Check for updates

OPEN ACCESS

EDITED BY Wenying Qiao, Capital Medical University, China

REVIEWED BY Daniel Turudic, University Hospital Center Zagreb, Croatia Hu Caixia, Capital Medical University, China

*CORRESPONDENCE Jitao Wu, ☑ wjturology@163.com Xiaohong Ma, ☑ mxhong0608@126.com

[†]These authors have contributed equally to this work

RECEIVED 29 October 2024 ACCEPTED 07 March 2025 PUBLISHED 19 March 2025

CITATION

Guo Y, Sun F, Wang Y, Li Y, Wang T, Ma X and Wu J (2025) The efficacy and safety of mirabegron and α -adrenergic receptor antagonist in the treatment of distal ureteral stones: a systematic review and meta-analysis. *Front. Pharmacol.* 16:1517979. doi: 10.3389/fphar.2025.1517979

COPYRIGHT

© 2025 Guo, Sun, Wang, Li, Wang, Ma and Wu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

The efficacy and safety of mirabegron and α-adrenergic receptor antagonist in the treatment of distal ureteral stones: a systematic review and meta-analysis

Yicheng Guo^{1†}, Fengze Sun^{1†}, Yini Wang^{2†}, Yanfei Li ⁽¹⁾, Tianqi Wang¹, Xiaohong Ma ⁽¹⁾ ^{1*} and Jitao Wu^{1*}

¹Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China, ²The Second Clinical Medical College, Binzhou Medical University, Yantai, China

Introduction: To systematically evaluate the efficacy and safety of mirabegron compared to α -adrenergic receptor antagonists for treating distal ureteral stones.

Methods: A comprehensive search of EMBASE, PubMed, and Cochrane databases was conducted to identify studies comparing mirabegron and α -adrenergic receptor antagonists for stone expulsion. The primary outcome was stone expulsion rate (SER), and secondary outcomes included stone expulsion interval (SEI) and pain episode frequency. Risk ratio (RR) and mean differences (MD) with 95% CIs were calculated.

Results: Six studies involving 487 participants were included. There was no significant difference in SER between mirabegron and α -adrenergic receptor antagonists (RR = 1.06; 95% CI = 0.93–1.22; P = 0.34). SEI showed no significant difference either (MD = 0.05; 95% CI = -3.23 to 3.34; P = 0.58). However, pain episodes were significantly reduced in the mirabegron group (MD = -0.36; 95% CI = -0.63 to -0.09; P = 0.01). Subgroup analysis showed reduced pain episodes with mirabegron versus silodosin but not tamsulosin. Mirabegron also had fewer side effects like headache (RR = 0.34; 95% CI = 0.13–0.87; P = 0.02) and orthostatic hypotension (RR = 0.11; 95% CI = 0.02–0.55; P = 0.008), while dizziness and ejaculation dysfunction rates were comparable.

Conclusion: Mirabegron reduced pain episodes during treatment for distal ureteral stones, particularly when compared to silodosin, despite no significant differences in SER or SEI. Its favorable safety profile suggests potential as a therapeutic option. Further randomized controlled trials are needed to confirm these findings.

KEYWORDS

mirabegron, ureteral stone, α -adrenergic receptor antagonist, meta-analysis, β 3adrenergic receptor mirabegron, β 3adrenergic receptor

Introduction

Urolithiasis is a common condition affecting the human urinary system, with a prevalence of approximately 2%–3% across all populations (Cui et al., 2014). Ureteral stones, which make up about 20% of all urolithiasis cases, are particularly troublesome, with around 70% of these stones located in the distal ureter (Ahmed and Al-Sayed, 2010; Raheem et al., 2017). If untreated, ureteral stones can cause severe pain and lead to serious complications, such as acute kidney injury, infections, and septic shock, posing significant health risks and economic burdens for patients (Thongprayoon et al., 2020; Türk et al., 2016).

The main treatment options for ureteral stones include medical expulsion therapy (MET), extracorporeal shockwave lithotripsy (ESWL), and endoscopic surgery (Paffenholz and Heidenreich, 2021). MET is commonly recommended for distal ureteral stones, as it helps relax smooth muscles in the urinary tract, facilitating the passage of stones (Segura et al., 1997). The most widely used medications for MET are α -adrenergic antagonist, such as tamsulosin (Raheem et al., 2017).

Recently, mirabegron, a ß3-adrenergic receptor agonist, has gained attention for its ability to relax bladder smooth muscle and alleviate overactive bladder symptoms (Solakhan et al., 2019; Wanajo et al., 2004). Emerging research indicates that β 3-adrenergic receptors are also expressed in the smooth muscle and urothelium of the ureter, suggesting that mirabegron could be a novel option for MET in treating ureteral stones (Kaya et al., 2018; Kelleher et al., 2018). Activation of β3-adrenergic receptors can reduce the excitability of smooth muscle cells by inhibiting the release of intracellular calcium ions (Ca²⁺) and enhancing the efflux of potassium ions (K⁺), which may contribute to the relaxation of ureteral smooth muscle and facilitate stone passage (Dey et al., 2024). However, the current evidence regarding its effectiveness remains inconclusive and has yet to be thoroughly evaluated. This study aims to systematically review and compare the effectiveness and safety of mirabegron versus a-adrenergic receptor antagonist in the treatment of distal ureteral stones.

Methods

The review protocol was registered with PROSPERO (CRD42024599866; https://www.crd.york.ac.uk/PROSPERO/) following the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

Search strategy

We performed a comprehensive literature search in the PubMed, Embase, and Cochrane databases, adhering to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines (Page et al., 2021) (Supplementary Table 1). The search covered publications from the databases' inception to August 2024. Our retrieval strategy was formulated using the PICOS framework (population, intervention, comparators, outcomes, and study design). The key terms used in the search included mirabegron, β 3-adrenergic receptor agonists, tamsulosin, silodosin, α -adrenergic receptor antagonist, and ureteral stones. We limited the search to Englishlanguage articles and randomized controlled trials (RCTs). Two authors independently conducted the searches following the established strategy, and their results were cross-checked. All identified articles were evaluated separately by two reviewers, with any disagreements resolved by consulting a third researcher. Furthermore, relevant references from the included studies were also reviewed where necessary.

Inclusion criteria and data extraction

The inclusion criteria for all articles were as follows (Cui et al., 2014): the studies must be RCTs (Ahmed and Al-Sayed, 2010); each article provided authentic and valid data (Raheem et al., 2017); participants were patients diagnosed with ureteral stones and met the MET criteria; and (Thongprayoon et al., 2020) the studies compared mirabegron treatments with α -adrenergic antagonist in patients with ureteral stones. Consequently, we excluded any clinical studies where non- α -adrenergic antagonist were used in the control group. In cases where the same research was published in multiple journals or at different times, the most recent version was chosen for the meta-analysis. Additionally, case reports, review articles, meeting abstracts, conference reports and studies lacking sufficient data were excluded. The details of the inclusion and exclusion criteria are shown in Supplementary Table 2.

Quality assessment

Two authors independently evaluated the risk of bias in this study using the Cochrane Risk of Bias (RoB) 2.0 tool, focusing on multiple domains: the randomization process, deviations from the intended interventions, incomplete outcome data, outcome measurement, and selection of reported results (Higgins et al., 2011). Any disagreements between the reviewers were resolved through discussions with a third investigator. Each domain received a rating of "low," "some concerns," or "high" risk. The overall bias risk for each study was determined based on the highest risk level assigned in any domain.

Data extraction and outcome measures

Two authors independently extracted data from the included articles, organizing information such as the author's name, publication year, country, sample size, treatments and comparators, study duration, stone location, and stone size. The primary outcome measured was the stone expulsion rate (SER), while secondary outcomes included the stone expulsion interval (SEI) and the number of pain episodes during follow-up. If a study did not report standard deviations (SD), these were derived from the provided standard errors (SE), confidence intervals (CI), or P values. In cases where none of these values were available, the SD was estimated using correlation coefficients from similar studies.

Statistical analyses

Data analysis for this study was conducted using Review Manager version 5.3.0 (Cochrane Collaboration). For

dichotomous outcomes, the risk ratio (RR) was calculated, while the mean difference (MD) was used for continuous outcomes, both reported with 95% confidence intervals (CIs). To assess statistical heterogeneity, Cochran's Q test and the I² statistic were applied, with heterogeneity defined as I² > 50% or p < 0.05. When no heterogeneity was detected, a fixed-effects model was used to combine the effect sizes; otherwise, a random-effects model was applied. P < 0.05 was considered statistically significant.

Results

Characteristics of included studies

We initially identified 51 articles through our search strategy, but 22 were removed after screening their titles and abstracts. Out of the 29 articles left, 20 were excluded for not meeting the inclusion criteria, and an additional 3 from the remaining 9 were eliminated due to insufficient data. Ultimately, 6 studies were included in our analysis to assess the efficacy of mirabegron and α -adrenergic receptor antagonist in treating distal ureteral stones (Abdel-Kader et al., 2024; Bayar et al., 2020; Faridi and Deshpande, 2024; Morsy et al., 2022; Samir et al., 2024; Seleem et al., 2021). The study selection process is illustrated in Figure 1, with detailed characteristics of these studies provided in Table 1.

Risk of bias

The risk of bias (RoB) assessment for each study is shown in Figure 2. Out of the included studies, 4 were found to have some concerns, while the remaining 2 were considered to have a low RoB. The most common sources of potential bias were related to the randomization process and the selection of reported outcomes. The bias analysis produced highly symmetrical plots, consisting of 6 squares representing studies that evaluated the efficacy of mirabegron and α -adrenergic receptor antagonist in treating distal ureteral stones (Figure 3).

TABLE 1 Characteristics of included studies.

Study (years)	Country	Study	Sample size		Interv	ention	Duration	Stone	Stone
		uesign	Trial	Control	Trial	Control		3120	location
Bayar et al. (2020)	Turkey	RCT	29	35	Mirabegron (50 mg/day)	Silodosin (8 mg/day)	4 weeks	4–10 mm	Distal ureter
Faridi and Deshpande (2024)	India	RCT	56	58	Mirabegron (50 mg/day)	Silodosin (8 mg/day)	4 weeks	5–10 mm	Distal ureter
Abdel-Kader et al. (2023)	Egypt	RCT	35	35	Mirabegron (50 mg/day)	Silodosin (8 mg/day)	4 weeks	≤10 mm	Distal ureter
Samir et al. (2024)	Egypt	RCT	57	59	Mirabegron (50 mg/day)	Silodosin (8 mg/day)	4 weeks	5–10 mm	Distal ureter
Morsy et al. (2022)	Egypt	RCT	25	25	Mirabegron (50 mg/day)	Tamsulosin (0.4 mg/day)	30 days	<10 mm	Distal ureter
Seleem et al. (2021)	Egypt	RCT	37	36	Mirabegron (50 mg/day)	Tamsulosin (0.4 mg/day)	NA	5–10 mm	Distal ureter

FIGURE 2

The assessment of risk of bias (RoB). (A) Risk of bias domain for each included study; (B) Summary of risk of bias assessment.

Assessment of efficacy

SER

Six studies, involving 487 participants (239 in the mirabegron group and 248 in the α -adrenergic receptor antagonist treatment

group), provided data on the SER when comparing mirabegron to α adrenergic receptor antagonist. A fixed effects model was applied to calculate the RR with a 95% CI, considering no heterogeneity (p = 0.24; I² = 25%). The analysis showed that mirabegron did not significantly increase the SER compared to the α -adrenergic receptor antagonist group (RR = 1.06; 95% CI = 0.93–1.22; P = 0.39) (Figure 4A). Sensitivity analysis, in which each study was sequentially excluded and the pooled RR recalculated, consistently supported the original findings (Supplementary Figure S1A), confirming the stability of the meta-analysis results for SER outcomes.

SEI

Six studies, including 487 participants (239 in the mirabegron group and 248 in the α -adrenergic receptor antagonist group), presented data on the SEI in a comparison between mirabegron and α -adrenergic receptor antagonist. A random effects model was utilized to calculate the MD with a 95% CI, taking into account substantial heterogeneity (Q = 208.49; p < 0.0001; I² = 98%). The results indicated that mirabegron did not significantly shorten the SEI compared to the α -adrenergic receptor antagonist group (MD =

Forest plots showing the pooled results of SER, SEI and pain episodes between mirabegron and α -adrenergic receptor antagonist group. (A) SER; (B) SEI; (C) pain episodes. SER, stone expulsion rate; SEI, stone expulsion interval.

0.05; 95% CI = -3.23 to 3.34; P = 0.97) (Figure 4B). Sensitivity analysis, which involved recalculating the pooled MD after excluding each study one at a time, consistently supported the initial findings (Supplementary Figure S1B), reinforcing the reliability of the meta-analysis results regarding SEI.

Frequency of pain episodes

Six studies, involving 487 participants (239 in the mirabegron group and 248 in the α -adrenergic receptor antagonist group), provided data on the frequency of pain events during MET when comparing mirabegron to α -adrenergic receptor antagonist. A random effects model was applied to calculate the MD with a 95% CI, accounting for moderate heterogeneity (Q = 18.22; p = 0.003; I² = 73%). The analysis revealed that mirabegron significantly reduced the frequency of pain episodes compared to the α -adrenergic receptor antagonist group (MD = -0.36; 95% CI = -0.63 to -0.09; P = 0.01) (Figure 4C). Sensitivity analysis, in which each study was sequentially excluded and the pooled MD recalculated, consistently confirmed the original findings (Supplementary Figure S1C), highlighting the robustness of the meta-analysis results regarding pain episode frequency.

Assessment of safety

Headache

Two studies, involving 186 participants (92 in the mirabegron group and 94 in the α -adrenergic receptor antagonist group), provided data on the incidence of headache. A fixed effects model was utilized to calculate the RR with a 95% confidence interval CI (p = 0.35; I² = 0). The analysis revealed a significant difference between the mirabegron and α -adrenergic receptor antagonist groups (RR = 0.34; 95% CI = 0.13–0.87; P < 0.05) (Figure 5A). This indicates that mirabegron is associated with a lower frequency of headache compared to the α -adrenergic receptor antagonists.

Dizziness

Two studies, with a total of 186 participants (92 in the mirabegron group and 94 in the α -adrenergic receptor antagonist group), reported on the occurrence of dizziness. A random effects model was utilized to calculate the RR with a 95% CI (Q = 2.3; p = 0.13; I² = 57%). The results indicated no significant difference between the mirabegron and α -adrenergic receptor antagonist

groups (P = 0.60) (Figure 5B). This implies that the rates of dizziness are comparable between both treatment options.

Orthostatic hypotension

Two studies examined orthostatic hypotension, involving 186 participants (92 in the mirabegron group and 94 in the α -adrenergic receptor antagonist group). A fixed effects model was applied to compute the RR with a 95% CI (p = 0.22; I² = 32%). The analysis revealed a significant difference between the mirabegron and α -adrenergic receptor antagonist groups (RR = 0.11; 95% CI = 0.02–0.55; P = 0.008) (Figure 5C). This indicates that mirabegron is associated with a lower incidence of orthostatic hypotension compared to the α -adrenergic receptor antagonists.

Ejaculation dysfunction

Two studies also focused on ejaculation dysfunction, involving a total of 186 participants (92 in the mirabegron group and 94 in the α -adrenergic receptor antagonist group). A random effects model was used to calculate the RR with a 95% CI (Q = 2.79; p = 0.09; I² = 64%). The findings indicated no significant difference between the mirabegron and α -adrenergic receptor antagonist groups (P = 0.06) (Figure 5D). This suggests that the prevalence of ejaculation dysfunction is similar for both treatment options.

Subgroup analysis

This study utilized 2 types of α -adrenergic blockers—tamsulosin and silodosin—for the treatment of distal ureteral stones. A subgroup analysis was conducted to account for the differences between these medications.

SER

In this evaluation, 4 RCTs comparing mirabegron with silodosin and 2 RCTs comparing mirabegron with tamsulosin were included. We found no significant difference between mirabegron and silodosin in SER (RR = 1.08; 95% CI = 0.92-1.25; P = 0.34). The comparison with tamsulosin showed similar results (RR = 1.01; 95% CI = 0.74-1.38; P = 0.93) (Figure 6A).

SEI

This assessment incorporated 4 RCTs comparing mirabegron with silodosin and 2 RCTs comparing mirabegron with tamsulosin. The analysis revealed no significant difference in the SEI between mirabegron and silodosin (MD = 2.36; 95% CI = -2.38 -7.11; P = 0.33). Similarly, the comparison with tamsulosin yielded comparable results (MD = -5.28; 95% CI = -14 - 3.45; P = 0.24) (Figure 6B).

Frequency of pain episodes

In this analysis, 4 RCTs comparing mirabegron with silodosin and 2 RCTs comparing mirabegron with tamsulosin were included. We observed a significant difference in the frequency of pain events during medical MET between mirabegron and silodosin (MD = -0.42; 95% CI = -0.74 to -0.09; P = 0.01). In contrast, the comparison with tamsulosin did not reveal any significant difference in the frequency of pain episodes (MD = -0.14; 95% CI = -0.66-0.37; P = 0.58) (Figure 6C).

Discussion

Current clinical guidelines indicate that MET is a viable treatment option for distal ureteral stones (Beach and Mauro, 2006). a-adrenergic receptor blockers, such as tamsulosin, are commonly utilized in MET. Additionally, other medications, including calcium channel blockers, phosphodiesterase type 5 inhibitors, and corticosteroids, have also demonstrated efficacy in facilitating the passage of ureteral stones (Itoh et al., 2011). Recently, studies have explored the potential of mirabegron, a β3-adrenergic receptor agonist, in promoting stone expulsion (Shen et al., 2017). A meta-analysis by Song et al. concluded that mirabegron significantly increased the SER of distal ureteral stones and reduced the frequency of pain episodes (Song et al., 2023). However, the effectiveness of mirabegron remains a subject of debate. While some randomized controlled trials have reported benefits of mirabegron in stone expulsion, others have not confirmed these findings (Van Asseldonk and Elterman, 2015; Ye et al., 2011). For instance, Tang et al. demonstrated that mirabegron significantly improved SER in patients with stones measuring ≤ 5 mm but had no effect on those with larger stones (Tang et al., 2021). In this meta-analysis, we systematically evaluated the efficacy and safety of mirabegron compared to α -adrenergic receptor blockers for the treatment of distal ureteral stones.

Our findings indicated no significant differences in SER or SEI between the mirabegron and a-adrenergic receptor antagonist groups. This suggests that mirabegron may have comparable overall efficacy to tamsulosin and silodosin regarding stone passage and expulsion time. Notably, our analysis revealed that mirabegron significantly reduced the frequency of pain episodes during stone expulsion, particularly in comparison to silodosin. Although pain perception is a subjective outcome measure-unlike objective metrics such as SER or SEI-it remains a critical endpoint in urolithiasis management. Patient-reported pain relief directly reflects therapeutic success from the patient's perspective, as uncontrolled colic not only diminishes quality of life but also drives healthcare resource utilization (Cabo and Miller, 2024). This reduction in pain frequency holds direct clinical relevance: fewer pain episodes may translate into improved quality of life by reducing dependence on analgesics (e.g., opioids or NSAIDs), decreasing emergency department visits for uncontrolled colic, and enabling earlier resumption of daily activities or occupational duties. The result underscores the potential advantage of mirabegron in pain management during MET.

The use of β 3-adrenergic receptor agonists, such as mirabegron, is primarily associated with the management of overactive bladder (Lipkin and Shah, 2009). However, recent research has identified the presence of β -adrenergic receptors in the smooth muscle of the human ureter (Taylor et al., 2004). The activation of β 3-adrenergic receptors is believed to relax ureteral smooth muscle, facilitating stone passage by reducing the frequency of peristaltic contractions (Tomiyama et al., 2007). This mechanism may account for the observed reduction in pain frequency in our analysis, as fewer

Table 29 Marked 295 Cl Marked	tudy or Subarous	Mirabe	gron	α-ad	renergic rece	ptor antagoni	st		Risk Ratio	Risk Ratio
$\frac{1.4}{22} MinSegrov Standsolver, Child Constraints (Child Constraints) = 0 = 0.000 (Child Constraints) = 0.000 $	t t and t oungroup	Events	<u>Tota</u>	d	Events	т	otal V	Veight	M-H, Fixed, 95% Cl	M-H, Fixed, 95% Cl
$ \begin{array}{c} \text{Markedger Vac3} & 10 & 33 & 40 & 33 & 13.0 \\ \text{Mill 2024} & 14 & 56 & 47 & 72 \\ \text{Mill 2024} & 14 & 56 & 57 & 23 & 99 & 15.6 \\ \text{Mill 2024} & 156 & 57 & 23 & 99 & 15.6 \\ \text{Mill 2024} & 156 & 0.00 \\ \text{Mill 2024} & 16 & 0.00 \\ \text{Mill 2024} & 10 & 0.00 \\ $.4.1 Mirabegron vs	Silodosin	1	-				10.00/		
$ y_{12}^{12} (222) 1 = 22 \\ y_{12}^{12} (222) 1 = 22 \\ y_{12}^{12} (222) 1 = 35 \\ y_{12}^{12} (22) (23) (23) (23) (23) (23) (23) (23)$	bdel-Kader 2023	18	3	2	20		35	13.8%	0.90 [0.58, 1.39]	
$ \begin{array}{c} \operatorname{dis} \operatorname$	ayar 2022	17	29	9	24		35	15.0%	0.85 [0.59, 1.25]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	aridi 2024	46	5	5	47		58	31.9%	1.01 [0.85, 1.21]	
$\begin{aligned} & \text{detail advects} & \text{116} & \text{117} & \text{118} & \text{113} [0.75, 1.72] \\ \text{advects} & \text{32} & \text{117} & \text{32} & \text{31} & \text{32} & \text{33} & 33$	amir 2024	35	5	7	23		59	15.6%	1.58 [1.08, 2.30]	
bill events 116 114 terrogenesity: Ch ⁺ = 0.40, (f = 2 = 0.09); P = 0.34) 45 for overal fields: 2 = 0.35 (P = 0.34) 45 for 3 = 0.000; P	ubtotal (95% CI)		177	7			187	76.3%	1.08 [0.92, 1.25]	-
$\begin{aligned} \text{detergency} C.P^* = 0.40, df = 2 (P = 0.09), P = 0.3% \\ \text{det or weal diffect 2 = 0.36, P = 0.31 \\ \text{det or weal diffect 2 = 0.36, P = 0.31 \\ \text{det or weal diffect 2 = 0.36, P = 0.31 \\ \text{det or model} 1 & 37 & 19 & 36 & 13.3 \\ \text{det or model} 1 & 37 & 19 & 36 & 13.3 \\ \text{det or model} 1 & 37 & 19 & 36 & 13.3 \\ \text{det or model} 1 & 37 & 19 & 36 & 13.3 \\ \text{det or model} 1 & 51 & 3 & 34 \\ \text{det or model} 1 & 51 & 5 & 23 & 34 \\ \text{det or model} 1 & 51 & 70 = 6 (P = 0.32) \\ \text{det or model} 1 & 51 & 14 & 23.7 \\ \text{det or model} 1 & 51 & 14 & 23 & 51 & 148 \\ \text{det or model} 1 & 51 & 14 & 16 & P = 0.74), P = 0.5 \\ \text{det or model} 1 & 51 & 14 & 16 & P = 0.74), P = 0.5 \\ \text{det or model} 1 & 51 & 14 & 16 & P = 0.74), P = 0.5 \\ \text{det or Subgroup differences}. Chi = 0.11, df = 1 (P = 0.74), P = 0.5 \\ \text{det or Subgroup differences}. Chi = 0.11, df = 1 (P = 0.74), P = 0.5 \\ \text{det or Subgroup differences}. Chi = 0.11, df = 1 (P = 0.74), P = 0.5 \\ \text{det or Subgroup differences}. Chi = 0.11, df = 1 (P = 0.74), P = 0.5 \\ \text{det or Subgroup differences}. Chi = 0.11, df = 1 (P = 0.74), P = 0.5 \\ \text{det or Subgroup differences}. Chi = 0.11, df = 1 (P = 0.74), P = 0.5 \\ \text{det or Subgroup differences}. Chi = 0.27, P = 0.25 & 3.3 & 59 & 17.25 & 3.5 & 16.55 & 2.10 & 10.6 & 4.33 \\ det or weal diffect 2 = 0.36 (P = 0.30) \\ \text{det or weal diffect 2 = 0.36 (P = 0.30) \\ \text{det or weal diffect 2 = 0.36 (P = 0.30) \\ \text{det or weal diffect 2 = 0.36 (P = 0.30) \\ \text{det or weal diffect 2 = 0.36 (P = 0.30) \\ \text{det or weal diffect 2 = 0.36 (P = 0.300) \\ \text{det or weal diffect 2 = 0.36 (P = 0.300) \\ \text{det or weal diffect 2 = 0.36 (P = 0.30) \\ \text{det or weal diffect 2 = 0.36 (P = 0.300) \\ \text{det or weal diffect 2 = 0.36 (P = 0.300) \\ \text{det or weal diffect 2 = 0.36 (P = 0.3000) \\ \text{det or weal diffect 2 = 0.36 (P = 0.30000) \\ \text{det or weal diffect 2 = 0.36 (P = 0.300000) \\ \text{det or weal diffect 2 = 0.36 (P = 0.3000000) \\ \text{det or weal diffect 2 = 0.36 (P = 0.3000000) \\ \text{det or weal diffect 2 = 0.36 (P = 0.3000000000) \\ \text{det or weal diffect 2 = 0.36 (P = $	otal events	116	i -		114					
$ \begin{array}{c} 4.2 Mirsbegron vs Tamsoloxinic components of the energy CO22 11 16 37 19 36 13.3% O.29 [0.53, 1.42] \\ etherm 2021 16 37 19 36 13.3% O.29 [0.53, 1.42] \\ obtained (95%, CI) 62 33 \\ etherogeneity: CI = 0.44, df = 1 (P = 0.51); P = 0% \\ etherogeneity: CI = 0.44, df = 1 (P = 0.51); P = 0.53; \\ etherogeneity: CI = 0.50, df = 5 (P = 0.33) \\ etherogeneity: CI = 0.50, df = 5 (P = 0.33) \\ etherogeneity: CI = 0.50, df = 5 (P = 0.33) \\ etherogeneity: CI = 0.50, df = 5 (P = 0.33) \\ etherogeneity: CI = 0.51, df = 1 (P = 0.74), P = 0% \\ etherogeneity: CI = 0.51, df = 1 (P = 0.74), P = 0\% \\ etherogeneity: CI = 0.51, df = 1 (P = 0.74), P = 0\% \\ etherogeneity: CI = 0.51, df = 1 (P = 0.74), P = 0\% \\ etherogeneity: CI = 0.51, df = 1 (P = 0.74), P = 0\% \\ etherogeneity: CI = 0.51, df = 1 (P = 0.74), P = 0\% \\ etherogeneity: CI = 0.51, df = 1 (P = 0.74), P = 0\% \\ etherogeneity: CI = 0.51, df = 1 (P = 0.74), P = 0\% \\ etherogeneity: CI = 0.51, df = 1 (P = 0.74), P = 0\% \\ etherogeneity: CI = 0.51, df = 1 (P = 0.74), P = 0\% \\ etherogeneity: CI = 0.51, df = 1 (P = 0.74), P = 0\% \\ etherogeneity: CI = 0.51, df = 1 (P = 0.74), P = 0\% \\ etherogeneity: CI = 0.51, df = 1 (P = 0.74), P = 0\% \\ etherogeneity: Taf = 2.78, CL = 107 \\ etherogeneity: Taf = 2.78, CL = 100, R0, df = 3 (P = 0.0001); P = 98\% \\ etherogeneity: Taf = 2.78, CL = 107 \\ etherogeneity: Taf = 2.78, CL = 0.0001; P = 95\% \\ etherogeneity: Taf = 2.78, CL = 0.0001; P = 95\% \\ etherogeneity: Taf = 0.044, df = 1 (P = 0.0001; P = 95\% \\ etherogeneity: Taf = 0.044, CH = 1.17, etherogeneity: Taf = 0.045, CL = 0.0001; P = 95\% \\ etherogeneity: Taf = 0.045, CL = 1.20, df = 1 (P = 0.000; P = 1.20) \\ etherogeneity$	eterogeneity: Chi ² = est for overall effect	6.40, df = : Z = 0.95	3 (P = (P = 0.	0.09); l [:] 34)	² = 53%					
oray 2022 17 25 15 25 10.4% of 1.13 (0.75, 1.72) babbeta (95% C) 62 19 61 23.7% 1.31 (0.55, 1.52) babbeta (95% C) 62 19 61 23.7% 1.31 (1.074, 1.38) babbeta (95% C) 239 248 100.0% 1.66 (0.33, 1.22) babbeta (95% C) 259 25 0.5 babbeta (95% C) 223 18 3.7 (2.4 3.2 9 - 0.33) babbeta (95% C) 223 18 3.7 (2.4 3.2 9 - 0.33) babbeta (95% C) 223 18 3.7 (2.4 3.2 9 - 0.33) babbeta (95% C) 223 18 3.7 (2.4 3.2 9 - 0.33) babbeta (95% C) 239 249 27 1.3 0.5 1.5 (1.75% -1.000 (1.42.8 - 5.74) babbeta (95% C) 223 18 2.2 0.5 0.5 babbeta (95% C) 223 18 2.2 0.5 0.5 babbeta (95% C) 223 16 2.7 (1.4 0.2 0.3 7) 1.5 (1.6 - 0.0001); P = 95% babbeta (95% C) 25 13.7% -10.00 (1.42.8 - 5.74) babbeta (95% C) 223 18 2.2 0.00001; P = 95% babbeta (95% C) 25 13.7% -10.00 (1.42.8 - 5.74) babbeta (95% C) 223 18 2.2 0.5 0.5 babbeta (95% C) 233 12 (1.6 - 0.33) 12 (1.6 - 0.44) babbeta (95% C) 233 16 1 1 3 35 195% -3.28 (1.40.0, 3.45] babbeta (95% C) 233 16 2.2 (1.6 - 0.36) (1.6 - 0.0001); P = 95% babbeta (95% C) 20.29 (1.4 - 0.0001); P = 95% babbeta (95% C) 20.29 (1.4 - 0.0001); P = 95% babbeta (95% C) 20.29 (1.4 - 0.0001); P = 95% babbeta (95% C) 20.29 (1.4 - 0.0001); P = 95% babbeta (95% C) 20.29 (1.4 - 0.0001); P = 95% babbeta (95% C) 20.29 (1.4 - 0.0001); P = 95% babbeta (95% C) 20.29 (1.4 - 0.0001); P = 95% babbeta (95% C) 20.29 (1.4 - 0.0001); P = 95% babbeta (95% C) 20.29 (1.4 - 0.0001); P = 95% babbeta (95% C) 20.29 (1.4 - 0.0000); P = 95% babbe	4.2 Mirabegron vs	Tamsolo	sin							
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	orsy 2022	17	2	5	15		25	10.4%	1.13 [0.75, 1.72]	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	eleem 2021	18	3	7	19		36	13.3%	0.92 [0.59, 1.45]	
hal events 35 0 34 terrogeneity: Ch ² = 0.44, df = 1(P = 0.51); P = 0%, tall events 151 148 terrogeneity: Ch ² = 0.70, df = 5(P = 0.24); P = 25%, tal (95%; Cl) 239 248 100.0%, 1.06 [0.33, 1.22] 0.5 0.7 1 1.5 2 0.5 0.5 1.5 25 13.7% - 0.00 [-14.20, -17.2] 0.5 0.7 1 1.5 0.6 3 0.5 [-3.23, 3.4] 0.0 [-14.4, 0.72] 0.0 [-14.20, 6.74] 0.0 [-14.4, 0.72] 0.0 [-14.20, 6.74] 0.0 [-14.4, 0.72] 0.0 [-14.20, 6.74] 0.0 [-14.20, 6.74] 0.0 [-14.4, 0.72] 0.0 [-14.00, 3.45] 1.2 Minabegron c-admengic receptor antagonist 1.2 Minabegron c-admene	ubtotal (95% CI)		6:	2			61	23.7%	1.01 [0.74, 1.38]	
$\begin{aligned} \text{sterogenetiy: Chi = 0.44, df = 1 (P = 0.51); P = 0\% \\ \text{st for overall effect: 2 = 0.09 (P = 0.32) \\ \text{tal events} & 151 & 143 \\ \text{terrogenetiy: Chi = 0.70, df = 5 (P = 0.24), P = 25\% \\ \text{st for subgroup differences: Chi' = 0.11, df = 1 (P = 0.74), P = 0\% \\ \text{st for subgroup differences: Chi' = 0.11, df = 1 (P = 0.74), P = 0\% \\ \text{st for subgroup differences: Chi' = 0.11, df = 1 (P = 0.74), P = 0\% \\ \text{st for subgroup differences: Chi' = 0.11, df = 1 (P = 0.74), P = 0\% \\ \text{st for subgroup differences: Chi' = 0.11, df = 1 (P = 0.74), P = 0\% \\ \text{st for subgroup differences: Chi' = 0.11, df = 1 (P = 0.74), P = 0\% \\ \text{st for subgroup differences: Chi' = 0.11, df = 1 (P = 0.74), P = 0\% \\ \text{st for subgroup differences: Chi' = 0.11, df = 1 (P = 0.74), P = 0\% \\ \text{st for subgroup differences: Chi' = 0.11, df = 1 (P = 0.74), P = 0\% \\ \text{st for subgroup differences: Chi' = 0.11, df = 1 (P = 0.74), P = 0\% \\ \text{st for subgroup differences: Chi' = 0.21, df = 1 (P = 0.74), P = 0\% \\ \text{st for subgroup differences: Chi' = 0.21, df = 1 (P = 0.13), P = 0\% \\ \text{st for subgroup differences: Chi' = 0.21, df = 1 (P = 0.13), P = 56 \text{ otherwises} \\ st for orwall diffect: 2 = 0.03 (P = 0.23) \\ \text{st for orwall diffect: 2 = 0.03 (P = 0.23) \\ \text{st for orwall diffect: 2 = 0.03 (P = 0.00); P = 98\% \\ \text{st for orwall diffect: 2 = 0.03 (P = 0.24) \\ \text{st for orwall diffect: 2 = 0.03 (P = 0.00); P = 0.002; P = 98\% \\ \text{st for orwall diffect: 2 = 0.03 (P = 0.00); P = 98\% \\ \text{st for orwall diffect: 2 = 0.03 (P = 0.00); P = 98\% \\ \text{st for orwall diffect: 2 = 0.03 (P = 0.00); P = 98\% \\ \text{st for orwall diffect: 2 = 0.03 (P = 0.00); P = 98\% \\ \text{st for orwall diffect: 2 = 0.03 (P = 0.00); P = 98\% \\ \text{st for orwall diffect: 2 = 0.03 (P = 0.00); P = 98\% \\ \text{st for orwall diffect: 2 = 0.03 (P = 0.00); P = 98\% \\ \text{st for orwall diffect: 2 = 0.03 (P = 0.00); P = 98\% \\ \text{st for orwall diffect: 2 = 0.03 (P = 0.00); P = 98\% \\ \text{st for orwall diffect: 2 = 0.03 (P = 0.00); P = 98\% \\ \text{st for orwall diffect: 2 = 0.07 (P = 0.00); P = 1.85, 0.03 \\ \text{st for orwall $	otal events	35	,		34					
st for overall effect: Z = 0.09 (P = 0.39) tal (95% C) 239 248 100.0% 1.06 [0.93, 1.22] 0.5 0.7 1 15 2 0.5 0.7 1 15 0.7 2 5 25 0.5 25 13.7% -10.00 [-14.28, -5.74] 10 - 6.5% 2.36 [-14.00, 3.40] 10 - 6 0 - 0.0001; i = 98% 10 roverall effect: Z = 0.38 (d = 5 (P < 0.0001); i = 98% 10 roverall effect: Z = 0.38 (d = 6 (P < 0.0001); i = 98% 10 roverall effect: Z = 0.38 (d = 6 (P < 0.0001); i = 98% 10 roverall effect: Z = 0.39 (f = 0.37) 3.2 Mirabegron v Siloclain 10 - 6 0 0001; i = 98% 10 roverall effect: Z = 0.38 (d = 6 (P < 0.0001); i = 98% 10 roverall effect: Z = 0.39 (f = 0.37) 3.2 Mirabegron v Siloclain 10 - 6 0 0001; i = 98% 10 roverall effect: Z = 0.38 (d = 6 (P < 0.0001); i = 98% 10 roverall effect: Z = 0.39 (f = 0.37) 10 - 6 0 (f = 0.57) 10 - 7 0.85 (d = 0.07) 10 - 7 0.85	eterogeneity: Chi ² =	0.44, df =	1 (P =	0.51); 1	² = 0%					
hall (9%, C) 239 248 100.0% 1.06 (p.33, 1.22) Justa oversits 151 168 interrogenetity: (m² = 6.70, d1 = 5 (P = 0.24), P = 0.48) Mitrabegron vs. Chill = 0.11, df = 1 (P = 0.74), P = 0.%	est for overall effect:	: Z = 0.09	(P = 0.9) 3)						
that events 151 00 148 thereogeneity. The 570, df = 5(P = 0.24), lf = 25%, st for overall effect 2 = 0.8(P = 0.39) st for subgroup differences: Ch ² = 0.11, df = 1 (P = 0.74), l ² = 0% thereogeneity. Tau ² = 0.82 (Df = 0.33) thereogeneity. Tau ² = 0.75, df = 5(P = 0.00); l ² = 9% thereogeneity. Tau ² = 2.27; Cl ³ = 1.02, df = 5(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 3(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 5(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 5(P < 0.00001); l ² = 94%, st for overall effect 2 = 2.04, df = 5(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 3(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 3(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 5(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 5(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 5(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 5(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 5(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 5(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 5(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 5(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 5(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 5(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 5(P < 0.00001); l ² = 94%, st for overall effect 2 = 1.08, df = 5(P < 0.00001); l ² = 94%, st for overall effect 2 = 0.08, l ² = 1.07, df	otal (95% CI)		239	ð			248 1	00.0%	1.06 [0.93, 1.22]	•
$ \begin{array}{c} \text{detrogeneity: Ch^2 = 6.70, df = 5 (P = 0.24), F = 25\% \\ \text{storweal lifest 2 = 0.85 (P = 0.39)} \\ \text{storweal lifest 2 = 0.85 (P = 0.39)} \\ \text{storweal lifest 2 = 0.85 (P = 0.39)} \\ \text{storweal lifest 2 = 0.85 (P = 0.39)} \\ \text{storweal lifest 2 = 0.85 (P = 0.39)} \\ storweal lifest 2 = 0.87 (P = 0.74), F = 0\% \\ \text{storweal lifest 2 = 0.87 (P = 0.74), F = 0\% \\ \text{storweal lifest 2 = 0.87 (P = 0.74), F = 0\% \\ \text{storweal lifest 2 = 0.87 (P = 0.74), F = 0\% \\ \text{storweal lifest 2 = 0.87 (P = 0.74), F = 0\% \\ \text{storweal lifest 2 = 0.87 (P = 0.74), F = 0.0001; F = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); F = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); F = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); F = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); F = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); F = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.00001); F = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.00001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.00001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.00001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.00001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.00001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.00001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.00001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.00001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.00001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.0001); P = 98\% \\ \text{storweal lifest 2 = 0.87 (P = 0.00$	otal events	151			148					
as for overall effect $Z = 0.38$ ($P = 0.39$) as doreader energic receptor antagonist Mrabegron Mirabegron or -adrenergic receptor antagonist Maan Difference Mirabegron $C = 0.74$, $P = 0.74$,	eterogeneity: Chi ² =	6.70, df =	5 (P =	0.24); 1	² = 25%					
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	est for overall effect	: Z = 0.86	(P = 0.3)	39)					a odron	U.5 U.7 I I.5 Z
$\frac{Mirabegron}{start or Subgroup} \frac{Mean}{SD} \frac{SD}{Total} \frac{SD}{SD} \frac{SD}{SD} \frac{SD}{SD} \frac{SD}{Total} \frac{SD}{SD} \frac{SD}$	est for subgroup diff	erences: (Chi² = 0	.11, df =	= 1 (P = 0.74),	$ ^2 = 0\%$			u-aurene	ergic receptor antagonist minabegron
Minologrom de-drenergic receptor antagonist Mean SD Total										
Undy or Subgroup Mean SD Total Mean SD Total Weight IV. Random. 95% CI IV. Random. 95% CI 3.1 Minabegron vs Silodosin 3.00 (+2.8, -172) 3.00 (+2.8, -172) 3.00 (+2.8, -172) 3.00 (+2.8, -172) and 2024 14 4.35 66 7 2.13 56 17.4% 7.00 (5.7, 8.26) and 2024 14 4.35 67 9.25 3.9 59 17.2% 3.36 (12.4, 4.88) and 2024 14 4.35 67 9.25 3.9 59 17.2% 3.36 (12.4, 4.88) and 2024 14 4.35 67 9.25 6.5 2.5 13.7% -10.00 (-14.26, -5.74) antrogenely: Tau ⁺ = 2.7, 0.84, of = 5 (P < 0.00001); P = 94%		Mirab	egron	α-4	adrenergic re	ceptor antagor	nist		Mean Difference	Mean Difference
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	udy or Subgroup	Mean	SD To	tal	Mean	SD	Total	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl
$\begin{aligned} \begin{aligned} & \operatorname{del} k \operatorname{der} 2023 & 11 & 3.1 & 35 & 14 & 2.3 & 35 & 17.4\% & -3.00 (\pm 28, -1.72) \\ & \operatorname{yrr} 2022 & 12 & 4.3 & 29 & 7.1 & 4.5 & 35 & 16.6\% & 2.01 (-0.66, 4.26) \\ & \operatorname{rid} 2024 & 14 & 4.35 & 56 & 7 & 2.13 & 58 & 17.4\% & 7.00 (5.74, 8.26) \\ & \operatorname{mir} 2024 & 12.6 & 4.5 & 57 & 9.25 & 3.9 & 59 & 17.2\% & 3.35 (18.2, 4.88) \\ & \operatorname{mir} 2024 & 12.6 & 4.5 & 57 & 9.25 & 3.9 & 59 & 17.2\% & 3.35 (18.2, 4.88) \\ & \operatorname{mir} 2024 & 12.6 & 4.5 & 57 & 9.25 & 3.9 & 59 & 17.2\% & 3.35 (18.2, 4.88) \\ & \operatorname{mir} 2024 & 12.6 & 4.5 & 57 & 9.25 & 6.5 & 25 & 13.7\% & -10.00 (-14.26, -5.74) \\ & \operatorname{mir} 2024 & 12.6 & 4.5 & 72 & 52 & 6.5 & 25 & 13.7\% & -10.00 (-14.26, -5.74) \\ & \operatorname{mir} 2024 & 174 & 0.32 & 37 & 8.22 & 0.76 & 36 & 17.8\% & -1.08 [-1.44, -0.72] \\ & \operatorname{mir} 2027 & 7.14 & 0.32 & 37 & 8.22 & 0.76 & 36 & 17.8\% & -1.08 [-1.44, -0.72] \\ & \operatorname{mir} 2024 & 1.47 & 0.32 & 35 & 2.5 & 6.5 & 25 & 13.7\% & -10.00 (-14.26, -5.74) \\ & \operatorname{mir} 2024 & 1.57 & (Ch^2 = 208.49, di = 5 (P < 0.00001); P = 94\% \\ & \operatorname{stat} for overall effect Z = -0.13 (P = 0.04) \\ & \operatorname{mir} 2024 & 1.47 & (Ch^2 = 5.74) & (D = 0.07) \\ & \operatorname{mir} 2024 & 1.48 & 0.81 & 57 & 1.65 & 0.6\% \\ & \operatorname{mir} 2024 & 1.48 & 0.81 & 57 & 1.65 & 0.6\% \\ & \operatorname{mir} 2024 & 1.48 & 0.81 & 57 & 1.65 & 0.46 & 59 & 23.4\% & 0.02 (-1.49, 0.13) \\ & \operatorname{mir} 2024 & 1.48 & 0.81 & 57 & 1.65 & 0.46 & 59 & 23.4\% & 0.02 (-1.49, 0.13) \\ & \operatorname{mir} 2024 & 1.48 & 0.81 & 57 & 1.65 & 0.46 & 59 & 23.4\% & 0.02 (-1.28, 0.29) \\ & \operatorname{mir} 2024 & 1.48 & 0.81 & 57 & 1.65 & 0.46 & 59 & 23.4\% & 0.02 (-1.28, 0.29) \\ & \operatorname{mir} 2024 & 1.87 & 0.81 & 57 & 1.65 & 0.48 & 59 & 23.4\% & 0.02 (-1.28, 0.28) \\ & \operatorname{mir} 2024 & 1.48 & 0.81 & 57 & 1.65 & 0.48 & 59 & 23.4\% & 0.04 (-0.24, 0.09) \\ & \operatorname{mir} 2024 & 1.48 & 0.81 & 57 & 1.65 & 0.48 & 59 & 23.4\% & 0.02 (-1.28, 0.28) \\ & \operatorname{mir} 2024 & 1.87 & 0.81 & 57 & 1.65 & 0.48 & 59 & 23.4\% & 0.04 (-0.26, 0.37) \\ & \operatorname{mir} 2024 & 1.87 & 0.81 & 57 & 1.69 & 0.88 & 36 & 18.3\% & -0.40 (-0.44, 0.38) \\ & \operatorname{mir} 2024 & 1.87 & 0.81 & 57 & 1.69 & 0.88 & 36 & 18.3\% & -0.40 (-0.44, 0.36) \\ & \operatorname{mir} 2024 & 1.48 & 0.81 $	3.1 Mirabegron vs S	Silodosin								
yar 2022 9.2 4.3 29 7.1 4.5 35 16.8% 2.10 [-0.06, 4.26] 14 4.35 56 7 2.13 56 17.4% 7.00 [57.4, 2.6] mit 2024 12.6 4.5 57 9.25 3.9 59 17.2% 3.36 [1.82, 4.86] mit 2024 12.6 4.5 57 9.25 3.9 59 17.2% 3.36 [1.82, 4.86] thorad (95% C) 177 167 6.8.7 25 2.5 6.5 25 13.7% -10.0 [14.26, 5.74] 2.2 Mirabegron vs Tamsolosin rary 2022 16 8.7 25 2.5 6.5 25 13.7% -10.0 [14.26, -5.74] terrogeneity: Tau ² = 37.41; Ch ² = 1.64, df = 1 ($P < 0.0001$); $P = 94\%$ st for overall effect: $Z = 1.19$ ($P = 0.24$) val (95% C) 238 248 100.0% 0.05 [-3.23, 3.34] -10 5 0 5 10 Mirabegron c-adrenergic receptor antagonist to subgroup differences: Ch ² = 2.27, df = 1 ($P = 0.13$), $P = 56.0\%$ Mirabegron to stansolosin divide (46% C) 177 18 19 29 2.7 2.3 35 5.7% -0.80 [-1.16, -0.44] agar 2022 1.8 19 29 2.7 2.3 35 5.7% -0.40 [-1.9, 0.42] (-0.47, -0.33] and 2024 1.87 0.81 57 1.65 0.64 59 23.4% 0.02 [-0.27, 0.33] and 2024 1.87 0.81 57 1.65 0.64 59 23.4% 0.02 [-0.27, 0.33] and 2024 1.87 0.81 57 1.65 0.64 59 23.4% 0.02 [-0.27, 0.33] and 2024 1.87 0.81 57 1.65 0.64 59 23.4% 0.02 [-0.27, 0.33] and 2024 1.87 0.81 57 1.65 0.64 59 23.4% 0.02 [-0.27, 0.33] and 2024 1.87 0.81 57 1.65 0.64 59 23.4% 0.02 [-0.27, 0.33] and 2024 1.87 0.81 57 1.65 0.64 59 23.4% 0.02 [-0.27, 0.33] and 2024 1.87 0.81 57 1.69 0.88 36 13.7% -0.40 [-0.47, -0.33] and 2024 1.87 0.81 57 1.69 0.88 36 13.7% -0.40 [-0.42, 0.36] bitorogeneity: Tau ² = 0.07; Ch ³ = 14.98, df = 3 (P = 0.002); P = 80\% est for overall effect: $Z = -2.49$ (P = 0.01) 5.2 Mirabegron <i>z</i> -adrenergic receptor ant 200; P = 80% est for overall effect: $Z = -2.49$ (P = 0.01) 5.2 Mirabegron <i>z</i> -adrenergic receptor and 204 (-0.47, 0.33] and 2024 1.8 0.8 25 2.6 3.3 25 3.7% -0.80 [-2.13, 0.53] and 2024 1.8 0.8 25 2.6 3.3 25 3.7% -0.80 [-2.13, 0.53] and 2024 1.8 0.8 25 2.6 3.3 25 3.7% -0.80 [-2.13, 0.53] and 2024 1.8 0.8 25 2.6 3.3 25 3.7% -0.80 [-2.13, 0.53] and 2024 1.8 0.8 25 2.6 3.3 25 3.7% -0.80 [-2.13, 0.53] and 2024 1.8 0.8 37 1.69 0.88 36 12.13, 9.53] and 2024 1.8 0.8 25 2.6	del-Kader 2023	11	3.1	35	14	2.3	35	17.4%	-3.00 [-4.28, -1.72]	
$\frac{114 2024}{126 4 55 57} = \frac{12}{5 57} = \frac{5}{9 25} 3.9 56 17.4\% 7.00 [5.74, 8.26]}{167 68.5\% (2)} = \frac{177}{177} 165 57 9.25 3.9 56 17.2\% 3.36 [1.82, 4.86]}{167 68.5\% (2.36, 7.11]}$ $\frac{1167}{1695\% (2)} = \frac{12}{276} \cdot Ch^2 = 122.83, df = 3 (P < 0.00001); P = 98\% st for overall effect; Z = 0.98 (P = 0.33)$ $\frac{122 Mirabegron vs Tamsolosin}{177 7 14 0.25 37} = \frac{12}{25} 6.5 25 6.5 25 13.7\% -10.00 [-14.26, -5.74]}{61 31.5\% -5.26 [-1.40, 0.345]}$ $\frac{116}{1005\% (2)} = \frac{116}{27} - 1.16 (-2.74, df = 1 (P < 0.00001); P = 98\% st for overall effect; Z = 1.19 (P = 0.24)$ $\frac{116}{1005\% (2)} = \frac{116}{27} - 1.16 (-2.74, df = 1 (P < 0.00001); P = 98\% st for overall effect; Z = 0.03 (P = 0.97)$ $\frac{116}{100} - \frac{5}{5} - 10 - \frac{5}{5} - 10 - \frac{5}{5} - 10 - \frac{5}{5} - 10 - \frac{5}{5} - \frac{10}{5} - \frac{10}{5} - \frac{5}{5} - \frac{10}{5} - \frac{5}{5} - \frac{10}{5} - \frac{5}{5} - \frac{10}{5} - \frac$	yar 2022	9.2	4.3	29	7.1	4.5	35	16.6%	2.10 [-0.06, 4.26]	
$\frac{\min 2024}{12024} 12.6 4.5 57 9.25 3.9 60 17.2\% 3.35 [1.82, 4.88] 177 187 68.5\% 2.36 [1.2.38, 7.11] 187 68.5\% 2.36 [1.2.38, 7.11] 187 68.5\% 2.36 [1.2.38, 7.11] 187 68.5\% 2.36 [1.2.38, 7.11] 187 68.5\% 2.36 [1.2.38, 7.11] 187 68.5\% 2.36 [1.4.00, 3.45] 187 68.5\% 2.36 [1.4.00, 3.45] 182 4.488] 187 68.5\% 2.36 [1.4.00, 3.45] 182 4.488 [1.4.00, 3.45] 182 187 68.5\% 2.38 [1.4.00, 3.45] 188 167 overall effect: Z = 0.39 (1.5.2) 18.2 4.88 [1.4.00, 3.45] 187 68.5\% 2.38 [1.4.00, 3.45] 188 167 overall effect: Z = 0.37 (1.5.2) 18.2 4.88 [1.4.00, 3.45] 184 0.18 (1.5.2) (1.5.2) 188 167 overall effect: Z = 0.37 (1.5.2) 198 116 (1.5.2) 116 116$	aridi 2024	14 4	.35	56	7	2.13	58	17.4%	7.00 [5.74, 8.26]	
$ \begin{array}{c} 187 & 68.5\% & c1 \\ 187 & 68.5\% & c1.87 & c1.20.88, df = 3 (P < 0.00001); P = 98\% \\ \text{ist for overall effect; Z = 0.98 (P = 0.33) \\ 2.2 Mirabegron vs Tamesolosin \\ any 2022 & 15 & 8.7 & 25 & 25 & 6.5 & 26 & 13.7\% & -10.00 [-14.28, 6.74] \\ \text{ist or overall effect; Z = 1.6 (P < 0.0001); P = 94\% \\ \text{ist or overall effect; Z = 1.6 (P < 0.0001); P = 94\% \\ \text{ist or overall effect; Z = 1.5, Ch^{2} = 20.84, df = 5 (P < 0.00001); P = 94\% \\ \text{ist or overall effect; Z = 1.5, Ch^{2} = 20.84, df = 5 (P < 0.00001); P = 98\% \\ \text{ist or overall effect; Z = 1.5, Ch^{2} = 20.84, df = 5 (P < 0.0001); P = 98\% \\ \text{ist or overall effect; Z = 0.03 (P = 0.7) \\ \text{ist or subgroup differences: } Ch^{2} = 2.27, df = 1 (P = 0.13), P = 56.0\% \\ \end{array}$	amir 2024	12.6	4.5	57	9.25	3.9	59	17.2%	3.35 [1.82, 4.88]	
therogeneity: Tar = 22.73; Ch ² = 120.88, df = 3 (P < 0.00001); P = 98% ist for overall effect: Z = 0.96 (P = 0.33) 2.2 Mirabegron vs Tamsolosin therogeneity: Tar = 0.47; Ch ² = 120.84, df = 5 (P < 0.0001); P = 94% ist for overall effect: Z = 0.97 (D = 0.47) therogeneity: Tar = 15.73; Ch ² = 208.49, df = 5 (P < 0.0001); P = 98% ist for subgroup <u>Mean SD Total Mean SD Total Weight</u> <u>Vx. Random. 95%</u> CL <u>Mirabegron vs Silodosin</u> todel Kader 2023 0.8 0.06 35 1.6 1.1 35 19.5% -0.80 [-116, 0.44] apar 2022 1.8 1.9 29 2.7 2.3 35 5.7% -0.90 [-130, 0.13] amir 2024 1.94 0.18 56 2.34 0.2 58 29.5% -0.40 [0.47, 0.33] amir 2024 1.87 0.81 57 1.65 0.64 59 23.4% 0.02 [-0.27, 0.03] tetrogreneity: Tar = 0.07; Ch ² = 14.98, df = 3 (P = 0.002); P = 80% tetrogreneity: Tar = 0.07; Ch ² = 14.98, df = 3 (P = 0.002); P = 80% tetrogreneity: Tar = 0.05; Ch ² = 0.051 5.2 Mirabegron vs Tamsolosin for ysubgroup <u>Mean SD Total Mean SD Total Weight</u> <u>Vx. Random. 95%</u> CL Mean Difference Mean 	ubtotal (95% CI)		1	77			187	68.5%	2.36 [-2.38, 7.11]	
3.2 Mirabegron vs Tamsolosin tory 2022 15 8.7 25 25 25 6.5 25 13.7% $-10.00[-14.26, -5.74]$ eleem 2021 7.14 0.82 37 8.22 0.76 36 17.8% $-1.08[-1.44, -0.72]$ eleem 2021 7.14 0.82 37 8.22 0.76 36 13.5% $-5.28[-14.00, 3.45]$ eterogeneity: Tau ² = 37.41; Chi ² = 16.74, df = 1 (P < 0.0001); P = 94% est for overall effect: Z = 1.19 (P = 0.24) otal (95% Cl) 239 248 100.0% 0.05 [-3.23, 3.34] eterogeneity: Tau ² = 15.73; Chi ² = 208.49, df = 5 (P < 0.00001); P = 98% est for overall effect: Z = 0.03 (P = 0.37) est for subgroup differences: Chi ² = 2.27, df = 1 (P = 0.13), P = 56.0% Mirabegron c -adrenergic receptor antagonist Manabegron c -adrenergic receptor antagonist Manabegron vs Silodosin Abdel-Kader 2023 0.8 0.06 35 1.6 1.1 35 19.5% $-0.80 [-1.16, -0.44]$ agar 2022 1.8 1.9 29 2.7 2.3 35 5.7% $-0.90 [-1.83, 0.13]$ agar 2022 1.8 1.9 29 2.7 2.3 35 5.7% $-0.90 [-1.43, -0.44]$ agar 2024 1.87 0.18 56 2.3.4 0.2 56 29.5% $-0.40 [-0.47, -0.33]$ Sumt 2024 1.87 0.81 57 1.65 0.64 59 23.4% $0.02 [-0.25, 0.29]$ Heterogeneity: Tau ² = 0.07; Chi ² = 14.98, df = 3 (P = 0.002); I ² = 80% Test for overall effect: Z = 2.49 (P = 0.01) 1.5.2 Mirabegron vs Tamsolosin Morsy 2022 1.8 0.8 25 2.6 3.3 25 3.7% $-0.80 [-2.13, 0.53]$ Subtotal (95% Cl) 239 Column 204 1.87 0.82 (Chi ² = 1.15, df = 1 (P = 0.28); I ² = 13% Test for overall effect: Z = 0.55 (P = 0.003); I ² = 73% Test for overall effect: Z = 0.57 (P = 0.01); I ² = 73% Test for overall effect: Z = 0.77, df = 1 (P = 0.38), I ² = 73% Test for overall effect: Z = 0.77, df = 1 (P = 0.38), I ² = 73% Test for overall effect: Z = 0.77, df = 1 (P = 0.38), I ² = 73% Test for overall effect: Z = 0.77, df = 1 (P = 0.38), I ² = 73% Test for overall effect: Z = 0.77, df = 1 (P = 0.38), I ² = 73% Test for overall effect: Z = 0.77, df = 1 (P = 0.38), I ² = 73% Test for overall effect: Z = 0.77, df = 1 (P = 0.38), I ² = 73% Test for overall effect: Z = 0.77, df = 1 (P = 0.38), I ² = 73% Test for overall effect: Z = 0.77, df = 1 (P = 0.38), I ²	eterogeneity: Tau ² = est for overall effect:	22.78; Chi Z = 0.98 (F	² = 120. ² = 0.33	.88, df = ;)	3 (P < 0.0000	1); I² = 98%				
$\frac{\log 2022}{\log (\log 202)} = \frac{13}{124} = \frac{13}{20} = \frac{13}{20} = \frac{13}{125} = \frac{13}{12$.3.2 Mirabegron vs 1 lorsv 2022	Tamsolosi	n 87	25	25	65	25	13 7%	-10 00 [-14 26 -5 74]	
	aloom 2021	7 14 0	82	20	8 22	0.5	20	17 8%	-10.00 [-14.20, -0.74]	
$\begin{array}{c} \text{Mirabegron} & \text{c} + \text{d} = 16,74, \text{d} = 1 (P < 0.0001); P = 94\% \\ \text{est for overall effect: } Z = 1.19 (P = 0.24) \\ \text{otal } (\text{B}\% \text{ Cl}) & 239 \\ \text{eterogeneity: Tat' = 15,73; Ch' = 208,49, \text{df = 5} (P < 0.00001); P = 98\% \\ \text{est for overall effect: } Z = 0.00 (P = 0.97) \\ \text{est for subgroup differences: Ch' = 2.27, \text{df = 1} (P = 0.13), P = 56.0\% \\ \end{array}$	ubtotal (95% CI)	7.14 0	.02	62	0.22	0.70	61	31.5%	-5 28 [-14 00 3 45]	
$\begin{array}{c} Latered with the end of $	leterogeneity: Tau ² =	37 41 Chi	$i^2 = 16.7$	$^{-}$	(P < 0.0001)	$l^2 = 0.4\%$	•.	•	0.201	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	est for overall effect:	Z = 1.19 (F	> = 0.24	+, ui = 1 +)	i (i = 0.0001),	1 - 3470				
eterogeneity: Tau ² = 15.73; Chi ² = 208.49, df = 5 (P < 0.0001); l ² = 98% est for overall effect: $Z = 0.03$ (P = 0.97) est for subgroup differences: Chi ² = 2.7, df = 1 (P = 0.13), l ² = 56.0% Mirabegron c-adrenergic receptor antagonist Mean Difference Mean Difference (V. Random, 95% Cl V. Random, 95% Cl	otal (95% CI)		2	39			248	100.0%	0.05 [-3.23, 3.34]	-
The set for overall effect: $Z = 0.03$ ($P = 0.97$) The set for overall effect: $Z = 0.03$ ($P = 0.97$) The set for subgroup differences: $Ch^{2} = 2.27$, $df = 1$ ($P = 0.13$), $P = 56.0\%$ Mirabegron α -adrenergic receptor antagonist Mean Difference Study or Subgroup Mean SD Total Mean SD Total Weight IV. Random, 95% CI 1.5.1 Mirabegron α -adrenergic receptor antagonist Mean Difference IV. Random, 95% CI IV. Random, 95% CI Wean Difference IV. Random, 95% CI IV. Rand	leterogeneity: Tau ² =	15.73; Chi	² = 208	.49, df =	5 (P < 0.0000	1); I ² = 98%				
Mirabegron c-adrenergic receptor antagonist Mean Difference Mean SD Total Mean SD Total Mean SD Total Mean Mean Difference Study or Subgroup Mean SD Total Mean SD Total Mean SD Total Mean Mean Difference Mean Difference Mean Difference Note: Kader 2023 0.8 0.8 0.8 0.80 [-1.16, -0.44] Bayar 2022 1.8 1.9 2.1 0.65 2.3 5 0.90 [-1.16, -0.44] Bayar 2022 1.8 1.8 1.8 1.8 Mean Difference Mean Difference Subtotal (95% CI) 1.17 1.8 0.8 2.6 3.3 25 3.7 0.80 [-2.13, 0.53] Subtotal (95% CI) 1.65 0.83 2.6 3.3 25 3.7 2.3 3.7	est for overall effect:	Z = 0.03 (F	= 0.97	2						-10 -5 0 5 10
Mirabegron c-adrenergic receptor antagonist Mean Difference Mean Difference Study or Subgroup Mean SD Total Weight IV. Random. 95% CI IV. Random. 95% CI 1.5.1 Mirabegron vs Silodosin Nadel-Kader 2023 0.8 0.06 35 1.6 1.1 35 19.5% -0.80 [-1.16, -0.44] Jayar 2022 1.8 1.9 2.9 2.7 2.3 35 5.7% -0.90 [-1.93, 0.13] Faridi 2024 1.94 0.18 56 2.34 0.2 58 29.5% -0.40 [-0.47, -0.33] Samir 2024 1.87 0.81 57 1.65 0.64 59 23.4% 0.02 [-0.25, 0.29] Subtotal (95% CI) 177 187 78.1% -0.42 [-0.74, -0.09]	est for subgroup diffe	rences: Ch	ni² = 2.2	, 7, df = 1	(P = 0.13), I ²	= 56.0%				Mirabegron α-adrenergic receptor antagon
Mirabegron c-adrenergic receptor antagonist Mean Difference Mean Difference Study or Subgroup Mean SD Total Weight IV. Random, 95% CI IV. Random, 95% CI 5.1 Mirabegron vs Silodosin bddel Kader 2023 0.8 0.06 35 1.6 1.1 35 19.5% -0.80 [-1.16, -0.44] Bayar 2022 1.8 1.9 29 2.7 2.3 35 5.7% -0.90 [-1.93, 0.13] Gardin 2024 1.94 0.18 56 2.34 0.2 58 29.5% -0.40 [-0.47, -0.33] Samir 2024 1.87 0.81 57 1.65 0.64 59 23.4% 0.02 [-0.25, 0.29] Vabbotal (95% CI) 177 187 78.1% -0.42 [-0.74, -0.09] -0.42 [-0.74, -0.09] .5.2 Mirabegron vs Tamsolosin										
$ \begin{array}{c} \text{ for a bargetop } \text{ for all } 02 - 10 $			begron	o otal	-adrenergic r Mean	eceptor antago SD	onist Total	Weight	Mean Difference	Mean Difference
bdel-Kader 2023 0.8 0.06 35 1.6 1.1 35 19.5% -0.80 [-1.16, -0.44] ayar 2022 1.8 1.9 29 2.7 2.3 35 5.7% -0.90 [-1.93, 0.13] aridi 2024 1.94 0.18 56 2.34 0.2 58 29.5% -0.40 [-0.47, -0.33] aridi 2024 1.87 0.81 57 1.65 0.64 59 23.4% 0.02 [-0.26, 0.29] bubtotal (95% CI) 177 187 78.1% -0.42 [-0.74, -0.09] beterogeneity: Tau ² = 0.07; Ch ² = 14.98, df = 3 (P = 0.002); ² = 80% est for overall effect: $Z = 2.49$ (P = 0.01) 5.2 Mirabegron vs Tamsolosin forsy 2022 1.8 0.8 25 2.6 3.3 25 3.7% -0.80 [-2.13, 0.53] beleem 2021 1.65 0.86 37 1.69 0.88 61 81.3% -0.04 [-0.44, 0.36] bubtotal (95% CI) 62 61 81.3% -0.04 [-0.44, 0.36] bubtotal (95% CI) 62 61 81.3% -0.04 [-0.66, 0.37] beterogeneity: Tau ² = 0.04; Chi ² = 1.15, df = 1 (P = 0.28); ² = 13% est for overall effect: $Z = 2.57$ (P = 0.01) botal (95% CI) 239 248 100.0% -0.36 [-0.63, -0.09] beterogeneity: Tau ² = 0.06; Chi ² = 18.22, df = 5 (P = 0.003); ² = 73% est for overall effect: $Z = 2.57$ (P = 0.01) est for subgroup differences: Chi ² = 0.77, df = 1 (P = 0.38), P = 0%	tudy or Subaroup	Miral Mean	SD 1							
layar 2022 1.8 1.9 29 2.7 2.3 35 5.7% -0.90 [-1.93, 0.13] and 2024 1.94 0.18 56 2.34 0.2 58 29.5% -0.40 [-0.47, -0.33] isamir 2024 1.87 0.81 57 1.65 0.64 59 23.4% 0.02 [-0.25, 0.29] latototal (95% CI) 177 -0.42 [-0.74, -0.09] leterogeneity: Tau ² = 0.07; Chi ² = 14.98, df = 3 (P = 0.002); l ² = 80% est for overall effect: Z = 2.49 (P = 0.01) .5.2 Mirabegron vs Tamsolosin forsy 2022 1.8 0.8 25 2.6 3.3 25 3.7% -0.80 [-2.13, 0.53] leterogeneity: Tau ² = 0.04; Chi ² = 1.15, df = 1 (P = 0.28); l ² = 13% est for overall effect: Z = 0.55 (P = 0.58) total (95% CI) 239 leterogeneity: Tau ² = 0.06; Chi ² = 18.22, df = 5 (P = 0.003); l ² = 73% est for overall effect: Z = 2.57 (P = 0.01) est for subgroup differences: Chi ² = 0.77, df = 1 (P = 0.38), l ² = 0%	itudy or Subgroup .5.1 Mirabegron vs	Miral Mean Silodosin	SD 1					19.5%	-0.80 [-1.16, -0.44]	
aridi 2024 1.94 0.18 56 2.34 0.2 58 29.5% $-0.40 [-0.47, -0.33]$ aridi 2024 1.87 0.81 57 1.65 0.64 59 23.4% 0.02 [-0.25, 0.29] subtotal (95% CI) 177 187 78.1% $-0.42 [-0.74, -0.09]$ 187 78.1% $-0.42 [-0.74, -0.09]$ ieterogeneity: Tau ² = 0.07; Chi ² = 14.98, df = 3 (P = 0.002); l ² = 80% 187 78.1% $-0.42 [-0.74, -0.09]$ ieterogeneity: Tau ² = 0.07; Chi ² = 14.98, df = 3 (P = 0.002); l ² = 80% 25 3.7% $-0.80 [-2.13, 0.53]$ isubtotal (95% CI) 28 29 0.88 36 18.3% $-0.04 [-0.46, 0.36]$ ieterogeneity: Tau ² = 0.04; Chi ² = 1.15, df = 1 (P = 0.28); l ² = 13% 61 21.9% $-0.14 [-0.66, 0.37]$ ieterogeneity: Tau ² = 0.06; Chi ² = 18.22, df = 5 (P = 0.003); l ² = 73% 248 100.0% $-0.36 [-0.63, -0.09]$ iet for overall effect: Z = 2.57 (P = 0.01) 239 248 100.0% $-0.36 [-0.63, -0.09]$ iet for overall effect: Z = 2.57 (P = 0.01) 29 248 100.0% $-0.36 [-0.63, -0.09]$ iet for subgroup differences: Chi ² = 0.77, df = 1 (P = 0.38), l	itudy or Subgroup .5.1 Mirabegron vs \bdel-Kader 2023	Mira <u>Mean</u> Silodosin 0.8	<u>SD 1</u> 1 0.06	35	1.6	1.1	35			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	itudy or Subgroup .5.1 Mirabegron vs Ibdel-Kader 2023 Bayar 2022	Mira <u>Mean</u> Silodosin 0.8 1.8	<u>SD 1</u> 0.06 1.9	35 29	1.6 2.7	1.1 2.3	35 35	5.7%	-0.90 [-1.93, 0.13]	
bubtotal (95% Cl) 177 187 78.1% $-0.42 [-0.74, -0.09]$ leterogeneity: Tau ² = 0.07; Ch ² = 14.98, df = 3 (P = 0.002); l ² = 80% 187 78.1% $-0.42 [-0.74, -0.09]$ iest for overall effect: Z = 2.49 (P = 0.01)	itudy or Subgroup .5.1 Mirabegron vs .bdel-Kader 2023 ayar 2022 aridi 2024	Mira <u>Mean</u> Silodosir 0.8 1.8 1.94	<u>SD</u> 1 0.06 1.9 0.18	35 29 56	1.6 2.7 2.34	1.1 2.3 0.2	35 35 58	5.7% 29.5%	-0.90 [-1.93, 0.13] -0.40 [-0.47, -0.33]	
leterogeneity: Tau ² = 0.07; Chi ² = 14.98, df = 3 (P = 0.002); ² = 80% est for overall effect: $Z = 2.49$ (P = 0.01) .5.2 Mirabegron vs Tamsolosin torsy 2022 1.8 0.8 25 2.6 3.3 25 3.7% -0.80 [-2.13, 0.53] eleem 2021 1.65 0.86 37 1.69 0.88 36 18.3% -0.04 [-0.44, 0.36] eletrogeneity: Tau ² = 0.04; Chi ² = 1.15, df = 1 (P = 0.28); ² = 13% est for overall effect: $Z = 0.55$ (P = 0.58) otal (95% Cl) 239 248 100.0% -0.36 [-0.63, -0.09] eleterogeneity: Tau ² = 0.06; Chi ² = 18.22, df = 5 (P = 0.003); ² = 73% est for overall effect: $Z = 2.57$ (P = 0.01) est for subgroup differences: Chi ² = 0.77, df = 1 (P = 0.38), ² = 0%	tudy or Subgroup .5.1 Mirabegron vs bdel-Kader 2023 ayar 2022 aridi 2024 amir 2024	Mira <u>Mean</u> Silodosir 0.8 1.8 1.94 1.87	SD] 0.06 1.9 0.18 0.81	35 29 56 57	1.6 2.7 2.34 1.65	1.1 2.3 0.2 0.64	35 35 58 59	5.7% 29.5% 23.4%	-0.90 [-1.93, 0.13] -0.40 [-0.47, -0.33] 0.02 [-0.25, 0.29]	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	tudy or Subgroup 5.1 Mirabegron vs bdel-Kader 2023 ayar 2022 aridi 2024 aridi 2024 amir 2024 ubtotal (95% CI)	Mira <u>Mean</u> Silodosir 0.8 1.8 1.94 1.87	SD 1 0.06 1.9 0.18 0.81	35 29 56 57 177	1.6 2.7 2.34 1.65	1.1 2.3 0.2 0.64	35 35 58 59 187	5.7% 29.5% 23.4% 78.1%	-0.90 [-1.93, 0.13] -0.40 [-0.47, -0.33] 0.02 [-0.25, 0.29] -0.42 [-0.74, -0.09]	•
Arrory 2022 1.8 0.8 25 2.6 3.3 25 3.7% -0.80 [-2.13, 0.53] Jeleem 2021 1.65 0.86 37 1.69 0.88 36 18.3% -0.04 [-0.44, 0.36] Jubbotal (95% CI) 62 61 21.9% -0.14 [-0.66, 0.37] Jeterogeneity: Tau ² = 0.04; Chi ² = 1.15, df = 1 (P = 0.28); l ² = 13% 248 100.0% -0.36 [-0.63, -0.09] Jeterogeneity: Tau ² = 0.06; Chi ² = 18.22, df = 5 (P = 0.003); l ² = 73% 248 100.0% -0.36 [-0.63, -0.09] Jeterogeneity: Tau ² = 0.06; Chi ² = 18.22, df = 5 (P = 0.003); l ² = 73% 248 100.0% -0.36 [-0.63, -0.09] Jeterogeneity: Tau ² = 0.06; Chi ² = 18.22, df = 5 (P = 0.003); l ² = 73% 248 100.0% -0.36 [-0.63, -0.09] Jeterogeneity: Tau ² = 0.07, df = 1 (P = 0.38), l ² = 0% 248 100.0% -0.36 [-0.63, -0.09] Jeterogeneity: Tau ² = 0.77, df = 1 (P = 0.38), l ² = 0% 248 100.0% -0.36 [-0.63, -0.09]	titudy or Subgroup .5.1 Mirabegron vs bdel-Kader 2023 layar 2022 ardid 2024 amir 2024 subtotal (95% CI) leterogeneity: Tau ² 'est for overall effect	Mira <u>Mean</u> Silodosir 0.8 1.8 1.94 1.87 = 0.07; Chi : Z = 2.49	<u>SD</u>] 0.06 1.9 0.18 0.81 ² = 14.9 (P = 0.0	35 29 56 57 177 98, df = 3	1.6 2.7 2.34 1.65 3 (P = 0.002);	1.1 2.3 0.2 0.64 ² = 80%	35 35 58 59 187	5.7% 29.5% 23.4% 78 .1%	-0.90 [-1.93, 0.13] -0.40 [-0.47, -0.33] 0.02 [-0.25, 0.29] -0.42 [-0.74, -0.09]	•
$\begin{array}{c} \text{iseleem } 2021 & 1.65 & 0.86 & 37 & 1.69 & 0.88 & 36 & 18.3\% & -0.04 & [-0.44, 0.36] \\ \text{iubtotal } (95\% \text{ CI}) & 62 & 61 & 21.9\% & -0.14 & [-0.66, 0.37] \\ \text{iest for overall effect: } Z = 0.05; (P = 0.58) \\ \text{iotal } (95\% \text{ CI}) & 239 & 248 & 100.0\% & -0.36 & [-0.63, -0.09] \\ \text{iest for overall effect: } Z = 2.57 & (P = 0.01) \\ \text{iest for overall effect: } Z = 2.57 & (P = 0.01) \\ \text{iest for subgroup differences: } Chi^2 = 0.77, df = 1 & (P = 0.38), l^2 = 0\% \end{array}$	tudy or Subgroup. .5.1 Mirabegron vs .bdel-Kader 2023 ayar 2022 aridi 2024 .amir 2024 .amir 2024 .amir 2024 .abtotal (95% CI) leterogeneity: Tau ² = iest for overall effect .5.2 Mirabegron vs	Miral Mean Silodosir 0.8 1.8 1.94 1.87 = 0.07; Chi : Z = 2.49	<u>SD</u> 0.06 1.9 0.18 0.81 ^P = 14.9 (P = 0.0 sin	35 29 56 57 177 98, df = 3	1.6 2.7 2.34 1.65 3 (P = 0.002); 1	1.1 2.3 0.2 0.64 ² = 80%	35 35 58 59 187	5.7% 29.5% 23.4% 78 .1%	-0.90 [-1.93, 0.13] -0.40 [-0.47, -0.33] 0.02 [-0.25, 0.29] -0.42 [-0.74, -0.09]	•
Subtotal (95% CI) 62 61 21.9% -0.14 [-0.66, 0.37] Heterogeneity: Tau ² = 0.04; Chi ² = 1.15, df = 1 (P = 0.28); l ² = 13% iotal (95% CI) 239 248 100.0% -0.36 [-0.63, -0.09] Heterogeneity: Tau ² = 0.06; Chi ² = 18.22, df = 5 (P = 0.003); l ² = 73% iest for overall effect: Z = 2.57 (P = 0.01) iest for subgroup differences: Chi ² = 0.77, df = 1 (P = 0.38), l ² = 0%	tudy or Subgroup .5.1 Mirabegron vs bdel-Kader 2023 layar 2022 ardid 2024 amir 2024 Subtotal (95% CI) leterogeneity: Tau ² 'est for overall effect .5.2 Mirabegron vs lorsy 2022	Mira <u>Mean</u> : Silodosir 0.8 1.8 1.94 1.87 = 0.07; Chi : Z = 2.49 Tamsolos 1.8	<u>SD</u> 0.06 1.9 0.18 0.81 P = 14.9 (P = 0.0 sin 0.8	35 29 56 57 177 98, df = 3)1) 25	1.6 2.7 2.34 1.65 3 (P = 0.002); 1 2.6	1.1 2.3 0.2 0.64 ² = 80% 3.3	35 35 58 59 187 25	5.7% 29.5% 23.4% 78 .1% 3.7%	-0.90 [-1.93, 0.13] -0.40 [-0.47, -0.33] 0.02 [-0.25, 0.29] -0.42 [-0.74, -0.09]	•
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	tudy or Subgroup. .5.1 Mirabegron vs bdel-Kader 2023 layar 2022 andi 2024 amir 2024 ubtotal (95% CI) leterogeneity: Tau ² = est for overall effect .5.2 Mirabegron vs forsy 2022 leterom	Mirai <u>Mean</u> 3 Silodosir 0.8 1.8 1.94 1.87 = 0.07; Chi :: Z = 2.49 Tamsolos 1.8 1.65	<u>SD</u> 0.06 1.9 0.18 0.81 P = 14.9 (P = 0.0 sin 0.8 0.86	35 29 56 57 177 38, df = 3 11) 25 37	1.6 2.7 2.34 1.65 3 (P = 0.002); 1 2.6 1.69	1.1 2.3 0.2 0.64 ² = 80% 3.3 0.88	35 35 58 59 187 25 36	5.7% 29.5% 23.4% 78 .1% 3.7% 18.3%	-0.90 [-1.93, 0.13] -0.40 [-0.47, -0.33] 0.02 [-0.25, 0.29] -0.42 [-0.74, -0.09] -0.80 [-2.13, 0.53] -0.04 [-0.44, 0.36]	•
$\begin{array}{c} \text{otal (95\% CI)} & 239 \\ \text{leterogeneity: Tau^2 = 0.06; Chi^2 = 18.22, df = 5 (P = 0.003); l^2 = 73\% \\ \text{iest for overall effect: } Z = 2.57 (P = 0.01) \\ \text{est for subgroup differences: Chi^2 = 0.77, df = 1 (P = 0.38), l^2 = 0\% \end{array} $	itudy or Subgroup. .5.1 Mirabegron vs. bdel-Kader 2023 layar 2022 ardid 2024 iardid 2024 iardid 2024 iardid 2024 iardid 2024 iset for overall effect .5.2 Mirabegron vs. Morsy 2022 eleem 2021 iubtotal (95% CI)	Mira Mean Silodosir 0.8 1.8 1.94 1.87 = 0.07; Chi :: Z = 2.49 Tamsolos 1.8 1.65	<u>SD</u> 0.06 1.9 0.18 0.81 P = 14.9 (P = 0.0 sin 0.8 0.86	35 29 56 57 177 38, df = 3 11) 25 37 62	1.6 2.7 2.34 1.65 3 (P = 0.002); I 2.6 1.69	1.1 2.3 0.2 0.64 ² = 80% 3.3 0.88	35 35 58 59 187 25 36 61	5.7% 29.5% 23.4% 78.1% 3.7% 18.3% 21.9%	-0.90 [-1.93, 0.13] -0.40 [-0.47, -0.33] 0.02 [-0.25, 0.29] -0.42 [-0.74, -0.09] -0.80 [-2.13, 0.53] -0.04 [-0.44, 0.36] -0.14 [-0.66, 0.37]	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	itudy or Subgroup. .5.1 Mirabegron vs bdel-Kader 2023 Jayar 2022 aridi 2024 samir 2024 Jubtotal (95% CI) leterogeneity: Tau ² = set for overall effect Seleem 2021 Seleem 2021 Selecogeneity: Tau ² = set for overall effect	Mira Mean Silodosir 0.8 1.8 1.94 1.87 = 0.07; Chi : Z = 2.49 Tamsoloc 1.8 1.65 = 0.04; Chi ; Z = 0.55	SD 1 0.06 1.9 0.18 0.81 $i^2 = 14.5$ (P = 0.0) sin 0.8 0.86 $i^2 = 1.15$ (P = 0.5)	35 29 56 57 177 38, df = 3 11) 25 37 62 i, df = 1 i8)	1.6 2.7 2.34 1.65 3 (P = 0.002); I 2.6 1.69 (P = 0.28); I ² =	1.1 2.3 0.2 0.64 ² = 80% 3.3 0.88	35 35 58 59 187 25 36 61	5.7% 29.5% 23.4% 78.1% 3.7% 18.3% 21.9%	-0.90 [-1.93, 0.13] -0.40 [-0.47, -0.33] 0.02 [-0.25, 0.29] -0.42 [-0.74, -0.09] -0.80 [-2.13, 0.53] -0.04 [-0.44, 0.36] -0.14 [-0.66, 0.37]	•
reterogeneity: 1au = 0.06; Chi* = 18.22, ct = 5 (P = 0.003); P = 73% -2 -1 0 1 2 Fest for overall effect: Z = 2.57 (P = 0.01) -2 -2 -1 0 1 2 Fest for subgroup differences: Chi² = 0.77, df = 1 (P = 0.38), P = 0% Mirabegron α-adrenergic receptor a	Study or Subgroup 1.5.1 Mirabegron vs Abdel-Kader 2023 3ayar 2022 aridi 2024 Samir 2024 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect 1.5.2 Mirabegron vs Worsy 2022 Seleem 2021 Subtotal (95% CI) Heterogeneity: Tau ² = Fest for overall effect	Mira Mean Silodosir 0.8 1.8 1.94 1.87 = 0.07; Chi : Z = 2.49 1.8 1.65 = 0.04; Chi : Z = 0.55	SD 1 0.06 1.9 0.18 0.81 $i^2 = 14.5$ (P = 0.0) sin 0.8 0.86 $i^2 = 1.15$ (P = 0.5)	35 29 56 57 177 38, df = 3 37 62 3, df = 1 i8)	1.6 2.7 2.34 1.65 3 (P = 0.002); 2.6 1.69 (P = 0.28); ² =	1.1 2.3 0.2 0.64 ² = 80% 3.3 0.88	35 35 58 59 187 25 36 61	5.7% 29.5% 23.4% 78.1% 3.7% 18.3% 21.9%	-0.90 [-1.93, 0.13] -0.40 [-0.47, -0.33] 0.02 [-0.25, 0.29] -0.42 [-0.74, -0.09] -0.80 [-2.13, 0.53] -0.04 [-0.44, 0.36] -0.14 [-0.66, 0.37]	
I est tor overall energi: $2 = 2.5$ (P = 0.01)Mirabegronα-adrenergic receptor aTest for subgroup differences: Chi ² = 0.77, df = 1 (P = 0.38), P = 0%Mirabegron α -adrenergic receptor a	Study or Subgroup 1.5.1 Mirabegron vs Abdel-Kader 2023 Bayar 2022 Faridi 2024 Samir 2024 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect 1.5.2 Mirabegron vs Morsy 2022 Seleem 2021 Subtotal (95% CI) Heterogeneity: Tau ² = Test for overall effect Total (95% CI)	Mira Mean Silodosir 0.8 1.8 1.94 1.87 = 0.07; Chi : Z = 2.49 1.8 1.65 = 0.04; Chi : Z = 0.55	SD 1 0.06 1.9 0.18 0.81 $i^2 = 14.5$ (P = 0.6) sin 0.8 0.86 $i^2 = 1.15$ (P = 0.5)	35 29 56 57 177 38, df = 3 11) 225 37 62 5, df = 1 18) 239	1.6 2.7 2.34 1.65 3 (P = 0.002); 2.6 1.69 (P = 0.28); ² =	1.1 2.3 0.2 0.64 ² = 80% 3.3 0.88 13%	35 35 58 59 187 25 36 61 248	5.7% 29.5% 23.4% 78.1% 3.7% 18.3% 21.9%	-0.90 [-1.93, 0.13] -0.40 [-0.47, -0.33] 0.02 [-0.25, 0.29] -0.42 [-0.74, -0.09] -0.80 [-2.13, 0.53] -0.04 [-0.44, 0.36] -0.14 [-0.66, 0.37] -0.36 [-0.63, -0.09]	
i est for subgroup differences: $Chi^{2} = 0.77$, df = 1 (P = 0.38), P = 0%	Study or Subgroup 1.5.1 Mirabegron vs Abdel-Kader 2023 Sayar 2022 Faridi 2024 Samir 2024 Subtotal (95% CI) Heterogeneity: Tau ² : Fest for overall effect 1.5.2 Mirabegron vs Morsy 2022 Seleem 2021 Subtotal (95% CI) Heterogeneity: Tau ² : Test for overall effect Total (95% CI) Heterogeneity: Tau ² :	Mira Mean Silodosir 0.8 1.8 1.94 1.87 = 0.07; Chi : Z = 2.49 Tamsolog 1.8 1.65 = 0.04; Chi : Z = 0.55	SD 1 0.06 1.9 0.18 0.81 $i^2 = 14.5$ (P = 0.0) sin 0.8 0.8 $i^2 = 1.15$ (P = 0.5) $i^2 = 18.2$	35 29 56 57 177 38, df = 3 37 62 3, df = 1 38) 239 22, df = 5	1.6 2.7 2.34 1.65 3 (P = 0.002); 2.6 1.69 (P = 0.28); ² = 5 (P = 0.003);	1.1 2.3 0.2 0.64 ² = 80% 3.3 0.88 : 13% ² = 73%	35 35 58 59 187 25 36 61 248	5.7% 29.5% 23.4% 78.1% 3.7% 18.3% 21.9%	-0.90 [-1.93, 0.13] -0.40 [-0.47, -0.33] 0.02 [-0.25, 0.29] -0.42 [-0.74, -0.09] -0.42 [-0.74, -0.09] -0.04 [-0.44, 0.36] -0.04 [-0.44, 0.36] -0.14 [-0.66, 0.37]	
	Study or Subgroup .5.1 Mirabegron vs vbdel-Kader 2023 Jayar 2022 andi 2024 Jamir 2024 Jubtotal (95% CI) deterogeneity: Tau ² : est for overall effect .5.2 Mirabegron vs Aorsy 2022 ieleem 2021 jubtotal (95% CI) leterogeneity: Tau ² est for overall effect iotal (95% CI) leterogeneity: Tau ²	Mira Mean Silodosir 0.8 1.8 1.94 1.87 = 0.07; Chi : Z = 2.49 Tamsolos 1.8 1.65 = 0.04; Chi : Z = 0.55 = 0.06; Chi : Z = 2.57	$\begin{array}{c} \text{SD } 1 \\ 0.06 \\ 1.9 \\ 0.81 \\ i^2 = 14.9 \\ (P = 0.0 \\ \text{sin} \\ 0.86 \\ P = 1.15 \\ (P = 0.5 \\ 2 = 18.2 \\ (P = 0.0 \\ 1.0 $	35 29 56 57 177 38, df = 3 01) 25 37 62 5, df = 1 i8) 239 12, df = 5	1.6 2.7 2.34 1.65 3 (P = 0.002); 2.6 1.69 (P = 0.28); ² = 5 (P = 0.003);	1.1 2.3 0.2 0.64 2 = 80% 3.3 0.88 13% 2 = 73%	35 35 58 59 187 25 36 61 248	5.7% 29.5% 23.4% 78.1% 3.7% 18.3% 21.9%	-0.90 [-1.93, 0.13] -0.40 [-0.47, -0.33] 0.02 [-0.25, 0.29] -0.42 [-0.74, -0.09] -0.80 [-2.13, 0.53] -0.04 [-0.44, 0.36] -0.14 [-0.66, 0.37] -0.36 [-0.63, -0.09]	-2 -1 0 1 2 Mirabegron c-adrenergic receptor antacc
	tudy or Subgroup. 5.1 Mirabegron vs bdel-Kader 2023 ayar 2022 ardi 2024 amir 2024 ubtotal (95% CI) leterogeneity: Tau ² : est for overall effect 5.2 Mirabegron vs torsy 2022 eleem 2021 ubtotal (95% CI) leterogeneity: Tau ² : est for overall effect otal (95% CI) eterogeneity: Tau ² : est for overall effect set for subgroup diff	Mira Mean Silodosir 0.8 1.8 1.94 1.87 = 0.07; Chi : Z = 2.49 Tamsolos 1.8 1.65 = 0.04; Chi : Z = 0.05; Chi : Z = 2.57 ferences: C	$\begin{array}{c} \text{SD} & 1 \\ 0.06 \\ 1.9 \\ 0.18 \\ 0.81 \\ 1^2 = 14.5 \\ (P = 0.0 \\ \text{sin} \\ 0.8 \\ 0.86 \\ 1^2 = 1.15 \\ (P = 0.5 \\ 1^2 = 18.2 \\ (P = 0.0 \\ \text{sin} \\ 0.8 \\ 0.86 \\ 1^2 = 1.15 \\ (P = 0.0 \\ \text{sin} \\ 0.8 \\ 0.86 \\ 1^2 = 1.15 \\ 0.8 \\ 0$	35 29 56 57 177 88, df = 3 01) 25 37 62 5, df = 1 i8) 239 i2, df = 5 i1) .77, df =	1.6 2.7 2.34 1.65 3 (P = 0.002); 2.6 1.69 (P = 0.28); ² = 5 (P = 0.003); 1 (P = 0.38),	1.1 2.3 0.2 0.64 2 = 80% 3.3 0.88 13% 2 = 73% 2 = 0%	35 35 58 59 187 25 36 61 248	5.7% 29.5% 23.4% 78.1% 18.3% 21.9%	-0.90 [-1.93, 0.13] -0.40 [-0.47, -0.33] 0.02 [-0.25, 0.29] -0.42 [-0.74, -0.09] -0.80 [-2.13, 0.53] -0.04 [-0.44, 0.36] -0.14 [-0.66, 0.37] -0.36 [-0.63, -0.09]	-2 -1 0 1 2 Mirabegron c-adrenergic receptor antago

ureteral contractions can lead to less discomfort during stone expulsion.

In terms of adverse effects, the analysis revealed that mirabegron had a significantly lower incidence of headache and orthostatic

hypotension compared to α -adrenergic receptor antagonists, suggesting that mirabegron may have a more favorable safety profile. However, there were no significant differences between the two groups in terms of dizziness or ejaculation dysfunction,

further supporting the potential suitability of mirabegron for certain patients. It is important to note that the safety assessment was based on only two included studies. While meta-analyses can be conducted with as few as two studies, the low heterogeneity observed here should be interpreted cautiously. A low I2 value does not necessarily indicate the absence of true heterogeneity; it may instead reflect limited statistical power due to the small number of trials or insufficient variability in study designs. The reduced side effects of mirabegron, particularly in relation to headache and hypotension, are likely due to its targeted action on $\beta 3$ receptors in the bladder, with minimal influence on the vascular system (Shen et al., 2017). In contrast, a1-adrenergic receptor antagonists act by blocking al receptors in vascular smooth muscle, leading to vasodilation and lower blood pressure, which increases the risk of orthostatic hypotension and headache (Itoh et al., 2011; Tomiyama et al., 2007). Overall, both mirabegron and a-adrenergic receptor antagonists were generally well tolerated by patients, with mild side effects commonly reported. Nevertheless, the limited scope of safety data underscores the need for future trials to prioritize standardized reporting of adverse events across larger cohorts, which would enhance the reliability of safety comparisons. This suggests that mirabegron may serve as an alternative treatment option for patients with contraindications to a-adrenergic receptor antagonists or for those who do not respond well to initial therapy.

In our subgroup analysis, we compared mirabegron with both tamsulosin and silodosin. Interestingly, while mirabegron showed a significant improvement in pain relief compared to silodosin, no significant differences were noted between mirabegron and tamsulosin across any of the studied parameters, including SER, SEI, or pain episodes. This suggests that the therapeutic effects of mirabegron may be more comparable to tamsulosin but could offer superior pain relief compared to silodosin. However, further studies are required to confirm these findings and explore the underlying mechanisms.

Our study has several limitations. Firstly, the small number of studies and limited sample size reduce the statistical power of the analysis. Secondly, the high heterogeneity in some endpoints, potentially due to variations in study design, sample size, and inclusion criteria, weakens the overall reliability of our findings. Additionally, most of the included studies were conducted in specific regions, limiting the generalizability of the results to broader populations.

Conclusion

Mirabegron may offer advantages in managing pain during medical expulsive therapy for distal ureteral stones, especially when compared to silodosin, even though no significant differences were observed in SER or SEI. Furthermore, mirabegron demonstrated a favorable safety profile, showing reduced rates of headache and orthostatic hypotension relative to α -adrenergic receptor antagonists. To validate these results and explore the mechanisms behind the different impacts on pain relief and safety, additional well-structured randomized controlled trials are necessary.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material, further inquiries can be directed to the corresponding authors.

Author contributions

YG: Data curation, Formal Analysis, Writing-original draft, Writing-review and editing. FS: Resources, Writing-original draft, Writing-review and editing. YW: Data curation, Formal Analysis, Visualization, Writing-review and editing. YL: Formal Analysis, Software, Writing-review and editing. TW: Data curation, Writing-review and editing. XM: Writing-review and editing. JW: Writing-review and editing.

Funding

The author(s) declare that financial support was received for the research, authorship, and/or publication of this article. This work was supported by the National Natural Science Foundation of China (Nos. 82370690, 82303813), Natural Science Foundation of Shandong Province (Nos. ZR2023MH241, ZR2023QH271), and Taishan Scholars Program of Shandong Province (Nos. tsqn201909199, tsqn202306403).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2025.1517979/ full#supplementary-material Abdel-Kader, M. S., Sayed, A. M., Sayed, S. M., and AbdelRazek, M. (2024). Evaluation of the efficacy and safety of either or both mirabegron and silodosin, as a medical expulsive therapy for distal ureteric stones. *Int. Urol. Nephrol.* 56 (5), 1605–1610. doi:10.1007/s11255-023-03880-y

Ahmed, A. F., and Al-Sayed, A. Y. (2010). Tamsulosin versus alfuzosin in the treatment of patients with distal ureteral stones: prospective, randomized, comparative study. *Korean J. Urol.* 51 (3), 193–197. doi:10.4111/kju.2010.51. 3.193

Bayar, G., Yavuz, A., Cakmak, S., Ofluoglu, Y., Kilinc, M. F., Kucuk, E., et al. (2020). Efficacy of silodosin or mirabegron in medical expulsive therapy for ureteral stones: a prospective, randomized-controlled study. *Int. Urol. Nephrol.* 52 (5), 835–840. doi:10. 1007/s11255-019-02368-y

Beach, M. A., and Mauro, L. S. (2006). Pharmacologic expulsive treatment of ureteral calculi. *Ann. Pharmacother.* 40 (7-8), 1361–1368. doi:10.1345/aph.1G586

Cabo, J. J. S., and Miller, N. L. (2024). Nonopioid pain management pathways for stone disease. J. Endourol. 38 (2), 108–120. doi:10.1089/end.2023.0266

Cui, Y., Zong, H., Yang, C., Yan, H., and Zhang, Y. (2014). The efficacy and safety of mirabegron in treating OAB: a systematic review and meta-analysis of phase III trials. *Int. Urol. Nephrol.* 46 (1), 275–284. doi:10.1007/s11255-013-0509-9

Dey, A., Georgiadis, G., Umezurike, J., Yuan, Y., Farag, F., N'Dow, J., et al. (2024). Reply to: Rong Dai and Changkai Deng's Letter to the Editor re: Anirban Dey, Georgios Georgiadis, Justin Umezurike, et al. Mirabegron Versus Placebo and Other Therapeutic Modalities in the Treatment of Patients with Overactive Bladder Syndrome-A Systematic Review. Eur Urol Focus. In press. *Eur. Urol. Focus.* doi:10.1016/j.euf. 2024.12.004

Faridi, M. S., and Deshpande, S. (2024). Comparing silodosin and mirabegron as medical expulsive therapy for distal ureteral calculus: a prospective, randomised study. *Cent. Eur. J. Urol.* 77 (2), 286–290. doi:10.5173/ceju.2023.182

Higgins, J. P., Altman, D. G., Gøtzsche, P. C., Jüni, P., Moher, D., Oxman, A. D., et al. (2011). The Cochrane Collaboration's tool for assessing risk of bias in randomised trials. *Bmj* 343, d5928. doi:10.1136/bmj.d5928

Itoh, Y., Okada, A., Yasui, T., Hamamoto, S., Hirose, M., Kojima, Y., et al. (2011). Efficacy of selective a1A adrenoceptor antagonist silodosin in the medical expulsive therapy for ureteral stones. *Int. J. Urol.* 18 (9), 672–674. doi:10.1111/j.1442-2042.2011. 02810.x

Kaya, E., Sikka, S. C., Oral, D. Y., Ozakca, I., and Gur, S. (2018). β 3-Adrenoceptor control of lower genitourinary tract organs and function in male: an overview. *Curr. Drug Targets* 19 (6), 602–612. doi:10.2174/1389450118666170120165554

Kelleher, C., Hakimi, Z., Zur, R., Siddiqui, E., Maman, K., Aballéa, S., et al. (2018). Efficacy and tolerability of mirabegron compared with antimuscarinic monotherapy or combination therapies for overactive bladder: a systematic review and network metaanalysis. *Eur. Urol.* 74 (3), 324–333. doi:10.1016/j.eururo.2018.03.020

Lipkin, M., and Shah, O. (2009). Medical therapy of stone disease: from prevention to promotion of passage options. *Curr. Urol. Rep.* 10 (1), 29–34. doi:10.1007/s11934-009-0007-x

Morsy, S., Nasser, I., Aboulela, W., Abdelazim, M. S., and Ali, H. (2022). Efficacy of mirabegron as medical expulsive therapy for distal ureteral stones: a prospective, randomized, double-blinded, controlled study. *Urol. Int.* 106 (12), 1265–1271. doi:10.1159/000521171

Paffenholz, P., and Heidenreich, A. (2021). Modern surgical strategies in the management of complex ureteral strictures. *Curr. Opin. Urol.* 31 (2), 170–176. doi:10.1097/MOU.00000000000849

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *Syst. Rev.* 10 (1), 89. doi:10.1186/s13643-021-01626-4

Raheem, O. A., Khandwala, Y. S., Sur, R. L., Ghani, K. R., and Denstedt, J. D. (2017). Burden of urolithiasis: trends in prevalence, treatments, and costs. *Eur. Urol. Focus* 3 (1), 18–26. doi:10.1016/j.euf.2017.04.001

Samir, M., Awad, A. F., and Maged, W. A. (2024). Does mirabegron have a potential role as a medical expulsive therapy in the treatment of distal ureteral stones? A prospective randomized controlled study. *Urologia* 91 (1), 136–140. doi:10.1177/03915603231204081

Segura, J. W., Preminger, G. M., Assimos, D. G., Dretler, S. P., Kahn, R. I., Lingeman, J. E., et al. (1997). Ureteral stones clinical guidelines panel summary report on the management of ureteral calculi. The American urological association. *J. Urol.* 158 (5), 1915–1921. doi:10.1016/s0022-5347(01)64173-9

Seleem, M. M., Abd Elwahab, K. M., Sakr, A. M., Ali, M. M., and Desoky, E. A. (2021). Mirabegron, tamsulosin monotherapy versus combination in treatment of distal ureteric stone. A randomized controlled clinical trial. *Eur. Urol.* 79, S370–S. doi:10. 1016/s0302-2838(21)00646-1

Shen, H., Chen, Z., Mokhtar, A. D., Bi, X., Wu, G., Gong, S., et al. (2017). Expression of β -adrenergic receptor subtypes in human normal and dilated ureter. *Int. Urol. Nephrol.* 49 (10), 1771–1778. doi:10.1007/s11255-017-1667-y

Solakhan, M., Bayrak, O., and Bulut, E. (2019). Efficacy of mirabegron in medical expulsive therapy. Urolithiasis 47 (3), 303–307. doi:10.1007/s00240-018-1075-5

Song, H., Liang, L., Liu, H., Liu, Y., Hu, W., Zhang, G., et al. (2023). Mirabegron for medical expulsive therapy of ureteral stones: a systematic review and meta-analysis. *Front. Med. (Lausanne)* 10, 1280487. doi:10.3389/fmed.2023.1280487

Tang, Q. L., Wang, D. J., Zhou, S., and Tao, R. Z. (2021). Mirabegron in medical expulsive therapy for distal ureteral stones: a prospective, randomized, controlled study. *World J. Urol.* 39 (12), 4465–4470. doi:10.1007/s00345-021-03772-9

Taylor, E. N., Stampfer, M. J., and Curhan, G. C. (2004). Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. *J. Am. Soc. Nephrol.* 15 (12), 3225–3232. doi:10.1097/01.ASN.0000146012.44570.20

Thongprayoon, C., Krambeck, A. E., and Rule, A. D. (2020). Determining the true burden of kidney stone disease. *Nat. Rev. Nephrol.* 16 (12), 736–746. doi:10.1038/ s41581-020-0320-7

Tomiyama, Y., Kobayashi, K., Tadachi, M., Kobayashi, S., Inada, Y., Kobayashi, M., et al. (2007). Expressions and mechanical functions of alpha1-adrenoceptor subtypes in hamster ureter. *Eur. J. Pharmacol.* 573 (1-3), 201–205. doi:10.1016/j.ejphar.2007.06.056

Türk, C., Petřík, A., Sarica, K., Seitz, C., Skolarikos, A., Straub, M., et al. (2016). EAU guidelines on diagnosis and conservative management of urolithiasis. *Eur. Urol.* 69 (3), 468–474. doi:10.1016/j.eururo.2015.07.040

Van Asseldonk, B., and Elterman, D. S. (2015). Medical expulsive therapy for ureteric colic: new hard evidence: commentary on: medical expulsive therapy in adults with ureteric colic: a multicentre, randomised, placebo-controlled trial. *Urology* 86 (4), 649–650. doi:10.1016/j.urology.2015.06.030

Wanajo, I., Tomiyama, Y., Yamazaki, Y., Kojima, M., and Shibata, N. (2004). Pharmacological characterization of beta-adrenoceptor subtypes mediating relaxation in porcine isolated ureteral smooth muscle. *J. Urol.* 172 (3), 1155–1159. doi:10.1097/01.ju.0000133557.39515.b6

Ye, Z., Yang, H., Li, H., Zhang, X., Deng, Y., Zeng, G., et al. (2011). A multicentre, prospective, randomized trial: comparative efficacy of tamsulosin and nifedipine in medical expulsive therapy for distal ureteric stones with renal colic. *BJU Int.* 108 (2), 276–279. doi:10.1111/j.1464-410X.2010.09801.x