the transcription factors SREBP1 and PPAR; (iii)
inhibits autophagy by blocking ULK1 (Laplante and Sabatini,
2012; Ma and Blenis, 2009). mTORC2 directly activates AKT via
phosphorylation at Ser-473 site (Dong et al., 2014; Benetatos
et al., 2017).

Previous studies have identified non-coding RNA (ncRNA) as
an essential regulatory factor in the PAM signaling pathway (Yang
et al., 2019). ncRNAs function as both upstream and downstream
effectors in regulating the PI3K pathway and, directly or indirectly,
targets multiple key components of this pathway, including PI3K,
AKT, and mTOR. However, the precise mechanisms by which
ncRNAs exert these effects remain to be fully elucidated
(Fumarola et al., 2014; Liu et al., 2018; Hong et al., 2020).

3 Roles of the PAM signaling pathway

The PAM signaling pathway is a crucial intracellular signaling
pathway that regulates various cellular processes, including cell
growth, survival, proliferation, metabolism, apoptosis, invasion,
and angiogenesis (King et al., 2015), and is one of the most
commonly dysregulated pathways in cancers and pivotal in
oncogenesis. Activation of the PAM signaling pathway can
inhibit autophagy and apoptosis, which are typically associated
with pro-survival effects (Luo et al., 2003; Xu et al., 2020). Most
importantly, the excessive activation of key molecules within this
pathway can unjustifiably promote cancer cell survival by inhibiting
autophagy and apoptosis (Janku et al., 2018). The inhibition of this
survival pathway induces autophagy and apoptosis in cancer cells
(Yang et al., 2018).

The PAM signaling pathway is as a central signal transduction
hub in response to extracellular stimuli, including insulin, insulin-
like growth factor-1 (IGF-1), fibroblast growth factor (FGF), and
epidermal growth factor (EGF) (Li and Wang, 2014). Chemokine
receptor 9 (CCR9), inflammation-associated cytokine Toll-like
receptor (TLR), and interleukin (IL)-6 are key upstream
regulatory factors of the PAM signaling pathway (Harashima
et al., 2012; Axanova et al., 2010; Wegiel et al., 2008). High
expression levels of CCR9 are associated with increased tumor
proliferation and metastasis (Chai et al., 2022). IL6 promotes
tumor cell survival through PI3K/AKT and cyclin A1 (Wegiel
et al., 2008). The upregulation of TLR-4 coexists with the
downregulation of PI3K, AKT, and mTOR, associated with
reduced cell damage (Kamel et al., 2020).

Genetic alterations targeting the PAM signaling pathway are
closely associated with cancer development. For example, the loss of
PTEN in somatic cells represent the second most common
oncogenic mutations in the human genome, second only to
malignant p53 mutations (Yin and Shen, 2008). In recent years,
the rising incidence of malignant tumors has been linked to
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abnormal activation of the PAM signaling pathway (Aziz et al.,
2018). Mutations or overexpression of PI3K can result in
hyperactivation of this pathway, driving cancer cell proliferation
and survival. IL-7 upregulates PI3K expression and promotes AKT
and mTOR phosphorylation, activating the PAM signaling pathway
(Jian et al., 2019). Abnormal expression of KIF2A promotes
malignant transformation of cell carcinoma. Different analytical
approaches focusing on antitumor miRNAs and their specific
targeting of oncogenes are of great significance for identifying the
molecular mechanisms underlying the pathogenesis of lung
squamous cell carcinoma (Uchida et al., 2019). AKT is
constitutively active in many cancers, promotes resistance to
apoptosis, and enhances tumor survival (Shariati and Meric-
Bernstam, 2019). mTOR is often hyperactivated in cancer,
leading to increased protein synthesis, cell growth, and
angiogenesis, all essential for tumor progression (Noser et al.,
2023; Yang et al., 2023). Mutations in PI3K, loss of function of
the PTEN tumor suppressor (a negative regulator of the pathway),
and amplification or mutation of AKT can result in the constitutive
activation of the PAM signaling pathway, driving uncontrolled cell
proliferation and survival (Yehia et al., 2020). Owing to its pivotal
role in cancer, the PAM signaling pathway is a major target for
cancer therapies. Inhibitors targeting PI3K, AKT, and mTOR are
undergoing clinical trials for various cancer types. However, drug
resistance and feedback loops within the pathway remain major
limitations that complicate the treatment strategies.

The PAM signaling pathway is involved in metabolic,
cardiovascular, and neurodegenerative diseases (Ramasubbu and
Devi Rajeswari, 2023; Tan et al., 2023). For example, activation of the
PAM signaling pathway alleviates ischemia-reperfusion injury in
diabetic cardiomyopathy (Tan et al., 2023). This pathway also
regulates insulin signaling and glucose homeostasis, making it a
key focus of diabetes research (Zheng et al., 2023). Furthermore,
applying plant-derived secondary metabolites in managing and
treating various neurological diseases through modulation of the
PAM signaling pathway is a promising neuroprotective strategy
(Fakhri et al., 2021).

Understanding the biological complexities of the PAM signaling
pathway is essential for elucidating its role in cancer progression and
resistance mechanisms. Building on this foundation, the following
section discusses therapeutic implications, focusing on how these
insights can be applied to develop targeted treatment
strategies for LC.

4 PAM signaling pathway associated
with targeted therapy

The PAM signaling pathway is one of the most frequently
dysregulated networks in human cancers and plays a critical role
in the proliferation and survival of LC cells. In LC cells, this pathway
is often abnormally activated. For example, mutations in the PI3K
gene or overexpression of AKT protein are common, which can
cause uncontrolled proliferation, inhibited apoptosis, and enhanced
migration and invasion ability of LC cells. Consequently, numerous
drugs, most of which are small-molecule compounds, targeting these
three key kinases---PI3K/AKT/mTOR have been developed and
evaluated. Although these advances have contributed to significant

progress, the effectiveness and future potential of these therapies
require further exploration of specific inhibitors and their clinical
applications.

In the following sections, we explore inhibitors targeting the
PI3K, AKT, and mTOR components of the PAM signaling pathway,
analyzing their mechanisms of action, outcomes of current clinical
trials, and challenges in optimizing their use for LC therapy (Table 1)
(Supplementary Images S1–S3). This in-depth analysis sheds light
on how these small-molecule inhibitors shape the future of LC
treatments.

4.1 Inhibition of PI3K

Within the PAM signaling pathway, PI3K is a primary drug
target for cancer treatment since its hyperactivity is strongly
associated with tumor progression, enhanced tumor
microvascular formation, and increased cancer cell invasiveness
(Liu et al., 2020a). Over the past few decades, several
pharmaceutical companies have developed PI3K inhibitors to
target this key pathway (Sirico et al., 2023; Bertucci et al., 2023).
Although PI3K inhibitors have demonstrated significant therapeutic
efficacy against human cancers, acquired and intrinsic resistance
limit their clinical efficacy (Raith et al., 2023).

4.1.1 Buparlisib
Buparlisib (BKM120), a 2,6-dimorpholino pyrimidine

derivative, is a novel, potent, highly selective inhibitor of class I
PI3K with confirmed anticancer effects in various solid tumor
models (Hwang et al., 2022). However, it has not been approved
by the U.S. Food and Drug Administration (FDA) for the treatment
of specific cancer types (Emory University, 2011). Experimental
studies have shown little correlation between mutations in K-Ras,
p53, LKB1, PTEN, EGFR, or CDKN2A and the sensitivity of cells to
BKM120. Therefore, BKM120 effectively inhibits the growth of
NSCLC cells, regardless of genetic mutations (Ren et al., 2012).
BKM120 has a rapid and effective inhibitory effect on the PAM
signaling pathway in human NSCLC cells (Ren et al., 2012).

In SCLC and NSCLC, BKM120 may inhibit tumor cell growth
by blocking key enzymes required for cell proliferation.
Administering PI3K inhibitors, such as BKM120, in combination
with chemotherapeutic agents, such as carboplatin, pemetrexed
disodium, cisplatin, and etoposide, may enhance tumor cell
killing (NCT01723800, NCT02194049) (Medifind, 2012;
University of California, Davis, 2014). The open-label, two-stage,
phase II study BASALT-1 (NCT01820325) evaluated the efficacy of
the pan-PI3K inhibitor BKM120 in patients with recurrent NSCLC
and PI3K pathway activation (Novartis Pharmaceuticals, 2013b).
These results indicate that although PI3K pathway activation can be
detected using circulating tumor DNA (ctDNA), it may not be the
primary oncogenic driver in NSCLC. Therefore, combination
therapies involving PI3K inhibitors and other agents may be
more effective than monotherapy (Vansteenkiste et al., 2015).

4.1.2 Pictilisib
Pictilisib (GDC-0941) is an efficient PI3K selective inhibitor.

When combined with trastuzumab (an antitumor drug), pictilisib
demonstrated significant therapeutic effects against cancer cells
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in vitro and on tumors in vivo (Junttila et al., 2009). One study
investigated the treatment of patients with advanced NSCLC using
pictilisib in combination with paclitaxel and carboplatin (with or
without bevacizumab) or pemetrexed and cisplatin (with or without
bevacizumab). The authors demonstrated that combining pictilisib
with various standard first-line treatment regimens is feasible for
NSCLC patients, and preliminary findings have indicated
encouraging antitumor activity (NCT00974584) (Soria et al.,
2017; Stephen et al., 2009).

4.1.3 Eganelisib
Eganelisib (IPI549) is a first-in-class, orally administered, highly

selective PI3Kγ inhibitor that has demonstrated anti-tumor activity
in preclinical studies, both as a monotherapy and in combination
with programmed cell death protein 1/ligand 1 (PD-1/PD-L1)
inhibitors. Eganelisib reshapes the tumor immune
microenvironment and promotes cytotoxic T cell-mediated

tumor regression without directly targeting the cancer cells (De
Henau et al., 2016). The IPI-549–01 study was the first-in-human,
multicenter, open-label, phase 1/1b dose-escalation trial.

The results indicated that eganelisib doses of 30 and 40 mg once
daily in combination with PD-1/PD-L1 inhibitors were selected for
further evaluation in Phase II trials (NCT02637531) (Hong et al.,
2023; Infinity Pharmaceuticals, Inc., 2015).

4.1.4 TQ-B3525
TQ-B3525, a novel PI3Kδ/α dual inhibitor developed by

Zhengda Tianqing, induces cell apoptosis and inhibits the
proliferation of malignant tumor cells by inhibiting the
expression of PI3K protein and reducing the phosphorylation
level of AKT protein (Li et al., 2024). TQ-B3525 selectively
inhibits the PI3Kδ and PI3Kα subunits, overcoming drug
resistance attributed to the upregulation of PI3Kα activity when
PI3Kδ alone is inhibited. An ongoing single-arm, open-label, multi-

TABLE 1 Ongoing clinical trials of several drugs targeting PI3K/AKT/mTOR signaling pathway in lung cancer.

Drugs Target Trail ID Phase Cancer
stage

Comment

Buparlisib (BKM120) Pan-class I NCT01820325 phase II NSCLC PI3K pathway activation can be detected using ctDNA, it may not be
the primary oncogenic driver in NSCLC

PI3K NCT01723800 phase I NSCLC None

NCT02194049 phase I SCLC None

Pictilisib (GDC-0941) pan-PI3K NCT00974584 phase Ib NSCLC Combining pictilisib with various standard first-line treatment
regimens is feasible for NSCLC patients

Eganelisib (IPI549) PI3Kγ NCT02637531 Phase
1/1b

NSCLC Eganelisib doses of 30 and 40mg once daily in combination with PD-1/
PD-L1 inhibitors are safe

TQ-B3525 PI3Kδ/α NCT05284994 — NSCLC None

MK-2206 AKT1, AKT2, AKT3 NCT01147211 phase I NSCLC None

Ipatasertib (GDC-0068) pan-AKT NCT04467801 phase II NSCLC None

Capivasertib (AZD5363) AKT1, AKT2, AKT3 NCT02117167 phase II NSCLC Cells with dual AKT activation and RAS mutation may still inhibit 4E-
BP1 even if AKT is inhibited

Everolimus (RAD001 or
Afinitor)

mTOR NCT00124280 phase II NSCLC RAD001, when combined with erlotinib and chemotherapy, may be an
effective treatment for advanced NSCLC

Temsirolimus (CCI-779) mTOR NCT01396408 phase I NSCLC Good tolerability of tacrolimus at a dose of 15 mg per week when
combined with chest radiation therapy

Itraconazole VEGF, FGF, mTOR NCT03664115 — NSCLC Itraconazole use was beneficial in NSCLC in terms of 1-year PFS and
ORR which was not reflected by improvement in 1-year OS.

Aspirin AKT, mTOR NCT03543683 — NSCLC Aspirin exposure significantly promoted the apoptosis suggesting that
aspirin may overcome Osimertinib resistance by promoting the
apoptosis

Gedatolisib (PF-
05212384)

PI3Kα, PI3Kγ, mTOR NCT02069158 phase Ib NSCLC None

NCT03065062 phase I SCLC None

BKM120 and RAD001 pan-class I PI3K and
mTOR

NCT01470209 — Lung cancer None

MK2206 and erlotinib
hydrochloride

AKT1, AKT2,
AKT3 and EGFR

NCT01294306 phase II NSCLC The combination of MK2206 and erlotinib meets predetermined
clinical activity criteria in EGFR wild-type NSCLC patients

Gefitinib and AZD5363 AKT1, AKT2,
AKT3 and EGFR

NCT01570296 Phase Ib NSCLC None

NCT00452244 phase II NSCLC The combination of gefitinib and simvastatin results in a higher RR and
longer PFS
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cohort, multicenter clinical study is currently investigating the safety
and efficacy of TQ-B3525 tablets combined with osimertinib for the
treatment of patients with advanced NSCLC (NCT05284994)
(Single-arm, 2022).

4.1.5 Alpelisib
Alpelisib (BYL-719) is a potent, selective, orally active PI3Kα

inhibitor with high efficacy in targeting PIK3CA-mutated cancersits
anticancer activity against squamous cell LC cells with PIK3CA
mutations in vitro and in vivo studies (Bonelli et al., 2015).
BYL719 enhances the anticancer effects of gefitinib by inhibiting
the p-AKT signaling pathway activated by PI3K/AKT in gefitinib-
resistant NSCLC cells. The combination of BYL719 and gefitinib
produced a synergistic effect on EGFR-mutant NSCLC cells via
PI3K/AKT activation. Acquisition of PIK3CA mutations may
contribute to cell proliferation and gefitinib resistance in NSCLC
cells harboring EGFR mutations. Thus, combination therapy with
gefitinib and BYL719 is a promising strategy to overcome EGFR-
TKI resistance driven by PI3K/AKT activation (Yu Y. et al., 2023).

Candidate biomarkers for PI3K inhibitors have shown
predictive value in preclinical models and exhibit tissue-specific
changes in primary tumors (Spoerke et al., 2012).

4.2 Inhibition of AKT

Several drugs can specifically inhibit AKT protein, preventing
excessive activation of downstream targets in the PAM signaling
pathway. Ongoing clinical trials are investigating AKT inhibitors,
such as capivasertib and ipatasertib, as monotherapy and in
combination with other agents for treating advanced LC. In
addition, MK-2206 has been evaluated in advanced solid and
hematological malignancies. However, none of these drugs have
received FDA approval. Notably, capivasertib is a promising new
treatment option for these patients and is expected to gain Food and
FDA approval in the near future (Alves and Ditzel, 2023).

4.2.1 MK-2206
MK-2206 is a potent, orally active allosteric inhibitor of human

AKT1, AKT2, and AKT3, with demonstrated preclinical antitumor
activity. A phase I study investigated the combination of MK-2206
and gefitinib in NSCLC patients who failed prior chemotherapy and
epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-
TKIs) (NCT01147211) (Lin et al., 2010).

4.2.2 Ipatasertib
Ipatasertib (GDC-0068) is an orally effective, highly selective,

ATP-competitive pan-AKT inhibitor that activates FoxO3a and NF-
κB through AKT inhibition, leading to p53-independent activation
of PUMA. Ipatasertib also induces apoptosis in cancer cells and
inhibits tumor growth in xenograft mouse models (Sun et al., 2018;
Blake et al., 2012).

Preclinical studies have suggested that ipatasertib enhances the
therapeutic efficacy of chemotherapy and immunotherapy by
modulating the PI3K–AKT signaling pathway. Consequently, a
multicenter phase II study is currently underway to evaluate the
combination of ipatasertib and docetaxel for the treatment of
patients with metastatic or advanced NSCLC who have failed or

are intolerant to first-line immunotherapy (NCT04467801) (Clinical
Research and Trials, 2020).

4.2.3 Capivasertib
Capivasertib (AZD5363), a novel pyrrolopyrimidine-derived

compound, inhibits all AKT isoforms and is an effective ATP-
competitive AKT inhibitor with an IC50 of <10 nM for all three
AKT subtypes. Using a GI50 critical value of <3 μM, 23% of a large
panel of cell lines are sensitive to capivasertib inhibition, with
three-quarters of these cell lines harboring PIK3CA mutations,
PTEN deletions, or HER2 amplification. KRAS is a negative
predictive biomarker of the capivasertib response (Davies et al.,
2012). SAFIR02_Lung is an open-label, multicenter, randomized,
phase II trial. Using high-throughput genomic analysis as a tool
for treatment decision-making, this trial aims to identify
actionable genetic abnormalities in NSCLC (NCT02117167)
(UNICANCER, 2014). Cells with dual AKT activation and RAS
mutations may inhibit 4E-BP1 even if AKT is inhibited
(Middleton et al., 2015).

4.3 Inhibition of mTOR

mTOR inhibitors were the first PAM-targeted drugs to enter
clinical practice (Hudes et al., 2007). mTORC1 activation promotes
the synthesis of proteins, lipids, and nucleotides while inhibiting
autophagy, thereby enhancing cell survival, proliferation, and
growth. In parallel, mTORC2 activation regulates protein kinases,
including AKT, further supporting cell survival and proliferation
(Sarbassov et al., 2005; Mao et al., 2022). Therefore, the functions of
bothmTORC1 andmTORC2 offer critical insights into the targeting
of mTOR complexes to tumors. However, the effectiveness of some
mTOR inhibitors may be limited by compensatory feedback loops
that result in AKT activation (Machl et al., 2016).

4.3.1 Sirolimus
Sirolimus is an effective and specific inhibitor of mTOR. In

tissue culture studies, sirolimus at concentrations as low as 1 ng/mL
inhibits mTOR signaling in cells. The first report on combining an
mTOR inhibitor with radiotherapy in humans demonstrated that
patients tolerated the combination well. Both clinical and animal
data indicated that sirolimus can be safely combined with
radiotherapy and cisplatin to treat LC (Sarkaria et al., 2007).

4.3.2 Everolimus
Everolimus (RAD001 or Afinitor) is a rapamycin analog that

functions similarly by acting as a conformational inhibitor of
mTOR. RAD001 is an FDA-approved drug used to treat kidney
cancer. This prevents cancer cell proliferation and renders them
susceptible to cell death. RAD001 improves progression-free
survival in patients with advanced renal cell carcinoma who
previously received VEGF-targeted therapies (Motzer et al.,
2008). Similar to rapamycin, everolimus induces AKT activation
while inhibiting mTOR signaling in human cancer cells, including
NSCLC cells, as well as in tumor biopsies (Wang et al., 2008; O’Reilly
et al., 2006). This Phase II, nonrandomized, open-label, multicenter
study evaluated the efficacy of everolimus monotherapy in patients
with advanced NSCLC previously undergone no more than two
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chemotherapy regimens (NCT00124280) (Open Label, 2005).
Research has demonstrated that when administered at a daily
dose of 10 mg, everolimus possesses favorable tolerability and
safety within its pharmacological class. Additionally, preclinical
evidence suggests that combining EGFRi and mTOR inhibitors
can have cumulative or synergistic effects in NSCLC by
sensitizing cells to DNA-damaging agents via mTOR inhibition.
This indicates that everolimus, when combined with erlotinib and
chemotherapy, may be an effective treatment for advanced NSCLC
(Soria et al., 2009).

4.3.3 Temsirolimus
Temsirolimus (CCI-779) is an mTOR kinase inhibitor with

antiproliferative and antiangiogenic properties. Temsirolimus
activates autophagy and prevents cardiac function deterioration
in animal models (Choi et al., 2012) and is a potential candidate
for combination therapy with radiotherapy in NSCLC owing its
established anti-proliferative and anti-angiogenic activities in
multiple epithelial tumors and its non-overlapping mechanisms
with radiotherapy (Waqar et al., 2014). A phase I study
evaluating the combination of tacrolimus and chest radiotherapy
in patients with NSCLC demonstrated good tolerability of
tacrolimus at a dose of 15 mg/week when combined with chest
radiotherapy (NCT01396408) (Orphanet, 2011).

4.4 Multiple targets inhibition

4.4.1 Itraconazole
Itraconazole is an oral antifungal drug that has demonstrated

anticancer effects in NSCLC by inhibiting angiogenesis. Circulating
levels of angiogenic factors are associated with invasive tumor
growth, metastasis, and prognosis in various solid tumors,
including NSCLC. The FDA has approved itraconazole as an
anti-angiogenic agent that targets factors such as vascular
endothelial growth factor (VEGF) and FGF. Itraconazole directly
disrupts the production of mitochondrial adenosine triphosphate
(ATP), activating the adenosine monophosphate-activated protein
kinase (AMPK) pathway and subsequent inhibition of the mTOR
pathway. The results of the first randomized controlled trial
evaluating itraconazole in combination with chemotherapy for
newly diagnosed metastatic NSCLC demonstrated a significant
improvement in overall response rate (ORR) compared with the
control group. Additionally, the 1-year PFS in the itraconazole
group was significantly improved, although this was not reflected
in the 1-year OS (NCT03664115) (Mohamed et al., 2021; Asmaa
et al., 2018).

4.4.2 Aspirin
Aspirin, a nonsteroidal anti-inflammatory drug (NSAID), not

only possesses classic anti-inflammatory properties but also exhibits
chemopreventive effects against various human cancers, including
colon cancer, LC, breast cancer, and leukemia, making it a promising
anticancer agent (Ulrich et al., 2006). Autophagy occurs frequently
during tumorigenesis and cancer chemotherapy, and strategies to
stimulate or inhibit autophagy have been proposed as potential
cancer therapies (Yue et al., 2014). In LC cells, combination therapy
with aspirin and ABT-737 (a Bcl-2 inhibitor) induces a stronger

autophagic response than either drug alone. Autophagy triggered by
this combination shifts the role of p38 from cell protection to death
promotion, with p38 acting as a switch between two distinct types of
cell death: autophagy and apoptosis (Zhang et al., 2015). In an in
vivo study using a lung tumor model induced by 4-
(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) +
lipopolysaccharide (LPS), nitric oxide-releasing aspirin (NO-
aspirin) significantly reduced the number and size of lung
tumors, as well as the expression of phosphorylated EGFR and
AKT, and the pro-inflammatory molecules TNF-α and interferon-γ
(Song et al., 2018).

Aspirin pretreatment disrupts the binding of the TATA-box and
p300 at the initiation region of the mTOR promoter in cancer stem
cells (CSCs), thereby inhibiting the binding of RNA polymerase II at
these sites and suppressing mTOR gene transcription.
Consequently, the downregulation of mTOR results in the
phosphorylation of Akt at Ser473, leading to the activation of
Gsk3β, which in turn causes the destabilization of Snail and β-
catenin, thereby reversing the epithelial-to-mesenchymal transition
(EMT) (Khan et al., 2019). GSK-3 β is a serine/threonine protein
kinase that plays an important role in regulating the degradation of
cyclin D1 by phosphorylating Thr-286 (Yang et al., 2015). The
dephosphorylation of GSK-3 β leads to the phosphorylation of
cyclin D1, which is then degraded (Cross et al., 1995).
Osimertinib-resistant cells exhibited abnormal activation of the
PI3K/AKT/BIM pathway, and the classic drug aspirin has been
shown to effectively reduce AKT phosphorylation and BIM
activation. Consequently, aspirin may attenuate the PI3K/AKT/
BIM signaling pathway, promoting apoptosis in osimertinib-
resistant cells (NCT03543683) (Chung-Shien et al., 2018).

4.4.3 Gedatolisib
Gedatolisib (PF-05212384) is a potent dual inhibitor of PI3Kα,

PI3Kγ, and mTOR, effectively targeting both mTORC1 and
mTORC2 complexes. A Phase Ib, single-arm, open-label, dose-
escalating study evaluated the safety, pharmacokinetics, and
pharmacodynamics of gedatolisib in combination with
carboplatin and paclitaxel in patients with NSCLC. The results
indicated that this combination was tolerable, with preliminary
efficacy observed, particularly in clear cell ovarian carcinoma
(CCOC) (NCT02069158) (Colombo et al., 2021; Medi find,
2014). An open-label Phase I clinical trial is currently evaluating
the safety of gedatolisib in combination with palbociclib in patients
with advanced SCLC. Although the FDA has approved palbociclib
for other indications, palbociclib for this specific disease or
gedatolisib alone or combined with palbociclib as a treatment
option awaits approval. Palbociclib is an oral drug that inhibits
the cell cycle, preventing cell growth. Gedatolisib is thought to
modulate cell growth and survival by controlling key signaling
events within tumor cells, potentially slowing or halting tumor
activity (NCT03065062) (Dana-Farber, 2017).

4.4.4 Dactolisib
Dactolisib (NVP-BEZ235) is an orally active, dual pan-class I

PI3K and mTOR kinase inhibitor that targets p110α, p110γ, p110δ,
p110β, mTORC1, and mTORC2 (Maira et al., 2008). Dactolisib
induces significant antiproliferative effects in transgenic mice with
carcinogenic KRAS-induced NSCLC, as well as in NSCLC cell lines
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expressing carcinogenic KRAS. Although dactolisib therapy alone
cannot induce apoptosis, dual PI3K/mTOR blockade effectively
sensitizes NSCLC cells expressing oncogenic KRAS to the pro-
apoptotic effects of ionizing radiation (IR) in vitro and in vivo.
Therefore, combining dual PI3K/mTOR blockade with IR may
benefit patients with NSCLC expressing oncogenic KRAS
(Konstantinidou et al., 2009). An abnormal vascular structure in
the LC leads to hypoxia, which limits the effectiveness of
radiotherapy. Dactolisib improves tumor oxygenation and
vascular structure, contributing to effective vascular
normalization. The significant therapeutic benefit of combining
dactolisib and irradiation highlights its potential importance in
cancer treatment (Fokas et al., 2012).

4.5 Combined therapy

4.5.1 BKM120 and RAD001
The combination of BKM120 and RAD001 has shown a

synergistic inhibitory effect on LC cell growth in vitro and in vivo
(NCT01470209) (Emory University, 2011; Wang et al., 2008; Sun
et al., 2005). This combination not only eliminated RAD001-induced
AKT and eIF4E phosphorylation but also enhanced the inhibitory
effect on 4EBP1 phosphorylation and p21 induction (Ren et al., 2012).

Although this combination was tolerable when the doses of both
drugs were reduced, it remained effective (Owonikoko et al., 2020).

4.5.2 MK2206 and erlotinib hydrochloride
MK2206 and erlotinib hydrochloride (OSI-774) may inhibit

tumor cell growth by blocking certain enzymes essential for cell
proliferation. A phase II trial investigated the side effects and efficacy
of MK2206 combined with erlotinib hydrochloride in treating
patients with advanced NSCLC who previously responded to
erlotinib hydrochloride but subsequently experienced disease
progression (NCT01294306) (Primo N. et al., 2011). Studies have
shown that the combination of MK2206 and erlotinib meets the
predetermined clinical activity criteria in patients with wild-type
EGFRNSCLC, necessitating further clinical investigation. Inhibition
of the AKT pathway in wild-type EGFR NSCLC warrants additional
clinical evaluation (Lara et al., 2015).

4.5.3 Gefitinib and AZD5363
Gefitinib (ZD1839) is a potent, selective, and orally active EGFR

tyrosine kinase inhibitor that inhibits EGF-stimulated tumor cell
growth by blocking EGF-induced EGFR autophosphorylation in
tumor cells. In addition to its inhibitory effects on cell proliferation,
gefitinib induces autophagy and apoptosis, making it a valuable
agent for cancer research, particularly for LC and breast cancer
(Wakeling et al., 2002; Pedersen et al., 2005; Piechocki et al., 2008). A
Phase Ib trial investigated the combination therapy of gefitinib and
the oral class I PI3K inhibitor BKM120 in patients with advanced
NSCLC, focusing on those with alterations in PI3K pathway
molecules and known overexpression of EGFR (NCT01570296)
(National Cancer Centre, Singapore, 2012). A randomized Phase
II trial compared treatment with either gefitinib alone or combined
with simvastatin to treat patients with advanced NSCLC
(NCT00452244) (Ji-Youn et al., 2007). The authors demonstrated
that, in patients with wild-type EGFR non-adenocarcinoma, the

combination of gefitinib and simvastatin results in a higher
response rate (RR) and longer progression-free survival (PFS) than
gefitinib alone. Therefore, simvastatin may enhance the efficacy of
gefitinib in this subgroup of gefitinib-resistant NSCLC patients (Han
et al., 2011).

EGFR inhibitors are generally ineffective in most NSCLC cases
with wild-type EGFR, necessitating new treatment strategies. AKT
signal transduction plays a crucial role in mediating EGFR survival
in NSCLC. Combining gefitinib and AZD5363 demonstrated
synergistic growth inhibition in EGFR-mutant (HCC-827 and
PC-9) and wild-type (NCI-H522, NCI-H1651) NSCLC cell lines.
Therefore, dual inhibition of EGFR and AKT is a potential early
treatment strategy for patients with both EGFR mutant and wild-
type NSCLC (Puglisi et al., 2014).

4.5.4 NVP-BEZ235 and AZD6244
AZD6244 is an effective, selective, orally administered MEK1/

2 inhibitor. The combination of NVP-BEZ235 and
AZD6244 enhanced both antitumor and anti-angiogenic effects.
Studies have shown that combining selective MEK and PI3K/mTOR
inhibitors can effectively inhibit the growth of gefitinib-resistant
tumors caused by EGFR T790M mutation, MET amplification, and
KRAS/PIK3CA mutations (Qu et al., 2014). This new treatment
strategy may offer a practical approach to treating these patients.

Although several drugs targeting the PAM signaling pathway
have been developed, research on natural products demonstrated
promising potential.

The next section explores the application of natural products in
targeting the PAM signaling pathway and examines their underlying
mechanisms.

5 Natural products targeting the PAM
signaling pathway

Recently, drugs isolated and purified from natural products have
garnered considerable interest. As a component of traditional
Chinese medicine (TCM) used in disease treatment, TCM offers
several advantages, including minimal side effects, noninvasiveness,
low cost, and broad accessibility to cancer therapy. Numerous
studies have demonstrated the antitumor activity of various TCM
ingredients, with clear benefits in reducing toxicity and enhancing
efficacy when combined with other treatment modalities (Table 2)
(Le-Xin et al., 2024; Yang et al., 2024).

For example, quercetin, kaempferol, and isorhamnetin
demonstrated anti-NSCLC effects by targeting AKT1 and EGFR.
Among these compounds, isorhamnetin exhibits the strongest
binding affinity to EGFR, with a binding energy of −6.79 kcal/
mol. The primary interactions between isorhamnetin and EGFR
involve carbon-hydrogen bonds and Pi-sigma, Pi-sulfur, and Pi-
alkyl interactions. Isorhamnetin inhibits the migration and invasion
of A549 cells, induces cell apoptosis and G1 phase arrest, and
reduces expression of P-PI3K and P-AKT in A549 cells (Tang
et al., 2024). A drug may play a crucial role through multiple
signaling pathways due to its multiple targets. For instance,
Lanatoside C induces G2/M cell cycle arrest and inhibits cancer
cell growth by weakening the MAPK, Wnt, JAK-STAT, and PI3K/
AKT/mTOR signaling pathways (Reddy et al., 2019).
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5.1 Napabucasin

Napabucasin is a furanonaphthoquinone compound derived
from plants of the Bignoniaceae family, with botanical sources
including Tabebuia cassinoides (Rao and Kingston, 1982),
Millettia versicolor (Fotsing et al., 2003), Ailanthus integrifolia
(Kosuge et al., 1994), Ekmanian longiflora (Peraza-Sánchez et al.,
2000), Newbouldia laevis (Eyong et al., 2015), and Handroanthus
impetiginosus (Wagner et al., 1989). Previous studies have
demonstrated that napabucasin and other compounds isolated
from the roots of Ekmanianthe longiflora exhibit potent
cytotoxicity against various cancer cell lines, including colon
cancer, LC, and multidrug-resistant oral epidermoid carcinoma
(Peraza-Sánchez et al., 2000). Napabucasin induces apoptosis and
autophagy in LC cells by directly targeting AKT and Mtor. In the
interaction with AKT, the key residues, Lys14, Glu17, Tyr18, and
Arg23, in the PH domain play crucial roles in hydrogen bonding. In
the NB-mTORC2 complex, napabucasin facilitated hydrophobic
interactions with residues Leu2185, Lys2187, Glu2190, Asp2195,
Ile2237, Trp2239, Val2240, Asn2343, Met2345, Leu2354, and
Phe2358 and formed hydrogen bonds with Ile2356 and Asp2357.
These results suggest that napabucasin disrupts the interactions
between ATP complexes and mTOR catalytic targets. Inhibition of
the AKT and mTOR pathways results in a reduction of the anti-
apoptotic proteins Bcl-2, Mcl-1, and c-Myc, inducing apoptosis and
inhibiting proliferation. This leads to autophagy, as evidenced by
converting LC3B I to LC3B II (Petsri et al., 2022).

5.2 Ophiopogonin B

Ophiopogonin B, a bioactive compound derived from Radix
Ophiopogon japonicus, is traditionally used in Chinese medicine to
treat pulmonary diseases. NCI-H157 and H460 cells, representing
the main subtypes of NSCLC originating from squamous and large
cell carcinoma, respectively, have been used to investigate the effects
of ophiopogonin B. In these cells, ophiopogonin B inhibited
phosphorylated AKT (p-AKT) at the Ser308 and Thr473 sites
and significantly induced autophagy without triggering apoptosis.
Notably, in NCI-H460 cells, ophiopogonin B suppressed the PAM

signaling pathway than in NCI-H157 cells, suggesting it as a
potential inhibitor of the PI3K/AKT pathway for the treatment
of NSCLC (Chen et al., 2013).

5.3 Fucoidan

Fucoidan is a sulfated polysaccharide extracted from brown
seaweed and is primarily composed of L-fucose and sulfate groups
with an average molecular weight of approximately 20,000 Da.
Fucoid polysaccharides exhibit a range of biological activities,
including antibacterial effects (Zapopozhets et al., 1995),
antioxidant (Wang et al., 2009), anti-inflammatory (Choi et al.,
2010), anticoagulant (Dürig et al., 1997), and anti-tumor activities
(Aisa et al., 2005). Fucoid polysaccharides significantly inhibited the
phosphorylation of PI3K and its downstream target AKT in a
concentration- and time-dependent manner and inhibited mTOR
phosphorylation in a concentration-dependent manner. In addition,
two direct downstream targets of mTOR, 4E-BP1, and p70S6K,
which are markers of mTOR activity, were significantly
downregulated. In A549 LC cells, fucoid polysaccharides
inhibited MMP-2 activity by suppressing the PAM signaling
pathway, reducing cancer cell migration and invasion (Lee
et al., 2012).

5.4 Sophflarine A

Sophflarine A, a novel alkaloid derived from Sophora
flavescens, exhibits significant antiproliferative activity against
NSCLC cells both in vitro and in vivo. Sophflarine A is
characterized by a unique 6/8/6/6 four-ring system formed by
the intramolecular half-bridge of 5,6-seco sophocarpine and
inhibits NSCLC cell proliferation by inducing pyroptosis and
impairs cell migration, invasion, colony formation, and
angiogenesis through PAM-mediated autophagy. Sophflarine A
also promotes reactive oxygen species (ROS) production by
inhibiting the PAM signaling pathway and reducing
p62 expression, thereby inducing autophagy and facilitating the
conversion of LC3B-I to LC3B-II (Luo et al., 2023).

TABLE 2 Preclinical investigation of several natural products targeting the PI3K/AKT/mTOR signaling pathway in lung cancer.

Natural
products

Resources Mechanism of actions

Napabucasin (NB) Furanonaphthoquinone NB induces apoptosis and autophagy in LC cells by directly targeting AKT and mTOR proteins

Ophiopogonin B
(OP-B)

Radix Ophiopogon japonicus OP-B inhibits phosphorylated AKT (p-AKT) at the Ser308 and Thr473 sites and significantly induces
autophagy without triggering apoptosis

Fucoidan Brown seaweed Fucoid polysaccharides significantly inhibit the phosphorylation of PI3K and its downstream target
AKT in a concentration- and time-dependent manner, while also inhibiting mTOR phosphorylation in
a concentration-dependent manner

Sophflarine A (SFA) Sophora flavescens It inhibits NSCLC cell proliferation by inducing pyroptosis, and impairs migration, invasion, colony
formation, and angiogenesis through PAM-mediated autophagy

Euphorbia hirta (Eh) Euphorbiaceae The application of Eh AgNPs significantly reduced the phosphorylation levels of p-PI3K, p-AKT,
p-mTOR, and p70S6K

Emodin Rheum palmatum and Polygonam
multiflorum

Emodin downregulated PI3K/AKT pathway and thereby induced apoptosis
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5.5 Euphorbia hirta

Euphorbia hirta is an herbaceous plant in the Euphorbiaceae
family commonly found worldwide. E. hirta is well-known for its
efficacy against various fungal and bacterial infections (Ogbulie
et al., 2007) and contains secondary metabolites, including
terpenoids, flavonoids, phenols, and essential oils. Currently,
nanobiotechnology and nanomedicine are gaining increasing
attention due to advancements in delivering targeted therapies
that specifically destroy malignant cells (Gowda et al., 2013).
Silver ions can inactivate invading pathogens and cancer cells,
making them one of the most extensively studied metals for their
activity against microbial pathogens and malignant cells (Iravani,
2011; Ebrahiminezhad et al., 2016). Over the past 20 years, silver
nanoparticles (AgNPs) have garnered significant attention for their
potent antiviral, antibacterial, antifungal, antiangiogenic, and
anticancer properties, making them valuable for various
biomedical applications (Lansdown, 2006). Additionally, AgNPs
selectively destroy malignant cells while protecting normal cells
through the controlled release of Ag ions (Jeong et al., 2014). In
addition, some studies have shown that silver AgNPs selectively
destroy malignant cells while protecting normal cells by releasing
silver ions (Priya et al., 2011). This demonstrates that the application
of Eh-AgNPs significantly reduces the phosphorylation of p-PI3K,
p-AKT, p-mTOR, and p70S6K. The administration of Eh AgNPs
specifically decreased the expression of PI3Kγ, without affecting
other PI3K subtypes such as PI3Kα, β, and δ. These findings suggest
that Eh AgNPs induce cell apoptosis by downregulating PI3Kγ,
disrupting the PAM/p70S6K signaling pathway (Ramachandran
et al., 2022).

5.6 Emodin

Emodin (1,3,8-trihydroxy-6-methylanthraquinone) is a
naturally occurring anthraquinone derivative isolated from the
roots and bark of many plants, fungi, and lichens, including
Rheum palmatum and Polygonam multiflorum (Shrimali et al.,
2013). Emodin significantly downregulates the expression of
AKT, p-AKT, I κ B- α, p-I κ B- α, p65, p-p65, mTOR, and
p-mTOR in the AKT signaling pathway, thereby promoting
apoptosis of HL-60 cells (Zheng et al., 2007). In cancer cells
overexpressing Her2/neu, treatment with emodin inhibited
MAPK and PI3K/AKT dependent pathways, thereby suppressing
cell growth and inducing apoptosis. Research has shown for the first
time that treatment with emodin leads to blocking the binding of
Her2/neu to Hsp90, intracellular redistribution, and enhanced
ubiquitination, thereby promoting the proteasomal degradation
of Her2/neu. This may represent a new approach for targeted
therapy of Her2/neu overexpressing cancer (Yan et al., 2011).

6 The transduction of PAM signaling in
immunotherapy

The PAM signaling pathway plays a pivotal role in the
maturation, differentiation, recruitment, and survival of immune
cells. The regulation of the immune system via the PAM signaling

pathway is finely tuned, enabling the precise mobilization or
inhibition of specific immune cell subsets through tightly
controlled signaling mechanisms.

The tumor immune microenvironment (TIM), a critical site for
tumor growth, invasion, and immune evasion, comprises various
immune cells, tumor-associated cells, and signaling molecules. The
PAM signaling pathway plays a pivotal role in mediating the
interactions between tumor cells and their surrounding
microenvironment, particularly affecting immune cells and
influences immune response, cell survival, and
dysfunction (Figure 3).

6.1 Tumor-associated macrophage

The following outlines the interactions between key cells in the
TIM and PAM signaling pathways: Tumor-associated macrophages
(TAMs) are among the most abundant cellular components in the
tumor microenvironment and typically exhibit an M2-type
immunosuppressive phenotype (Guo et al., 2013). TAMs are a
significant source of angiogenic factors that promote vascular
growth, and subsequently accelerate tumor invasion and
metastasis. TAMs contribute to angiogenesis by activating and
releasing these factors, and TAM-derived VEGFA plays a crucial
role in driving tumor-associated angiogenesis (Riabov et al., 2014).
Therefore, TAM-mediated angiogenesis is a potential therapeutic
target for malignant tumors. The PAM signaling pathway plays a key
role in regulating the differentiation, survival, and function of
TAMs. Excessive activation of the PAM signaling pathway drives
the transformation of TAMs toward the M2 phenotype, enhancing
their pro-tumor activities, such as the secretion of
immunosuppressive cytokines like IL-10 and promoting
angiogenesis, while simultaneously reducing the expression of
M1-associated cytokines like TNF-α (Wang et al., 2018). Drugs
that inhibit the PAM signaling pathway, such as PI3K inhibitors,
may alter the phenotype of TAMs, transforming them from the
M2 type to the antitumor M1 type, thereby enhancing the tumor
immune response.

6.2 Tumor-infiltrating lymphocyte

Tumor-infiltrating lymphocytes (TILs) are T cells and other
immune cells that infiltrate tumor tissues and are typically
associated with better antitumor immune responses. This
indicates the parameters of the immune response to tumors
(Riabov et al., 2014). Numerous studies have demonstrated that
the quantity and composition of TILs are associated with an
improved response to ICI therapy in various solid tumors
(Cristescu et al., 2018). Activation of the PAM signaling pathway
in TILs can influence their antitumor capabilities. The regulation of
the PAM signaling pathway can enhance the infiltration and
antitumor activity of TILs, particularly CD8+ T cells (Zhuang
et al., 2020). Compared with normal T lymphocytes, tumor-
infiltrating T lymphocytes exhibited relatively low levels of miR-
26a-5p. Experimental studies have shown that miR-26a-5p can
inhibit the PAM signaling pathway, thereby reducing the ability
of CD8+ tumor-infiltrating cells to eradicate tumors. Consequently,
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miR-26a-5p has emerged as a promising target for optimizing the
efficacy of TIL therapy (Wang et al., 2023). For example, PI3Kδ-
specific inhibitors can enhance the activity of TILs, thereby
improving the immune-mediated clearance of tumors. Some
tumor cells induce immunosuppressive signals by activating the
PAM signaling pathway, which reduces the function
(Chandrasekaran et al., 2021). This immune escape mechanism is
a key focus of current research, with efforts to restore the antitumor
activity of TILs by targeting the PAM signaling pathway.

6.3 Myeloid-derived suppressor cell

Myeloid-derived suppressor cells (MDSCs) are a critical class of
immunosuppressive cells in the tumor microenvironment. They
inhibit the function of effector T and NK cells, thereby promoting
tumor growth (Budhwar et al., 2018). Granulocyte myeloid-derived
suppressor cells (G-MDSCs) are the primary subpopulation of
MDSCs and immature myeloid cells (IMCs) with
immunosuppressive activity.

The role of suppressor of cytokine signaling 1 (SOCS1) is
dependent on IFN-I signaling, which inhibits the activation of
the PAM signaling pathway through a direct interaction with
AKT. This suggests that the differentiation of
immunosuppressive G-MDSCs involves a shift from immune
activation to immune tolerance (Sun et al., 2022). The activation
of the PAM signaling pathway enhances the immunosuppressive
functions of MDSCs, leading to increased secretion of inhibitory
cytokines, such as IL-6 and TGF-β, which suppress the anti-tumor
activity of effector immune cells. Inhibition of the PAM signaling

pathway can weaken the immunosuppressive function of MDSCs,
thereby improving the effectiveness of tumor immunotherapy (Wu
et al., 2020).

6.4 PI3K with immunotherapy

PI3K, particularly the PI3Kδ and PI3Kγ subtypes, predominant
in white blood cells, are key regulators of immune homeostasis.
Multiple studies have demonstrated that immunosuppressive
regulatory T cells (Tregs) are highly dependent on PI3Kδ, as
observed in human Tregs, mouse Tregs, and PI3Kδ-inactivated
mouse models (Ahmad et al., 2017; Dong et al., 2019; Chellappa
et al., 2019). PI3Kδ are involved in T cell receptor signaling, cell
proliferation, and survival in Tregs. Notably, in a mouse model of
LC, co-administration of PI3Kδ-specific inhibitors and tumor-
specific vaccines reduced the number of inhibitory Tregs within
the tumor microenvironment and increased the number of vaccine-
induced CD8+ T cells, enhancing anti-tumor efficacy (Ahmad et al.,
2017). Pharmacological inhibition of PI3Kδ effectively controls
disease by significantly reducing the quantity, proliferation, and
activation of CD25+ Tregs. However, this PI3Kδ-mediated reduction
in Tregs did not improve CD8+ T cell function, as PI3Kδ inhibition
also impairs T cell receptor signaling in CD8+ T cells, decreasing
activation, effector differentiation, and proliferation (Hanna et al.,
2019). Therefore, inhibiting PI3Kδ can suppress innate and adaptive
immune systems, increasing patients’ susceptibility to severe
infections. At the same time, the unique dependency of
immunosuppressive regulatory T cells on PI3Kδ may explain the
frequent occurrence of autoimmune conditions, such as pneumonia

FIGURE 3
Interactions in the Tumor Microenvironment (TME) Affecting Lung Cancer Progression. This figure illustrates the interactions within the tumor
microenvironment (TME) that contribute to lung cancer progression. Various components, including stromal cells, tumor-associatedmacrophages (TAM
M2), pro-tumorigenic macrophages (PAM), regulatory T cells (Treg), dendritic cells (DC), natural killer (NK) cells, and myeloid-derived suppressor cells
(MDSC), play significant roles in modulating immune responses and tumor growth. Stromal cells provide structural support and secrete growth
factors that promote tumor proliferation. TAM M2 cells release VEGFA, stimulating angiogenesis and increasing blood supply to the tumor. Pro-
tumorigenic macrophages (PAM) also interact with immune cells, promoting an inflammatory environment that favors tumor survival. Regulatory T cells
(Treg) produce IL-10, which suppresses the activity of effector T cells and other immune cells, facilitating tumor immune evasion. The mTOR pathways
(mTOR1 and mTOR2) regulate Treg function and T cell differentiation, contributing to an immunosuppressive environment that supports tumor growth.
Myeloid-derived suppressor cells (MDSC) and dendritic cells (DC) secrete immunosuppressive cytokines such as IL-6 and TGF-β, which inhibit the anti-
tumor activity of NK cells and T cells. miR-26a-5p further modulates these pathways, enhancing immune suppression. These complex interactions within
the TME collectively create an environment that promotes immune escape, angiogenesis, and tumor progression.
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and colitis, in patients undergoing PI3Kδ inhibition (Tarantelli et al.,
2021). Similar to PI3Kδ, the PI3Kγ subtype is active in lymphocytes.
PI3Kγ, along with its regulatory subunits PIK3R5 and PIK3R6, is
uniquely overexpressed in the bone marrow compartment, where
PI3Kγ is the primary catalytic subunit for PI3K activity (Schmid
et al., 2011). G protein-coupled receptors (GPCRs) activate p110γ
through a Ras/p101-dependent mechanism, while receptor tyrosine
kinases (RTKs) and Toll-like/IL-1 receptors (TLR/IL1Rs) activate
p110γ via a Ras/p87-dependent mechanism. Once activated, p110γ
promotes the inside-out activation of the integrin α4β1, facilitating
the invasion of bone marrow cells into tumors. Pharmacological or
genetic blockade of p110γ inhibits inflammation, tumor growth, and
metastasis in both implanted and spontaneous tumor models
(Schmid et al., 2011).

6.5 AKT with immunotherapy

AKT expression in most immune cells, both at the baseline and
upon activation, underscores its critical role in immunity. AKT is
essential for the regulation of both innate and adaptive immunity
(Guerau-de-Arellano et al., 2022). AKT1 and AKT2, but not AKT3,
promote terminal differentiation of CD8+ T cells while impairing the
development of central and effector memory CD8+ T cell
populations. These findings offer insights into adoptive cell
transfer and vaccine-based cancer immunotherapies (Abu et al.,
2015). In addition, AKT plays a critical role in CD4+ T cells by
guiding helper T cell (Th) differentiation in a subtype-specific
manner. AKT1 promotes antigen-specific Th1/Th17 responses by
inhibiting the proliferation of thymes-derived T cells (Tregs). In
contrast, AKT2 enhances tTreg proliferation in vitro and in vivo,
while suppressing antigen-specific Th1/Th17 responses (Ouyang
et al., 2019).

T cell activation through TCR and CD28 co-stimulation
promotes the downstream induction of cytokines IL-2 and IFN-
γ, mediated by T helper type 1 (Th1) cells in an AKT-dependent
manner. In contrast, the regulation of IL-4 and IL-5 by T helper type
2 (Th2) cells occurs independently of AKT. FOXO is considered a
tumor suppressor because they play an important role in inducing
cell cycle arrest, DNA damage repair, and ROS clearance
(Jiramongkol and Lam, 2020). AKT controls Treg homeostasis by
inhibiting FOXO1 phosphorylation, enhancing Treg-mediated
suppression (Ouyang et al., 2012). Treg cells expressing the
transcription factor Foxp3 are essential for maintaining immune
self-tolerance; however, excessive Treg activity can suppress
antitumor immune responses. Low-dose expression of
Foxo1 mutants has been shown to selectively deplete tumor-
associated Treg cells, activate effector CD8+ T cells, and inhibit
tumor growth without inducing autoimmunity. Inactivation of
Foxo1 is crucial for migrating activated Tregs (aTregs), which
play a key role in suppressing CD8+ T cell responses.
FOXO4 activates the cell cycle dependent kinase inhibitor p27,
which in turn inhibits the cell cycle dependent kinase (CDK) and
blocks the G1 cell cycle progression in tumors. Silencing
FOXO4 expression leads to an increase in cell cloning rate and
migration enhancement (Yang et al., 2005). Modulating the FOXO
signaling pathway in Treg cells offers a potential strategy for
selectively disrupting tumor immune tolerance (Luo et al., 2016).

Recent studies have demonstrated that Treg-mediated immune
suppression is constrained in an AKT-dependent manner by PD-
1 inhibition. Reduced signal transduction in the PI3K-AKT pathway
is a key mechanism contributing to the enhanced suppressive
capacity of PD-1-deficient Treg cells (Tan et al., 2021).

6.6 mTOR with immunotherapy

mTOR is the catalytic component of the mTORC1 and
mTORC2 complexes, and its activation is essential for the proper
activation and differentiation of effector CD4+ T cells (Zeng et al.,
2013). These complexes collectively regulate cellular metabolism, the
primary mechanism by which mTOR influences the immune
system. mTORC1, in particular, plays a key role in regulating the
differentiation of memory T cells (Araki et al., 2009); mTORC1 also
partially sustains Treg cell function by inhibiting the
mTORC2 pathway, linking immune signals from the TCR and
IL-2 to adipogenesis pathways and functional adaptability. This
highlights the central role of the Treg inhibitory activity in
maintaining immune homeostasis and tolerance (Zeng et al.,
2013). mTORC1 influences the effector response of CD8+ T cells,
whereas mTORC2 regulates the memory of CD8+ T cells.
mTORC2 inhibition leads to metabolic reprogramming driven by
FOXO-mediated suppression of IL-15R expression, thereby
enhancing the generation of CD8+ memory cells (Pollizzi et al.,
2015). Importantly, mTORC1 and mTORC2 play direct roles in
regulating innate immunity. mTOR is a key regulator of memory
CD8+ T cell differentiation, and rapamycin, an immunosuppressive
drug, has an immunostimulatory effect on the production of
memory CD8+ T cells (Araki et al., 2009). mTORC1 regulates the
production of inflammatory cytokines by inhibiting NF-κB,
controlling monocyte/macrophage-mediated inflammation
(Weichhart et al., 2008). mTORC2 complements this by
modulating the chemotaxis of mast cells and neutrophils.
Additionally, through FOXO1 inhibition,
mTORC2 downregulates IL-12 production in dendritic cells and
plays a key role in IL-4-dependent selective activation of
M2 macrophages (Brown et al., 2011; Hallowell et al., 2017).
mTOR regulates the expression of key inflammatory cytokines,
including IL-10, IL-12, TGF-β, and TNF (Powell et al., 2012).
mTOR-mediated inflammatory responses can also promote the
recruitment of immune cells to TIM, which may exert antitumor
effects or contribute to cancer cell growth, progression, and
metastasis (Mafi et al., 2021). Activation of tumor-associated
PAM signaling also promotes the expression of VEGF, a key
mediator of angiogenesis and a chemokine that attracts
immunosuppressive MDSCs and Tregs (Powell et al., 2012;
Ostrand-Rosenberg and Fenselau, 2018; Goel and Mercurio,
2013). MDSCs accumulate in most cancer patients, promote
tumor progression, suppress antitumor immunity, and impede
the effectiveness of many cancer immunotherapies (Ostrand-
Rosenberg and Fenselau, 2018).

In TIM, the PAM signaling pathway plays a crucial role in tumor
immune escape and the efficacy of immunotherapy by regulating the
activation, function, and inhibitory properties of various immune
cells. Targeted therapies that inhibit the PAM signaling pathway not
only directly suppress tumor cell growth but also enhance the
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effectiveness of immunotherapy by modulating the immune
microenvironment. The advent of immunotherapy has
transformed cancer treatments, marking the beginning of the
immune era. Immune checkpoint inhibitors (ICIs) targeting PD-
1/PD-L1 and cytotoxic T-lymphocyte antigen 4 (CTLA-4), along
with cell-based therapies designed to target and destroy cancer cells,
have demonstrated significant clinical efficacy.

Therefore, combining drugs that target the PAM signaling
pathway with immunotherapies can significantly improve the
survival rate of patients with LC. A randomized, prospective,
multicenter, proof-of-concept Phase II clinical trial is currently
evaluating the ORR of targeted therapy combined with the
standard of care (SoC) in NSCLC (NCT04591431). Both
immunotherapies, which leverage the body’s immune system
to combat cancer, and targeted therapies are the cornerstones
of personalized medicine. Ongoing research on gene mutations in
tumor tissues or blood samples (e.g., circulating tumor cells
[CTCs] or circulating free DNA [cfDNA]) is reshaping cancer
treatment strategies. In the context of precision medicine,
immuno-oncology is evolving into precision immuno-
oncology with an emphasis on identifying predictive
biomarkers that can optimize responses to ICIs (Annals of
Oncology, 2020).

7 Challenges of the PI3K/AKT/mTOR
inhibitors and future directions

PI3K inhibition is a key target for antitumor therapy. While
several inhibitors, including copanlisib, alpelisib, idelalisib,
duvelisib, and umbralisib, have been approved by the FDA,
challenges remain regarding drug resistance, identification of
sensitivity markers, and toxicity (Yu M. et al., 2023).

7.1 PI3K with side effects

Serious toxicities associated with PI3K inhibitors in clinical
practice include hyperglycemia, skin reactions, diarrhea/colitis,
pneumonia, and hypertension. Hyperglycemia typically occurs
during the first two cycles of PI3K inhibitor treatment (Li et al.,
2018; André et al., 2019). Hyperglycemia is regarded as an on-
target effect of PI3K inhibitors and is linked to the critical role of
the PI3K pathway in insulin signaling and glucose homeostasis
(Juric et al., 2019). p110α and p110β regulate insulin-driven PI3K/
AKT signaling pathway; inhibiting it can lead to hyperglycemia,
rather than p110 δ and p110 γ (Moore et al., 2019). Additionally,
the glucose-insulin feedback triggered by PI3K inhibitors is
sufficient to reactivate PI3K signaling, thereby diminishing the
effectiveness of the inhibitors (Horwitz et al., 2018). Skin reactions,
such as rashes or papules, are among the most common toxicities
observed with PI3K inhibitors in experimental studies. The PI3K/
AKT signaling pathway is crucial in determining whether
epidermal keratinocytes undergo differentiation or cell death
(Liu et al., 2020b). Inhibition of this pathway suppressed
keratinocyte proliferation and migration (Xenou and
Papakonstanti, 2020). Additionally, activating the PAM
signaling pathway inhibits autophagy and promotes

inflammation in keratinocytes (Weidner et al., 2015). Diarrhea
and colitis are common side effects of PI3K inhibitors, with severe
cases often leading to treatment discontinuation (Curigliano and
Shah, 2019). Histological examination via colonoscopy in patients
with colitis revealed neutrophil infiltration, increased
intraepithelial lymphocytes, and crypt cell apoptosis within the
crypt epithelium (Wen et al., 2019).

The increased number of intraepithelial lymphocytes was
predominantly CD8+ T cells, likely due to immune dysfunction.
PI3Kδ inhibitors may disrupt B cell differentiation through immune
dysregulation of Tregs, contributing to intestinal injury (Lynch et al.,
2017). Fatal and severe pneumonia are common complications in
patients receiving PI3K inhibitor treatments. Non-infectious
pneumonia may be linked to the downstream inhibition of PI3K,
whereas allergic and organizing pneumonia is more frequently
observed in patients treated with mTOR inhibitors (Albiges et al.,
2012). Pneumonia is also an immune-mediated disease, with a
median increase in Th1-associated cytokines and chemokines
observed in patient serum samples, including IFN-γ and IL-6, -7,
and -8 (Barr et al., 2016). Hypertension is one of the most common
adverse events associated with acute vasoconstriction (Mateo et al.,
2017). The PI3K/AKT signaling pathway plays a key role in
regulating classical endothelial functions, including the
modulation of vascular tone and recruitment of white blood cells
to the vascular wall (Molinaro et al., 2019). p110γ is a key factor in
regulating blood pressure. p110γ alleviates hypertension and
reduces vascular inflammation by lowering peripheral resistance;
conversely, it may contribute to developing hypertension and related
target organ damage by modulating T cell function (Pridham
et al., 2018).

Somatic mutations in PIK3CA also display unique patterns
with respect to sex- and tissue-specificity (Benvenuti et al., 2008).
Amplification of chromosome regions containing the PIK3CA
gene has been identified in several human cancers, including
ovarian, cervical, head and neck, and gastric cancers (Engelman
et al., 2006; Shayesteh et al., 1999). PIK3CB undergoes a missense
substitution (E633K) that enhances cell proliferation,
transformation, and membrane targeting, reducing its
dependence on Ras activation (Dbouk et al., 2013).
Overexpression of p110γ can induce oncogenic transformation
in cell cultures, and its increased expression promotes cell
proliferation. However, downregulation via siRNA reduces
proliferation, underscoring the critical role of p110γ in
pancreatic cancer progression (Kang et al., 2006; Edling et al.,
2010). p110δ is primarily implicated in blood cancers, and
somatic mutations in its catalytic subunit (E1021K) are
associated with recurrent infections and progressive airway
damage (Angulo et al., 2013). High-throughput mutation
analysis identified novel somatic mutations affecting p110γ
(N66K, D161E, R178L, S348I, K364N, T503M, R542W,
E602V, and E740K) and p110δ (V397A) across various tumor
types, including breast cancer, LC, ovarian cancer, and prostate
cancer (Kan et al., 2010).

The therapeutic efficacy of PAM signaling pathway inhibitors
is limited and often accompanied by significant treatment-related
toxicity, particularly when used in combination with standard
therapies or other targeted drugs. Consequently, most PAM
signaling pathway inhibitors are not suitable as mainstream
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treatments for tumors. Recent trends have shifted toward
combining multiple drugs with other treatment modalities, such
as surgery, hormone therapy, and additional antitumor agents.
Future studies should identify reliable biomarkers for patient
stratification based on cancer type and genetic characteristics,
allowing for a more effective use of PI3K inhibitors. Since the
full mechanism of action of PI3K inhibitors is yet to be fully
elucidated, further research is required to better understand their
advantages and limitations in the context of personalized
cancer treatment.

7.2 AKT with side effects

The AKT pathway is crucial for regulating cell proliferation,
survival, and metabolism, making AKT inhibition a potentially
powerful antitumor strategy. However, dose-limiting toxicities
and an incomplete understanding of the different AKT subtypes
have hindered the successful pharmacological application of AKT
inhibitors.

Treatment with AKT inhibitors may also result in adverse
reactions, including gastrointestinal discomfort, skin reactions,
metabolic disorders, abnormal liver function, hematological
abnormalities, cardiac toxicity, and immunosuppression
(Glaviano et al., 2023). AKT1 amplification has been detected in
gastric cancer and is associated with cisplatin resistance (Liu et al.,
2007). Somatic mutations in AKT1 have been identified in breast,
colorectal, ovarian, LC, and bladder cancer (Knowles et al., 2009).
AKT1 E17K is an activating mutation that causes constitutive
localization of the protein to the plasma membrane, leading to
hyperphosphorylation of serine-473 and threonine-308 in a growth
factor-independent manner (Carpten et al., 2007).
AKT2 amplification is frequently detected in various tumors,
including ovarian, breast, colorectal, and pancreatic cancers, and
is positively correlated with increased invasion and poor prognosis
(Bellacosa et al., 1995; Parsons et al., 2005; Cheng et al., 1996).
Selective activation of the AKT3 subtype combined with PTEN loss
has been observed in 43%–60% of sporadic melanomas, indicating
elevated levels of active AKT3 in the late stages of the disease (Stahl
et al., 2004).

The pharmacological markers of AKT inhibitors have
demonstrated incomplete targeted regulation. Currently, there
are no approved biomarkers that can predict treatment response
to specific AKT inhibitors before their use. Consequently,
predicting which patients will experience adverse reactions
due to AKT inhibition is challenging. However, the AKT
E17K mutation is a promising biomarker, as clinical data
have shown a correlation between this mutation and the
response to the AKT inhibitor capivasertib (Hyman et al.,
2017). Mutations that confer resistance to one AKT inhibitor
may not necessarily confer resistance to others. For example, the
clinically relevant AKT1 Q79K mutation can induce resistance
to certain miRNAs but not MK-2206, highlighting the
importance of understanding AKT genotypes when selecting
appropriate treatments (Shi et al., 2014). Targeting AKT is a key
focus of clinical oncology research, and future studies may
improve its clinical efficacy by combining AKT inhibitors
with synergistic cytotoxic drugs.

7.3 mTOR with side effects

Several mTOR inhibitors (mTORis) have been developed;
however, only everolimus and temsirolimus have been approved
for treating human tumors. Everolimus has shown acceptable safety
in patients with neuroendocrine tumors, TSC-associated
angiomyolipomas, renal cell carcinomas, and breast cancer. In
patients with neuroendocrine tumors receiving everolimus
monotherapy, grades 3–4 drug-related adverse events included
stomatitis (9%), diarrhea (7%), infection (7%), anemia (4%),
fatigue (3%), and hyperglycemia (3%). In renal cell carcinoma
patients undergoing combination therapy with everolimus and
lenvatinib, the most common grades 3–4 adverse events were
constipation (37%) and diarrhea (20%) (Motzer et al., 2015;
Janku et al., 2018). The most common grades 3–4 adverse
reactions induced by temsirolimus included hypertriglyceridemia
(44%), anemia (20%), hypophosphatemia (18%), lymphopenia
(16%), hyperglycemia (16%), fatigue (11%), dyspnea (9%),
neutropenia (5%), rash (5%), and pain (5%) (Kwitkowski et al.,
2010). The clinical application of mTORi is often hindered by
resistance driven by common molecular mechanisms across
different drug categories. This suggests that co-targeting
alternative pathways may be a more effective strategy than
enhancing mTORi efficacy. Notably, preclinical and clinical data
indicate that compared with other mTOR inhibitors, novel dual-
space mTOR inhibitors can significantly promote cancer regression
by inhibiting 4E-BP1 phosphorylation and reducing adaptive
resistance by alleviating feedback inhibition of receptor tyrosine
kinase (RTK) expression. Therefore, dual-space mTORC inhibitors
are promising for treating cancers driven by activated mTORC1.

Additionally, developing new combination therapies may help
to identify the molecular factors responsible for resistance to each
drug class and improve patient selection for specific treatments.
Optimizing the treatment sequences using different drugs may delay
or overcome resistance to mTOR inhibitors.

7.4 miRNAs and lncRNAs

Long non-coding RNAs (lncRNAs), a class of ncRNAs longer
than 200 nucleotides that regulate gene expression through various
mechanisms, play critical roles in tumorigenesis (Hou et al., 2014).
In recent years, many lncRNAs have been implicated in cancer
progression by modulating the PAM signaling pathway. MALAT1, a
well-known tumor-promoting lncRNA, competitively binds to
microRNAs (miRNAs) such as miRNA-101 to relieve the
inhibition of the PAM signaling pathway, thereby promoting
tumor cell proliferation and migration (Goyal et al., 2021).
Conversely, MEG3 is a tumor suppressor lncRNA that inhibits
tumorigenesis by negatively regulating the PAM signaling
pathway (He et al., 2021). The relative transcription level of
colorectal cancer-related lncRNA colorectal cancer (OECC) was
initially significantly upregulated in clinical LC tissues and cultured
LC cells. Knocking down OECC in the LC cell line A549 led to a
reduction in the mRNA levels of PI3K, phosphoinositide-dependent
kinase-1, AKT, 5′-AMP-activated protein kinase, and endothelial
nitric oxide synthase, while increasing the expression of tumor
protein 53, neurofibromatosis protein 1, and Cullin-1 regulatory

Frontiers in Pharmacology frontiersin.org15

Qiang et al. 10.3389/fphar.2025.1516583

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1516583


factors. These molecules are components of the PAM signaling
pathway and/or involved in crosstalk (Zou et al., 2019). Notably,
several genes located on chromosome 8q24 are associated with an
increased risk of LC. For instance, CCAT1 promotes cell metastasis
in lung adenocarcinoma via epithelial-mesenchymal transition and
activates the Wnt signaling pathway in NSCLC (Lin et al., 2018; Xu
et al., 2018; Hu et al., 2017). The novel lncRNA OECC, located on
chromosome 8q24, regulates the proliferation and metastasis of
human LC. lncRNA OECC is a novel regulatory factor in LC
progression, offering novel insights into clinical treatment
strategies. miRNAs are small, non-coding RNAs, typically
20–22 nucleotides in length, that regulate gene expression by
binding to the 3′untranslated region of mRNAs. Many miRNAs
have been shown to influence tumor cell behavior by regulating key
proteins in the PAM signaling pathway. MiR-21, a well-known pro-
tumor miRNA, directly inhibits PTEN expression, thereby
activating the PI3K/AKT pathway and promoting tumor cell
proliferation, migration, and survival (Wang et al., 2020). MiR-29
promotes tumorigenesis by enhancing mTOR signaling through
inhibition of the TSC1/TSC2 complex (Hu et al., 2021). Conversely,
miR-126 acts as a tumor suppressor by inhibiting the expression of
the PIK3R2 subunit of PI3K, thereby suppressing the PI3K/AKT
pathway and reducing cell proliferation (Hu et al., 2021). Research
has demonstrated that the overexpression of microRNA-520a-3p
significantly reduces the ratios of p-AKT/AKT, p-PI3K/PI3K, and
Bcl-2/Bax, as well as the levels of mTOR, matrix metalloproteinase-2
(MMP-2), and matrix metalloproteinase-9 (MMP-9) in NSCLC.
Conversely, inhibition of microRNA-520a-3p expression enhances
cell proliferation, migration, and invasion, while suppressing
apoptosis (Lv et al., 2018).

Overall, miRNAs and lncRNAs are promising therapeutic
targets as regulatory molecules of the PAM signaling pathway. By
designing miRNA mimetics or inhibitors or by interfering with
lncRNA function, cancer-related signaling pathways can be
modulated, offering new strategies for anti-cancer therapy. These
approaches will facilitate the development of innovative cancer
treatments.

Further research focusing on these molecules is expected to yield
novel treatment options for cancer patients, and the outlook for LC
treatment is optimistic. The PAM signaling pathway has
demonstrated significant success in treating various tumors, and
breakthroughs in LC therapy are anticipated. As more drugs
targeting the PAM signaling pathway emerge, integrating
multiple therapeutic approaches will play a crucial role in future
treatment models. Multidisciplinary research may uncover
increasingly effective strategies to gradually improve the survival
rates of patients with LC. Additionally, advances in personalized
precision medicine will offer more tailored and effective treatments,
contributing to an overall improvement in the outcomes of this
malignant disease.

8 Conclusion

In summary, the PAM pathway represents a critical target in the
development of therapies for LC. Despite advances in identifying
inhibitors and natural products targeting this pathway, challenges
such as drug resistance, toxicity, and compensatory mechanisms

persist. Addressing these issues requires a comprehensive
understanding of the PAM pathway’s role in cancer progression
and its interaction with other signaling networks.

Recent advancements in precision medicine have provided new
opportunities for the personalized treatment of LC, with
combination therapies showing promise in overcoming
resistance. By integrating insights from molecular biology, clinical
trials, and natural product research, future therapeutic strategies can
be optimized to improve outcomes for patients with LC. Continued
exploration of biomarkers, alongside the development of innovative
inhibitors and combination regimens, holds the potential to advance
treatment efficacy and mitigate existing limitations. The road ahead
necessitates collaborative efforts in research and clinical practice to
fully realize the potential of PAM pathway-targeted therapies.
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Glossary
LC lung cancer

PI3K phosphatidylinositol-3-kinase

AKT protein kinase B

mTOR mammalian target of rapamycin

IARC International Agency for Research on Cancer

NSCLC non-small-cell lung cancer

SCLC small-cell lung cancer

ADC adenocarcinoma

KRT7 keratin 7

SOX2 SRY-box 2

TTF1 thyroid transcription factor 1

OS overall survival

PIP2 phosphatidylinositol 4,5-bisphosphate

PIP3 phosphatidylinositol 3,4,5 triphosphate

T308 threonine 308

mTORC1 mTOR complex 1

TSC tuberous sclerosis complex

EGF epidermal growth factor

IGF-1 insulin-like growth factor-1

FGF fibroblast growth factor;

CCR9 Chemokine receptor 9

VEGF vascular endothelial growth factor

AMPK monophosphate-activated protein kinase

ATP adenosine triphosphate

NSAID nonsteroidal anti-inflammatory drug

ORR overall response rate

LPS lipopolysaccharide

CSCs cancer stem cells

CCOC clear cell ovarian carcinoma

IR ionizing radiation

TCM traditional Chinese medicine

SFA Sophflarine A

ROS reactive oxygen species

TIM tumor immune microenvironment

TAMs Tumor-associated macrophages

MDSCs Myeloid-derived suppressor cells

G-MDSCs Granulocyte myeloid-derived suppressor cells

RTKs receptor tyrosine kinases

ICIs Immune checkpoint inhibitors

CTCs circulating tumor cells

MMP matrix metalloproteinase

ADC adenocarcinoma

SCC squamous cell carcinoma

TTF1 thyroid transcription factor 1

PH pleckstrin homology

PX phox

IGF-1 insulin-like growth factor-1

FGF fibroblast growth factor

EGF epidermal growth factor

CCR9 Chemokine receptor 9

TLR Toll-like receptor

IL interleukin

FDA Food and Drug Administration

AMPK adenosine monophosphate-activated protein kinase

RR response rate

Tregs regulatory T cells

Th2 T helper type 2

RTKs receptor tyrosine kinases

GPCRs G protein-coupled receptors

Th1 helper type 1

CTLA-4 cytotoxic T-lymphocyte antigen 4

SoC standard of care

mTORis mTOR inhibitors

lncRNAs Long non-coding RNAs

PAM phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/
mammalian target of rapamycin (mTOR) signaling
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