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Introduction: Pharmacotherapy during lactation often lacks reliable drug safety
data, resulting in delayed treatment or early cessation of breastfeeding. In silico
tools, such as physiologically-based pharmacokinetic (PBPK) models, can help to
bridge this knowledge gap. To increase the accuracy of these models, it is
essential to account for the physiological changes that occur throughout the
postpartum period.

Methods: This study aimed to collect and analyze data on the longitudinal
changes in various physiological parameters that can affect drug distribution
into breast milk during lactation. Following meta-analysis of the collated data,
mathematical functions were fitted to the available data for each parameter. The
best-performing functions were selected through numerical and visual
diagnostics.

Results and Discussion: The literature search identified 230 studies, yielding a
dataset of 36,689 data points from 20,801 postpartum women, covering data
from immediately after childbirth to 12 months postpartum. Sufficient data were
obtained to describe postpartum changes in maternal plasma volume, breast
volume, cardiac output, glomerular filtration rate, haematocrit, human serum
albumin, alpha-1-acid glycoprotein, milk pH, milk volume, milk fat, milk protein,
milk water content, and daily infant milk intake. Although data beyond 7 months
postpartum were limited for some parameters, mathematical functions were
generated for all parameters. These functions can be integrated into lactation
PBPK models to increase their predictive power and better inform medication
efficacy and safety for breastfeeding women.
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1 Introduction

Many postpartum women need to take medications for either
chronic or postpartum related conditions (Saha et al., 2015).
However, the limited information on drug safety during lactation
presents challenges for both healthcare providers and patients when
making informed benefit-risk decisions about medication use while
breastfeeding (Scime et al., 2023). Various approaches, including
animal models, have been investigated to better understand how
drug properties and the dynamic maternal physiology influence
drug distribution into breast milk (PRGLAC, 2018). Yet, due to
differences in milk composition across species, developing animal
models that accurately predict drug exposure in human breast milk
remains difficult (Stebler and Guentert, 1990).

Alternative approaches, like physiologically-based
pharmacokinetic models, can help bridge this knowledge
gap. These models consider the complex interactions between
drug properties and physiological parameters in the target
population, and can be used to predict drug concentrations in
various tissues (Jones and Rowland-Yeo, 2013). In addition,
PBPK models can be adapted to predict drug transfer into breast
milk by incorporating data on breast and milk properties (Abduljalil
et al., 2021; Pansari et al., 2022). While these models have provided
accurate predictions for several compounds, they often assume that
physiological parameters remain constant throughout the
postpartum period. However, this assumption does not reflect
reality as the mother’s physiology undergoes significant changes
during pregnancy and gradually returns to pre-pregnancy levels
after childbirth (Abduljalil et al., 2012). Indeed, the postpartum
period is highly dynamic, with various maternal physiological
parameters returning to their baseline at different rates.

For example, glomerular filtration rate (GFR), which increases
during pregnancy, decreases from an immediate postpartum value
of 152 ± 34 mL/min to 92 ± 15 mL/min within 2 months, to then
gradually rise and return to pre-pregnancy levels by 5 months
postpartum (Dunlop, 1981; Hladunewich et al., 2004; Ahmed
et al., 2009). Haematocrit levels, on the other hand, decrease
during pregnancy and reach pre-pregnancy levels within just
2 weeks after childbirth and remain constant throughout the rest
of the postpartum period (Taylor et al., 1981).

Moreover, during lactation, the physicochemical attributes of
breast milk also undergo significant changes, especially in the early
days after delivery. For instance, in the first few days postpartum, the
mother produces colostrum, a protein-rich, low-fat milk with a
pH close to that of extracellular fluid. As lactation progresses,
mature milk is produced, which contains lower protein levels but
has a higher fat content and a more acidic pH (Morriss et al., 1986;
Bulut et al., 2019). These changes can substantially influence drug
concentrations in breast milk and the amount of drug an infant
receives. For example, clinical studies have shown that a two-fold
increase in milk fat content (from 3.1 to 6.2 g/dL) was associated
with a 28% and 18% increase in the transfer of escitalopram and its
dimethyl metabolite into breast milk (Weisskopf et al., 2020).
Modeling studies also suggest that weakly basic drugs, such as
fluoxetine, accumulate more in breast milk during the later
postpartum period due to the lower pH compared to earlier
stages (Pansari et al., 2022). These findings indicate that
assuming constant values for time-varying parameters in PK

models can lead to inaccurate predictions of drug exposure in
breast milk. Even assigning random parameter values within
physiological ranges can affect the quality of model predictions,
as demonstrated for milk fat and pH (Abduljalil and Faisal, 2024).

Consequently, to improve the accuracy of lactation PBPK
models, it is essential to account for longitudinal changes in
these physiological parameters throughout the postpartum
period. Therefore, this study aims to review, collate, and analyse
publicly available literature on these parameters to expand the
database necessary for developing a realistic lactation PBPK
model. Furthermore, this study provides continuous
mathematical functions that can be integrated into these models
to improve and enhance their predictive capabilities.

2 Materials and methods

2.1 Software

Data analysis was performed using Microsoft Excel 2016
(Microsoft Corporation, Microsoft Office Professional Plus 2016,
https://products.office.com), and model fitting was performed using
Excel Solver, available as a Microsoft Office Excel add-in program
(Microsoft Corporation, Microsoft Office Professional Plus 2013,
https://products.office.com). Plots were created using the free
software R (version 4.3.2, R Foundation for Statistical
Computing, Vienna, Austria, www.r-project.org). The GetData
Graph Digitizer (version 2.26.0.20) was used to extract data from
plots and convert these to numerical values.

2.2 Data sources

A separate search on PubMed (https://www.ncbi.nlm.nih.gov/
pubmed/) and Google Scholar (https://scholar.google.com/) was
conducted for each parameter using at least two keywords (*
denotes wildcard character): the first keyword was linked to the
postpartum period (e.g., “postpart*,” “postnat*,” “lactating” or
“breastfeeding”), while the second keyword specified the
parameter of interest (e.g., “breast milk composition,” “milk pH,”
“milk fat,” “creamatocrit,” “plasma volume,” “albumin” “milk
volume,” “breast volume” or “cardiac output”). The reference list
of each selected article was manually searched for possible additional
references. No language or date restrictions were applied.

2.3 Inclusion and exclusion criteria

Studies identified in the literature search were included for
further analysis if they met the following inclusion criteria: 1)
healthy breastfeeding women, 2) adult individuals between
18 and 45 years of age, 3) no medication use during or after
pregnancy, 4) pregnancies were uncomplicated, 5) data recorded
up to 12 months postpartum and 6) data for full-term infants.
Studies were excluded if they specifically focused on preterm infants
or included data that could be confounded by preterm infant data, if
the study methods were unclear or inadequate for estimating the
parameter of interest, or if data were presented in unclear format
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(e.g., a 10-day average of milk volume over the first 10 days
postpartum). In case of studies with mixed scenarios, for
example, data that was reported from mixed preterm and full-
term pregnancies, data were used only if inclusion criteria (in
this case full-term pregnancy cases) represent at least 90% of the
cases in that study. In general, the inclusion of studies was prioritized
whenever possible to capture the variability likely observed during
the postpartum period, assuming a healthy pregnancy.

2.4 Data analysis

Data were compiled in a Microsoft Excel 2016 spreadsheet and
reported as mean (x) and standard deviation (SD), standard error
(SE), or coefficient of variation (CV) from n samples. Mean values
were stratified for postpartum age per month. If a range was
specified for the postpartum period, the midpoint of the range
was used. Additionally, reported units were converted to a unified
unit. Data from multiple studies were combined as described
previously (Abduljalil et al., 2012). Specifically, a weighted mean
value (�X) was calculated using the following formula (Equation 1):

�X �
∑J
j�1
njxj

∑J
j�1
nj

(1)

where nj, represents the number of subjects of study j and xj, the
mean value of the given study. The overall sum of squares (SS),
overall SD and overall CV for the weighted mean were calculated as
follows (Equation 2):

Overall SS � ∑J
j�1

SDj( )2 + xj( )2[ ]nj[ ] − N �X2 (2)

Here, SDj is the standard deviation from the jth study, and N is
the total number of subjects in all studies. In addition, overall SD and
CV were calculated as follows (Equations 3, 4):

Overall SD �
���������
Overall SS

N

√
(3)

Overall CV � Overall SD
�X

(4)

Data were combined without accounting for differences in
analytical techniques, feeding frequencies, and maternal
demographics (i.e., age, weight and height). A set of one-
dimensional functions was fitted to the observed data using
postpartum age as a dependent variable. Weighted least squares
regression was generally used, with each data point weighted by the
number of study subjects. Linear, exponential, and polynomial
functions up to the 4th degree along with various sigmoidal
functions were considered to describe the data. The best-
performing function was selected based on visual inspection and
numerical diagnostics (i.e., weighted sum of squares). For example, if
the data indicated an exponential reduction from a baseline, a linear
model was not considered. Similarly, if the data for a specific
parameter suggested a sigmoidal pattern, linear and polynomial
equations were not considered. When comparing polynomial
equations, if a higher-order polynomial (n) did not outperform a

lower-order polynomial (n-1) based on r2 and the weighted sum of
squares, the lower-order polynomial (n-1) was selected. If data were
unavailable for the later stages of the postpartum period, simulated
data points representing non-pregnant and non-lactating women
were introduced to ensure that the function returned to baseline at
12 months postpartum. Additionally, variability was accounted for
by applying a constant CV to the parameter of interest based on the
variability observed in the data.

3 Results

3.1 Database characteristics

The literature search identified 230 studies, with a total of
36,689 data points from 20,801 women in the postpartum period
(Supplementary Table 1). The women included in these studies had
a weighted mean age of 28.59 years (range: 20.8–40 years), a
weighted mean weight of 63.93 kg (range: 45–100.40 kg), and a
weighted mean height of 163.78 cm (range: 149–173.50 cm). Data
were collected from immediately after childbirth up to 12 months
postpartum. Figure 1 provides an overview of the data frequency
across this period showing that most data points (60%) were
reported within the first month postpartum. Beyond this, the
amount of collected data decreased significantly, with particularly
sparse data (n = 251 data points) available after 7 months
postpartum. Moreover, the quantity and quality of the collected
data differed substantially between the searched parameters. In
addition, as many subject-specific characteristics, such as parity,
ethnicity, or delivery type, were not consistently reported, these
covariates were not considered in the analysis.

3.2 Milk properties

3.2.1 Milk volume
Milk volume data were gathered from 11 publications,

comprising 312 data points from 763 mothers (Supplementary
Table 1). For this analysis, only data from mothers who were
exclusively breastfeeding and whose children were born at term

FIGURE 1
Frequency distribution of the collected data, stratified by
postpartum age in months. The width of the bins is equal to 1 month.
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were used to estimate daily milk volume as a function of postpartum
age. Since milk production is correlated with continued nursing,
focusing on exclusively breastfed children helps estimate the worst-
case scenario for daily infant drug intake through breastfeeding.
Preterm births were excluded, as evidence suggests that milk
production is lower in such cases (Hill et al., 2005).

Following birth, the daily volume of milk the mother produces
rapidly increases during the first few weeks postpartum. The daily

milk production volume remains steady at this maximum until
approximately 6 months postpartum, after which there is an
exponential decline (Figure 2). The increase in milk production
from birth to 6 months postpartum was best modeled by a sigmoidal
equation (Equation 5):

Milk volume L/day( ) � 0.81 × PpT4.37

0.14.37 + PpT4.37 (5)

FIGURE 2
Simulated versus observed daily milk volume production for (A) the entire age range and (B) for 0 through 1month postpartum. The blue dots depict
simulated values (n = 5,000) generated using the Simcyp Simulator V23R2, and the white dots represent the observed data. Error bars indicate standard
deviations, and the dot sizes correspond to the number of samples in the relevant studies. The solid red line is the mean value of the simulated data,
whereas the dotted red lines are the standard deviations.

FIGURE 3
Simulated versus observed milk pH values for (A) the entire age range and (B) for 0 through 1 month postpartum. The blue dots depict individual
simulated values (n = 5,000) generated using the Simcyp Simulator V23R2, and the white dots represent the observed data. Error bars indicate standard
deviations, and the dot sizes correspond to the number of samples. The solid red line is themean value of the simulated data, while the dotted red lines are
the standard deviations.
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Subsequently, for 6 through 12 postpartum months, the milk
volume production was best described using a mono-exponential
function (Equation 6):

Milk volume L/day( ) � 1.619 e -0.116 × PpT( ) (6)
where PpT represents postpartum age in months. A constant CV of
33% was required to recover the variability in observed data.

3.2.2 Milk pH
A total of 15 studies on milk pH were identified that provided

790 data points from 328 postpartum women, with data collected from
2 days to 10 months postpartum (Supplementary Table 1). Only milk
pHmeasurements were included from fresh samples that were analysed
within 48 h and stored at temperatures between −80°C and 4°C. In
addition, as previous studies have shown that extended storage may
impact milk pH, data from milk bank samples were excluded
(Ogundele, 2002; Slutzah et al., 2010). The data collected showed a
shift in milk pH, starting at 7.43 ± 0.24 (mean ± SD) in colostrum,
gradually declining to a low of 7.05 ± 0.27 around 2 weeks postpartum.
It then slowly increased again as mature milk was produced (Figure 3).
The data followed a double exponential decay function (Equation 7),
indicating that after initial fluctuations in the early postpartum period,
milk pH stabilizes with only minor variations during the later stages
of lactation.

Milk pH � 0.443 e -13.07 × PpT( ) + 7.167 e 0.0023 × PpT( ) (7)
Where PpT represents postpartum age in months. A constant CV of
3% was required to recover the observed variability.

3.2.3 Milk fat
A total of 43 publications related to milk fat content, also

referred to as creamatocrit, were retrieved from the public
domain. These studies included 5,012 data points from
2,661 mothers, with the postpartum period ranging from 1 day
to 12 months (Supplementary Table 1). If the data were reported as
creamatocrit, the Lucas equation was applied to convert these values
to fat concentration in grams per deciliter (Lucas et al., 1978). To
ensure the Lucas equation was suitable for analysis, the equation was
first validated using an independent study from Meier et al. (2002).
The collected data showed that milk fat concentration gradually
increased from the early postpartum period and continued to rise
over the first year of life. This trend was best described by a second-
order polynomial equation (Equation 8) (Figure 4).

Milk fat g/dL( ) � 3.69 × 1 + 0.012083 × PpT + 0.000171 × PpT2( )
(8)

Where PpT represents the postpartum age in months. To recover
the observed variability, a constant CV of 37% was applied.

3.2.4 Milk total protein
The literature search identified 8 studies, including 961 data

points from 481 postpartum women. The postpartum period for
these women ranged from 3 days to approximately 6 months
(Supplementary Table 1). Only fresh milk samples or those
stored at 4°C for up to 24 h or at −20°C for up to 1 month were
considered. Moreover, as previous studies have indicated that the
protein content in preterm milk differs significantly from termmilk,
only data from full-term infants were included (Narang et al., 2006).
In addition, only studies measuring total protein levels were selected
for further evaluation. The analysis showed that total protein levels
reached maximum values shortly after birth, followed by an
exponential decline that stabilized around 1.5 months postpartum
(Figure 5). This trend was best described using the following
equation (Equation 9):

Milk total protein %( ) � 1.219 + 1.127 e -5.058 × PpT( ) (9)
Where PpT represents the postpartum age in months. To recover
the observed variability, a constant CV of 23% was applied.

3.2.5 Milk water content
A total of 8 studies were identified, providing 1,152 data points

from 1,005 postpartum women, covering the period from 8 days to
12months postpartum (Supplementary Table 1). Studies included in
the analysis either directly measured milk water content (Christie
et al., 1977; Butts et al., 2018; Bzikowska-Jura et al., 2020) or total
solids/dry matter (Macy, 1949; Khan et al., 2013; Bzikowska-Jura
et al., 2018; Czosnykowska-Lukacka et al., 2018; Huang and Hu,
2020). In cases where total solids or dry matter were measured, the
water content was calculated as 100% minus the percentage of dry
matter or total solids. The analysis showed that the water content in
milk remained constant throughout the postpartum period, with a

FIGURE 4
Simulated versus observed milk fat as a function of postpartum
age. The blue dots depict simulated data points (n = 5,000) generated
using the Simcyp Simulator V23R2, and the white dots represent the
observed data. Error bars indicate standard deviations, and the
dot sizes correspond to the number of samples. The solid red line is
the simulated mean value, while the dotted red lines are the standard
deviations.
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weighted mean value of 87.5% (Figure 6). In addition, a CV of 1.5%
was required to account for the observed variability.

3.2.6 Daily milk intake
A total of 30 publications relevant to postpartum daily breast

milk intake were retrieved, which included 164 data points from
2,417 infants (Supplementary Table 1). Only data from full-term
infants who were exclusively breastfed were included in the analysis.
For publications where infant weights were not reported, weights
were estimated based on the child’s age and sex using the UK-WHO
growth charts (RCPCH, 2013). If information on sex was
unavailable, an average weight for both males and females at the
reported postpartum age was used to adjust the daily milk intake
volume. The data indicated that, following birth, the daily breast
milk intake per kilogram of bodyweight (L/kg/day) rapidly increased
during the first week of life, reaching maximum values between
0.5 and 1 month, after which it declined exponentially.
Consequently, breast milk intake was best described using two
functions, with the increase in milk consumption during the first
month described using a sigmoidal equation (Equation
10) (Figure 7):

Milk intake L/kg/day( ) � 0.181 × PpT2.411

0.1142.411 + PpT2.411 (10)

The change in milk intake for 1 through 12 postpartum months
was described using a mono-exponential function (Equation 11):

Milk intake L/kg/day( ) � 0.004 + 0.208 - 0.004( ) e - 0.15 × PpT( )
(11)

PpT represents the months postpartum. A constant CV of 25%
was needed to recover the variability in observed data.

FIGURE 5
Simulated versus observed total milk protein as a function of postpartum age for (A) the entire age range and (B) for months 0 through 1. The blue
dots represent simulated values (n = 5,000) generated using the Simcyp Simulator V23R2, and the white dots represent the observed data. Error bars
indicate standard deviations, and the dot sizes correspond to the number of samples. The solid and dotted red lines are themean and standard deviations
of the simulated data.

FIGURE 6
Simulated versus observed milk water content as a function of
postpartum age. The blue dots depict simulated values (n = 5,000)
generated using the Simcyp Simulator V23R2, and the white dots
represent the observed data. Error bars indicate standard
deviations, and the dot sizes correspond to the number of samples.
The solid red line is the mean value of the simulated data, while the
dotted red lines are the standard deviations.
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3.3 Maternal haematocrit

The literature search identified a total of 16 studies providing
20,186 data points from 11,004 women, with data collected from
immediately after delivery up to 6 months postpartum
(Supplementary Table 1). Only data from women with
uncomplicated pregnancies were included. In addition, data
beyond 6 months were not available. To address this, a simulated
data point was generated by simulating 1,000 healthy female

volunteers aged 18–45 years using the Simcyp Simulator
(V23R2), representing haematocrit levels at the 12th postpartum
month. The collected data indicated that the postpartum maternal
haematocrit levels increased rapidly from approximately 31% at
birth to pre-pregnancy levels of 40% within just 2 weeks after
childbirth (Figure 8). After this rapid rise, haematocrit levels
remained stable for the remainder of the postpartum period. The
change in postpartum maternal haematocrit was best modelled
using the following equation (Equation 12):

FIGURE 7
Simulated versus observed daily milk intake for (A) the entire age range and (B) for months 0 through 1. The blue dots depict simulated data points
(n = 5,000) generated using the Simcyp Simulator V23R2, and the white dots represent the observed data. Error bars indicate standard deviations, and the
dot sizes correspond to the number of samples. The solid and dotted red lines are the mean and standard deviations of the simulated data.

FIGURE 8
Simulated versus observed maternal haematocrit values for (A) the entire age range and (B) for 0 through 2 months postpartum. The blue dots
represent simulated values (n = 5,000) that were generated using the Simcyp Simulator V23R2, and the white dots represent the observed data. Error bars
indicate standard deviations, and the dot sizes correspond to the number of samples. The solid and dotted red lines are themean and standard deviations
of the simulated data. The data point at 12months is a simulated data point obtained by simulating 1,000 healthy female volunteers using the Simcyp
Simulator V23R2.
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Haematocrit %( ) � 31.17 + 38.74 - 31.17( ) × PpT2.49

0.1332.49 + PpT2.49 (12)

Where PpT represents postpartum age in months. A CV of 8% was
incorporated to account for the observed variability in haematocrit.

3.4 Maternal alpha-1-acid
glycoprotein (m-AGP)

The literature search retrieved a total of 6 studies that provided
145 data points on postpartum m-AGP levels from 88 women, with
data collected immediately after delivery up to 1 month postpartum
(Supplementary Table 1). Due to the absence of data after the first
month postpartum, an additional simulated data point was
generated by simulating 1,000 healthy female volunteers aged
18–45 years using the Simcyp Simulator (V23R2). This simulated
data point was assumed to represent 12 months postpartum. The
collected data showed that plasma m-AGP levels rose sharply after
birth, peaking during the first week postpartum, and then decreased
by 30% by the end of the fourth week. After the first month
postpartum, m-AGP levels were assumed to decline linearly due
to lack of data, returning to pre-pregnancy levels by 12 months
postpartum (Figure 9). The tested models were not able to capture
the data trend, hence these data were modelled using two different
functions. For the period up to 1 month postpartum, a double
Weibull equation best described the data (Equation 13):

m-AGP g/L( ) � e -1.277 × PpT( ) - e - 6.749 × PpT( ) + 0.6 (13)

For the period from 1 to 12 months postpartum, m-AGP levels
were assumed to decrease linearly using the following linear
regression equation (Equation 14):

m-AGP g/L( ) � 0.016 × PpT + 0.90 (14)
Where PpT represents postpartum age in months in both equations.
A constant CV of 24% was incorporated to account for the observed
variability in m-AGP.

3.5 Maternal human serum albumin (m-HSA)

A total of 13 studies were retrieved that included
1,757 observations on postpartum m-HSA levels from
1,680 women, with data obtained from delivery up to about
6 months postpartum (Supplementary Table 1). Due to the
absence of data beyond 6 months, an additional data point was
generated by simulating 1,000 healthy female volunteers aged
18–45 years using the Simcyp Simulator (V23R2), representing
m-HSA levels at 12 months postpartum.

The meta-analysis showed that m-HSA levels remained stable
during the first 2 weeks postpartum, although considerable
variability was observed in the collected data. After this period,
m-HSA levels gradually increased, reaching 47 ± 4.00 g/L (mean ±
SD) by the first month postpartum, comparable to pre-pregnancy
levels (Figure 10). Following this recovery phase, substantial
variability was observed in the collected data. For instance,
m-HSA levels were recorded at 45.89 ± 3.05 g/L at 1.58 months
postpartum, followed by a significant decline to 33.70 ± 2.50 g/L at
2.32 months postpartum, and then an increase to 45.60 ± 5.43 g/L at
2.71 months postpartum. Despite this variability, the overall trend
indicated that after approximately 1 month postpartum, when pre-
pregnancy levels were restored, m-HSA levels remained stable up to
12 months postpartum. The equation that best describes the initial
increase and subsequent stabilization of m-HSA levels is as follows
(Equation 15):

FIGURE 9
Comparison of simulated and observed maternal alpha-1-acid glycoprotein values for (A) the entire age range and (B) for 0 through 2 months
postpartum. The blue dots represent simulated values (n = 5,000) generated using the Simcyp Simulator V23R2, and the white dots depict the observed
data. Error bars indicate standard deviations, and the dot sizes correspond to the number of samples. The solid red line is themean value of the simulated,
while the dotted red lines are the standard deviations. The data point at 12 months is a simulated data point obtained by simulating 1,000 healthy
female volunteers using the Simcyp Simulator V23R2.
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m-HSA g/L( ) � 32.7 + 12.15

1 + e -7.16 × PpT- 0.866( )( )( ) (15)

Where PpT represents postpartum age in months. A constant CV of
10% was incorporated to account for the observed variability in
m-HSA. Figure 10 provides a comparison between the predicted and
observed m-HSA values.

3.6 Breast volume

Six studies that measured the breast volume in postpartum
women were included for further analysis. These studies
comprised a total of 226 data points from 191 women,
covering the period from 1 week to 12 months postpartum
(Supplementary Table 1). Since total breast volume includes
the combined volumes of glandular tissue, adipose tissue, and
milk, to estimate actual breast tissue volume (also called empty
breast volume), estimated milk production was subtracted from
the total volume. The data showed that empty breast volume
gradually decreased over time, with values of 1.56 ± 0.16 L
(mean ± SD) at 0.23 months, 1.41 ± 0.10 L at 3.63 months,
1.38 ± 0.12 L at 5.83 months, and 1.28 ± 0.05 L at 11.82 months
postpartum. Figure 11 shows that the overall trend is best
characterized by a gradual decline over time, with the
following linear regression equation providing the best fit to
the data (Equation 16):

Breast volume L( ) � 1.549 - 0.024 × PpT (16)
Where PpT represents the postpartum age in months, a constant CV
of 10% was added to account for the observed variability in
breast volume.

FIGURE 10
Simulated versus observed maternal human serum albumin levels for (A) the entire age range and (B) for 0 through 5 months postpartum. The blue
dots represent the simulated values (n = 5,000) generated using the Simcyp Simulator V23R2, and the white dots represent the observed data. Error bars
indicate standard deviations, and the dot sizes correspond to the number of samples. The solid and dotted red lines are themean and standard deviations
of the simulated data. The data point at 12months is a simulated data point obtained by simulating 1,000 healthy female volunteers using the Simcyp
Simulator V23R2.

FIGURE 11
Simulated versus observed breast volume values. The blue dots
represent simulated data points (n = 5,000) generated using the
Simcyp Simulator V23R2, and the white dots depict the observed data.
Error bars indicate standard deviations, and the dot sizes
correspond to the number of samples. The solid red line is the mean
value of the simulated data, whereas the dotted red lines are the
standard deviations.
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3.7 Maternal plasma volume

The literature review identified 22 studies, contributing
651 observations on postpartum plasma volume from
560 women, with data ranging from immediately after delivery to
6 months postpartum (Supplementary Table 1). Since the type of
delivery was not consistently reported across studies, no distinction
wasmade between vaginal and caesarean deliveries. In addition, data
on plasma volume from lactating women after 6 months were not
available. A simulated data point was therefore generated by
simulating 1,000 healthy female volunteers aged 18–45 years
using the Simcyp Simulator (V23R2). This simulated data point
was assumed to represent the mean plasma volume at 12 months
postpartum (Figure 12). The data collected from the different studies
showed significant variability, with plasma volume values ranging
from 2.35 ± 0.31 L (mean ± SD) at birth to 3.08 ± 0.80 L at 0.71 weeks
postpartum, followed by a decrease to 2.53 ± 0.51 L at 1 week
postpartum. The meta-analysis indicated that after the plasma
volume expansion during pregnancy (Abduljalil et al., 2012),
maternal plasma volume dropped immediately after birth likely
due to blood loss, then continued to gradually decrease, returning to
pre-pregnancy levels by the second month postpartum. The
following equation (Equation 17) best described the observed
changes in plasma volume:

Plasma volume L( ) � 2.67 + 0.106 × 0.133PpT( ) (17)
Where PpT represents postpartum age in months. A constant CV of
13% was included to account for the observed variability in
plasma volume.

3.8 Maternal cardiac output

A total of 47 clinical studies that reported changes in postpartum
maternal cardiac output were included in this analysis,
encompassing 2,616 observations from 1,542 women. Data were
available from 1 day to 12 months postpartum, although no data
were reported for the period between 7 and 12 months postpartum
(Supplementary Table 1). The cardiac output decreased from
402.25 ± 36.78 L/h (mean ± SD) immediately after delivery to
pre-pregnancy levels of 302.42 ± 65.80 L/h by the end of the fourth
postpartum week. The steepest decline occurred at 2 weeks
postpartum, where cardiac output dropped to 308.15 ± 20.09 L/
h, representing a 23% decrease. After this point, cardiac output
remained relatively stable, with a value of 311.40 ± 69.01 L/h
observed at 12 months postpartum. The longitudinal change in
cardiac output during the postpartum period was modelled using
the following equation (Equation 18):

Cardiac output L/h( ) � 98.8 e -3.33 × PpT( ) + 304.4 e -0.00096 × PpT( )
(18)

Where PpT represents the postpartum age in months, a constant CV
of 16% was added to account for the observed variability in cardiac
output. Figure 13 provides a comparison between the predicted and
observed cardiac output values.

3.9 Maternal renal function

Data on postpartum changes in maternal GFR (m-GFR) were
retrieved from 10 clinical studies comprising 165 observations
from 165 women. The postpartum period studied ranged from
1 day to 12 months, though no data were available for the period
between 7 and 11 months postpartum (Figure 14). The studies
included in this analysis are listed in Supplementary Table 1. The
data showed that m-GFR decreased from an immediate
postpartum value of 152 ± 34 mL/min (mean ± SD) to the
lowest value observed at 2 months postpartum, where m-GFR
dropped to 92 ± 15 mL/min. After 2 months postpartum, m-GFR
showed a substantial increase, gradually rising to 128 ± 23 mL/
min, eventually returning to non-pregnant levels by
approximately 5 months postpartum. To model the
longitudinal changes in m-GFR during the postpartum period,
the following equation (Equation 19) was used:

GFR mL/min( ) � 151.0285 - 57.1898 × PpT

+ 17.1856 × PpT2 - 1.8479 × PpT3

+ 0.0661 × PpT4 (19)

Where PpT represents the postpartum age in months. A constant
CV of 36% was applied to account for the observed variability
in the data.

FIGURE 12
Simulated versus observed maternal plasma volume values. The
blue dots represent simulated individual values (n = 5,000) generated
using the Simcyp Simulator V23R2, and the white dots represent the
observed data. Error bars indicate standard deviations, and the
dot sizes correspond to the number of samples from each study. The
solid and dotted red lines are the mean and standard deviations of the
simulated data. The data point at 12 months is a simulated data point
obtained by simulating 1,000 healthy female volunteers using the
Simcyp Simulator V23R2.
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4 Discussion

In recent years, several lactation PBPKmodels have been developed
to predict drug transfer into human breast milk (Abduljalil et al., 2021;
Pansari et al., 2022; Nauwelaerts et al., 2023). While these models have
been useful, many assume that maternal physiology and milk
composition remain constant throughout the postpartum period.
However, our analysis revealed that physiological changes after
pregnancy return to pre-pregnancy levels at different times and at
varying rates. For instance, breast volume, maternal plasma volume,
maternal cardiac output and m-GFR decrease over the course of
lactation (Figures 11–14). In contrast, maternal haematocrit, m-AGP
and m-HSA levels increase in function of postpartum age (Figures
8–10). Additionally, the body undergoes further adaptations to support
breastfeeding, leading to postpartum age-dependent changes in milk
production, pH, fat and protein content (Figures 2–5). As these
dynamic processes individually and collectively affect maternal and
milk drug exposure, incorporating them into lactation PKmodels could
improve model predictions. Mathematical functions that describe
changes in maternal physiology and milk composition during the
postpartum period were, therefore, developed in this study. These
functions can be integrated into lactation PK models, allowing for a
more realistic description of the postpartum population.

Dallmann et al. previously compiled a database incorporating
changes in maternal physiology throughout the postpartum period
(Dallmann et al., 2020). However, they did not investigate variations
in breast milk composition, which can significantly affect drug
transfer into breast milk. The current study expands on earlier
works by including additional data and investigating changes in both
maternal physiological and breast milk composition parameters to
generate a realistic lactation population.

FIGURE 13
Comparison of simulated and observed maternal cardiac output values (A) over the entire age range and (B) from 0 to 2 months postpartum. Blue
dots represent simulated values (n = 5,000) generated using the Simcyp Simulator V23R2, while white dots show the observed mean data. The size of the
dots depicts the number of samples, and error bars represent the standard deviations. The solid red line indicates the average of the simulated data,
whereas dotted red lines represent the standard deviations.

FIGURE 14
Simulated versus observed maternal glomerular filtration rate
values. The blue dots represent simulate data points (n = 5,000)
generated using the Simcyp Simulator V23R2, and the white dots
represent the observed data. Error bars indicate standard
deviations, and the dot sizes correspond to the number of samples.
The solid red line is the mean value of the simulated data, while the
dotted red lines are the standard deviations.
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Human breast milk is composed of approximately 88% water, 7%
carbohydrates, 1% protein, and 4% fat (Kunz et al., 1999). However, its
composition is not fixed; it changes throughout the postpartum period
to meet the nutritional requirements of the baby (Ballard and Morrow,
2013). For instance, in the first few days after birth, themother produces
low quantities of colostrum, a thick yellow fluid that is low in fat but
high in protein. Between 7 and 14 days postpartum, transitional milk is
produced, which is a mixture of colostrum and mature milk. After
approximately 14 days, mature milk is produced, which has a higher fat
and lower protein content than colostrum. This change in fat and
protein content over time is evident in ourmeta-analysis, which showed
an increase in milk fat and a decrease in protein levels in function of
postpartum age (Figures 4, 5). Another important characteristic of milk
is its pH, which is more acidic than plasma, with an average value of
around 7.2 for mature milk (Abduljalil et al., 2021). Like other milk
components, the pH of milk varies significantly with postpartum age.
Our analysis indicated that colostrum has a substantially higher
pH than mature milk (Figure 3). This difference in pH can
significantly impact the behaviour of predominantly basic drugs,
which become more ionised in the acidic environment of mature
milk compared to colostrum, leading to more significant
accumulation in mature milk through a process known as ion
trapping. Indeed, it has been demonstrated previously that a
lactation PBPK model for the antidepressant fluoxetine could only
match the observed milk-to-plasma ratios in both colostrum and
mature milk if the milk pH was adjusted to the measured pH values
(Pansari et al., 2022). Furthermore, our analysis showed that maternal
milk production increased rapidly in the first few weeks postpartum,
stabilised for about 6 months, and then declined exponentially
(Figure 2). Likewise, the daily milk intake rose sharply in early
postpartum, reaching its peak at around 1 month, in line with
previously conducted analyses (Figure 7; Supplementary Figure 1)
(Yeung et al., 2020; Rios-Leyvraz and Yao, 2023). Moreover,
previous studies have shown a positive relationship between nursing
frequency and milk production in the early postpartum period,
explaining why milk volume peaks within the first 14 days (De
Carvalho et al., 1983; Hopkinson et al., 1988). However, the data
collected in this study showed no clear relationship between daily
milk intake and milk volume during the later stages of lactation. While
daily milk intake gradually decreased after peaking around the first
month postpartum,milk volume remained constant for up to 6months
postpartum. This observation is supported by Kent et al., who found no
correlation between the number of daily breastfeeding sessions and 24-h
milk production from 1 to 6 months postpartum (Kent et al., 2006).
After 6 months postpartum, a significant decline in milk volume was
observed, most likely due to the introduction of complementary foods.
However, the timing and quantity of complementary food introduction,
which can influence milk production, were not consistently provided in
the available studies and could therefore not be included as a covariate
in the analysis. Moreover, the current meta-analysis showed that breast
volume decreased linearly in function of postpartum age (Figure 11).
This decline likely results from redistribution of breast tissue and/or loss
of mammary cells. Indeed, Hartmann et al. observed significant
mobilization of fat during lactation, while Quarrie et al. showed that
mammary cell apoptosis is a normal part of the lactating and involuting
mammary gland (Hartmann et al., 1995; Quarrie et al., 1996). Despite
the observed reduction in breast volume, milk volume remained stable
for up to 6 months postpartum. This suggests that while initial

proliferation of breast tissue is essential for milk production, the
breast does not need to remain enlarged to maintain its milk
production capacity.

The current meta-analysis indicated that the elevated plasma
volume observed during pregnancy gradually decreased throughout
the postpartum period, eventually returning to pre-pregnancy levels
within 2 months (Figure 12). At the same time, as plasma volume
declines, red blood cells become more concentrated, leading to a rise in
haematocrit levels, as observed in our analysis (Figure 8). Moreover, the
reduction in plasma volume also raises the oncotic pressure, resulting in
a decrease in absolutem-GFR values in the early postpartum. Following
this initial decline in m-GFR, a gradual increase was observed, and pre-
pregnancy values were restored after approximately 5 months
(Figure 14). This is in line with observations of Harel et al. who
showed that postpartum serum creatinine concentrations return to
pre-pregnancy levels by 18 weeks postpartum (Harel et al., 2019).

The collected data for early postpartum plasma volume showed
significant variability, which may be due to the fact that these
observations were not stratified by the type of delivery. Indeed,
studies have shown that blood loss is significantly higher in
caesarean sections compared to vaginal deliveries (Larsson et al.,
2006; Stafford et al., 2008). This likely affects plasma volume
measurements during the early postpartum period thus
contributing to the observed variability. Substantial variability
was also observed in cardiac output measurements during early
postpartum, with values on the first postpartum day ranging from
300 ± 56.05 L/h (Ambrožič et al., 2020) to 429 ± 29.58 L/h (Robson
et al., 1989). This variability may originate from parity-specific
differences in maternal cardiac adaptation during pregnancy, as
studies have shown that parous women tend to have higher cardiac
output than nulliparous women (Ling et al., 2019). These differences
could persist throughout the postpartum period, possibly explaining
the wide range of values observed. Moreover, in the first 48 h after
birth, some studies reported an increase in cardiac output of up to
20%, while others observed a 10% decrease (Robson et al., 1987a;
Ram et al., 2017; Lavie et al., 2018; Timokhina et al., 2019). This
variation likely results from differences in blood loss during delivery,
as well as individual factors such as body weight. At 2 weeks after
delivery, the cardiac output data became more consistent, showing a
substantial decrease in cardiac output by 13%–27% relative to the
end of pregnancy (Robson et al., 1987a; Robson et al., 1987b; Robson
et al., 1989; Hunter and Robson, 1992). This sharp change in cardiac
output during the early postpartum period is well described by the
double exponential function we derived (Figure 13).

Plasma protein levels decrease by about 20% by the end of
pregnancy compared to pre-pregnancy levels (Abduljalil et al.,
2012). After birth, plasma levels of m-AGP and m-HSA rise
quickly, returning to pre-pregnancy levels by around 1 month
postpartum (Figures 9, 10). In addition, our analysis showed that
m-AGP levels exceed pre-pregnancy values in the early postpartum
period, reaching maximum values (1.28 ± 0.26 g/L) approximately
1 week after delivery. Since AGP is an acute-phase reactant protein
that increases in response to physiological stress, this rise likely
reflects the body’s reaction to the stress of childbirth. Indeed, the
increase in m-AGP levels following childbirth has been previously
demonstrated by Larijani et al., who showed that m-AGP continues
to rise for at least 3 days following vaginal or caesarean delivery
(Larijani et al., 1990).
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Although the derived functions accurately described the
observed data, several challenges were encountered during data
collection and analysis. One major challenge was the fact that
some studies pooled data from a wide range of postpartum ages
and reported only mean values, which could lead to distorted results.
Moreover, many studies presented their data graphically, thereby
making data extraction subject to technical errors. Another issue was
that no data was available at 12 months postpartum for some
parameters. To address this matter, simulated mean values from
1,000 virtual healthy female volunteers were generated using the
Simcyp Simulator. Although this virtual population was developed
and validated using substantial observed clinical data, this method
could introduce bias as it assumes that these specific parameters
return to their pre-pregnancy levels by 12 months postpartum.
Another challenge that we encountered during the analysis was
the inconsistent reporting of specific covariates, such as delivery type
and parity. As noted earlier, these factors are known to influence
certain parameters and accounting for them could further reduce
variability and improve the derived functions. Additionally, we
could not distinguish between hindmilk and foremilk in our
analysis, despite the known difference in fat content, with
hindmilk being fattier (Takumi et al., 2022). Attempts to stratify
the data based on collection timing (foremilk versus hindmilk)
resulted in insufficient data. Similarly, we could not differentiate
between samples collected after complete or partial milk emptying,
as this information was often missing from the publications.
Furthermore, although this article provides a substantial
collection of data, it does not encompass all relevant parameters.
For example, the activity of various metabolizing enzymes and
transporters changes considerably throughout pregnancy
(Abduljalil et al., 2020; Pinheiro and Stika, 2020; Chen et al.,
2024). These activities are expected to return to pre-pregnancy
levels during the postpartum period, which could have a
significant impact on drug metabolism and distribution.
However, reliable data on the time course of these enzyme and
transporter activities returning to their pre-pregnancy levels are still
missing and should, therefore, be the focus of future studies to
achieve a more complete description of the postpartum population.

In summary, the current study provides a comprehensive and
up-to-date database of maternal physiological and milk composition
parameters throughout the postpartum period. In addition, this
dataset presents a robust basis for developing lactation PBPKmodels
that account for these dynamic changes over time. Such models are
valuable tools for investigating and optimizing drug dosing regimens
in the postpartum population.
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