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Background:Depression is a complexmental disorder where oxidative stress and
lipid metabolism disorders play crucial roles, yet their connection requires further
exploration. This study aims to investigate the roles of oxidative stress and lipid
metabolism disorders in depression using bioinformaticsmethods andMendelian
randomization analysis.

Methods: A differential gene expression analysis was performed on the
GSE76826 dataset, followed by identification of the intersection with genes
related to OS. Subsequently, support vector machine (SVM) and random forest
algorithms were employed to determine the optimal division of feature variables.
The diagnostic performance was evaluated using a ROC diagnostic model and
Diagnostic Nomogram. Furthermore, Mendelian randomization (MR) analysis was
conducted to explore the causal relationship between the gene and depression.
The expression patterns of key genes in brain tissue were analyzed using the
Human eFP Browser database, while their associations with metabolism-related
genes were investigated using the STRING database. Finally, DrugnomeAI was
utilized to assess the drug development potential of these genes, and small
molecule compounds targeting themwere identified through dgidb and ChEMBL
databases; molecular docking studies were then conducted to evaluate their
binding affinity.

Results: By conducting a comprehensive analysis of oxidative stress-related
genes and depression-related target genes, we have successfully identified
12 overlapping genes. These 12 genes were selected using support vector
machine and random forest algorithms. Upon analyzing the diagnostic model,
it was revealed that EPAS1 and IL1R1 serve as key biomarkers for OS in depression,
with IL1R1 exhibiting the highest diagnostic potential among them. Additionally,
MRfen analysis suggests that IL1R1 may play a protective role against depression.
Notably, this gene exhibits high expression levels in crucial brain regions such as
the olfactory bulb, corpus callosum, and hippocampus. Furthermore, our findings
indicate an association between IL1R1 and lipid-related genes PDGFB, PIK3R1,
TNFRSFIAA NOD2, and LYN. DrugnomeAI analysis indicated promising medicinal
value for ILIRI with BI 639667 demonstrating superior binding affinity among the
selected small molecule drugs.
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Conclusion: This study provides novel insights into the association betweenOS and
dyslipidemia metabolism in depression, offering potential therapeutic targets for
future drug development.
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1 Introduction

Depression, a prevalent mental health disorder, is characterized
by persistent sadness, diminished interest in daily activities or
anhedonia, and is accompanied by a range of emotional and
physical symptoms. These symptoms significantly impact the
patient’s overall quality of life (Liu et al., 2023). According to
epidemiological survey data, the lifetime prevalence rate of adult
depression disorders in China is 6.8%, with depression accounting
for 3.4%. The number of individuals suffering from depression in
China amounts to 95 million, while approximately 280,000 people
commit suicide annually; among them, 40% are affected by
depression. The etiological mechanism underlying depression is
highly intricate and involves the interplay between various
complex factors such as neurobiology, genetics, and social
psychology. Although several theories have been explored
regarding the causes of major depression—such as the
monoamine hypothesis, OS hypothesis, neurotransmitter
hypothesis, neuroinflammatory hypothesis, and neuroplasticity
hypothesis—none has comprehensively encompassed the
multifaceted nature of this disorder (Cui et al., 2024).

The OS hypothesis of depression posits that elevated levels of
reactive oxygen species (ROS) and diminished antioxidant defenses
alter brain structure (Chai et al., 2023), which is closely associated
with the onset of depression (Lu et al., 2022; Ait Tayeb et al., 2023).
Under normal physiological conditions, a delicate equilibrium is
maintained between the oxidant and antioxidant systems. However,
when ROS production surpasses the clearance capacity of the
antioxidant reaction system, it results in substantial protein
oxidation and lipid peroxidation. Excessive accumulation of ROS
can lead to oxidative damage, cellular degeneration, and decline in
physiological function (He et al., 2017). Furthermore, as OS
intensifies, activation of pro-inflammatory signaling pathways
also plays a pivotal role in the pathogenesis of depression (Dang
et al., 2022). Major depressive disorder (MDD) is characterized by
an imbalance between neurodegenerative and neuroprotective
factors such as brain-derived neurotrophic factor (BDNF) and
nuclear factor (NF)-κB (Fries et al., 2023). Moreover, MDD is
associated with elevated levels of pro-inflammatory cytokines in
various inflammatory processes, diminished nerve growth, and
subsequent neuronal degeneration. The production of
interleukin-1 (IL-1) and interleukin-18 (IL-18), key inflammatory
markers, along with the formation of cell membrane pores and
intracellular substance leakage can all contribute to cellular
apoptosis (Syed et al., 2018). Recent research has emphasized the
crucial role of inflammation in the pathophysiology of major
depression and established a connection between pro-
inflammatory cytokines and depressive symptoms. For instance,
these cytokines have been demonstrated to disrupt monoaminergic

neurotransmission and synaptic plasticity, both vital for mood
regulation (Kobayashi et al., 2022; Brock et al., 2023).
Neuroimaging studies further support the notion that
neuroinflammatory processes impact brain connectivity and
function in individuals with major depression by revealing
alterations in key mood-regulating brain regions such as the
hippocampus and prefrontal cortex (Chen et al., 2021).
Additionally, oxidative stress-induced free radicals and reactive
oxygen species can attack lipid components on cell membranes
leading to lipid peroxidation which subsequently impairs cellular
structure and function (Tauffenberger and Magistretti, 2021). Such
disruption not only affects cell membrane permeability but also
interferes with intracellular signal transduction pathways and
metabolic processes. Therefore, OS plays a significant role in
MDD (Patel, 2016; Cobley et al., 2018). Despite advancements in
research, inconsistent findings coupled with the multifactorial
nature of major depression have resulted in substantial gaps
remaining regarding our understanding of how these biological
mechanisms interact to manifest clinical symptoms.

Moreover, the heterogeneity of MDD presents significant
diagnostic and therapeutic challenges. The prevalence of
treatment-resistant patients underscores the pressing need for
innovative therapeutic strategies to overcome the limitations
associated with conventional monoamine interventions (Sun
et al., 2022). Emerging approaches, including neuromodulation
techniques and psychedelic utilization, have demonstrated
promising preliminary outcomes in clinical trials; however,
further investigation is required to elucidate their mechanisms of
action and long-term efficacy in greater detail (Marwaha et al.,
2023). Given the inherent complexity of MDD, a multidimensional
interdisciplinary approach that integrates insights from diverse
fields such as genomics, epigenetics, and neurobiology is essential
for achieving a comprehensive understanding of its underlying
mechanisms (Fries et al., 2023).

In this study, we employed bioinformatics techniques to identify
and validate key genes associated with depression. By conducting
comparative analysis of differentially expressed genes (DEGs) in
samples from healthy individuals and depressed patients, coupled
with Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis, we investigated the biological functions and
pathways implicated in these genes. Furthermore, we performed
cross-analysis between depression-related genes and oxidative
stress-related genes to assess their diagnostic potential.
Additionally, MR was utilized to analyze the association between
core genes and depression. Finally, leveraging multiple databases
and bioinformatics tools, we explored the druggability of these key
genes to preliminarily identify potential therapeutic targets for
future drug development endeavors. Overall, this study presents a
comprehensive analysis of pivotal genes and molecular pathways
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involved in depression, offering novel insights into disease
mechanisms as well as potential therapeutic targets. By
integrating genomics data with bioinformatics approaches, our
aim is to bridge the gap between gene discovery and clinical
application in order to enhance diagnostic accuracy and
treatment outcomes for depression.

2 Materials and methods

2.1 Data sources

The GEOquery package was utilized to download the dataset from
the GSE76826 GEO database (https://www.ncbi.nlm.nih.gov/) (Miyata
et al., 2016). This dataset examined biomarkers in older outpatients and
inpatients with Major Depressive Disorder (MDD), specifically those
aged 50 years and above. The depressive status of participants was
assessed using the Hamilton Depression Structured Interview Guide
(SIGH-D) rating scale. Subsequently, the normalizeBetweenArrays
function from the limma package was employed for further
normalization of the data. Following this, differential expression
analysis of genes between 12 normal samples and 10 patients
diagnosed with depression was conducted using the limma package.
Differentially expressed genes were identified based on criteria of |
log2FC| > 1.2 and P < 0.05. The results of this differential analysis were
visualized through a volcano plot. During annotation processing,
probes corresponding to multiple molecules were removed, ensuring
that only unique probes remained for each molecule encountered;
among these, only the probe exhibiting the highest signal value
was retained. Finally, KEGG enrichment analysis was performed
on the selected differentially expressed genes. Additionally,
GWAS data on depression (dataset finn-b-F5_DEPRESSIO)
comprising23,424 European individuals and covering 8,281,749 Sips
was obtainedfrom the IEUOpenGWAS database (https://gwas.mrcieu.
ac.uk/datasets/finn-b-F5_DEPRESSIO/).

2.2 Screening of potential targets

The genes associated with OS were screened in the GSEA
database. Subsequently, an intersection analysis was conducted
between depression-related target genes and oxidative stress-
related target genes. To optimize the classification of these
intersecting genes, two machine learning algorithms, namely,
support vector machine (SVM) and random forest, were
employed for comprehensive analysis and processing. The R
software [4.2.1] was utilized for data analysis, employing the
random Forest package (version 4.7.1.1) to construct a random
forest model aimed at evaluating feature importance. Initially, a
random seed (seed = 2024) was established to ensure the
reproducibility of results. Following the framework of the
random forest algorithm proposed by Breiman (Breiman, 2001),
an ensemble model comprising 100 decision trees was developed
using default parameter settings for data analysis. The Mean
Decrease Accuracy of each feature was computed to quantify its
importance score during model training. Simultaneously, SVM
(Meyer et al., 2015) analysis was conducted utilizing the
e1071 package [1.7.13] for classification modeling purposes. A

random seed (seed = 2024) was preset prior to data processing,
ensuring repeatability in the calculation process through the
set.seed() function. When constructing the classification model
with the svm() function, a 5-fold cross-validation strategy was
employed to assess model stability effectively. The Gaussian
radial basis kernel was selected as the algorithm’s kernel,
facilitating nonlinear mapping to handle complex data structures
efficiently. Results were visualized using the ggplot2 package [3.4.4].

2.3 Biomarker screening for depression

To assess the diagnostic value of a gene, we employ receiver
operating characteristic (ROC) analysis to construct a diagnostic
model and subsequently validate its performance using a Diagnostic
Nomogram. The gene-based nomogram was constructed using the
“rms’ package. Subsequently, a binary logistic model was built using the
glm function, and model calibration analysis and visualization were
performed using the rms [6.4.0] package. The rmda package was
utilized to calculate the corresponding net return rate and facilitate
visual display, with results visualized through ggplot2 [3.3.6].

2.4 Tool variable filtering

In the two-way MR analysis, a screening threshold of P < 1 ×
10−5 was applied to ensure an adequate number of SNPs.
Subsequently, instrumental variables (IVs) exhibiting strong
linkage disequilibrium (LD) were excluded based on r2 <
0.001 and kb = 10,000 criteria. The F statistic was then calculated
as F = [R2/(1-R2)] × (N-K-1)/K, where R2 represents the proportion
of exposure factor change explained by IVs, N denotes the sample
size associated with the exposure factor, and K represents the
number of instrumental variables used. If F < 10 is considered
indicative of weak instrumentality, it should be eliminated.

2.5 Two-sample MR analysis method

In order to investigate the causal relationship between
depression and key genes, this study employed a two-sample MR
analysis. The instrumental variable single nucleotide polymorphism
(SNP) used in this analysis should satisfy the assumptions of
“correlation with exposure factors’, which include being
correlated with exposure factors, unaffected by confounding
factors, and only affecting outcome factors through exposure
factors. Key genes related to the phenotype were screened from
the National Center for Biotechnology’s database (https://www.ncbi.
nlm.nih.gov/). A GWAS aggregate statistical dataset available on the
MR Platform was utilized, consisting of 23,424 individuals of
European descent as phenotypes for depression. Various methods
including MR Egger, weighted median, inverse variance weighting
(IVW), simple model, and weighted model were employed to
conduct two-sample MR analyses. The IVW results served as the
primary evaluation indicators while other method results estimating
causal effects were considered sensitivity analyses. Statistical
significance was determined if P < 0.05. To facilitate result
interpretation, Beta values obtained in this study were converted
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into odds ratios (OR), accompanied by calculation of their
corresponding 95% confidence intervals (CI).

If the instrumental variable affects the outcome through factors
other than the exposure factor, it indicates the presence of horizontal
pleiotropy, which undermines the validity of the assumptions of
independence and exclusivity. To assess horizontal pleiotropy, we
employ MR-Egger intercept analysis. A P-value greater than
0.05 suggests no statistically significant deviation from zero
intercept, indicating that the results are not influenced by
horizontal pleiotropy and confirming that the instrumental
variable solely impacts the outcome through exposure.

2.6 Expression patterns of pharmaceutically
usable genes in brain tissue

Numerous studies have demonstrated that depression is a
psychiatric disorder characterized by aberrant functionality in
specific cerebral regions. In this investigation, the therapeutic
potential of medicinal gene intervention for depression was
explored using the Human eFP (“electronic fluorescent
hieroglyphs’) browser (http://bar.utoronto.ca/efp_human/), which
facilitated rapid examination of gene expression profiles and
intuitively revealed the diverse brain regions expressing IL1R1.

2.7 Relationship between key genes and
lipid-related genes

The GSEA database was utilized to screen for genes associated
with lipid metabolism, enabling the analysis of differential gene
expression related to lipid metabolism in depression. Additionally,
the STRING data facilitated network interaction analysis of these
differentially expressed genes. GSE76826 data set was used for
Spearman correlation analysis of differential genes.

2.8 Pharmaceutically available gene-related
drug screening and molecular docking
and modeling

We employed DrugnomeAI (https://astrazeneca-cgr-publications.
github.io/DrugnomeAI/) to assess the medicinal potential of IL1R1,
considering a target with a percentile score >60 in DrugnomeAI gene
rankings as having promising medicinal properties. Subsequently, we
utilized the dgidb follow-up database (https://www.dgidb.org/), ChEMBL
database (https://www.ebi.ac.uk/chembl/), and relevant literature
searches on gene-drug interactions to evaluate the effects of potential
drug candidates on IL1R1. Furthermore, stringent criteria for safety,
efficacy, and ethical approval were applied to select suitable drug
candidates.

We utilized AutoDockTools-1.5.7 software to conduct molecular
docking of the medicinal gene with the potential drug candidate and
determine the binding energy, which served as an indicator for
evaluating the binding activity between pharmaceutically available
genes and drug candidates. A higher absolute value of binding energy
indicates better binding activity and stability. Specifically, a binding
energy ≤ −5.0 kcal/mol suggests a more favorable interaction between

pharmaceutically available genes and drug candidates. The results
demonstrated that the combination of the medicinal gene and
candidate drug exhibited significant efficacy.

Molecular dynamics simulations were performed using
Gromacs 2023Gromacs 2023.2 with the receptor topology using
the AMBER99SB-ILDN force field and the ligand topology
constructed from GAFF2 force field parameters. Pre-processing
such as energy minimization, isothermal isovolumic (NVT) and
isothermal isobaric (NPT) equilibrium were performed with a run
time of 100 ns and a time step of 2 fs.

3 Results

3.1 Screening and functional analysis of
differential genes

The analysis identified a total of 1,472 differentially expressed
genes, with 713 genes upregulated and 759 genes downregulated
(Figure 1A). These differential gene expression patterns were
visualized using volcano plot analysis. To gain insights into the
potential biological functions associated with these differentially
expressed genes, KEGG enrichment analysis was conducted.
Notably, the enriched pathways included glutathione metabolism,
arachidonic acid metabolism, MAPK signaling pathway, and NF-
kappa B signaling pathway. Of particular interest is glutathione
(GSH), which plays a crucial role as an antioxidant in cellular
defense against reactive oxygen and nitrogen species while
maintaining redox homeostasis. Collectively, these findings
suggest that the observed differential gene expression may be
implicated in OS and inflammation (Figure 1B).

3.2 Identification of candidate genes

A total of 655 genes related to OS were screened (Supplementary
Table S1), out of which 21 genes were found to be associated with
depression (Figure 1C; Supplementary TABLE S2). Correlation
analysis was performed on these 21 genes, revealing a significant
correlation among them as depicted in Figure 1D. To achieve more
accurate classification between the disease group and normal group,
two analytical methods, namely, support vector machine (SVM) and
random forest were employed for processing. The impact of each gene
on the heterogeneity of observations at each node in the classification
tree is assessed through random forest analysis. The findings reveal
that 13 genes significantly contribute to the classification of depression
(Figure 1E; Supplementary Table S3). In support vector machine
analysis, a set of 20 feature variables achieved the lowest error rate of
0.08, indicating their importance. Notably, IL1R1 exhibited the lowest
score in cross-validation, suggesting its highest significance in
classification (Figure 1F; Supplementary Table S4).

3.3 Marker screening for patients with
depression

The two machine learning techniques identified a set of twelve
genes (IL1R1, EPAS1, HSPB1, ETS1, IL6, SRXN1, PAX2, ANKRD2,
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GPX7, CD36, PRKD1 and CCR7) that exhibited significant potential
for classification (Figure 2A). To further evaluate the diagnostic
value of these genes we employed a ROC diagnostic model. Our
findings revealed that both ILIRI (AUC = 0.950) and EPASl (AUC =
0.917) demonstrated robust diagnostic power for depression
(Figures 2B,C; Supplementary Table S5). Furthermore, we
validated this using a Diagnostic Nomogram, where we assessed
the probability of a patient being diagnosed with depression by
integrating the scores of the IL1R1 and EPAS1 genes (Figure 2D).
The calibration curve also confirmed the excellent predictive ability
of our ROC model (Figure 2E). Additionally, The DCA visually
demonstrates that these tools and models can improve the efficiency
of the diagnosis and treatment of depression (Figure 2F).
Collectively, the results suggest that both EPASl and ILIRI hold
promise as biomarkers for depression with ILIRI exhibiting superior
diagnostic capability.

3.4 Relationship between key genes and
depression

Prospective MR results demonstrated that the key genes IL1R1
(ENSG00000115594, OR = 0.928; 95% CI, 0.865 to 0.995; P = 0.035)
and LPO (ENSG00000167419, OR = 0.937; 95% CI, 0.893 to 0.983;
P = 0.008) were significantly associated with a decreased risk of
depression, suggesting their potential as protective factors against
depression development (Figure 3). However, reverse MR analysis

did not reveal any evidence of a causal relationship between
depression and these key genes. To assess the stability of our
findings, we conducted an evaluation for horizontal pleiotropy
using the MR Egger intercept test which yielded a non-significant
result (P > 0.05), indicating no presence of horizontal pleiotropy bias
in our study. Furthermore, through leave-one-out analysis, we found
that none of the individual SNPs included in this study had a
substantial impact on the robustness of our results, thus confirming
their stability (Supplementary Figures S1, S2).

3.5 Expression pattern of IL1R1 in brain tissue

The analysis of the GSE76826 dataset revealed a significant
upregulation of IL1R1 expression. (Figure 4A). To further validate
this finding, we examined the expression pattern of IL1R1 in the
prefrontal cortex using the GSE12654 dataset (Figure 4B).
Consistently, our results demonstrated a pronounced elevation of
IL1R1 expression in the prefrontal cortex. Similarly, the
GSE98793(64 normal individuals and 128 individuals with
depression) dataset found a high expression pattern of IL1R1 in
peripheral blood (Figure 4C). Moreover, utilizing the Human eFP
Browser tool, we investigated the expression profile of IL1R1 in
various brain tissues and observed its prominent enrichment in the
olfactory bulb, corpus callosum, and hippocampus (Figure 4D).
Intriguingly, cardiac muscle cells and trigeminal ganglia exhibited
particularly elevated levels of IL1R1 (Figure 4E).

FIGURE 1
(A) Visualization of differential gene volcano map of GSE76826 (B) KEGG enrichment analysis of differential genes (C) Intersection analysis of
depression and oxidative stress (D) Network interaction of intersection genes (E) Random Forest (F) Support Vector Machine.
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FIGURE 2
(A) Intersection target selected by random forest and support vector machine (B,C) ROC diagnostic analysis (D) Diagnostic Nomogram. Points:
indicates the single score corresponding to each predictive variable under different values. Total Points: indicates the total score of the individual points
that correspond to the values of all variables. Linear Predictor: Linear predictor. (E) Diagnostic Calibration. Apparent curve indicates prediction curve,
Bias-corrected curve indicates calibration curve, and Ideal curve indicates ideal curve (F) diagnostic DCA curv

FIGURE 3
(A) Forest plot of IL1R1 (B) Scatter plot of IL1R1 (C) Funnel plot of IL1R1 (D) Forest plot of LPO (E) Scatter plot of LPO (F) Funnel plot of LPO.

Frontiers in Pharmacology frontiersin.org06

Gao et al. 10.3389/fphar.2025.1519287

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1519287


3.6 IL1R1 is associated with blood lipids

Dyslipidemia is closely associated with depression, a common
condition in patients with dyslipidemia that affects brain lipid
metabolism and potentially impacts mood and mental health. In
patients with depression, the downregulation of CCR7, GNB2L1,
PLA2G6, PIK3IP1, PDGFB, CD81, HTR2C, ORMDL1, and
PIK3R1 genes was observed. Conversely, upregulation of NOD2,
SAMD, ORMDL2, FGR, KIT, XBP, NSMAF, TNFRSF1, PRKC,
LYN, CDC42, VAV3, RAC, SLC27A1, IDH PRKAA genes related to
lipid metabolism were detected (Figure 5A). IL-1 serves as a crucial
pro-inflammatory cytokine that activates intracellular signaling
pathways by binding to IL-IRI receptor and triggers
inflammation. Prolonged or excessive inflammatory responses
may negatively impact lipid metabolism. Therefore, we identified
associations between IL-IRI and TNFRSFIA, NODZ, PDGFB, LVN,

and PIK3Rl through the STRING database (Figure 5B). Negative
correlations were found between PDGFB and PIK3Rl while positive
correlations were observed for TNFRSFIA, NODZ, and
LYN (Figure 5C).

3.7 IL1R1-related drug screening and
molecular docking

The DrugnomeAI analysis revealed a percentile score of
95.87 for IL1R1, indicating its potential medicinal properties. To
identify potential drug candidates targeting IL1R1, we conducted a
comprehensive gene-drug search. Table 1 presents the small
molecule drugs that were selected after rigorous screening and
evaluation. These include Epoetin alfa, Anakinra, Tretinoin,
Vitamin D, Genistein, BAY-1797, BAY-474, BI 665915, BAY-

FIGURE 4
(A) Expression of IL1R1 in GSE76826 (B) Expression of IL1R1 in GSE12654 (C) Expression of IL1R1 in GSE98793 (D) Strong expression levels in the
olfactory bulb, corpus callosum, and hippocampus of brain tissue are indicated by red arrows (E) histogram of expression in brain tissue.
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FIGURE 5
(A) The expression of genes related to lipid metabolism (B) IL1R1 is correlated with lipid metabolism, pink indicates positive correlation and blue
indicates negative correlation. The thickness indicates the score between genes (C) indicates the heat map that is correlated with IL1R1 in Figure 1B (D)
IL1R1 and BI 665915 docking visualization (E) IL1R1 and BAY-7598 docking visualization (F) IL1R1 and BAY-386 docking visualization (G) Visualization of
the connection between IL1R1 and BI 639667 (H) The atomic root-mean-square deviation (RMSD) of the BI 639667 and IL1R1 complex (I) The root-
mean-square fluctuation (RMSF) of the BI 639667 and IL1R1 complex (J) The radius of gyration (Rg) of the BI 639667 and IL1R1 complex (K) The number of
hydrogen bonds in the BI 639667 and IL1R1 complex (L) The solvent-accessible surface area (SASA) of the BI 639667 and IL1R1 complex.
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7598 and BAY-386. In addition to this, Venlafaxine and Paroxetine,
which are marketed for the treatment of depression, were selected as
positive drugs for affinity comparison. Molecular docking studies
were performed using IL1R1 (PDB ID:4gaf) and the aforementioned
small molecules to assess their binding energies with IL1R1. The
results demonstrated strong interactions between these drug
candidates and IL1R1 as evidenced by binding energies below −7;
thus suggesting their potential efficacy in treating depression.
Whereas, the docking scores with both Venlafaxine and
Paroxetine were greater than −7.0, indicating that these drug
candidates showed better affinity. Among them, BI 665915, BAY-
7598, BAY-386, and BI 639667 exhibited the lowest binding energies
and were further visualized through docking simulations with ILIRI
(Figures 5D–G). To verify the binding stability, we performed 100 ns
molecular dynamics simulations of BI 639667 with IL1R1. The root
mean square deviation (RMSD) results showed that the fluctuations
of the system were in the range of 0.1 nm, which indicated that the
system had strong stability (Figure 5H). The root mean square
fluctuation (RMSF) could reflect the overall amino acid residue
fluctuation of the complex was small (Figure 5I). The radius of
gyration (Rg) suggested that the complexes remained relatively
stable during the simulation (Figure 5J). The solvent accessible
surface area (SASA) indicated that the binding of BI 639667 had
less effect on the structure of IL1R1 (Figure 5K). Further calculation
of the hydrogen bonding contacts between BI 639667 and IL1R1 was
consistent with the docking results, and the complexes were able to
form stable hydrogen bonds (Figure 5L).

4 Discussion

In the context of depression, there exists a close association
between oxidative stress and lipid metabolism. Oxidative stress can
induce lipid peroxidation, leading to cellular membrane structural
damage and impairment of cell function. Simultaneously,

dysregulated lipid levels such as elevated triglyceride levels and
increased low-density lipoprotein cholesterol are prone to
triggering oxidative stress responses. These two mechanisms
interact synergistically, exacerbating the progression of
depression. Furthermore, compromised antioxidant defense
systems and reduced levels of antioxidant substances render
patients more susceptible to oxidative stress-induced damage.
Additionally, oxidative stress and lipid abnormalities can facilitate
inflammatory responses that further impact the physiological
processes underlying depression. Given the intricate etiology of
depression and the lack of effective biomarkers for clinical
diagnosis, this study employed multiple data analysis methods to
screen and validate genes associated with oxidative stress while
delving into the mechanistic role played by IL1R1 gene in depth. The
findings demonstrate that IL1R1 along with its related genes play a
pivotal role in initiating depression onset while also exhibiting
potential as emerging biomarkers and therapeutic targets, thereby
providing novel insights for scientific research endeavors as well as
clinical treatment.

The differentially expressed genes in depression were found to
be enriched in metabolic and inflammatory pathways, with a notable
implication of glutathione metabolism suggesting their association
with oxidative stress. These findings are consistent with previous
studies (Liu et al., 2020; Savushkina et al., 2022) and further support
the notion that metabolic disorders serve as important biomarkers
for depression. Subsequent investigations revealed a total of 12 genes
linked to OS, among which EPAS and IL1R1 were selected as
potential diagnostic biomarkers. Endothelial PAS1 protein
(EPAS1), also known as hypoxia-inducible factor 2α (HIF-2α), is
involved in regulating the transition from acute to chronic hypoxia
and subsequently influences the expression of inducible nitric oxide
synthase (iNOS). Elevated levels of iNOS have been implicated in
MDD. In addition, Qing Wu et al. reported that HIF-2α can
suppress adipose tissue thermogenesis through modulation of
intestinal microbiota (Wu et al., 2021). Interleukin-1 receptor

TABLE 1 Potential drug candidates and docking binding energy of IL1R1.

Database provider Molecule name Regulatory approval Binding energy

Dgidb Epoetin alfa Approved −8.0

Anakinra Approved −7.4

Tretinoin Approved −7.8

Vitamin D Approved −7.0

Genistein Approved −8.0

CHEMBL BAY-1797 Approved −8.0

BAY-474 Approved −7.4

BI 665915 Approved −8.1

BAY-7598 Approved −8.4

BAY-386 Approved −8.1

BI 639667 Approved −9.7

— Venlafaxine Approved −6.1

— Paroxetine Approved −6.7
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type 1 (IL1R1) is a crucial component of the immune response,
mediating the effects of interleukin-1 (IL-1) in the inflammatory
process. This study observed an increased expression of IL1R1 in
both peripheral blood and brain tissues of patients with depression,
suggesting that IL1R1-mediated signaling may play a role in
neuroinflammatory states associated with this condition (Liu
et al., 2019; Song et al., 2023). Research conducted by Ja Wook
Koo and Carol L. Murray et al. demonstrated that mice lacking IL-
1R1 exhibited anti-anxiety behaviors (Koo and Duman, 2009;
Murray et al., 2013). Subsequently, we employed Mendelian
randomization analysis to identify IL1R1 and LPO as protective
factors against depression. Existing literature indicates that neuronal
IL-1R1 regulates gene pathways involved in synaptic organization
without eliciting typical inflammatory responses (Nemeth et al.,
2024). Furthermore, genetic studies have identified polymorphisms
within the IL1R1 gene associated with responses to antidepressant
therapy, implying that IL1R1 may influence the efficacy of
therapeutic interventions (Tsai et al., 2023). These findings
underscore the dual role of ILIR2 in depression and its potential
clinical significance. Given our results indicating limited diagnostic
capacity for LPO in depression, subsequent analysis focused on ILIR.
In this study, we utilized the Human eFP Browser online tool to
analyze the expression patterns of the IL1R1 gene across various
tissues, with a specific focus on its expression within the brain. Our
study findings suggest that although IL1R1 exhibits the highest
expression level in cardiomyocytes and trigeminal ganglia, our
targeted analysis of specific brain regions reveals that localized
overexpression of IL1R1 in the olfactory bulb, corpus callosum,
and key brain regions (Ashmun et al., 1986) indicates its potential
role in regulating neurobiological processes to counteract depression
development. Previous research has demonstrated the crucial
involvement of IL-1β/IL-1R1 signaling in the olfactory bulb for
inducing and propagating abnormal α-Syn (Niu et al., 2020).

In the aforementioned study, it was discovered that upregulated
genes associated with depression are implicated in metabolism, and
OS interacts with lipid metabolism. Consequently, our analysis
uncovers a connection between IL1R1 and lipid regulation,
offering valuable insights into the metabolic facets of depression.
Utilizing the STRING database, we observed a negative correlation
between IL1R and PDGFB as well as PIK3R1, while a positive
correlation was found with TNFRSF1A, NOD2, and LYN. The
differential expression of several pivotal genes underscores
dysregulation of lipid metabolism in depression. Notably among
them is PDGFB (platelet-derived growth factor subunit B), which
plays a crucial role in various cellular processes such as cell
proliferation, survival, and migration—particularly within the
realm of vascular biology and neurodevelopment (Bi et al., 2022).
The upregulation of PIK3R1 in patients with depression may
indicate a compensatory mechanism for lipid profile changes that
could impact the neuroinflammatory pathway mediated by PIK3R1,
a regulatory subunit 1 of inosine-3 kinase (PI3K) signaling pathway.
This pathway is crucial for various cellular functions, including
metabolism, growth, and survival. The downregulation of PIK3R1 in
depressed patients may disrupt these processes, leading to impaired
lipid metabolism and exacerbation of depressive symptoms.
Previous studies have demonstrated the involvement of PI3K
signaling in mood regulation and emotional responses, suggesting
that alterations in this pathway might contribute to the

pathophysiology of depression (Guo et al., 2024). Additionally,
TNFRSF1A (Tumor necrosis factor receptor superfamily member
1A), as a receptor for tumor necrosis factor α (TNF-α), deserves
attention due to its significant role in mediating inflammatory
responses. In the context of depression, its upregulation may
indicate an enhanced inflammatory state associated with various
neuropsychiatric disorders. Our STRING database analysis revealed
an interaction between TNFRSF1A and IL1R1 which suggests the
existence of a complex inflammatory signaling network that could
further influence lipid metabolism. Overall, these findings
emphasize the intricate relationship between lipid metabolism
and inflammatory pathways within the context of depression and
warrant further investigation into their therapeutic implications.
Although oxidative stress and lipid metabolism are significant
contributors to the pathophysiology of depression, they represent
only two among numerous biological pathways that may be
implicated. Future research must adopt a multidisciplinary,
multifaceted systems biology approach to comprehensively
elucidate the underlying causes of depression.

DrugnomeAI identified IL1R1 as a potential drug target.
Molecular docking results revealed strong binding affinity (with
binding energy lower than −7 kcal/mol) between IL1R1 and several
small molecules, including BI 665915, BAY-7598, BAY-386, and BI
639667, suggesting their potential therapeutic effects. The molecular
dynamics simulation results of 100ns showed strong binding
stability between IL1R1 and BI 639667. Epoetin Alfa is a
recombinant erythropoietin (EPO) traditionally used for anemia
treatment; however, it has been discovered that both EPO and its
receptor (EPO-R) are widely expressed in the central and peripheral
nervous systems. Moreover, they can traverse the blood-brain
barrier to exert nutritional and protective effects within the
central nervous system (Miskowiak et al., 2012). Kamilla W
Miskowiakt et al. investigated the impact of combining
electroconvulsive therapy with erythropoietin (EPO) on
enhancing cognitive performance in patients with depression and
mood disorders (Miskowiak et al., 2024). Additionally, Anakinra, a
recombinant IL-1 receptor antagonist, has demonstrated
therapeutic potential in various inflammatory conditions and
may offer a novel treatment approach for depression by
mitigating the effects of pro-inflammatory cytokines (Pazyar
et al., 2012). However, it is important to acknowledge certain
limitations within this study. The analysis solely relied on
bioinformatics methods without incorporating data from wet
laboratory experiments to provide more direct evidence
supporting the underlying biological mechanisms involved.
Currently, there are no available investigation results regarding
the effects of BAY-386 and BI 639667 compounds on depression.

In summary, this study successfully identified key genes
associated with depression through comprehensive bioinformatics
analysis, encompassing differential gene expression, GO and KEGG
enrichment analyses, and network interaction analysis.
Furthermore, the validity of these genes as biomarkers for
depression was assessed using a Diagnostic Nomogram, while
MR was employed to explore the causal relationship between
depression and these key genes. Additionally, potential drug
targets were identified, offering novel avenues for therapeutic
intervention. These findings provide valuable insights into the
molecular mechanisms underlying depression and pave the way
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for future research and clinical applications. By addressing
limitations in subsequent studies, these results could significantly
contribute to the development of more effective treatments for
depression.
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