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Uncontrolled hyperuricemia contributes to chronic kidney disease, characterized by
renal inflammatory cell infiltration and tubulointerstitial fibrosis, eventually leading to
renal failure. In addition to liver and kidney, the intestine tract plays a vital role in the
development and progression of hyperuricemia and hyperuricemic nephropathy
(HN) through various mechanisms. The conventional therapeutic strategy for HN is
uric acid-lowering therapy (ULT) and renal protection; however, unsatisfactory results
are often obtained in clinical practice. Growing evidence has demonstrated that
traditional Chinese medicines (TCMs) achieve an anti-HN effect by modulating
multiple targets and approaches with fewer side effects. Therefore, this paper
reviews the pathogenesis of HN, including the role of soluble and insoluble urates
in kidney and intestine, and the role of intestinal tract in the progression of HN.
Meanwhile, the recent advancements in TCMs for the treatment of HN are
summarized and analyzed, with a focus on their modulation of intestinal flora and
metabolites, urate-related transporters, immuno-inflammation and barrier function
in the intestines. Notably, for the first time, we propose the perspective that TCMs
treat HN through a dual-regulatory effect on the intestines and kidneys. Additionally,
the problems existing in current research and the feasible research strategies
combined with emerging technologies such as fermentation and nanotechnology
are discussed, thus providing novel ideas for HN management.
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1 Introduction

Hyperuricemia (HUA) is one of the most common metabolic
diseases, resulting from the metabolic disorder of purine and uric
acid. Currently, the prevalence of hyperuricemia is steadily rising,
ranging from 2.6%–36% across the globe (Jiang J. et al., 2023), and is
especially higher in the countries with high-purine and high-
fructose consumption. It was estimated that the prevalence of
hyperuricemia among Chinese population was 14.0% in
2018–2019, with the younger population suffering more, as
deduced from two nationally representative cross-sectional
investigations (Zhang M. et al., 2022). Chronic hyperuricemia
might contribute to renal dysfunction, which can further develop
to hyperuricemia nephropathy (or gouty nephropathy) and
increases the risk of chronic kidney disease (CKD). It has been
proposed that hyperuricemia nephropathy is a secondary
inflammatory nephropathy induced by the deposition of
monosodium urate (MSU) crystals in the distal collecting duct
and the medullary interstitium (Kang, 2014). Autopsy
examinations have confirmed that 75%–99% of gouty subjects
exhibit prominent alterations in renal histopathology, including
MSU deposits, arteriolosclerosis, glomerulosclerosis, and
tubulointerstitial fibrosis (Linnane et al., 1981). Moreover, a large
amount of literature has documented that asymptomatic
hyperuricemia also increases the progression of CKD,
cardiovascular disease, hypertension, diabetes mellitus, and
metabolic syndrome (Aktas et al., 2022; Gaubert et al., 2020).
Previous studies have demonstrated that chronic hyperuricemia
induces glomerulosclerosis and tubulointerstitial fibrosis via
sustained inflammation, endothelial dysfunction, oxidative stress
amplification, and dysregulated renin-angiotensin system (RAS)
activation, ultimately culminating in progressive renal
dysfunction (Du et al., 2024). The deposition of excess urate in
the renal tubules or extrarenal tissues triggers multiple intracellular
signaling pathways, such as MAPK, PI3K/Akt, and NF-κB, which
promote oxidative stress and inflammatory responses (Li K. et al.,
2023). Additionally, MSU act as injury-associated molecular
patterns, initiating cellular pyroptosis via the activation of the
NLRP3 inflammasome signaling pathway. This results in the
massive release of active IL-1β, which further amplifies the renal
inflammatory cascade and accelerates the progression of renal
fibrosis (Hu et al., 2022).

Although it is debatable whether elevated uric acid or MSU
deposits are the main cause of hyperuricemia nephropathy, uric
acid-lowering therapy is recommended to slow the progression of
CKD and other complications (Fang et al., 2023). Given that
hyperuricemia is a prerequisite for the occurrence of uric acid
nephropathy, understanding why hyperuricemia occurs is
essential for recognizing the pathogenesis and developing
treatments for hyperuricemia nephropathy. Uric acid, the final
product of purine nucleotide metabolism, can contribute to
hyperuricemia when there is excessive production or abnormal
excretion. A high-purine diet or other dietary factors [such as
alcohol (Choi et al., 2004)] and high-fructose beverage
consumption (Huang Y. et al., 2023; Zhang et al., 2020) increase
serum uric acid levels and the incidence of gout flares. However, the
uric acid from dietary sources only accounts for 20% of the total uric
acid pool in the human body. Approximately 80% of serum uric acid

is derived from the metabolism and transport of endogenous uric
acid. The liver, as the primary organ responsible for purine
metabolism, orchestrates the catabolism of nucleic acids and the
de novo synthesis of purine nucleotides from amino acids and other
precursors, accounting for approximately 70% of endogenous uric
acid production (Sharaf El Din et al., 2017). Notably, abnormalities
in glycolipid metabolism significantly activate xanthine oxidase,
which accelerates uric acid biosynthesis and promotes the
development of hyperuricaemia (Johnson et al., 2011). It has
been well-documented that about two-thirds of uric acid is
excreted by the kidneys, while the remaining third is excreted by
the intestines. It is worth noting that the intestinal tract plays a vital
role in purine and uric acid metabolism, influenced by the urate
transporters, diversity of microbiome and its sensitive mechanisms
for dealing with harmful insults. Recent evidence suggested that the
imbalance of the intestinal flora accelerated the progression of
kidney diseases, including hyperuricemia nephropathy, diabetic
nephropathy and septic nephropathy. Moreover, supplement of
prebiotics and probiotics have been confirmed to ameliorate the
renal dysfunction, further delaying the occurrence of CKD (Cao
J. et al., 2022; García-Arroyo et al., 2018). However, the specific
interplay between renal and intestinal factors and the underlying
mechanisms of hyperuricemia nephropathy remain poorly
understood.

Whether hypouricemic medication targeting the proteins that
govern the metabolism of purines and uric acid have renoprotective
potential for individuals suffering from hyperuricemia and gout
depends. Due to the potential for renal impairment, the clinical
application of allopurinol is cautious (Badve et al., 2020), while
probenecid is contraindicated when CrCL is <60 mL/min (Kang,
2014). Unlike allopurinol, dosing adjustments are not needed for
patients with renal impairment when using febuxostat, a nonpurine
selective inhibitor of xanthine oxidase, as the hypouricemic agent
(Becker et al., 2005). Compared to febuxostat, benzbromarone
(25 mg daily) has been confirmed to be more potent in
hyperuricemia patients with eGFR ≥ 70 mL/min/1.73 m2 (Liu
et al., 2022). Additionally, one of the common complications of
probenecid and benzbromarone is the deposition of urates or uric
acid stones in the kidney and urinary system, while increasing urine
volume, alkalized urine and reducing the dosage are beneficial for
managing this severe complication (FitzGerald et al., 2020; Hui et al.,
2017; Yu K. H. et al., 2018). Recently, novel urate transporter 1
(URAT1) inhibitors with higher selectivity, including SHR4640 (Lin
et al., 2021), verinurad (Tan et al., 2017), dotinurad (Taniguchi et al.,
2019), which have garnered significant attention in the development
of anti- hyperuricemia therapy. However, safety concerns have
hindered the further development of URAT1 inhibitors, as
symbolized by the forced withdrawal of lesinurad.

A large number of literatures have documented that traditional
Chinese medicine (TCM) and its active ingredients are potential and
potent candidates for the treatment of hyperuricemic nephropathy.
Previous studies have found that TCMs effectively attenuate the
progression of HN mainly by inhibiting hepatic XOD activity,
modulating urate transporters, suppressing inflammatory
responses, and ameliorating oxidative stress and renal fibrosis
(Yang et al., 2022). With long-term clinical application in
humans, the hypouricemia and renoprotective potencies of TCM
and TCM formulas have been verified in preclinical and clinical

Frontiers in Pharmacology frontiersin.org02

Wang et al. 10.3389/fphar.2025.1517047

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1517047


trials, such as Si Miao Pills (Zhang Y. et al., 2023), Cichorium intybus
L. (Jin et al., 2018), and fisetin (Ren et al., 2021), etc. Considering the
potential role of the interaction between the intestine and kidneys in
the pathogenesis and treatment of HN, we propose the hypothesis
that soluble uric acid and urate crystals could disrupt the
physiological function and structure of renal and intestinal
systems by regulating multiple intracellular signals, thereby
promoting renal fibrosis and furthering the progression of HN.
Meanwhile, this paper summarizes and analyzes TCM formulas and
single herbs with dual-regulatory effects of the intestine and kidneys
in HN treatment in, providing a new perspective and research
direction for TCMs.

2 The pathogenesis of HN

Growing evidence suggests that both soluble uric acid and MSU
crystals can insult renal function and structure through various
mechanisms (Mei et al., 2022; Ponticelli et al., 2020; Weaver, 2019).
Additionally, the intestine plays a role in the pathogenesis of HN by
regulating the metabolism and transport processes of soluble uric
acid and MSU crystals (Grelska et al., 2023; Tseng et al., 2020).

2.1 The metabolism and transport of purine
and uric acid

Uric acid (UA) is the end product of purine metabolism,
catalyzed by xanthine oxidase (XOD), which is mainly expressed
in the liver. In addition to XOD, blood uric acid levels are
dynamically regulated by various transporters in the kidney and
gut, as well as by some oxidants or nitric oxide (Gersch et al., 2008;
Imaram et al., 2010). In human beings, a physiological level of uric
acid (3–5 mg/dL) exists in the bloodstream in the form of soluble
urates, while high concentrations of urates that exceed its solubility
in the blood (serum uric acid >6.8 mg/dL) contribute to MSU
crystalline deposits. Approximately two-thirds of uric acid excretion
occurs through glomerular filtration and tubular reabsorption,
which relies on urate transporter proteins in the kidneys,
including URAT1 (encoded by the SLC22A12 gene), glucose
transporter 9 (GLUT9, encoded by the SLC2A9 gene), and
organic anion transporter 4 (OAT4, encoded by the SLC22A11
gene). Generally, serum uric acid (sUA) levels are modulated
dynamically by two categories of transporters: urate reabsorption-
promoting transporters (URAT1, GLUT9, sodium-dependent
phosphate transporter protein 1 (NPT1), and NPT4 (Maiuolo
et al., 2016), OAT4, OAT10, etc.) and urate excretion-promoting
transporters (ABCG2, OAT1, OAT3, etc.). Benzbromarone and
probenecid achieve uric acid-lowering function by inhibiting
URAT1 and GLUT9, thereby increasing UA excretion (Figure 1).
However, some clinical trials reported that 10% hyperuricemic
patients treated with benzbromarone could not achieve
satisfactory clinical outcomes with a standard therapeutic dose
and duration, which might be attributed to its inhibition of
OAT1 and ATP-binding cassette subfamily G member 2
(ABCG2). URAT1 facilitates the reabsorption of uric acid from
the renal tubules to the tubular epithelial cells and then to the renal
interstitium, thus elevating serum uric acid. Conversely, as urate

reabsorption-promoting transporters, inhibition of OAT1 and
ABCG2 might partially counteract urate-lowering effect of
benzbromarone. Therefore, drug discovery targeting urate
transporters with high selectivity has attracted significant
attention in the pharmaceutical industry, and has been
extensively reviewed in elsewhere (Hou et al., 2023; Shi et al., 2022).

Uric acid possesses both antioxidant and pro-oxidant properties
(So and Thorens, 2010). It exists in the body in soluble form, as well
as crystalline form. An imbalance in uric acid metabolism can result
in severe kidney diseases. Research has shown that uric acid
metabolism is closely linked to the development of renal disease.
Notably, the role of the intestinal tract in the metabolism of purines
and uric acid has been confirmed, as about one-third of uric acid is
discharged by gut (Eckenstaler and Benndorf, 2021). This is
achieved through three main approaches: one involves a serial of
urate transporters in the gut, the second one is the direct
involvement of the intestinal flora in the metabolic breakdown of
purines and uric acid (Table 1), and the third involves metabolites
such as short-chain fatty acids (e.g., acetate, butyrate) produced by
intestinal bacteria provide energy to intestinal epithelial cells,
supporting the excretion of uric acid. Currently, it is well-
acknowledged that the uric acid transporters in the intestine
include ABCG2, MRP2, MRP4, GLUT9, MCT9, NPT4, its
homologs, OAT10, and YgfU (Xu et al., 2016). As a potent anti-
hyperuricemic agent, most attention has been concentrated on the
development of URAT1 inhibitors, such as dotinurad, epaminurad
(URC-102) and XNW3009. In addition, ABP-671 (developed by
New Elemental Pharmaceuticals) has emerged as a promising
therapeutic candidate due to its concurrent inhibition of
URAT1 and GLUT9, demonstrating synergistic dual-target
inhibition of urate reabsorption. clinical trials have demonstrated
a 30% improvement in urate-lowering efficacy compared to single-
target agents, particularly in treatment-refractory populations
(Dong et al., 2019). Recently, Granados et al. discovered a
transport route from gut microbes to the liver, and then to
kidney-mediated OAT1 transport for the gut-derived metabolites
(e.g., indolyl sulfate, p-cresol sulfate, deoxycholate, etc.), indicating a
central role for kidney urate transporters in modulating gut flora-
dependent metabolism (Granados et al., 2023). Mechanistically,
OAT1 plays a role in transporting uremic solutes or uremic
toxins in the circulation by directly interacting with multiple gut-
derived metabolites (Granados et al., 2023). Nevertheless, the
specific role of urate transporters in modulating the intestinal
microbiome and its metabolites needs further investigation to
discover novel therapeutic strategies for delaying the
progression of HN.

Escherichia coli and Aspergillus spp., which secrete XOD have
been verified to catalyze purines into uric acid in the intestinal tract,
thus reducing intestinal absorption of dietary purines (Crane et al.,
2013). Yamada et al. (2016) discovered that Lactobacillus
spp. regulate serum uric acid levels by uptaking and utilizing
purines. The PICRUST analysis indicated that hyperuricaemia
was associated with prominent alterations in gut microbiota
involved in nucleotide and lipid metabolism. Allopurinol and
benzbromarone exhibited uric acid-lowering potency by
modulating microbial genera in hyperuricaemic rats,
characterized by an increase of Bifidobacterium and a decrease of
Adlercreutzia Anaerostipes (Yu Y. et al., 2018). Surprisingly, these
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two microbial genera have been confirmed to be closely related with
the reduction of UA. Moreover, Spearman analysis showed a strong
correlation between the increased in the genus Adlercreutzia and the
trimethylamine-N-oxide (TMAO) levels in CKD patients with low
glomerular filtration rates (GFRs, GFR < 7 mL/min/1.73 m2) (Xu
et al., 2017), which could further exaggerate hyperuricaemia.
Therefore, it can be speculated that intestinal flora-derived
metabolites with nephrotoxic properties, such as TMAO, raise
blood UA by injuring renal function (Yu Y. et al., 2018).

However, beneficial intestinal flora indirectly moderate serum
UA levels by producing small molecule metabolites, such as
short-chain fatty acids (SCFAs), including butyrate, and
propionate (Chu et al., 2021), etc. SCFAs have been proved to
play a direct and indirect role in regulating metabolism,
inflammation, immune response, and maintenance of mucosal
barrier function (Mann et al., 2024). Growing evidence has
demonstrated that gut-derived SCFAs, mainly produced by
anaerobic bacilli, bifidobacteria, fungi, streptococci, and

FIGURE 1
Pathogenesis of hyperuricemic nephropathy (HN). HN is a renal dysfunction secondary to uncontrolled long-term hyperuricemia. Dysfunction of
urate-related transporters, such as urate transporter 1(URAT1), glucose transporter 9 (GLUT9), ATP-binding cassette subfamily Gmember 2 (ABCG2), and
organic anion transporters (OATs), lead to the abnormal metabolism of urates in the kidney. The chronic elevation of uric acid (UA) and monosodium
urate (MSU) crystals exacerbate the vicious cycle within the kidney through promoting oxidative stress, immune-inflammatory response, renal
dysfunction and pro-fibrotic progression, eventually leading to HN.

TABLE 1 The intestinal flora involved in hyperuricemia.

Intestinal flora Species References

Bacteroides caccae and Bacteroides xylanisolvens↑; Faecalibacterium prausnitzii and Bifidobacterium
pseudocatenulatum↓

Gout patient Guo et al. (2016)

Alipipes, Dialister, Roseburia, Gemmiger, and Faecalibacterium↑; Bifidobacterium, Klebsiella, and Clostridium↓ Asymptomatic hyperuricemia
patient

Yang et al. (2021)

Bacteroides, Parabacteroides, Gemella, Lactococcus, Anaerostipes, Dorea, Anaerotruncus, Allobaculum, Holdemania,
Desulfovibrio, Morganella, and Proteus↑; Rothia, Collinsella, Prevotella, Odoribacter, Lactobacillus, Streptococcus,
Clostridium, Dehalobacterium, Ruminococcus, and Anaeroplasma↓

SD rat (10% high-fat feed) Yu et al. (2018b)

Bacteroidetes and Proteobacteria↑; Firmicutes↓ Mouse (potassium oxazinate) Cao et al. (2022a)
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Lactobacillus, regulate host health through energy regulation,
intestinal mucosal barrier, and immune regulation, which are
involved in water-electrolyte homeostasis, oxidative stress and
immuno-inflammatory responses in the gut. Previous studies
have found that SCFAs could significantly reduce the serum uric
acid levels in HUA mice induced by potassium oxonate and
hypoxanthine. Moreover, SCFAs supplementation has a dose-
dependent inhibitory effect on renal transporters, URAT1 and
GLUT9, with the inhibitory effect of SCFAs on GLUT9 being
reversible. Activating G protein-coupled receptors (GPCRs, such
as GPR41 and GPR43) (Li Y. et al., 2022) and inhibiting the activity
of histone deacetylase (HDACs) (Thomas and Denu, 2021),
intestinal SCFAs might attenuate the immuno-inflammatory
response of gut and other organs induced by hyperuricemia
through activating GPCRs and PI3K/AKT/mTOR signaling
(Zhao et al., 2018) pathways and weakening HDACs activity.
However, the specific mechanism needs further investigation.

2.2 The mechanistic role of soluble uric acid
(SUA) in the renal dysfunction

SUA has various effects on the kidney, including pathological
and physiological processes such as renal arteriopathy,
glomerulosclerosis, tubular injury, interstitial fibrosis, and tubular
hypertrophy (Jing et al., 2020). Studies have reported that SUA can
act as an antioxidant, scavenging unpaired oxygen, oxygen radicals,
and peroxynitrite, as well as chelating transition metals. Its
antioxidant capacity accounts for half of the total antioxidant
capacity of human plasma (Kumar et al., 2015). As
demonstrated, physiological concentrations of SUA inhibit the
expression of TNF-α and IL-1β-induced inflammatory factors in
primary porcine chondrocytes and exert a protective effect on
cartilage in collagen-induced arthritis in mice (Lai et al., 2017).
Interestingly, SUA exhibits pro-oxidant and pro-inflammatory
properties in several studies (So and Thorens, 2010). SUA
induces vascular endothelial injury, which is closely related to
micro-inflammation, oxidative stress, and lipid metabolism
disorders. Notably, the modeling concentration of uric acid used
in vitro experiments reached 20 mg/dL (namely, 1,200 μmol/L) (Yin
et al., 2019), which is much higher than the common pathological
levels in hyperuricemic individuals. Therefore, it is suggested that
the modeling conditions for hyperuricemia and HN should be
consistent with the actual pathological situations.

Once inside the cells, SUA acts as a pro-oxidant molecule,
activating fibrotic signaling pathways, including AMPK, ERK1/2,
PI3K/Akt, JAK/STAT, NF-κB, and the NLRP3 inflammasome,
which trigger oxidative stress and inflammatory responses in the
kidney (Li K. et al., 2023). In addition to stimulating an increase in
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase
activity and reactive oxygen species (ROS) production (Sautin et al.,
2007), low concentrations of supraphysiologic SUA act as a pro-
oxidant, playing a role in renal pathophysiology. Studies have
demonstrated that mild hyperuricemia in mice that underwent 5/
6 nephrectomy, exhibited significant renal injury and inflammatory
responses (Omizo et al., 2020). In contrast, febuxostat protected the
kidneys from hyperuricemia, suggesting the protective role of a uric
acid-lowering strategy targeting XOD in the kidneys. Given that

hyperuricemic nephropathy is a progressive condition, the pro-
oxidant and pro-inflammatory roles of SUA need to be clarified
more specifically at different stages of CKD progression.

2.3 The mechanistic role of monosodium
urate (MSU) crystal in the renal dysfunction

In clinical observations, MSU deposits can be detected by
ultrasonography and dual-energy CT examination in the renal
tissues and joints that have been affected. As a damage-associated
molecular pattern (DAMP), MSU deposition activates a local
immuno-inflammatory response, leading to the activation of the
NOD-like receptor protein 3 (NLRP3) inflammasome, which
produces and releases active IL-1β and IL-18. This alteration
initiates the amplification of the inflammatory cascade and
profibrotic degeneration in the kidney, ultimately causing
glomerular and tubular pathology (Mei et al., 2022). Notably, it
has been found that MSU affects the binding of the uric acid
transporter URAT1 to Numb, a protein that controls the
endocytosis process (Wu et al., 2015), as well as
OAT1 membrane endocytosis (Wu et al., 2016). This leads to
elevated URAT1 expression and reduced OAT1 expression,
which exacerbate the imbalance in urate metabolism, thereby
deteriorating renal function. In addition, MSU promotes the
apoptosis of kidney cells by inducing the production of reactive
oxygen species, increasing nitric oxide synthase activity and
mitochondrial caspase enzymes activity, as well as the activation
of apoptosis-dependent signaling pathways (Choe et al., 2015), thus
exacerbating kidney injury. It cannot be ignored that MSU
accumulates in the urinary system, transforming from urate
crystals into urate stones, which increases the risk of obstructive
nephropathy, urinary tract infections, and kidney damage (Jiang C.
et al., 2023). Therefore, it is generally believed that local immuno-
inflammatory responses, renal fibrosis, apoptosis, and renal
obstruction are responsible for the renal injury caused by
MSU crystals.

2.4 The imbalance of intestinal immune
barrier promotes HN progression

Currently, the pathophysiological role of gut microbiota has
been confirmed in various chronic kidney diseases. It has been
discovered that patients with gout and hyperuricemia exhibit an
imbalance in intestinal ecology, along with increased levels of
harmful metabolites in the serum and intestines (Guo et al.,
2016). The intrinsic barrier of the intestinal mucosa consists of
intestinal epithelial cells, associated connective structures, and
robust immunity. Intestinal epithelial cells protect the intestinal
barrier by forming physical and biochemical barriers against
pathogenic microorganisms, thus participating in the regulation
of the mucosal immune system (Yang et al., 2023). When the
intestinal barrier function is impaired, endotoxins released by
pathogenic microorganisms enter the bloodstream from the
intestinal tract, which tends to trigger a series of immune-
inflammatory responses (Peterson and Artis, 2014) (Figure 2).
Guo et al. (2019) discovered that hyperuricemic mice, in which
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the uric acid oxidase gene was knock out, showed intestinal barrier
dysfunction, subsequent elevated intestinal permeability, and
exacerbated renal dysfunction, presumably associated with uric
acid-induced inflammatory responses. This suggests a close
relationship between hyperuricemic-induced kidney insult and
the disruption of intestinal immune barrier. Meanwhile, SUA
upregulates the expression of urate transporters PDZK1 (PDZ
domain-containing protein 1) and ABCG2 in HT-29 (human
colon cancer cells) and Caco-2 cells (human colorectal
adenocarcinoma cells) by activating the TLR4-NLRP3
inflammasome and PI3K/Akt signaling pathways, thereby
promoting the excretion of uric acid in intestinal cells (Chen
et al., 2018). Conversely, previous studies have considered the
protective role of SUA in NSAID-induced enteropathy due to the
antioxidant effect of uric acid. Yasutake et al. (Yasutake et al., 2017)
demonstrated that the oral administration of uric acid and
intraperitoneal injection of inosinic acid and potassium oxonate
ameliorated NSAID-induced enteropathy in mice by decreasing
oxidative stress, lipid peroxidation, and cytotoxicity induced by
indomethacin. This implies the potential therapeutic role of SUA
in inflammatory enteritis.

In addition to maintaining urate homeostasis by modulating
urate transport-related proteins in the intestine, the gut macrobiotic
communities and their metabolites affect hyperuricemia and HN
progression by regulating “chronic low-grade inflammation” and
activating pro-fibrotic signaling. In addition to its pro-inflammatory
role in the progression of renal fibrosis, serum urate, together with
pro-inflammatory cytokines and mediators, aggravates renal fibrosis
via multiple signaling pathways, including PI3K/AKT/mTOR,
MAPK/NF-κB-NLRP3 inflammasome, IL-6/JAK2/STAT3, TGF-β/
SMAD3, and Wnt/β-catenin signaling pathways. More recently, the
roles of pyroptosis, neutrophil extracellular traps formation (Wu
et al., 2024), and ferroptosis (Li et al., 2024) in HN have been
emphasized, suggesting novel potential approaches for treating
progressive HN.

Hyperuricemic animals induced by high-fat and high-fructose
diets and alcohol abuse exhibit a disordered gut microbiome, which
parallels that seen in hyperuricemic and gouty patients (Zhang C.
et al., 2022). The concept of the “gut-kidney axis” was introduced by
Meijers et al., in 2011 (Meijers and Evenepoel, 2011), highlights the
bidirectional relationship between the gut microbiota and kidney
function. Moreover, insoluble fiber from diets and probiotic

FIGURE 2
The disruption of the intestinal mucosal immune system promotes the progression of HN. A high-fructose and high-purine diet, along with a poor
lifestyle, destroys the intestinal ecology. This disruption promotes the release of lipopolysaccharide (LPS), p-cresyl sulfate (PCS), trimethylamine-N-oxide
(TMAO), and other toxic substances. Accompanied by chronic hyperuricemia, intestinal pathogenic microorganisms and their toxic substances
synergistically contribute to the breakdown of the intestinal immune barrier through the activation of intestinal innate immunity and injury to the
intestinal epithelial cells. These gut-derived harmful metabolites and pro-inflammatory mediators enter the kidney via the bloodstream and further
aggravate the renal dysfunction by activating inflammation, oxidative stress and fibrosis.
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supplements attenuate renal injury and fibrosis induced by
hyperuricemia by restoring the gut microbiota and SCFAs (Li Y.
et al., 2022). Furthermore, a growing body of literature has
demonstrated that strategies targeting the gut microbiota and
inflammation can alleviate renal fibrosis in hyperuricemia (Lv
et al., 2020; Pan et al., 2020). However, well-designed
experiments are needed to distinguish whether alterations in the
gut microbiota are a primary cause or secondary to hyperuricemia.
Notably, the role of gut therapy in HN appears to change
dynamically with disease progression and the individual
differences of the patients. In patients with early-stage HN or
those exhibiting compensatory enhancement of intestinal uric
acid excretion, therapies targeting the gut microbiota (e.g.,
probiotics, fecal microbiota transplants) may serve as a core
therapeutic strategy. These interventions aim to restore microbial
imbalance and alleviate uric acid accumulation. Conversely, in cases
of advanced renal impairment, a combined approach integrating
renoprotective therapies with gut-targeted interventions may be
required to optimize patient management. In summary, the
relationship between the gut and the kidney influences the
disease process by regulating urate metabolism and transport
processes. Therefore, this paper summarizes single herb and
TCM formulas that have dual-regulatory effects on both the gut
and the kidney. This summary aims to develop new perspectives and
research ideas for the clinical treatment of hyperuricemic
nephropathy and the development of TCMs drugs.

3 The dual-regulatory effect of intestine
and kidneys of TCMs for HN treatment

3.1 TCM formulas

3.1.1 Regulating intestinal flora and metabolites
Ermiao San, a traditional Chinese medicinal compound, reduces

uric acid levels, attenuates glomerular atrophy, and diminishes
vacuolar degeneration of renal tubular epithelial cells by
inhibiting XOD activity. It has been shown to have preventive
and therapeutic effects on hyperuricemia and relate conditions
(Shan et al., 2021; Wei et al., 2018). Bining Decoction is a
Chinese medicinal preparation derived from Ermiao San, has the
efficacy of clearing heat, inducing dampness and eliminating edema.
Studies have found that Bining Decoction improves disease-related
imbalances in vivo, inhibits XOD activity and JAK2 expression
within the JAK/STAT pathway, regulates the intestinal flora, and
enhances the intestinal barrier. All of these actions play crucial roles
inmodulating inflammatory factors and apoptotic pathways (Huang
et al., 2022).

When administered via enema, the Rhubarb Compound
Preparation treats chronic kidney disease by regulating
autophagy, apoptosis, intestinal flora and barrier function (Zou
et al., 2012; Xiang et al., 2020; Zhang F. et al., 2023). More
recently, a systematic review and meta-analysis revealed that
rhubarb (Rhei Radix et Rhizoma) has a positive therapeutic effect
on chronic renal failure (Huang W. et al., 2023). However, as a
hospital-prepared formulation, the efficacy and safety of rhubarb-
based TCMs therapy needs to be evaluated by high-quality
clinical trials.

Compound Tu-Fuling Oral-Liquid (CoTOL), a clinically used
Chinese herbal formula for the treatment of hyperuricemia and
gout, works by affecting XOD activity and regulating the intestinal
flora to reduce uric acid production (Gao et al., 2020). The results of
a randomized double-blind controlled trial showed that CoTOL was
effective in reducing sUA levels and in preventing acute arthritic
flares in gouty patients (Xie et al., 2017). However, a short
observation period and the absence of a positive control affect
the reliability and validity of this trial. As the main ingredient,
Poria cocos can significantly improve renal function, glomerular
atrophy, and tubular dilation in hyperuricemic rats. Furthermore, its
nephroprotective effect is achieved by increasing the abundance of
Bacteroidetes, Alistipes and Parabacteroides in the intestinal tract,
and decreasing the relative abundance of Firmicutes, thereby
regulating the intestinal flora (Wang K. et al., 2022).

As a Tibetan medicine, Shiwuwei Rupeng Pills downregulate the
expression levels of tumor necrosis factor (TNF), STAT3, and ALB
mRNA, while upregulating the expression levels of PPARG mRNA
in the renal tissues of rats with HN. These actions inhibit renal
inflammatory factors and improve renal injury. Furthermore, the
pills play a therapeutic role in treating HN by regulating the
structure of the intestinal flora and the expression of signaling
pathways and related targets, such as AGE-RAGE, interleukin-17
(IL-17), TNF, and others (Omizo et al., 2020; Xie et al., 2022).
Clinical trials shows that after 3–6 courses of treatment, arthritis
redness, swelling, and pain can be effectively alleviated, and the
therapeutic efficiency can reach 93% (La and Tai, 2018), however,
the specific mechanism requires further research.

3.1.2 Regulating intestinal urate-related
transporters

Dendrobium officinalis Six Nostrum, which adds Dendrobium
ironpierre to the basis of Si-Miao Pill, effectively regulates the
expression levels of urate transporter proteins URAT1,
ABCG2 and PDZK1 in the kidneys, as well as intestinal GLUT9,
ABCG2, and CNT2 proteins, thereby reducing the level of uric acid.
It also inhibits the LPS/TLR4/NF-κB signaling to reduce the
secretion of renal inflammatory factors (Chen et al., 2020).
Additionally, Dendrobium officinalis Six Nostrum significantly
downregulates CNT2 protein expression, which reduces purine
transport from the intestine back to the blood and inhibits XOD
activity, leading to a decrease in uric acid production. Furthermore,
it restores the protein expression of tight junctions, such as ZO-1
and claudin-1, thereby protecting the intestinal barrier function (Ge
et al., 2023).

The combination of Polyonum Cuspidatum and Ramulus
Cinnamomi reduces uric acid reabsorption by inhibiting the
overexpression of the renal transporter protein URAT1 at both
mRNA and protein levels. It also increases uric acid secretion by
promoting the expression of the renal transporter protein OAT3 at
the mRNA and protein levels, as well as the small intestinal ABCG2
(Shi et al., 2016; Zhu, 2018).

Miao medicine Tongfengting reduces uric acid levels through
several actions: it downregulates the intestinal ABCG2 gene, and
downregulates the URAT1 gene (Cao et al., 2021). Furthermore, it
decreases the protein expression associated with renal injury, such as
KIM-1, NGAL, TIMP-1, and MCP-1, thereby playing a role in
protecting renal function (Cao Y. P. et al., 2022).
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3.1.3 Inhibiting intestinal immuno-inflammation
Yiyi Fuzi Baijiang Powder, derived from Zhang Zhongjing’s The

Essentials of the Golden Chamber, has anti-diarrhea activity. Modern
pharmacological studies have found that Yiyi Fuzi Baijiang Powder
repairs intestinal mucosal damage, regulates immune balance and
intestinal flora, and reduces inflammation and oxidative stress
damage (Wang S. N. et al., 2023; Wei et al., 2023). Clinical
research has showed that Yiyi Fuzi Baijiang Powder significantly
reduces uric acid levels in patients with hyperuricemia in CKD
stages 1–3. However, further exploration of the mechanisms
affecting renal function is still needed (Zhao, 2023).

3.1.4 Modulation in multiple pathways, aspects
and organs

Quzhuo Tongbi Recipe is effective in strengthening the spleen
and kidney, and possesses anti-inflammatory and analgesic
properties. It was found that Quzhuo Tongbi Recipe regulates the
expression of the urate transporter protein ABCG2, regulates the
intestinal microbiota and regulates cell differentiation through
PI3K-AKT-mTOR pathway. It also downregulates the levels of
amino acids dependent on the fermentation of intestinal flora,
increases the abundance of intestinal butyrate-producing bacteria
and the expression of their metabolites SCFAs, inhibits the
production of intestinal inflammatory factors, and restores the
function of the intestinal barrier (Song et al., 2023; Wen et al.,
2021; Liu et al., 2019).

As a classic formula, Si Miao San is mainly composed of
Atractylodes Lance (Thunb.) DC, Phellodendri Chinensis Cortex,
Achyranthes bidentata, Coix lacryma-jobi var. It has the efficacy of
clearing heat and dispelling dampness. The treatment of HN with Si
Miao San is mainly reflected in its ability to inhibit uric acid
production and promote uric acid excretion. This is achieved by
regulating the transduction of JAK2/STAT3 and PI3K/Akt signaling
pathways, increasing the expression of the anti-inflammatory factor
IL-10, and decreasing the expression of pro-inflammatory factors
such as TNF-α, IL-6, and IL-1β. Additionally, it regulates the uric
acid transporter proteins URAT1, GLUT9, and OAT1 (Cao L. et al.,
2022; Zhang Y. et al., 2023). Further studies have found that Si Miao
San inhibits NLRP3 inflammasome to reduce intestinal
inflammation and alters the composition and function of the
intestinal flora (Lin et al., 2020; Zhang, et al., 2022e). Clinically, a
derivative of Si Miao San is mainly applied, with Tu Fu Ling and
Lonicera japonica added to improve renal function (Zhang G.
J. et al., 2022). Systematic evaluations and meta-analysis have
shown that Modified Si Miao Decoction exerts therapeutic effects
on gout through its anti-inflammatory and uric acid-lowering effects
(Liu et al., 2017). However, due to poor quality of research
methodology adopted in the included clinical trials, there is a
strong need for multi-center randomized trial designs with
sufficient samples to further validate its efficacy and safety.

The Bi Xie Fen Qing Yin improved renal inflammation, fibrosis
and water-fluid metabolism disorders in mice by inhibiting the
activation of the NLRP3 inflammasome and pro-fibrotic signaling. It
also had a certain modulating effect on intestinal flora disorders,
metabolite abnormalities, intestinal inflammation, intestinal barrier
damage, and uric acid excretion in mice (Lin, 2022). In clinical
practice, the combination of Bi Xie Fen Qing Yin with febuxostat
was found to have more significant efficacy in improving renal

function in patients with HN after drug interventions were
administered (Li X. Q. et al., 2022), However, the trail conducted
in a small sample size limits the clinical application.

The Cichorium intybus L. Formula inhibited the expression of
STAT3, vascular endothelial growth factor A (VEGFA) and SIRT1.
It also regulated the diversity and community structure of intestinal
flora and improved the symptoms of HN (Amatjan et al., 2023). In
addition, chicory was found to regulate the expression of the
intestinal ABCG2 protein to promote uric acid excretion (Wang
et al., 2017).

Sishen Pill reduced the level of TMAO in serum, kidney and
small bowel by regulating Firmicutes, Succinum hispidum and
Clostridium butyricum. It also prevented the transmission of
inflammatory factors, such as NLRP3 and IL-1β, through the
“gut-kidney axis,” thereby improving intestinal barrier injury and
renal fibrosis (Xie et al., 2024). (Table 2)

3.2 Single herbals

3.2.1 Regulating intestinal flora and metabolites
Poria cocos, the dried mycelium of P. cocos (Schw.) Wolf from

the family Polyporaceae, is known for its dual role as both a
medicine and a food. Studies have shown that it improves renal
function in hyperuricemic rats by upregulating the expression of the
ABCG2 protein (Liang et al., 2021). Additionally, P. cocos regulates
the beneficial intestinal flora, alleviates renal tubular dilation,
glomerular atrophy, and cellular vacuolization in the kidney
(Wang K. et al., 2022). The polysaccharide found in P. cocos
enhances the intestinal barrier in mice and maintains the balance
of intestinal flora, contributing to its therapeutic effects (Duan
et al., 2023).

Coicis Semen is the dried mature seed kernel of C. lacryma-jobi
L.var.ma-yuen (Roman.) Stapf, from the family Gramineae. The oil
derived from Coicis Semen reduces the imbalance of intestinal flora
and inhibits the expression of factors that cause intestinal
inflammation. This was achieved by decreasing the levels of
enterococci and Enterobacteriaceae, and increasing the relative
abundance of Bifidobacteria and Lactobacillus in mice (Wang T.
et al., 2020). Additionally, an extract from C. lacryma has been
shown to inhibit XOD activity, thereby reducing uric acid levels and
ameliorating renal damage in cases of HN (Sui et al., 2023).

Turmeric, the dried rhizome of Curcuma Longa L. from the
family Zingiberaceae, contains the active ingredient curcumin.
Curcumin regulates the structure of the intestinal flora, thereby
enhancing the intestinal barrier. It also inhibits XOD activity,
alleviates renal tubular interstitial fibrosis, and reduces the
production of inflammatory factors and the secretion of PO-1.
Additionally, curcumin prevents the activation of the
NLRP3 inflammasome signaling pathway. These actions
contribute to curcumin’s therapeutic role in treating HN and
reducing inflammation (Chen et al., 2019; Shen et al., 2017; Xu
et al., 2021).

Astragalus membranaceus, the dried root of Astragalus
membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao or A.
membranaceus (Fisch.) Bge., belongs to the legume family. It
possesses anti-inflammatory, antioxidant, and
immunomodulatory functions (Auyeung et al., 2016). Studies
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TABLE 2 The effects of TCM formulas on kidney and intestine.

TCM formula Ingredients Model Kidney
effects

Intestinal effects References

Bining decoction Dioscorea opposita Thunb,
Plantago ovata Forssk,
Atractylodes macrocephala Koidz,
Coix lacryma-jobi L., Eucommia
ulmoides Oliv, Cyperus rotundus
L., Ligusticum chuanxiong Hort,
Ligusticum wallichii Franch,
Lonicera japonica Thunb

HN mice (adenine and
yeast)

UA↓, BUN↓,
CREA↓, renal
body mass index
(RBMI)↓

There was a significant change in the
abundance of E. faecalis, E.
romobacterium, E. bifidum, E.
anisopliae, E. odorata, E. furfur
NK4A136 group, unclassified E. furfur,
E. rossbarella, E. furfur, Lactobacillus
spp., E. dublinii, S. rhamnosus, and B.
tularensis in the comparison of
abundance between the groups

Huang et al. (2022)

Rhubarb compound Rheum rhabarbarum L.,
Taraxacum officinale F.H. Wigg,
Moringa oleifera Lam., etc.

Patients with chronic renal
failure in the nondialysis
phase

BUN↓,
CREA↓, UA↓

Bifidobacteria and Lactobacillus↑ Zou et al. (2012)

Compound Tu-fuling
oral-liquid

Poria cocos (Schw.) Wolf,
Dioscorea villosa L., Curcuma
longa L., Sambucus nigra L.,
Datura stramonium L., Zea mays
L., Coix lacryma-jobi L.

HUA rats (potassium
oxide)

UA↓ Akkermansia, Bacteroides and Beppe’s
algae↑, Beppe’s algae↓

Gao et al. (2020)

Shiwuwei rupeng pills Fifteen flavors, including
frankincense (Boswellia carterii
(Birdw.) Birdw. ex Baker), Cassia
tora, Galium davidii, Sapindus
mukorossi Gaertn, iron rod
hammer (made), etc.

HN rats (adenine and
ethambutol)

UA↓,
CREA↓, BUN↓

Acteroides, Akkermansia, Ralstonia
and Prevotellaceae Ga6A1 group
genera↓, Lactobacillus and
Ruminococcaceae UCG-014↑

Xie et al. (2022)

Dendrobium
officinalis six nostrum

Dendrobium officinale, Rhizoma
Atractylodis Atractylodes
macrocephala Koidz, Rhizoma
Atractylodis Macrocephalae, Coix
lacryma-jobi L.

HUA rats (hypoxanthine
and potassium oxonate)

sUA↓, FUA↓ Modulation of intestinal uric acid
transporter protein GLUT9 and
ABCG2 protein levels; restoration of
ZO-1 and claudin-1 expression to
protect intestinal barrier function

Chen et al. (2020),
Ge et al. (2023)

Combination of
Polyonum
Cuspidatum and
Ramulus Cinnamomi

Atractylodes lancea (Thunb.) DC.
and Cinnamomum verum J.Presl

HUA rats (hypoxanthine
and potassium oxonate)

sUA↓, CREA,
BUN↓, UUA↓

Intestinal uric acid transporter
protein ABCG2 expression↑

Shi et al. (2016),
Zhu (2018)

Miao medicine
Tongfengting

Gypsum Caesarum,
Anemarrhena asphodeloides
Bunge, Cibotium barometz (L.)
J. Sm, Lobelia chinensis Lour, Coix
lacryma-jobi L., Tian Qi Cao,
Phellodendron amurense Rupr,
stolonifera Curt, etc.

HUA rats (adenine and
potassium oxonate)

sUA↓,
CREA↓, BUN↓

Intestinal ABCG2 gene expression↑ Feng et al. (2021)

Yiyi fuzi baijiang
powder

Coix lacryma-jobi L., Epiphyllum
oxypetalum, and septoria

Patients with gouty arthritis UA↓ Mycobacterium anisopliae and
Lactobacillus↑, Mycobacterium
thickum and Mycobacterium
anisopliae↓; IL-6 and CASP3↓; IL-10,
PCNA, EGF, Occludin, and ZO-1↑

Wang et al.
(2023b), Zhao
(2023)

Quzhuo Tongbi
recipe

Poria cocos (Schw.) Wolf,
Dioscorea opposita Thunb, Cornu
Cervi, Coix lacryma-jobi L.,
Pseudostellaria heterophylla,
Morus alba L., Curcuma zedoaria
(Christm.) Roscoe, Ligusticum
chuanxiong Hort, Psoralea
corylifolia L.

HUA Rats (yeast paste and
potassium oxybate)

UA↓ Collinsella Proteus↑; Gemella,
Anaerostipes and Desulfovibrio↓

Liu et al. (2019)

Quzhuo Tongbi
recipe

Gouty arthritis mice (yeast
and MSU)

sUA↓ Mycobacterium anisopliae phylum;
Coccidioides butyric acidophilus↑;
affected the levels of fecal SCFAs; uric
acid transporter protein ABCG2↑;
intestinal NLRP3, IL-1β, and TNF-α
mRNA levels↓

Wen et al. (2021)

Quzhuo Tongbi
recipe

Uox-KO (uric acid oxidase
knockout) hyperuricemic
and gouty mice

sUA↓, sCREA↓,
UUA↓, UCREA↓,
UTP↓, UALB↓

Mycobacterium anisopliae and
Mycobacterium thickum↓;
Heterobacterium spp. and
Candida spp.↑

Song et al. (2023)

Si Miao San and Si
Miao derivative
formula

Phellodendron chinense Schneid,
Atractylodes macrocephala Koidz,
Hyssopus officinalis L., Coix
lacryma-jobi L., Poria cocos

HUA mice (potassium
oxalate and hypoxanthine)

UA↓, BUN↓,
CREA↓, UACR↓

Rumococcus spp. _UCG-014,
Enterococcus spp. Lactobacillus spp↓;
Allobaculum, Duchenne, Rumococcus
spp. _NK4A214, and Rhodobacter
spp↑. intestinal ABCG2 expression↑

Zhang et al.
(2022b)

(Continued on following page)
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have shown that A. membranaceus reduces uric acid levels by
regulating intestinal flora and metabolites (Zhao et al., 2022).
Furthermore, when fermented with Bacillus subtilis, A.
membranaceus downregulates the expression of uric acid
transporter proteins, URAT1 and GLUT9, and inhibits XOD
activity, thereby reducing uric acid levels (Wang R. et al., 2023).

Mountain waxberry, the leaf of Chimonanthus nitensOliv. in the
genus Waxberry and family Waxaceae, restores intestinal
homeostasis by regulating the abundance of beneficial intestinal
bacteria and the expression of proteins related to the intestinal
barrier. Additionally, mountain waxberry regulates XOD activity,
influences genes and proteins involved in the reabsorption and
secretion of uric acid, inhibits uric acid production, and
promotes its excretion, thereby reducing the UA-mediated kidney
damage (Meng et al., 2023).

Andrographis paniculata is the dried aerial part of A. paniculata
(Burm. f.) Nees, family Dioscoreaceae. The total saponins of A.
paniculata reduce uric acid and exert anti-inflammatory effects by
regulating intestinal flora andmetabolites (Yu et al., 2023). They also
inhibit the activities of XOD and adenosine deaminase (ADA),
subsequently downregulating the expression of the OAT1, which
helps in the urate metabolism.

3.2.2 Regulating intestinal urate transporters
Stevia, a member of the Asteraceae family, is rich in flavonoids

and chlorogenic acid compounds. It possesses antioxidant, anti-
inflammatory, and anti-fibrotic effects. Studies have shown that
stevia residue extract improves kidney function in hyperuricemic
mice by upregulating the expression of the ABCG2 protein and
downregulating the expression of the GLUT9 protein (Mehmood
et al., 2019). This was achieved through the MMP-7 and MMP-9/β-
catenin signaling pathways, which helped to reduce fibrosis and
epithelial-mesenchymal transition (EMT). Additionally, stevia
inhibited the activation of the NF-κB/NLRP3 pathway via the

AMPK/SIRT1 pathway and modulated the JAK2-STAT3 and
Nrf2 signaling pathways, which contributed to the reduction of
renal inflammation (Mehmood et al., 2022).

3.2.3 Modulation in multiple pathways, aspects
and organs

A water-soluble polysaccharide in L. japonica was able to
attenuate oxidative stress in vivo, reduce kidney injury caused by
excess reactive oxygen species and regulate intestinal flora, and
downregulate IL-1β, IL-6, TNF-α,COX-2-related inflammatory
factors (Sun et al., 2023). It also reduced uric acid levels (Yang
et al., 2019). Chlorogenic acid in L. japonica extract reduced serum
lipopolysaccharide (LPS) levels and downregulated the mRNA
expression of IL-18, TNF-α, NLRP3, and Caspase-1. Additionally,
it inhibited the activation of TLR4/MyD88/NF-κB signaling
pathway in the kidneys, thereby alleviating renal inflammation in
hyperuricemic mice. Furthermore, it regulated the intestinal flora,
metabolites, and inflammation factors gene expression to ameliorate
the inflammatory response (Zhou et al., 2021).

Saffron, the dried stigma of Crocus sativus L. from the family
Iridaceae, contains the main constituent crocin, a type of flavonoid.
Crocin inhibited and reduced the activity of XOD, regulated the
expression of renal and intestinal URAT1, GLUT9, and
ABCG2 genes and proteins, lowered uric acid levels, and
modulated intestinal flora. These actions effectively alleviated the
symptoms of HN (Chen et al., 2022).

Poria cocos is the dried sclerotium of a fungus, not a plant, and it
contains quercetin, which interacts with XOD to reduce uric acid
levels (Li X. et al., 2022). It also contains flavonoids that inhibit the
expression of oxidative stress and inflammatory-related factors in
the kidney, and regulate the expression of genes ABCG2, OAT1,
organic cation transporter 2 (OCT2), and organic cation
transporters novel 2 (OCTN2) to reduce uric acid levels (Wang
et al., 2019). Additionally, P. cocos regulates the content of intestinal

TABLE 2 (Continued) The effects of TCM formulas on kidney and intestine.

TCM formula Ingredients Model Kidney
effects

Intestinal effects References

(Schw.) Wolf, Lonicera japonica
Thunb

Bi Xie Fen Qing Yin Dioscorea opposita Thunb,
Eucalyptus, Calamus rotang L.,
and Arctostaphylos uva-ursi (L.)
Spreng

HUA mice (adenine and
potassium oxonate)

sUA↓, BUN↓,
CREA↓, RBMI↓

Zo-1, Claudin-1, and Mucin-3↑;
MMP-9↓; Intestinal
ABCG2 expression↑; Bifidobacterium,
Desulfovibrio, Enterobacter,
Faecalibaculum, the Helicobacter,
Lactobaacilus, and Parabacteroides↑;
uminococcaceae UCG 013 and
Streptococcus↓

Lin (2022)

Cichorium intybus L.
formula

Ch Cichorium intybus L.,
Gardenia jasminoides J.Ellis,
Pueraria mirifica Craib, Lilium
candidum L., Morus alba L.,
Angelica dahurica (Fisch. ex
Hoffm.) Benth. et Hook.f.,
araxacum officinale F.H. Wigg

HN rats (adenine and
ethambutol)

UA↓, UREA↓,
CREA↑; STAT3,
VEGFA and
SIRT1↓

Mycobacterium anisopliae↓;
Lactobacillaceae, Erythrobacteriaceae,
Lacertidae, Ruminococcaceae, and
Bifidobacteria↑; intestinal
ABCG2 protein expression↑

Amatjan et al.
(2023)

Sishen Pills Myristica fragrans Houtt,
Schisandra chinensis (Turcz.)
Baill, Evodia rutaecarpa (Juss.)
Benth, Zingiber officinale Roscoe,
and Ziziphus jujuba Mill

Diarrhea with kidney-yang
deficiency syndrome mouse
(adenine and Folium sennae
decoction)

IL-1β, IL-4, IL-9,
and IL-17A↓

Akkermansia, unclassified
Muribaculaceae, and
Lactiplatibacillus↑; Firmicutes,
Succinatimonas hippei, and
Clostridium tyrobutyricum↓

Xie et al. (2024)
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SCFAs, thereby affecting the intestinal barrier function (Zhao et al.,
2021). The contained Astilbin can increase the content of SCFAs and
regulate the intestinal flora and the expression of intestinal uric acid
transporter proteins, thereby modulating kidney injury and uric acid
excretion (Guo, 2020).

Chicory, a traditional Uyghur medicine, comes from the dried
above-ground parts or roots of two species: Cichorium glandulosum
Boiss. et Huet and Cichorium intybus L., both belonging to the
Asteraceae family. It is used to inhibit uric acid production by
regulating OAT2 expression and inhibiting XOD activity.
Additionally, it regulates the expression of intestinal flora and
intestinal ABCG2, further inhibiting uric acid production and
promoting its excretion (Wang et al., 2017). Further studies have
found that chicory extract has a comprehensive regulatory effect on
the intestinal barrier (Wang et al., 2018). It inhibits the oxidative
stress-mediated tissue injury by suppressing the expression of
intestinal inflammatory factors. It also reduces the serum levels
of D-lactic acid and beta-microglobulin, thereby improving
oxidative stress-induced tissue inflammation (Wang et al., 2020b;
Wang et al., 2020c).

Rhubarb consists of the dried roots and rhizomes of several
species, including Polygonum palmatum, Rheum palmatum L.,
Rheum tanguticum Maxim. ex Balf., and medicinal rhubarb
Rheum officinale Baill. The active ingredient, rhodopsin,
indirectly reduces uric acid levels by regulating intestinal
Lactobacillus (Wu et al., 2020). Rhein directly reduces uric acid
levels by downregulating the expression of intestinal GLUT9 (Zhou,
2017). Additionally, it inhibits XOD activity and decreases the
expression of inflammatory factors such as IL-1β, TNF-α, PGE2,
and TGF-β, which exerts uric acid-lowering and anti-inflammatory
effects (Meng et al., 2015). Stewed Rhubarb, as a processed product
of rhubarb, has been shown to exert anti-inflammatory and
antifibrotic effects by inhibiting the activation of renal
NLRP3 and decreasing the mRNA levels of Il-1β, TNF-α, Col1a1,
and Fibronectin in adenine-induced chronic renal failure (CRF)
mice. On the other hand, Stewed Rhubarb increased the abundance
of Bacteroidales but reducing the contents of Rikenellaceae and
Erysipelotrichaceae in CRF mice, exerting a role in restore microbial
balance and intestinal barrier integrity (Wang R. et al., 2022).

Phellodendron chinense Schneid. exerted anti-inflammatory
effect by inhibiting renal PI3K/AKT, TNF, MAPK, TLR and
NLRP3 pathway signaling pathways (Xu et al., 2022). Palmatine
alkaloids inhibited XOD activity, downregulated GLUT9 and
URAT1 protein expression, and upregulated OAT1 and
ABCG2 expression to reduce serum uric acid levels. It also
alleviated renal inflammation and oxidative stress caused by
hyperuricemia, which contribute to targeting the Keap1-Nrf2/
NLRP3 inflammasome signaling pathway (Ai et al., 2023).
Furthermore, recent research discovered that phellodendrine, the
characteristic component of P. chinense Schneid., regulates the
composition of intestinal flora and the AMPK/mTOR-mediated
autophagy pathway to restore the intestinal mucosa injury induced
by intestinal inflammation (Su et al., 2021).

In conclusion, TCM preparations and single herbals alleviate
HN symptoms by regulating the urate-related transporters,
intestinal flora and metabolites, and immune-inflammatory
responses. The involved signaling pathways include MAPK,
AMPK/SIRT1, JAK2/STAT3, PPAR/NF-κB, PI3K/AKT/mTOR,

MMP9/β-catenin and NLRP3 inflammasome, etc. Besides
promoting uric acid excretion by regulating urate transporters,
the restorative effects of TCMs on the intestinal and renal
dysfunction are attributed to the modulation of multiple targets,
pathways and aspects, which are responsible for the anti-HN
potential of TCMs (Table 3).

4 Challenges and perspectives

In recent years, research on the potential role of altered intestine
function in hyperuricemia and HN has surged. Thus, this paper
systematically reviews the pathogenesis of HN, the effects of SUA
and MSU on renal dysfunction, and the role of the intestinal tract in
the progression of HN. This article primarily focuses on the
advancements in traditional Chinese medicine and single-flavored
Chinese medicine for HNmanagement, summarizing and analyzing
13 types of TCM and 13 single herbs. In general, we propose the
perspective that traditional Chinese medicines delay HN
progression through a dual-regulatory effect on the intestines and
kidneys, particularly by the modulation of intestinal flora and
metabolites, uric acid transporters and the immune-inflammatory
response (Figure 3).

4.1 Is intestinal therapy a core mechanism or
an adjunctive therapy?

The gut (about 30%) and the kidney (about 70%) are the main
pathways for uric acid excretion. When renal function is impaired,
intestinal excretion may be compensatorily increased and become a
key pathway for lowering serum uric acid. On the one hand, the
accumulation of toxins in the circulation induced by the renal
dysfunction, leads to an imbalance in the intestinal flora. On the
other hand, the alteration of intestinal flora leads to the release of a
large number of toxic metabolites and endotoxin, activating the
immune-inflammatory response and destroying the intestinal
mucosal barrier. This, in turn, aggravates to the renal
dysfunction in the hyperuricemia. Therefore, the multiple
modulatory effects of TCMs on intestinal excretory capacity (e.g.,
inhibition of the intestinal urate transporter), the abundance of
specific bacteria associated with purine and uric acid metabolism,
and the disturbed intestinal flora composition may become an
alternative therapeutic strategy for HN.

TCMs play a key role in increasing the beneficial intestinal
flora, such as E. faecalis spp. and Bifidobacterium spp. etc., which
aid in digestion and absorption, and stimulate the body’s
immune function to protect health. It also regulates the
neutral flora, such as L. spp., E. coli, Streptococcus spp. etc.,
which, if imbalanced, can lead to an increase in harmful
substances and toxins, promoting aging. Additionally, it helps
decrease harmful flora, such as A. spp. and Bacteriodesmus
spp. etc., which can reduce intestinal infections (Li X. et al.,
2021). Therefore, an imbalance in the intestinal flora may lead to
abnormal purine metabolism and increased uric acid production,
while microbial metabolites (such as SCFAs) may affect renal
inflammation and fibrosis through the “gut-kidney axis.”
Intervention of intestinal flora may reduce the source of uric
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acid and alleviate renal injury. Notably, for patients with
significant gut microbiota dysbiosis (e.g., those with chronic
inflammatory bowel disease or metabolic syndrome), the gut-
kidney axis could be discussed as a central mechanism. In cases
of advanced renal impairment, a combined approach integrating
renoprotective therapies with gut-targeted interventions may be
required to optimize patient management. Growing evidence has
revealed that TCMs exhibit anti-HN potential via multi-target,
multi-pathway, and multi-approach. Some animal experiments

have shown that TCMs (e.g., Bining Decoction, Poria,
Astragalus, etc.) can both inhibit uric acid production and
restore the balance of intestinal flora, suggesting the centrality
of intestinal therapy. However, the causal relationship between
intestinal flora and HN is still unknown. Thus, it is suggested that
the causative role of gut microorganism in the development and
progression of HN should be investigated through the depletion
of intestinal flora. Previously, Emal et al. (2017) depleted the
intestinal microflora by applying antibiotics, treated with oral

TABLE 3 The effects of single herbals on kidney and intestine.

Single herbal Model Kidney effects Intestinal effects References

Fuling (Poria cocos (Schw.)
Wolf.)

HUA rats (adenine and
potassium oxonate)

UA↓, BUN↓, CREA↓; RBMI↓;
ABCG2, OAT1, OAT3 and
OCT2 expression↑

Bacteroides, Alistipes, Parabacteroides,
Oscillibacter and Roseburia↑; Romboutsia,
Turicibacter, Blautia and
unidentified_Corynebacteriaceae↓

Duan et al. (2023), Wang
et al. (2022a)

Yiyiren (Coix lacryma-
jobi L.)

HUAmice (hypoxanthine and
potassium oxonate)

UA↓, CREA↓ enterococci and enterobacteria↓;
bifidobacteria and lactobacilli↑

Sui et al. (2023), Wang
et al. (2020a)

Jianghuang (Curcuma
longa L.)

HN rats (adenine and
potassium oxonate)

UA↓, CREA↓, BUN↓,
NLRP3 inflammatory vesicles↓

Regulation of Prevotellaceae,
Bacteroidaceae, and Rikenellaceae; SCFAs
producing bacteria such as Lactobacillus
and Lactococcus lactis↑

Chen et al. (2019), Xu
et al. (2021)

Huangqi (Astragalus
membranaceus (Fisch.)
Bunge.)

HN in rats (yeast and adenine) sUA↓, CREA↓, BUN↓; URAT1,
GLUT9 expression↓

Urease-associated genera such as Fungus
spp, Bacteroidetes spp, Ruminalococcus spp,
and Clostridium spp. pathogenic genera↓;
SCFA-producing genera↑

Zhang et al. (2022d)

Shanlamei (Chimonanthus
nitens Oliv.)

HUA mice (potassium
oxonate)

UA↓, CREA↓, BUN↓ ZO-1,MUC2 and MUC4 mRNA levels↑;
TLR4 and MyD88 mRNA levels↓;
Lactobacillus, Alistipes, revotellaceae_UCG-
001 and Parasutterella abundance↑

Meng et al. (2023)

Chuanshanlong (Dioscorea
nipponica Makino)

HUA rats (yeast and
potassium oxonate)

UA↓, BUN↓ The phylum Thicket, Lactobacillus spp.,
Clostridium spp., Rumex spp., Lactobacillus
rhamnosus spp., Lactobacillus coelicolor
spp. and Lactobacillus royalei spp.↑; the
SCFA content↑

Yu et al. (2023)

Tianyeju (Stevia
rebaudiana (Bertoni)
Bertoni)

HUA mice (fructose and
yeast)

UA↓, CREA↓, BUN↓; IL-18, IL-6,
IL-1β and TNF-α↓

ABCG protein↑; GLUT9 protein
expression↓

Mehmood et al. (2020)

Rendong (Lonicera
japonica Thunb.)

HUA rats (hypoxanthine and
potassium oxonate) and gouty
arthritis (MSU)

UA↓, IL-1β, IL-6, TNF-α, COX-2
expression↓

Thick-walled bacilli/anabolic bacilli↑;
Lactobacillaceae and Bifidobacteriaceae↑;
intestinal IL-1β and IL-6 mRNA
expression↓; ZO-1 and occludin mRNA
expression↑

Chien et al. (2009), Zhou
et al. (2021)

Xihonghua (Crocus
sativus L.)

HUA rats (potassium
oxonate)

UA↓, CREA↓, BUN↓ Alloprevotella, Clostridioides,
Erysipelatoclostridium, Holdemania (genus)
and Parabacteroides_goldsteinii↓;
Roseburia (genus) and
Clostridium_sp. (Species)↑; intestinal
GLUT9 expression↓ and
ABCG2 expression↑

Chen et al. (2022)

Tufuling (Smilax glabra L.) HN rats (yeast and adenine) ABCG2, OAT1, OCT2 and
OCTN2 expression↑

The thick-walled and anaphylactic phyla↓;
anaphylactic phyla↑; intestinal
ABCG2 expression↑

Wang et al. (2019), Zhao
et al., 2021, Guo (2020)

Juju (Cichorium intybus L.) HUA rats (fructose) sUA↓, UUA↓, FUA↓, CUUA↓,
SOD↑, TNF -α↓, IL-6↓; OAT3↑

E. coli, Enterococcus faecalis↓;
Bifidobacterium bifidum↑; intestinal
ABCG2 expression↑

Wang et al. (2020b),
Wang et al. (2018)

Dahuang (Rheum
palmatum L.)

HN mice (adenine and
ethambutol)

UUR, SCR, UCR, BUR↓; IL-1β,
TNF-α, PGE2, TGF-β↓

Lactobacillus levels and number of SCFAs↑;
GLUT9 expression↓

Ji et al. (2022), Wu et al.
(2020)

Huangbo (Phellodendron
amurense Rupr.)

HUA mice (potassium
oxonate and hypoxanthine)

sUA↓, CREA↓, BUN↓ Restore the lactic acid bacteria count Su et al. (2021)
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administration of faecal suspensions from healthy mice for
3 days, and subsequently established a mouse model of renal
ischemia-reperfusion, and found that the intestinal flora
exacerbated renal ischemia-reperfusion injury by modulating
macrophage maturation and chemotaxis, while faecal
transplantation attenuated the renal injury, suggesting that
intestinal flora plays a central role in the progression of
renal diseases. This provides a basis for targeting
microorganisms in the treatment of renal diseases. However,
the specific mechanism requires further exploration, especially
to clarify the causal effect of specific gut flora (e.g., urease-
producing bacteria) on the progression of HN, and to develop
precise therapeutic strategies targeting to gut flora. Indeed,
medicines targeting to the uric acid transporters in intestines
and kidneys, as the crucial research hotspot of urate-lowering
therapy, has also been widely studied. It has been confirmed

that TCMs with regulatory activity on urate transporters in the
intestine and kidney, such as Dendrobium officinalis Six
Nostrum, Combination of Polyonum Cuspidatum and
Ramulus Cinnamomi and Tongfengting, mainly achieve this
potential by inhibiting URAT1 and upregulating ABCG2.

In general, the role of intestinal therapy in HN may show
dynamic changes with the disease course and the individual
differences of the patients. In the early stage, or in patients with
compensatory enhancement of intestinal excretion, intestinal
modulation may be regarded as a core tool for HN management.
However, in cases of severely impaired renal function, the
combination of renal-targeted therapy and intestinal-targeted
therapy is required. What cannot be ignored is that the multi-
targeting properties of TCMs (especially dual gut-kidney regulation)
provide a theoretical basis for treating HN as a potential alternative
intervention.

FIGURE 3
The mechanism of traditional Chinese medicines (TCMs) in delaying HN progression through dual regulation of the gut and kidneys. The treatment
of HN with TCMs is mainly achieved by modulating urate-related transporters, oxidative stress, immune-inflammatory reactions, and pro-fibrosis
signaling in kidneys. The modulatory effects of TCMs on disordered intestinal flora and metabolites have been discovered. Besides regulating intestinal
urate-related transporters, such as concentrative nucleoside transporter 2 (CNT2), ABCG2, GLUT9, TCMs exert a uric acid-lowering effect by
increasing the abundance of specific microorganisms that break down purines and uric acid. On the other hand, TCMs restore intestinal immune barrier
function by inhibiting the immune-inflammatory response and increasing the expression of tight junctions, thereby inhibiting the entry of enterogenous
harmful substances into the kidneys. In general, TCMs delay HN progression through a dual-regulatory effect on the intestines and kidneys.
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4.2 The dilemma of TCMs from basic
research to clinical application

In fact, the treatment of HNwith TCMs faces many dilemmas in
transitioning from basic research to clinical application, such as the
complexity of Chinese medicines’ components, insufficient
bioavailability, and challenges in quality control. In the future,
the application of emerging technologies in the research of TCMs
will provide a new technical direction for the treatment of HN with
TCMs. Especially in the current fermentation processes, both single-
strain andmulti-strain collaborative fermentation are utilized. These
methods can promote the release of effective components from
TCMs and the decomposition and transformation of toxic
substances, and are gradually being applied to TCM fermentation
(Li Q. Y. et al., 2021; Qu et al., 2023). For example, Wang et al. used
Bacillus subtilis to ferment Astragalus membranaceus, thereby
increasing the bioavailability of Astragalus polysaccharides.
Mechanically, fermented Astragalus membranaceus significantly
decreases serum UA levels and increases the abundance of
butyrate-producing enzymes in HUA mice (Wang R. et al.,
2023). In addition to single-flavored Chinese medicine,
fermentation technology can also be applied to TCM formulas
(Selvaraj and Gurumurthy, 2023). Luo et al. fermented Simiao
Pill with compound bacterium agent consisting of Mucor
enzymes, Saccharomyces cerevisiae, and lactic acid bacteria, and
selected frankincense-associated bacteria as the strain for fermenting
Simiao Pill, which was then used to treat HN mice. Oral treatment
with fermented Simiao Pill exhibited superior anti-hyperuricemic
activity, possibly due to the release of more active substances (Luo,
2024). However, the technology of fermenting Chinese herbal
medicine also has limitations, such as unclear mechanisms, a low
degree of industrialization, and unstable safety, necessitating
further research.

In recent years, with the development of nanotechnology, the
“nanotization” of TCMs has brought new ideas for the innovative
research of TCMs, improving the oral bioavailability and tissue
targeting of active ingredients, thus promoting the
transformation of TCMs from basic research to bedside
application. For instance, exosomes or exosome-like
nanovesicles derived from herbal medicines, as natural nano-
preparations (Dad et al., 2021), have been confirmed to exhibit
potent anti-inflammatory, antioxidant, immune-regulatory
activities (Chen et al., 2021), as well as anti-inflammatory
bowel disease (IBD) effects (Li D. et al., 2023). Besides, due to
their small size, strong penetration and resistance to acid, alkali,
and high temperature, plant-derived exosomes or exosome-like
nanovesicles are ideal carriers for drug delivery (Kim et al.,
2022). To address the low aqueous solubility and non-
selective toxicity of Shikonin, Matias Cardoso et al. designed a
self-assembled hyaluronic acid-zein nanogel loaded with
Shikonin, which selectively inhibited LPS- and nigericin-
induced activation of the macrophage NLPR3 inflammasome.
In short, the application of nanoagents in the field of TCMs
opens up new avenues for the treatment of HN. By improving the
physical and chemical properties, biological activity, and
targetability of TCMs, nanotechnology significantly promotes
the clinical transformation of novel TCMs drugs in the future.
Nevertheless, there is insufficient evidence on the safety of

nanomaterials applied to humans, as well as regulatory
policies, which should be given more attention.

At present, the research on the treatment of HN through the
intestinal tract is still in the initial stage. Therefore, it is necessary to
further strengthen the research to determine the optimal treatment
strategy, including the regulation of intestinal flora, dosage, and
duration of treatment, and other related issues, and to evaluate the
effectiveness and safety of HN treatments through large-sample,
multi-center studies, further clarifying the mechanisms by which
intestinal therapy plays a role in the treatment of uric acid
nephropathy. By combining genomics, metabolomics and spatial
transcriptomics, we can systematically analyze the composition of
intestinal flora, the targets of active ingredient, and the specific effect
on multiple renal cell types modulated by TCMs. This approach
helps to clarify the regulatory mechanisms of TCMs against HN. For
instance, single-cell sequencing technology enables in-depth
analysis of the effects of herbal medicines on specific cellular
subpopulations, as well as the modulatory effect of TCMs on the
multiple signaling pathways in the HN kidney. Particular attention
is given to the origin of myofibroblasts and fibroblasts, such as EMT,
macrophage-to-myofibroblast transition (MMT), etc. In the future,
artificial intelligence will be applied to clinical data analysis to
integrate multi-omics data (genomics, metabolomics, and
microbiomics) with electronic health records. This integration
aims to develop personalized TCMs treatment plans that
optimize therapeutic efficacy and minimize adverse effects
(Medicine, 2024).

Overall, TCM formulas and single herb that have a dual-
regulatory effect on the intestine and kidneys in HN treatment,
as a novel therapeutic approach, hold good prospects for
preventing or alleviating the progression of kidney disease
secondary to hyperuricemia. With the integration of multiple
disciplines and the application of emerging technologies, further
advancements will be achieved in the research of anti-HN TCMs
in the future.
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