Check for updates

OPEN ACCESS

EDITED BY Ruiwen Zhang, University of Houston, United States

REVIEWED BY Guang Chen, The University of Hong Kong, Hong Kong SAR, China Hemanga Hazarika, Girijananda Chowdhury University, India

*CORRESPONDENCE Zheng Xiao, ⊠ zy426f@163.com

[†]These authors have contributed equally to this work

RECEIVED 30 October 2024 ACCEPTED 03 March 2025 PUBLISHED 24 April 2025

CITATION

Zhang Y, Xiao Z, Liu H, Cai D-C, Luo Y-Q, Xu J, Luo F, Huang J, Jin Y-Y, Fan T-Y, Zhang J, Xiao X and Feng J-H (2025) Intrapleural administration with traditional Chinese medicine injections (*Sophorae flavescentis* preparations) in controlling malignant pleural effusion: a clustered systematic review and meta-analysis. *Front. Pharmacol.* 16:1519794. doi: 10.3389/fphar.2025.1519794

COPYRIGHT

© 2025 Zhang, Xiao, Liu, Cai, Luo, Xu, Luo, Huang, Jin, Fan, Zhang, Xiao and Feng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. Intrapleural administration with traditional Chinese medicine injections (*Sophorae flavescentis* preparations) in controlling malignant pleural effusion: a clustered systematic review and meta-analysis

Yan Zhang^{1,2,3†}, Zheng Xiao^{1,2†}*, Hui Liu^{1,2}, Da-Chun Cai^{1,2}, Yao-Qin Luo^{1,2,4}, Jiao Xu^{1,2}, Feng Luo^{1,2}, Jun Huang⁵, Yan-Yan Jin¹, Teng-Yang Fan^{1,2}, Jun Zhang⁶, Xue Xiao^{1,2} and Ji-Hong Feng⁷

¹Evidence-Based Medicine Center, MOE Virtual Research Center of Evidence-based Medicine at Zunyi Medical University, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China, ²Department of General Practice, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China, ³Geriatric Medicine Department, Affiliated Hospital (GuiAn) of Guizhou Medical University, Guiyang, Guizhou, China, ⁴Department of Oncology, Tongren People's Hospital, Tongren, Guizhou, China, ⁵Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China, ⁶Internal Medicine Department, 96603 Hospital, Huaihua, Hunan, China, ⁷Department of Oncology, Lishui People's Hospital, Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China

Introduction: *Sophorae flavescentis (kushen)* preparations are widely used to control malignant pleural effusion (MPE) through intrapleural perfusion.

Objectives: This analysis aims to verify the therapeutic values of perfusion with *kushen* preparations for controlling MPE, reveal the optimal treatment plan, suitable population, and usage, and to demonstrate their clinical effectiveness and safety.

Methods: We performed and reported this systematic review/meta-analysis (PROSPERO: CRD42023430139) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. All randomized controlled trials (RCTs) concerning perfusion with *kushen* preparation for MPE were collected from Chinese and English databases. We clustered all eligible studies into multiple homogeneous treatment units, assessed their methodological quality using a RoB 2, pooled the data from each unit, and summarized the quality of the evidence.

Results: We included 83 RCTs reporting three types of *kushen* preparation: compound *kushen* injection (CKI), *kang'ai* injection, and matrine injection. All trials were clustered into perfusion with CKI alone or with the addition of sclerosants, *kang'ai*, or matrine-plus platinum for controlling MPE. Compared with cisplatin alone, perfusion with CKI alone displayed a similar complete response, pleurodesis failure, and pleural progression (odds ratios =1.10, 95% CI 0.76 to 1.60; 0.80, 0.56 to 1.14; 0.63, 0.33 to 1.21). Of 14 homogeneous treatment plans, perfusion with CKI and cisplatin significantly improved the

complete response (2.71, 2.30 to 3.19) and showed low pleurodesis failure (0.26, 0.22 to 0.32), pleural progression (0.22, 0.14 to 0.36), myelosuppression (0.34, 0.24 to 0.47), neutropenia (0.35, 0.26 to 0.46), gastrointestinal reaction (0.36, 0.29 to 0.44), hepatorenal toxicity (0.42, 0.28 to 0.63 and 0.32, 0.24 to 0.44), and fever (0.50, 0.30 to 0.82). These results were moderate quality ($\oplus \oplus \boxtimes$) supported by firm or conclusive information. Additionally, perfusion with *kang'ai* or matrine and cisplatin also improved the complete response (3.04, 1.76 to 5.26 and 1.87, 1.26 to 2.78) and displayed low pleurodesis failure (0.23, 0.14 to 0.41 and 0.27, 0.17 to 0.44). The results were moderate to low quality ($\oplus \oplus \boxtimes$).

Conclusion: Current moderate evidence demonstrates that CKI may be an effective palliative intervention for MPE which, combined with cisplatin, may be an optimal treatment plan. *Kang'ai* or matrine may be other potential choices.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/view/ CRD42023430139

KEYWORDS

malignant pleural effusions, Radix Sophorae Flavescentis, compound kushen injection, matrine injection, Kangai injection, clustered systematic review Bibby, A.C., Dorn

1 Introduction

The dried root of the shrub Sophora flavescens Aiton (Chinese name: kushen) is an important herbal medicine in China, Japan, Korea, India, and in some of Europe (He et al., 2015;Liang et al., 2019). It contains active components such as matrine, oxymatrine, sophoridine, flavonoids, alkylxanthones, quinones, triterpene glycosides, fatty acids, and essential oils (Cao and He, 2020; Chen et al., 2021; Chen et al., 2022). Its matrine and oxymatrine show significant anti-tumor activities by inhibiting tumor cell proliferation, inducing apoptosis, regulating the tumor microenvironment, and down-regulating cancer-related inflammation (Guo et al., 2015; Ma et al., 2016; Cao and He, 2020; Chen et al., 2021; Chen et al., 2022; Liu et al., 2023). In China, three traditional Chinese medicine injections (TCMIs)compound kushen injection (CKI), kang'ai, and matrine injection-were developed, with S. flavescens extracts including matrine and oxymatrine as the core components (Supplementary Material S1 and Supplementary Table S1). In this analysis, we defined three types of injection as S. flavescens (kushen) preparations. CKI mainly contains ethanol and water extracts such as matrine, oxymatrine, and sophoridine, which are extracted from S. flavescens Aiton (kushen) and Heterosmilax yunnanensis Gagnep (baituling) (Guo et al., 2015; Ma et al., 2016; Liu et al., 2023). *Kang'ai* injection contains multiple ingredients including *Astragalus* polysaccharides, astragalosides, ginsenosides, ginseng polysaccharides, and oxymatrine, which are extracted from *kushen*, ginseng (*Panax ginseng* C.A. Mey), and *Astragalus membranaceus* (Fisch.) Bunge (Fabaceae) (Wan et al., 2018; Sun et al., 2021). Matrine injection is a chemical drug derived from *kushen*. Clinically, three types of *kushen* preparations have been approved by the China Food and Drug Administration for adjuvant therapy of solid tumors (Ma et al., 2016; Wang et al., 2016; Li H. et al., 2019; Liu et al., 2022; Liu et al., 2023).

Malignant pleural effusion (MPE), a frequent complication often secondary to metastases to the pleura, originates from intra- or extra-thoracic malignant tumors (Hassan et al., 2021; Gayen, 2022). Patients with MPE often experience progressive breathlessness, tumor progression, and poor survival. Currently, effective control of pleural effusion, improvement of clinical symptoms, and quality of life (QOL) have become the main treatment goals for symptomatic MPE and suspected expandable lung patients (Bibby et al., 2018; Feller-Kopman et al., 2018). Excluding malignant tumors, CKI, kang'ai, and matrine injections are commonly used to control MPE through intrapleural perfusion (Yang et al., 2016; Wu et al., 2018; Li B. et al., 2019; Xu et al., 2022). According to the Cochrane systematic evaluation, five systematic reviews/meta-analyses (SRs/metaanalyses) (Tang et al., 2014; Biaoxue et al., 2015; Xu et al., 2015; Yang et al., 2016; Wu et al., 2018) reported that kushen preparations might increase clinical response rate and improve QOL with a low adverse drug reactions (ADRs) in MPE. But these SRs/meta-analyses (Tang et al., 2014; Biaoxue et al., 2015; Xu et al., 2015; Yang et al., 2016; Wu et al., 2018) exhibited significant clinical heterogeneity, conducted inappropriate data analysis, and involved 16 ineligible studies (Supplementary Tables S3, S4). They also lacked rigorous and reasonable methodologies such as prior planning and systematic retrieval. These deficiencies undermine the credibility of their conclusions, which easily mislead clinical decision-making.

At present, no evaluation has revealed their clinical value for perfusion with *kushen* preparation alone for MPE. No evidence has

Abbreviations: ADRs, adverse drug reactions; AEs, adverse events; AST, anticipated survival time; BRM, biological response modifier; CTCAEs, Common Terminology Criteria for Adverse Events; CKI, compound *kushen* injection; CI, confidence interval; FEM, fixed-effects model; GRADE, Grading of Recommendation Assessment, Development and Evaluation approach; IPCs, indwelling pleural catheters; *Kang'ai, kang'ai* injection; KPS, Karnofsky performance status; MPEs, malignant pleural effusions; NMA, network meta-analysis; ORs: odds ratios; PF, pleurodesis failure; PFS, progression-free survival; PRISMA, Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines; QOL, quality of life; RCTs, randomized controlled trials; REM, random-effects model; RIS, required information size; RRR, relative risk reduction; SRs, systematic reviews; TCM, traditional Chinese medicine; TCMIs, traditional Chinese medicine injections; TSA, trial sequential analysis; WHO, World Health Organization.

confirmed its optimal treatment plan, indications, usage, and how to reasonably apply *kushen* preparation to achieve expected clinical efficacy and safety. Since the publication of the latest SR/metaanalysis in 2018, (Wu et al., 2018), 23 trials (Supplementary Material S3) have been published (Huang, 2021; Feng and Shi, 2023; Lin et al., 2023; Wang R. et al., 2023). We further performed a registered SR/ meta-analysis to verify the therapeutic value of *kushen* preparations for controlling MPE, reveal their optimal treatment plan, suitable population and usage, and demonstrate their clinical effectiveness and safety. A new evidence framework will be developed for clinical decision-making about the reasonable application of *kushen* preparations to control MPE and further new research projects.

2 Materials and methods

Kushen preparations mainly include CKI, kang'ai, and matrine. To verify their therapeutic value for controlling MPE, we systematically and comprehensively collected all eligible studies about kushen preparations for controlling MPE (Figure 1). These were clustered into multiple homogeneous and implementable treatment units such as CKI alone, and CKI, kang'ai, or matrine and cisplatin, nedaplatin, or carboplatin. We then further evaluated their methodological quality and pooled the data from each treatment unit and finally summarized and developed an evidence framework for

rational drug use decision-making and future research projects. We registered this analysis on PROSPERO (CRD42023430139) and reported all findings according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA 2020 Checklist) (Page et al., 2021). During the retrieval, selection, evaluation of methodological quality, data collection, statistical analysis, and summary of evidence, any disagreements were resolved through discussion with each

other or with Zheng Xiao. Ethical approval was not required as the materials were published studies.

2.1 Inclusion and exclusion criteria

According to the PICOS model, we established the following criteria for all eligible studies to meet.

Vear												times		
year	Tumor	Volume	KPS	TH	AST	E/ C	M/ F	Years	DM	<i>Kushen</i> , dose, times (dose*)	Sclerosants	unes		
a. Intrapleural adm	ninistration	with compoun	d kushei	n inject	ion (CK	l) alone	2							
CKI versus cisplati	n (nine trial	ls)												
Yuan (2007)	MTs	Un	≥40	РТ	Un	26/ 26	32/20	36-87	IPC	20 mL, 2-3 times/w, 4-6 times	40 mg/m ²	6-7 weeks	Millar, Un	O1-3
Hu et al. (2008b)	LC	Small to large	≥50	Un	>3	20/ 20	25/15	62–67	IPC	20 mL, 2 times/w, 4 times	30 mg	9 weeks	Millar, Un	O1-3
Chen (2010)	MTs	Large	Un	Un	Un	28/ 30	31/27	59–77	IPC	20 mL, 1 time/w, 3 times	30 mg/m ²	2 years	Millar, WHO	O1,3,4
Liang et al. (2011)	MTs	Un	>50	Un	Un	56/ 54	Un	35-83	IPC	20 mL, 1 time/w, 3-4 times	40 mg/m ²	7-8 weeks	Ostrowskimj, WHO	O1-3
Chen (2013)	MTs	Moderate to large	≥70	Un	Un	40/ 40	46/34	20-82	IPC	40 mL, 1 time/w, 4 times	40 mg/m ²	8 weeks	Millar, Un	O1-3
Xing (2013)	LC	Moderate to large	>50	Un	≥3	45/ 42	52/35	43-79	IPC	20 mL, 1-2 time/w, 4 times	40-60 mg	8 weeks	Millar, Un	01-3
Yan et al. (2016)	MTs	Un	>60	Un	>3	20/ 30	Un	45-81	IPC	20 mL, 1 time/w, 4 times	40 mg	8 weeks	Ostrowskimj, Un	O1-3
Wang and Zhou (2016)	MTs	Un	Un	PT	Un	30/ 30	51/39	36-81	IPC	40 mL, 2 times/w, 7 times	40 mg	8 weeks	Ostrowskimj, WHO	O1,3
Wang et al. (2023b)	BC	Small to large	Un	Un	>3	16/ 15	0/31	57–75	IPC	50 mL, 2 times/48 h,i2 times	40 mg	6 weeks	Millar, Un	O1,3
CKI versus Interleu	ıkin-2 (one	trial)												
Huang (2013)	HCC	Un	Un	Un	Un	65/ 63	117/ 11	45.3 ± 3.2/ 44.8 ± 2.9	Un	20 mL, 1 time/day, 5 times	1 MU	7 weeks	Ostrowskimj, Un	01
CKI versus mitomy	/cin (one tr	ial)												
Zhang (2011)	MTs	Un	>60	Un	>3	50/ 50	68/32	38-76	IPC	40 mL, 1 time/w, 3 times	10 mg	7 weeks	Ostrowskimj, Un	O1-3
b. Intrapleural adn	ninistration	with CKI and s	clerosar	nts										
CKI and cisplatin v	versus cispla	atin (41Trials)												
Huang (2007)	LC	Large	Un	Un	>1	20/ 18	28/10	35-70	Thora*	20 mL, 1 time/w, 1-2 times	40 mg	5-6 weeks	Ostrowskimj, Un	O1,3

Interventions

First author,

Malignant pleural effusions

(Continued on following page)

Criteria

First author,	Maligna	nt pleural ef	fusion						Interv	ventions		Evaluation	Criteria	Outcomes
year	Tumor	Volume	KPS	тн	AST	E/ C	M/ F	Years	DM	<i>Kushen</i> , dose, times (dose*)	Sclerosants	umes		
Lin et al. (2007)	MTs	Moderate to large	Un	Un	Un	33/ 33	40/26	36-75	Thora*	20 mL, 1 time/w, Un	60 mg	Un	Millar, Un	O1,3
Pan et al. (2007)	MTs	Un	≥60	Un	Un	36/ 34	43/27	60 ± 21	IPC	30 mL, 1 time/w, 2-4 times	40 mg	6-8 weeks	Ostrowskimj, WHO	O1-3
Zhang et al. (2008)	MTs	Un	>60	РТ	Un	28/ 23	27/24	31-80	IPC	20 mL, 1 time/w, 4 times	20 mg	8 weeks	Ostrowskimj, Un	01
Ding et al. (2009)	MTs	Un	≥60	Un	≥3	31/ 30	41/20	38-76	IPC	20 mL, 1 time/w, 3 times	30 mg	7 weeks	Ostrowskimj, WHO	O1-3
Li et al. (2009)	LC	Un	Un	Un	>1	30/ 30	49/11	35-70	Thora*	20 mL, 1 time/w, Un	40 mg	8 weeks	Ostrowskimj, Un	O1,3
He et al. (2010)	LC	Moderate to large	≥50	RT	>3	24/ 20	25/19	39–75	IPC	40 mL, 1 time/w, 3 times	40 mg	7 weeks	Ostrowskimj, WHO	O1,3
Wang (2010)	MTs	Un	>60	Un	>3	24/ 24	Un	55-82	IPC	20 mL, 2 times/w, 8 times	40 mg	8 weeks	Ostrowskimj, Un	O1,3
Chen et al. (2011)	MTs	Un	≥60	Un	Un	84/ 84	Un	38-85	IPC	60 mL, 1 time/w,3-5 times	40-60 mg	3 years	Ostrowskimj, Un	O1,3,4
Wei and Sun (2011)	MTs	Un	Un	Un	Un	35/ 35	40/30	21-75	IPC	20 mL, 1 time/w, 4 times	40 mg	8 weeks	Ostrowskimj, Un	01
Chen and Liao (2012)	MTs	Moderate to large	≥60	Un	Un	43/ 43	60/26	35-68	IPC	30 mL, 1 time/w, 4 times	60 mg/m ²	8 weeks	Millar, WHO	O1,3
Han et al. (2012)	LC	Un	>50	РТ	>3	28/ 28	35/21	41-91	IPC	12–20 mL, 1time/w, 2- 4 times	20-40 mg	8 weeks	Millar, WHO	O1-3
Yang (2012)	MTs	Moderate to large	≥60	Un	≥3	39/ 39	43/35	33-76	IPC	25 mL, 1 time/w, 4 times	40-60 mg	8 weeks	Ostrowskimj, CTEC3.0	O1-3
Zhuang et al. (2012)	НМ	Un	Un	Un	Un	24/ 22	23/23	15-81	Thora*	10 mL, 1 time/w, 3-6 times	20 mg/m ²	7–10 weeks	Millar, WHO	O1,3
Guo et al. (2013)	MTs	Moderate to large	≥50	РТ	Un	31/ 31	Un	18-72	IPC	20 mL, 1 time/w, 4 times	40 mg	7–10 weeks	Ostrowskimj, WHO	O1-3
Han (2013)	MTs	Un	>60	Un	>3	90/ 90	93/87	34-82	IPC	40 mL, 1 time/w, 3 times	20 mg/m ²	7 weeks	Millar, WHO	O1-4
Zheng and Jia (2013)	MTs	Un	>50	Un	>3	31/ 31	Un	51-78	IPC	30 mL, 1–2 times/w, Un	30 mg/m ²	Un	Ostrowskimj, WHO	O1,3
Zhu et al. (2013)	MTs		≥70	Un	Un		30/26	35-82	IPC	20 mL, 1 time/w, 4-6 times	60 mg	8-10 weeks	Millar, Un	O1,3

First author,	Maligna	nt pleural ef	fusion						Interv	ventions		Evaluation	Criteria	Outcomes
year	Tumor	Volume	KPS	TH	AST	E/ C	M/ F	Years	DM	<i>Kushen</i> , dose, times (dose*)	Sclerosants	umes		
		Moderate to large				28/ 28								
Chen et al. (2014)	MTs	Moderate to large	Un	РТ	Un	30/ 30	38/22	60-83	IPC	20 mL, 1 time/w, 4 times	40 mg	8 weeks	Ostrowskimj, Un	O1-3
Jiang (2014)	MTs	Un	Un	Un	Un	34/ 34	37/31	34-81	IPC	20 mL, 1 time/w, 6 times	60 mg	10 weeks	Ostrowskimj, Un	O1-3
Xu (2014a)	MTs	Un	≥60	Un	Un	30/ 30	36/24	32-79	Thora*	60 mL, 1 time/w, 2-4 times	80 mg	6-8 weeks	Millar, Un	O1,3
Xu (2014b)	MTs	Un	Un	Un	Un	32/ 32	34/30	39-82	Thora*	40 mL, 1 time/w, 6 times	40 mg	10 weeks	Ostrowskimj, Un	O1-2
Liu and Li (2015)	LC	Un	>60	РТ	>3	46/ 42	48/40	60.2 ± 8.2	IPC	20 mL, 1 time/w, 3 times	40-60 mg	8 weeks	Millar, Un	O1-3
Song and Jia (2015)	MTs	Un	≥70	Un	Un	59/ 59	64/54	42-73	IPC	25 mL, 1 time/w, 4 times	50 mg	8 weeks	Ostrowskimj, Un	O1,3
Yan et al. (2016)	MTs	Un	>60	Un	>3	35/ 30	Un	45-81	IPC	20 mL, 1time/w, 4 times	40 mg	8 weeks	Ostrowskimj, Un	O1-3
Qin and Fan (2016)	MTs	Un	Un	Un	Un	32/ 32	Un	38-76	IPC	20 mL, 1time/w, Un	60 mg	Un	Ostrowskimj, Un	O1,3
Huang et al. (2017)	MTs	Un	>60	Un	>3	30/ 30	43/17	62.8 ± 7.7; 3.3 ± 8.1	IPC	20 mL, 1 time/w, 4 times	40 mg	8 weeks	Ostrowskimj, Un	O1,3
Liu et al. (2017)	LC	Moderate to large	≥50	РТ	Un	30/ 30	Un	32-76	IPC	20 mL, 1 time/w, 4 times	40 mg	8 weeks	Ostrowskimj, WHO	O1-3
Shi (2017)	LC	Large	≥50	РТ	Un	30/ 30	39/21	34-78	IPC	20 mL, 1 time/w, 4 times	40 mg	8 weeks	Ostrowskimj, WHO	O1-3
Tang et al. (2018)	LC	Large	≥50	РТ	Un	30/ 30	Un	33-77	IPC	60 mL, 2 times/w, 6 times	40 mg	7 weeks	Ostrowskimj, WHO	O1-3
Wu et al. (2019)	LC	Un	Un	Un	Un	25/ 25	30/20	39-68	IPC	40-60 mL, 1-2 times/w, 3-6 times	40-60 mg	8-9 weeks	Millar, WHO	O1-3
Wang et al. (2019)	LC	Un	Un	Un	Un	45/ 45	49/41	58-75	IPC	20 mL, 1 time/w, 3 times	40-60 mg	7 weeks	Millar, Un	O1-3
Peng (2020)	LC	Un	Un	Un	Un	25/ 25	29/22	41-70	IPC	40 mL, 3 times/w, 12 times	30 mg	8 weeks	Millar, Un	O1,3
Feng and Shi (2023)	LC	Moderate	>60	RT	>3		39/29	43-79	IPC	30 mL, 1 times/w, 3 times	40 mg	7 weeks	Millar, WHO	O1-3

First author,	Maligna	nt pleural ef	fusion	s					Interv	ventions		Evaluation	Criteria	Outcomes
year	Tumor	Volume	KPS	тн	AST	E/ C	M/ F	Years	DM	<i>Kushen</i> , dose, times (dose*)	Sclerosants	umes		
						34/ 34								
Ning et al. (2001)	MTs	Un	Un	Un	Un	30/ 30	46/14	25-65	Thora*	20 mL, 1 time/w, 4 times (40 mg)	60 mg	8 weeks	Ostrowskimj, WHO	O1,3
Deng et al. (2008)	MTs	Un	Un	Un	Un	40/ 40	46/34	29-69	Thora*	20 mL, 1 time/w, Un (30 mg)	60 mg	Un	Ostrowskimj, WHO	O1,3
Li (2008)	MTs	Un	Un	Un	Un	32/ 32	51/13	29-73	IPC	20 mL, 1 time/w, 4 times (40 mg)	60 mg	8 weeks	Ostrowskimj, WHO	O1,3
Li and Tian (2011)	MTs	Moderate to large	Un	Un	Un	30/ 30	34/26	40-80	IPC	20 mL, 1 time/w, 2-3 times (40 mg)	60 mg	6-7 weeks	Ostrowskimj, Un	O1,3
Ran and Zang (2011)	MTs	Un	>60	Un	>3	30/ 30	33/27	35-79	IPC	25 mL, 1 time/w, 2-4 times (40 mg)	60 mg	6-8 weeks	Ostrowskimj, WHO	O1-3
Jiang and Li (2020)	MTs	Un	Un	Un	Un	30/ 30	44/16	43-71	IPC	20mL, un (20 mg)	40 mg	Un	Millar, Un	Q1,3
Lin et al. (2023)	MTs	Small to large	≥60	РТ	>3	26/ 26	29/23	34-76	IPC	30 mL, 1time/w, 3 times	40 mg	7 weeks	Ostrowskimj, WHO	O1-3
CKI and nedaplat	in versus Ne	edaplatin (Three	e trials)					1			1	1	1	1
Li (2014)	MTs	Moderate to large	≥50	PT	>3	37/ 37	Un	36-78	IPC	25 mL, 2 times/w, 4 times	40-60 mg	6 weeks	Ostrowskimj, WHO	O1-3
Zhang et al. (2015a)	LC	Un	>60	Un	>3	56/ 56	68/44	35-78	IPC	30 mL, 1 time/w, 4 times	60 mg	8 weeks	Ostrowskimj, Un	O1-4
Li et al. (2017)	MTs	Un	>60	Un	>3	36/ 36	38/34	40-79	IPC	30 mL, 1 time/w, 4 times	60 mg	8 weeks	Ostrowskimj, Un	O1-3
CKI and carbopla	tin versus c	arboplatin (One	trial)					1			1	1	1	
He and Xie (2010)	MTs	Moderate to large	Un	Un	>3	21/ 20	22/19	Un	IPC	40 mL, 1 time/w, 4 times	400 mg	8 weeks	Millar, WHO	O1,3
CKI and lobaplati	n versus lob	paplatin (two tri	als)	·										
Liu and Xu (2016)	LC	Moderate to large	Un	Un	Un	30/ 30	62/28	32-76	Thora*	30 mL, 1 time/w, 4 times	30 mg	8 weeks	Ostrowskimj, Un	O1,3
Huang (2021)	LC	Un	Un	Un	Un	25/ 25	27/23	44-81	IPC	30 mL, 1 time/w, Un	30 mg	Un	Millar, Un	O1

(Continued on following page)

10.3389/fphar.2025.1519794

Frontiers in Pharmacology

First author,	Maligna	nt pleural ef	fusion	s					Interv	entions		Evaluation	Criteria	Outcomes
year	Tumor	Volume	KPS	TH	AST	E/ C	M/ F	Years	DM	<i>Kushen</i> , dose, times (dose*)	Sclerosants	unes		
CKI and bleomyci	n versus ble	omycin (three	trials)											
Chen and He (2003)	MTs	Large	Un	Un	Un	15/ 14	18/11	40-75	IPC	20 mL, 1 time/w, 2 times (40 mg)	60 mg	8 weeks	Ostrowskimj, WHO	O1,3
Liu and Wan (2011)	MTs	Un	>60	Un	>3	37/ 30	37/30	45-76	IPC	20 mL, 1 time/w, 4 times	40 mg	8 weeks	Ostrowskimj, WHO	O1-3
Sun (2012)	MTs	Un	≥40	Un	>3	25/ 25	31/19	42-81	IPC	20 mL, 1 time/w, 4 times	45 mg	8 weeks	Ostrowskimj, Un	O1-3
CKI and hydroxyc	amptothecii	n versus hydrox	kycampt	tothecir	n (Three	trials)								
He et al. (2009)	MTs	Un	Un	Un	Un	30/ 30	45/15	27-64	Thora*	30 mL, 1 time/w, 4 times	10 mg	8 weeks	Ostrowskimj, WHO	O1,3
Wu et al. (2014)	LC	Un	Un	Un	Un	42/ 40	50/32	60-82	Thora*	30 mL, 1 time/w, 4 times	5 mg	8 weeks	Millar, Un	O1,3
Cai and Wang (2019)	LC	Large	Un	Un	≥3	48/ 48	59/37	$65.3 \pm 7.1;$ 66.0 ± 7.2	IPC	30 mL, 1 time/w, 4 times	5 mg	8 weeks	Ostrowskimj, Un	O1,3
CKI and interleuki	n-2 versus i	nterleukin-2 (tv	vo trials)										
Hao and Liang (2007)	MTs	Un	Un	Un	Un	26/ 21	33/14	45-83	IPC	20 mL, 1 time/w, 3 times	2MU	7 weeks	Millar, WHO	O1,3
Zhou et al. (2010)	LC	Small to large	>40	РТ	>3	30/ 30	42/18	60-85	IPC	30 mL, 1 time/w, 4 times	2MU	8 weeks	Ostrowskimj, WHO	O1,3
CKI and OK-432 v	ersus OK-43	2 (two trials)												
Wei et al. (2014)	MTs	Un	Un	Un	Un	40/ 40	45/35	Un	IPC	20 mL, 3 time/w, 3 times	d1:5 KE, d4,d7: 10 KE	Un	Ostrowskimj, Un	01,3
Zhong et al. (2015)	MTs	Un	>40	Un	Un	44/ 44	49/39	Un	IPC	20 mL, 3 time/w, 3 times	d1:5 KE, d4,d7: 10 KE	5 weeks	Ostrowskimj, Un	01,3
CKI and mitomyci	n versus mi	tomycin (one t	rial)											
Zhang et al. (2013)	MTs	Moderate to large	>40	Un	>3	60/ 60	67/53	49-76	IPC	40 mL, 1 time/w, 3 times	10 mg	7 weeks	Ostrowskimj, Un	O1-3
CKI and Coryneba	cterium parv	um versus C. p	arvum (one tri	al)									
Huang et al. (2012)	LC	moderate to large	>50	РТ	>3	45/ 45	47/43	40-77	IPC	30 mL, 1 time/w, 4 times	4 mL (24*10 ⁹)	8 weeks	Millar, WHO	O1-3
													(Continued	on following page)

60

First author,	Maligna	nt pleural ef	fusion	s					Interv	entions		Evaluation	Criteria	Outcom
year	Tumor	Volume	KPS	тн	AST	E/ C	M/ F	Years	DM	<i>Kushen</i> , dose, times (dose*)	Sclerosants	lines		
c. Intrapleural adr	ninistration	with <i>kang'ai</i> in	jection	(kang'a	ıi)									
Kang'ai and cispla	itin versus c	isplatin (six tria	als)											
Zhang (2006)	MTs	Un	≥60	Un	Un	20/ 21	19/22	36-72	IPC	60 mL, 1 time/w, 1-3 times	80 mg	7 weeks	Ostrowskimj, WHO	O1,3
Hu et al. (2008a)	LC	Large	>50	Un	>1	36/ 35	43/28	45-80	IPC	60 mL, 1 time/w, 2-4 times	40 mg/m ²	6-8 weeks	Ostrowskimj, WHO	O1,3
Xu and Xiong (2008)	MTs	Un	≥50	Un	>3	33/ 33	44/22	56 ± 4.7	IPC	40 mL, 2 times/w, 4 times	60 mg	6 weeks	Ostrowskimj, Un	O1-3
He (2011)	MTs	Un	≥70	Un	Un	20/ 20	24/16	45-72	Un	60 mL, 1 time/w, 1-3 times	80 mg	6–10 weeks	Millar, WHO	01,3,4
Qu et al. (2012)	LC	Moderate to large	>60	РТ	>3	24/ 22	27/19	46-84	IPC	50 mL,1 time/w, 3 times	40-60 mg	8 weeks	Ostrowskimj, Un	O1-3
Wang (2016)	LC	Large	Un	Un	>1	35/ 35	44/26	64.5 ± 8.7	IPC	60 mL, 1 time/w, Un	40 mg/m ²	Un	Ostrowskimj, Un	01
Kang'ai and carbo	platin versu	ıs carboplatin (one tria	I)										
Chen (2009)	MTs	Un	≥50	Un	Un	25/ 23	26/22	53-82	IPC	60 mL, 1 time/week, 2-4 times	300 mg	6–8 weeks	Ostrowskimj, WHO	O1,3
d. Intrapleural adr	ministration	with matrine i	njection	(matri	ne)									
Matrine and cispla	atin versus o	cisplatin (six tri	als)											
Du et al. (2009)	MTs	Un	Un	Un	Un	40/ 36	39/37	39–78	IPC	200 mg, 1 time/w, 3-6 times	20 mg	7-10 weeks	Millar, Un	O1,3
Li and Yang (2009)	MTs	Moderate to large	Un	Un	>2	30/ 30	Un	47-73	Thora*	500 mg, 1 time/w, 4 times (40 mg)	60 mg	8 weeks	Ostrowskimj, Un	O1,3
He (2010)	MTs	Un	>50	Un	>3	47/ 36	38/45	30-70	IPC	800 mg, 1 time/w, 3 times	30 mg/m ²	10 weeks	Ostrowskimj, WHO	O1,3
Wang et al. (2010)	MTs	Un	≥60	Un	>3	20/ 20	Un	32-76	IPC	150 mg, 1 time/w, 3 times	60 mg	8 weeks	Ostrowskimj, WHO	O1-3
Ji (2011)	MTs	Un	>50	Un	>3	30/ 30	27/33	33-74	Thora*	200 mg, 1 time/w, 4 times (40 mg)	60 mg	8 weeks	Ostrowskimj, WHO	O1-3
Ji et al. (2012)	MTs	Un	Un	Un	Un	82/ 70	90/62	35-85	IPC	200 mg, 1 time/w, 2 times	40 mg	8-10 weeks	Millar, Un	01

First author,	Maligna	ant pleural e	ffusion						Interv	ventions		Evaluation	Criteria	Outcomes
year	Tumor	Volume	KPS	Ŧ	AST	СĘ	Яч	Years	MD	<i>Kushen</i> , dose, times (dose*)	Sclerosants	urnes		
Matrine and carbo	oplatin vers	sus carboplatin	(one tria	()										
Cui et al. (2008)	MTs	Un	Un	Un	Un	40/ 38	41/37	35-76	Un	200 mg, 1 time/w, 3–6 times	50-100 mg	7-10 weeks	Millar, Un	01,3,4
Note: MTs, miscellaneou lavescentis preparations; wtcome, O1, clinical rev	Is tumors; LC, l : E/C, experime sponses; O2, q1	lung cancer; BC, br ental group (<i>kusher</i> uality of life (OOL	east cancer; a alone or v); O3, adve	HM, her vith scler- rse eventi	matologic 1 osants)/coi s; O4, long	malignan ntrol grou g-term su	cies; KPS, 1p (scleros rvival: Un	Karnofsky perfe ants alone); M/	Trmance statu: F, male/femal.	s score; TH, treatment history; ASI e; DM, drainage method; IPC, ind	r, anticipated survival tin welling pleural catheter;	ne; PT, primary treatment Thora*, thoracentesis; M	; RT: retreatment; <i>Kush</i> U, million units; KE, <i>K</i> l	en, radix Sophorae inische Einheit, O,

Zhang et al.

- (i). Only optimum trials as randomized controlled trials (RCTs) without restrictions on follow-up, institutions, language, and publication time.
- (ii). All patients presented with MPE and dyspnea which was diagnosed by thorax imaging, pleural fluid analysis, cytology, or pleural biopsy. All patients had normal liver, kidney, and heart function, and no limitations on tumor type and pleural fluid volume.
- (iii). The interventions were kushen preparations such as CKI, kang'ai, and matrine injection through intrapleural perfusion. Both groups did not receive any intrapleural perfusion 1 month before treatment. The experimental groups received kushen preparation alone or in combination with other sclerosants, and the controls received sclerosants alone such as chemical drugs, biological response modifiers (BRMs), or TCMI.
- (iv). The main outcomes are clinical response and survival, and secondary outcomes are QOL and adverse events.

All ineligible studies must meet the following criteria: studies about patients with ascites or pericardial effusion; all patients receiving systemic chemotherapy, local hyperthermia or oral traditional Chinese medicine (TCM); both groups receiving *kushen* preparation; studies with unclear objectives; without any data about clinical responses, survivals, QOL, or adverse events.

2.2 Outcomes definition

The primary outcomes are clinical response and survival. Referring to previous studies (Paladine et al., 1976; Kessinger and Wigton, 1987; Keeratichananont et al., 2015; Jie Wang et al., 2018; Dipper et al., 2020; Xiao et al., 2020a), we integrated both Millar and Ostrowskimj criteria to measure the clinical responses as: (i) complete response (CR) is the disappearance of pleural effusion for more than 30 days, or the lack of accumulation of fluid; (ii) partial response (PR) is less than 50% reduction of pleural effusion for more than 30 days; (iii) no response (NR)/stable disease (SD) is less than 50% reduction of pleural effusion or less than 25% increase or the recurrence of fluid accumulation without further therapy; (iv) pleural progression (PP) is more than 25% increase of pleural effusion or symptomatic fluid accumulation again requiring further therapy. We set the pleurodesis failure as no response or stable disease plus pleural progression and assessed the clinical responses using complete response, pleurodesis failure, and pleural progression (Supplementary Material S2). Long-term survival was assessed by using overall survival (OS), progressionfree survival (PFS), OS, and PFS rates. According to the Karnofsky performance status (KPS) scale, when a KPS score increased ≥ 10 after treatment, QOL was improved.

Adverse events (AEs) were assessed by using ADRs and thoracentesis-related adverse events (TRAEs). According to World Health Organization (WHO) or Common Terminology Criteria for Adverse Events (CTCAEs) criteria (Miller et al., 1981; Trotti et al., 2003), ADRs were measured by using the indicators myelosuppression, neutropenia, thrombocytopenia, anemia, hepatorenal toxicity, gastrointestinal reactions, thoracodynia, and fever. TRAEs were measured by using

indicators including treatment-related death, respiratory failure, dyspnea, pneumothorax, chest infection, drainage tube detachment, tumor metastasis along the indwelling duct, catheter-related infection, or subcutaneous emphysema.

2.3 Retrieval and selection strategies

Adhering to a retrieval logic of patient plus intervention, we customized the retrieval strategies for each database using MeSH

and free words (Supplementary Material S3). Yan Zhang and Hui Liu independently searched all related studies about "*Kushen* preparations in controlling MPE" from Chinese and English electronic databases (to February 2025) including the Guizhou Digital Library, SinoMed, China National Knowledge Infrastructure Database, WanFang Database, Chinese Scientific Journals Full-text Database, PubMed, Embase, Web of Science, and Cochrane Central Register of Controlled Trials (Issue 2, February 2025). We collected ongoing trials from the Chinese Clinical Trial Registry (http://www.chictr.org.cn), WHO

TABLE 2 Meta-analysis results of clinical responses.

Outcomes	Trials	<i>Kushen</i> preparations (events/total)	Sclerosants (events/total)	Statistical method	Odds ratios 95% Cl	²	Р
a. Compound ku	shen injec	tion (CKI) alone (Supplementary Fi	igures S6–S8)				
CKI versus cisplat	tin						
Complete response	9	87/281	85/287	Fixed-effects model	1.10 [0.76, 1.60]	0%	p = 0.60
Pleurodesis failure	9	87/281	103/287	Fixed-effects model	0.80 [0.56, 1.14]	0%	p = 0.21
Pleural progression	6	18/175	26/173	Fixed-effects model	0.63 [0.33, 1.21]	0%	p = 0.17
CKI versus interle	eukin-2						
Complete response	1	45/65	31/63	Not applicable	2.32 [1.13, 4.78]	No	<i>p</i> = 0.02
Pleurodesis failure	1	9/65	25/63	Not applicable	0.24 [0.10, 0.58]	No	p = 0.001
CKI versus mitom	nycin						
Complete response	1	16/50	15/50	Not applicable	1.10 [0.47, 2.56]	No	<i>p</i> = 0.83
Pleurodesis failure	1	22/50	21/50	Not applicable	1.09 [0.49, 2.40]	No	<i>p</i> = 0.84
b. CKI and sclero	sants (Fig	ures 4A–C)					
CKI and cisplatin	versus cis	splatin					
Complete response	41	649/1,424	342/1,399	Fixed-effects model	2.71 [2.30, 3.19]	0%	p < 0.00001
Pleurodesis failure	41	235/1,424	590/1,399	Fixed-effects model	0.26 [0.22, 0.32]	0%	p < 0.00001
Pleural progression	13	25/481	90/475	Fixed-effects model	0.22 [0.14, 0.36]	0%	p < 0.00001
CKI and nedaplat	tin versus	nedaplatin					
Complete response	3	44/129	30/129	Fixed-effects model	1.72 [0.99, 2.98]	0%	<i>p</i> = 0.05
Pleurodesis failure	3	28/129	58/129	Fixed-effects model	0.33 [0.19, 0.57]	0%	<i>p</i> < 0.0001
CKI and lobaplat	in versus	lobaplatin					
Complete response	2	26/55	20/55	Fixed-effects model	1.57 [0.73, 3.36]	44%	p = 0.25
Pleurodesis failure	2	9/55	18/55	Fixed-effects model	0.35 [0.13, 0.93]	0%	p = 0.04
Pleural progression	1	1/25	1/25	Not applicable	0.11 [0.01, 0.95]	No	p = 0.04
CKI and bleomyc	in versus	bleomycin					
Complete response	3	33/77	16/69	Fixed-effects model	2.62 [1.23, 5.58]	0%	p = 0.01
Pleurodesis failure	3	12/77	30/69	Fixed-effects model	0.23 [0.11, 0.52]	0%	p = 0.0004
CKI and hydroxy	camptothe	ecin versus hydroxycamptothecin					
Complete response	2	41/78	21/78	Fixed-effects model	3.01 [1.54, 5.87]	0%	p = 0.001
Pleurodesis failure	3	15/120	33/118	Fixed-effects model	0.37 [0.19, 0.72]	0%	p = 0.004

TABLE 2 (Continued) Meta-analysis results of clinical responses.

Outcomes	Trials	<i>Kushen</i> preparations (events/total)	Sclerosants (events/total)	Statistical method	Odds ratios 95% Cl	²	Ρ
CKI and interleuk	kin-2 versu	us interleukin-2					
Complete response	2	29/56	13/51	Fixed-effects model	3.21 [1.41, 7.34]	0%	p = 0.006
Pleurodesis failure	2	9/56	22/51	Fixed-effects model	0.24 [0.10, 0.60]	0%	p = 0.002
Pleural progression	1	0/26	4/21	Not applicable	0.07 [0.00, 1.45]	No	p = 0.09
CKI and OK-432	versus OK	-432					
Complete response	2	24/84	17/84	Fixed-effects model	1.58 [0.77, 3.21]	0%	p = 0.21
Pleurodesis failure	2	24/84	17/84	Fixed-effects model	0.32 [0.16, 0.67]	0%	p = 0.002
CKI and mitomy	in versus	mitomycin					
Complete response	1	14/60	13/60	Not applicable	1.10 [0.47, 2.59]	No	p = 0.83
Pleurodesis failure	1	11/60	21/60	Not applicable	0.42 [0.18, 0.97]	No	p = 0.04
CKI and carbopla	tin versus	s carboplatin					
Complete response	1	11/21	6/20	Not applicable	2.57 [0.71, 9.27]	No	p = 0.15
Pleurodesis failure	1	3/21	9/20	Not applicable	0.20 [0.05, 0.92]	No	p = 0.04
Pleural progression	1	0/21	3/20	Not applicable	0.12 [0.01, 2.41]	No	p = 0.16
CKI and Corynebo	acterium p	parvum versus C. parvum					
Complete response	1	18/45	13/45	Not applicable	1.64 [0.68, 3.95]	No	p = 0.27
Pleurodesis failure	1	4/45	16/45	Not applicable	0.18 [0.05, 0.58]	No	p = 0.004
c. Kang'ai injectio	on (Supple	ementary Figures S9–S11)					
Kang'ai and cispl	atin versu	ıs cisplatin					
Complete response	5	56/144	25/144	Fixed-effects model	3.04 [1.76, 5.26]	0%	<i>p</i> < 0.0001
Pleurodesis failure	6	26/168	69/166	Fixed-effects model	0.23 [0.14, 0.41]	0%	P < 0.00001
Pleural progression	1	3/20	8/20	Not applicable	0.26 [0.06, 1.21]	No	p = 0.09
Kang'ai and carb	oplatin ve	ersus carboplatin (One trial)					
Complete response	1	9/25	6/23	Not applicable	1.59 [0.46, 5.50]	No	p = 0.46
Pleurodesis failure	1	4/25	8/23	Not applicable	0.36 [0.09, 1.41]	No	p = 0.14
d. Matrine injecti	ion (Supp	lementary Figures S9–S11)					
Matrine and cisp	latin versi	us cisplatin (six trials)					
Complete response	6	106/249	66/222	Fixed-effects model	1.87 [1.26, 2.78]	0%	p = 0.002
Pleurodesis failure	6	32/249	74/222	Fixed-effects model	0.27 [0.17, 0.44]	0%	P < 0.00001
Pleural progression	2	4/122	11/106	Fixed-effects model	0.29 [0.09, 0.95]	0%	p = 0.04

Outcomes	Trials	<i>Kushen</i> preparations (events/total)	Sclerosants (events/total)	Statistical method	Odds ratios 95% Cl	 ²	Р
Matrine and carb	oplatin v	ersus carboplatin					
Complete response	1	23/40	16/38	Not applicable	1.86 [0.76, 4.57]	No	p = 0.18
Pleurodesis failure	1	4/40	12/38	Not applicable	0.24 [0.07, 0.83]	No	p = 0.02
Pleural progression	1	1/40	6/38	Not applicable	0.14 [0.02, 1.20]	No	p = 0.07

TABLE 2 (Continued) Meta-analysis results of clinical responses.

Note: CI: confidence interval

International Clinical Trials Registry Platform (http://apps.who.int/ trialsearch/), and US clinical trials (https://clinicaltrials.gov). Finally, we also identified eligible studies from the references of relevant SRs or network meta-analysis. Hui Liu and Yan Zhang independently selected eligibles and excluded ineligible studies following a predesigned inclusion and exclusion criteria.

2.4 Assessment of methodological quality

For clinical responses, survivals, QOL, or adverse events, Dachun Cai and Jiao Xu independently applied a revised Cochrane tool (RoB 2) to assess methodological quality arising from five domains: randomization process (D1), intended interventions (D2), missing outcome data (D3), outcomes measurement (D4), and selective reporting of results (D5) (Sterne et al., 2019; Higgins et al., 2021). We judged each quality based on the domain algorithm and made an overall judgment.

2.5 Data collection

Yao-Qin Luo and Da-chun Cai independently collected all data using a predesigned data extraction form. The data were first author, time of publication, methodological features, demographic characteristics and cases; characteristics of patients as tumor types, pleural fluid volume, anticipated survival time (AST), KPS score, treatment history, and recurrence; drainage methods as indwelling pleural catheters (IPCs) or thoracentesis; *kushen* preparations, treatment dose, frequency and times, and sclerosants and uses; follow-up protocol, research institutions, criterion and time of evaluation. The outcomes were: complete response, pleurodesis failure, pleural progression, PFS, OS, QOL, ADRs, and TRAEs. Additionally, the authors of papers were contacted about available survival data. If they were unavailable, the Kaplan–Meier survival curves were transformed into data using Engauge Digitizer 4.1 (Guyot et al., 2012; Xiao et al., 2018).

2.6 Statistical analysis

All eligible studies were clustered into multiple homogeneous treatment units, and we further analyzed their clinical effectiveness and safety. The odds ratios (ORs) and their 95% confidence interval

(CI) were applied to measure the complete response, pleurodesis failure, pleural progression, OS rate, QOL, ADRs, and TRAEs, with p < 0.05 being identified as statistically significant. Cochran's χ^2 test and I^2 statistic were performed to identify statistical heterogeneity among each unit. If the results showed significant heterogeneity and inconsistent directions or involved a single trial, we used forest plots to describe the result. When $p \ge 0.1$ and $I^2 \le 50\%$, a fixed-effects model (FEM) was applied to pool the OR and their 95% CI. When p < 0.1, $I^2 > 50\%$, and the results had consistent direction, a random-effects model (REM) was applied. Yan Zhang and Feng Luo independently applied Review Manager 5.4 to pool the data from each unit. If the outcomes involved more than ten trials, a funnel plot and Egger's test (STATA V.15.0 software, 401506209499) were applied to identify potential publication bias.

Referring to previous experience (Xiao et al., 2020b; Wang et al., 2021; Wang et al., 2022; Wang C. Q. et al., 2023), a subgroup analysis was implemented to reveal the potential clinical heterogeneity among the main treatment plans with enough trials to analyze the effects of patient related factors, interventions, and evaluation criteria on clinical responses and to further identify the suitable population and optimum usage. We further implemented univariate random effects meta-regression analysis to reveal the correlation between each factor and clinical responses and post hoc multiple regression analysis to identify it.

Following underestimation of effectiveness/safety, we implemented sensitivity analysis to identify robustness (Xiao et al., 2020b; Wang et al., 2021; Wang et al., 2022; Wang C. Q. et al., 2023). The consistency of results before and after excluding both trials with high risk and overestimation were analyzed. If consistency was good, the result was robust; otherwise, it was poor. To identify the required information size (RIS) for the results of main treatment units (Thorlund et al., 2016), we further applied Trial Sequential Analysis (TSA) software (version 0.9.5.10 Beta) to implement the analysis. In the light of previous experience, we set the risk of type I error as 5% with a power of 80%, relative risk reduction (RRR) as 25% for clinical responses and QOL, and 20% for adverse events (AEs) (Wetterslev et al., 2008; Thorlund et al., 2009). We used control event rates from this analysis for these calculation, and adjusted the information size for diversity (Wetterslev et al., 2009).

2.7 Summary of evidence quality

We integrated the results of sensitivity analysis into the GRADE approach (Guyatt et al., 2008; Xiao et al., 2020b; Wang et al., 2021;

•	Shudu a Qui	Kushen Scler	osants	1-6-	Odds Ratio	Odds Ratio	Risk of Bias
A	study or Subgroup E Intrapleural administrati	vents Total Even ion with compound	ts Total We Kushen inject	ight M	и-н. нхед. 95% Cl I) and cisplatin versus Cisplatin (41 Trials)	M-H. Fixed, 95% CI	ABCDEF
	Zhuang, H. 2012	7 24	6 22 2	.5%	1.10 [0.30, 3.98]		??
	He, L. 2010 Pag. J. 2007	7 24	5 20 2	.2%	1.24 [0.32, 4.72] 1.31 [0.50, 3.44]		? ? * * * ?
	Ran, F. 2011	12 30 1	∠ 34 4 0 30 3	.1%	1.33 [0.46, 3.82]		220002
	Yang, G. 2012	14 39 1	1 39 4	.0%	1.43 [0.55, 3.71]		?? • • • ?
	Zhang, S. 2008 Wei M 2014	8 28	5 23 2	.2%	1.44 [0.40, 5.21] 1.48 [0.54, 4.03]		· · · · · · · · · · · · · · · · · · ·
	Zhu, M. 2013	9 28	6 28 2	.3%	1.74 [0.52, 5.78]		22000
	Jiang, J. 2014	11 34	7 34 2	.7%	1.84 [0.61, 5.54]		3 3 6 6 6 3
	Feng, F.2023	11 34	7 34 2	.7%	1.84 [0.61, 5.54]		
	Xu. L. 2014	18 32 1	3 32 3	.3%	1.88 [0.70, 5.07]		770007
	Ding, L. 2009	14 31	9 30 2	.9%	1.92 [0.67, 5.51]		??
	Tang, X. 2018	15 30 1	0 30 2	.9%	2.00 [0.70, 5.68]	T	???
	Zhena, F.2012 Zhena, S. 2013	6 31	9 43 3 3 31 1	.4%	2.24 [0.86, 5.85] 2.24 [0.51, 9.91]		220002
	Li, L. 2011	6 30	3 30 1	.4%	2.25 [0.51, 9.99]		??⊕⊕⊕?
	Qin,D.2016	11 32	6 32 2	.3%	2.27 [0.72, 7.16]	<u> </u>	
	Wu. C. 2019	8 25	o 30 2 4 25 1	.6%	2.47 [0.63, 9.63]		220002
	Chen, Y. 2014	13 30	7 30 2	.3%	2.51 [0.83, 7.64]		?? €€€?
	Liu, L. 2017	13 30	7 30 2	.3%	2.51 [0.83, 7.64]		
	Han, Z. 2012	10 28	2 30 2 5 28 1	.8%	2.54 [0.93, 6.91]		220002
	Guo, L. 2013	14 31	7 31 2	.2%	2.82 [0.94, 8.48]		??
	Huang, X. 2007	9 20	4 18 1	.3%	2.86 [0.69, 11.82]		
	Li, Y. 2008	20 45	9 45 2 8 32 2	.1%	3.20 [1.25, 8.17] 3.40 [1.18, 9.81]		220002
	Huang, H. 2017	20 30 1	1 30 2	.1%	3.45 [1.19, 9.99]		? ? • • • ?
	Lin, S. 2007	20 33 1	0 33 2	.3%	3.54 [1.28, 9.80]		?? ** **?
	Ning, X. 2001 Li, Y. 2009	17 30	o 30 2 8 30 2	.0%	3.60 [1.22, 10.64]		220002
	Wang, Y. 2010	6 24	2 24 0	.9%	3.67 [0.66, 20.42]		???
	Peng,H.2020	12 25	5 25 1	.5%	3.69 [1.05, 12.96]		??
	Han, S. 2013 Song X 2015	35 90 1	3 90 4 0 50 9	.5%	3.77 [1.83, 7.78]		226662
	Deng, M. 2008	24 40 1	0 40 2	.3%	4.50 [1.73, 11.70]		220002
	Liu, D. 2015	20 46	6 42 2	.0%	4.62 [1.63, 13.09]		??•••?
	Chen, Y. 2011	54 84 2	2 84 4	.5%	5.07 [2.62, 9.82]		
	Au, B. 2014 Jiang, T 2020	12 30 24 30	5 30 1 6 30 0	.0% 1.7% 1	6.00 [1.48, 24.30] 16.00 [4.52, 56.70]		220000
	Subtotal (95% CI)	1424	1399 100	.0%	2.71 [2.30, 3.19]	•	
	Total events	649 34	2				
	Heterogeneity: Chi ² = 32. Test for overall effect: 7 =	18, df = 40 (P = 0.81) 11.84 (P < 0.00001)	; 1² = 0%				
	CKI and nedaplatin vers	us Nedaplatin (Thre	e trials)				
	Zhang, S. 2015	19 56 1	5 56 50	.7%	1.40 [0.62, 3.15]		??••• ?
	Li, R. 2017	14 36 1 11 37	0 36 31 5 37 49	.3%	1.65 [0.61, 4.45] 2 71 [0.83, 8 79]	1-	? ? 0 0 0 7
	Subtotal (95% CI)	129	129 100	.0%	1.72 [0.99, 2.98]	ب	
	Total events	44 3	0				
	Heterogeneity: Chi ² = 0.82	2, df = 2 (P = 0.66); I 1 93 (P = 0.05)	' = 0%				
	CKI and lobaplatin versu	us Lobaplatin (Two	trials)				
	Liu, X. 2016	14 30 1	4 30 70	.5%	1.00 [0.36, 2.76]		??
	Huang,L.2021 Subtotal (95% CI)	12 25	6 25 29	.5%	2.92 [0.87, 9.78]		3 5 6 6 6 5
	Total events	26 2	0 33 100		1.57 [0.75, 5.50]	•	
	Heterogeneity: Chi ² = 1.78	8, df = 1 (P = 0.18); I	= 44%				
	Test for overall effect: Z =	1.15 (P = 0.25)	- Animina'				
	Liu Y 2011	16 37	9 30 66	1%	1 78 [0 64 4 91]		??
	Sun, Y. 2012	6 25	2 25 17	.8%	3.63 [0.66, 20.11]		??
	Chen, M. 2003	11 15	5 14 16	.1%	4.95 [1.02, 24.10]		?? 🔁 🖶 🔁 ?
	Total events	33 1	6 6	.0%	2.02 [1.23, 5.30]	•	
	Heterogeneity: Chi ² = 1.32	2, df = 2 (P = 0.52); l	= 0%				
	Test for overall effect: Z =	2.50 (P = 0.01)					
	CKI and hydroxycampto	othecin versus Hydr	oxycamptothe	cin (Tw	o trials)		? ?
	He,P. 2009	24 48 1 17 30	5 48 65 8 30 34	.2%	3.60 [1.22, 10.64]		220000
	Subtotal (95% CI)	78	78 100	.0%	3.01 [1.54, 5.87]	•	
	Total events	41 2	1				
	Test for overall effect: 7 =	r, ut = 1 (P = 0.68); F 3.22 (P = 0.001)	· = 0%				
	CKI and interleukin-2 ve	rsus Interleukin-2 (Two trials)				
	Zhou, Y.2010	16 30	9 30 65	.5%	2.67 [0.92, 7.70]		??
	Hao, J.2007 Subtotal (95% CI)	13 26	4 21 34	.5%	4.25 [1.12, 16.12]	-	- 3 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
	Total events	29 1	3 31 100		eres from the road	-	
	Heterogeneity: Chi ² = 0.25	9, df = 1 (P = 0.59); l	* = 0%				
	Test for overall effect: Z =	2.77 (P = 0.006)					
	Wei.W.2014	11 40	8 40 47	.8%	1.52 [0.54, 4.29]		??
	Zhong,B.2015	13 44	9 44 52	.2%	1.63 [0.61, 4.34]		23000
	Subtotal (95% CI)	84	84 100	.0%	1.58 [0.77, 3.21]	+	
	I otal events Heterogeneity: Chi2 = 0.0	24 1 1 df = 1 (P = 0.02) - P	/				
	Test for overall effect: 7 =	1.25 (P = 0.21)	- 076				
	CKI and mitomycin vers	us Mitomycin(One	trial)				
	Zhang, X. 2013	14 60 1	3 60 100	.0%	1.10 [0.47, 2.59]	1	3 3 3 4 3 4 3
	Jubiotal (95% CI)	14 4	60 100 3	.0%	1.10 [0.47, 2.09]	Ť	
	Heterogeneity: Not applic	able	•				
	Test for overall effect: Z =	0.22 (P = 0.83)					
	CKI and carboplatin ven	sus Carboplatin(On	e trial)		0.57 (0.74, 0.07)		228889
	He,R. 2010 Subtotal (95% Cl)	11 21	6 20 100 20 100	0%	2.57 [0.71, 9.27]		
	Total events	11	6 20 100		[o., i, o.z.]	-	
	Heterogeneity: Not applic	able					
	Test for overall effect: Z =	1.44 (P = 0.15)	orvnebactoriu	m Pana	um(One trial)		
	Huang,Z.2012	18 45 1	3 45 100	.0%	1.64 [0.68, 3.95]		??
	Subtotal (95% CI)	45	45 100	.0%	1.64 [0.68, 3.95]	►	
	Total events	18 1	3				
	Heterogeneity: Not applic	able					
	lest for overall effect: Z =	1.11 (P = 0.27)					
	(A) Randomisation process	55					-
	(B) Deviations from the in	tended interventions				Favours[Sclerosants] Favours[Kushen]	v
	(C) Missing outcome data					. ,	
	(D) Measurement of the o	utcome					
	(E) Selection of the report (F) Overall bias	eu result					
(od)							
su).							

Wang et al., 2022; Wang C. Q. et al., 2023) and developed a revised approach to summarize the evidence. Quality was identified as "high", moderate", "low", and "very low" following five domains:

risk-of-bias of results, heterogeneity, indirectness, imprecision, and publication bias (Supplementary Material S2). Jun Huang and Yan-Yan Jin independently applied the GRADE profiler to summarize

Intrapleural administra	Kushen Events To	otal Eve	lerosar ents	nts Total V	Weight	M-H. Fixed. 95% Cl	Odds Ratio M-H. Fixed. 95% Cl	Risk of A B C D
Oin D 2016	tion with o	compour	nd Kus	hen inje	ection (C	KI) and cisplatin versus Cisplatin	(41 Trials)	2 2 4 4
Qin,D.2016	2	32	15	32	2.9%	0.08 [0.02, 0.37]		2200
Wang, Y. 2010	2	24	10	24	1.9%	0.13 [0.02, 0.67]		22.0
Ding, L. 2009	3	31	13	30	2.4%	0.14 [0.03, 0.56]		??
Chen, Y. 2011	10	84	38	84	6.8%	0.16 [0.07, 0.36]		??
Han, S. 2013	11	90	40	90	7.1%	0.17 [0.08, 0.37]		??
Huang, H. 2017	3	30	11	30	2.0%	0.19 [0.05, 0.78]		?? 🕈 🖶
Song, X. 2015	5	59	19	59	3.5%	0.19 [0.07, 0.57]		?? 🗨 🗭
Liu, D. 2015	8	46	21	42	3.7%	0.21 [0.08, 0.56]		??
Huang, X. 2007	3	20	8	18	1.5%	0.22 [0.05, 1.03]		
Yan, G. 2016	4	35	11	30	2.1%	0.22 [0.06, 0.80]		
Chen, F.2012	7	43	20	43	3.4%	0.22 [0.08, 0.61]		
Zheng, S. 2013	6	31	16	31	2.6%	0.23 [0.07, 0.70]		
Ran, F. 2011	4	30	12	30	2.1%	0.23 [0.06, 0.83]		2244
Li, L. 2011	1	30	1/	30	2.6%	0.23 [0.08, 0.71]		
Han, Z. 2012	5	28	13	28	2.2%	0.25 [0.07, 0.85]		
Pan, J. 2007	3	36	9	34	1.7%	0.25 [0.06, 1.03]		
Mu C 2010	7	25	15	25	2.2./0	0.26 [0.06, 0.05]		2244
Yang G 2012	6	39	16	39	2.2%	0.26 [0.09, 0.77]		22.44
ng X 2018	4	30	11	30	1.9%	0.27 [0.07, 0.96]		??
Lin. W. 2023	7	26	15	26	2.2%	0.27 [0.08, 0.87]		
Wang, Y. 2019	8	45	20	45	3.3%	0.27 [0.10, 0.71]		?? 🗨 🖶
in, S. 2007	4	33	11	33	2.0%	0.28 [0.08, 0.98]		??.
Jiang, J. 2014	5	34	13	34	2.3%	0.28 [0.09, 0.90]		??.
Zhang, S. 2008	5	28	10	23	1.8%	0.28 [0.08, 1.01]		??
Liu, L. 2017	6	30	14	30	2.3%	0.29 [0.09, 0.90]		?? 🕈 🖲
Guo, L. 2013	7	31	15	31	2.4%	0.31 [0.10, 0.93]		?? 🗨 🗲
Xu, L. 2014	7	32	15	32	2.4%	0.32 [0.11, 0.94]		?? 🔁 🖲
Shi, W. 2017	6	30	13	30	2.1%	0.33 [0.10, 1.03]		??
Feng, F.2023	7	34	15	34	2.4%	0.33 [0.11, 0.96]		?? ? 😔 🖲
Chen, Y. 2014	7	30	14	30	2.2%	0.35 [0.11, 1.05]		??•••
He, L. 2010	8	24	11	20	1.6%	0.41 [0.12, 1.39]		77700
Deng, M. 2008	6	40	12	40	2.1%	0.41 [0.14, 1.24]		
Xu, B. 2014	11	30	17	30	2.2%	0.44 [0.16, 1.25]		
Wei, M. 2011	6	35	11	35	1.9%	0.45 [0.15, 1.40]		
Zhu, M. 2013	5	28	9	28	1.5%	0.46 [0.13, 1.60]		
LI, Y. 2009	5	30	8	30	1.4%	0.55 [0.16, 1.93]		
ming, X. 2001	5	30	8	30	1.4%	0.55 [0.16, 1.93]		2 2 4
LI, Y. 2008	5	32	8	32	1.4%	0.56 [0.16, 1.93]		2 2 4
Subtotal (95% CI)	6 4.	424	ď.	1390 4	1.3%	0.36 [0.10, 2.07]	•	
Total events	235		590				.	
Heterogeneity: Chi2 = 10	19. df = 4	0 (P = 1 0)(); l2 =	0%				
Test for overall effect: 7	= 14.66 (P	< 0.0000	01)					
CKI and nedaplatin ver	sus Neda	platin (Th	nree tri	als)				
Li, R. 2017	5	36	14	36	27.0%	0.25 [0.08, 0.81]		?? 🕄 🖶 🖣
Zhang, S. 2015	11	56	23	56	41.3%	0.35 [0.15, 0.82]		??
Li, S. 2014	12	37	21	37	31.7%	0.37 [0.14, 0.94]	-	?? 🕈 🗲
Subtotal (95% CI)		129		129 1	100.0%	0.33 [0.19, 0.57]	◆	
Total events	28		58					
Heterogeneity: Chi ² = 0.	26, df = 2 (P = 0.88)	$ ^{2} = 0^{6}$	%				
Test for overall effect: Z	= 3.94 (P <	< 0.0001)	-	-1				
Hunna L 2024	ous Lopáp	25	14	9) 25	72 09/	0.21 (0.09, 0.90)		2 2 4
Huang,L.2021	1	25	14	25	13.0%	0.31 [0.09, 0.99]		2 2 4
Liu, X. 2016 Subtotal (05% CI)	2	30	4	30	27.0%	0.46 [0.08, 2.75]		
Subtotal (95% CI)	~	55	10	55 1	100.0%	0.35 [0.13, 0.93]	▼	
i otal events	9	D = 0.70	18	av.				
neterogeneity: Chi# = 0.	10, 01 = 1 (r = 0.70	, I* = 0°	70				
CKI and blooming	- 2.10 (P =	- U.U4)	1700	ale				
Chan M 2002	sus Bleon	nycin (fh	ree tri	415)	10 6%	0 13 (0 01 1 20)		2 2 4 4
Giren, M. 2003	1	10	0 14	14	10.0%	0.15 [0.01, 1.29]		2 2 4
Sun, Y. 2012	6	25	14	25	41.0%	0.25 [0.07, 0.83]		224
Lid, 1. 2011 Subtotal (95% CI)	5	37	11	30	40.5%	0.27 [0.06, 0.90]	.	
Total events	40		30	09 1	. 50.0%	0.20 [0.11, 0.02]	•	
Heterogeneity: Chi2 - 0	12 32 df = 2 f	P = 0.965	- JU 04	R.				
Test for overall effect: 7	= 3.57 (P =	= 0.00041	01					
CKI and hydroxycamp	tothecin v	ersus Hv	droxvo	camptot	thecin (T	hree trials)		
Cai, H. 2019	5	48	13	48	40.0%	0.31 [0.10, 0.96]		??
Wu, Z. 2014	5	42	12	40	37.2%	0.32 [0.10, 1.00]		??.
He,P. 2009	5	30	8	30	22.9%	0.55 [0.16, 1.93]		??.
Subtotal (95% CI)		120	10.00	118 1	100.0%	0.37 [0.19, 0.72]	•	
Total events	15		33					
Heterogeneity: Chi ² = 0.	54, df = 2 (P = 0.76)	; 2 = 09	%				
	= 2.91 (P =	= 0.004)						
Test for overall effect: Z	ersus Inte	erleukin-2	2 (Two	trials)				
CKI and interleukin-2 v		00	11	21	50.8%	0.22 [0.06, 0.79]		2 2 4 4
CKI and interleukin-2 v Hao,J.2007	5	26		30	49.2%	0.27 (0.07, 0.96)		
CKI and interleukin-2 v Hao,J.2007 Zhou,Y.2010	5 4	26 30	11	00		0.27 [0.07, 0.30]	-	??.
Test for overall effect: 2 CKI and interleukin-2 w Hao, J.2007 Zhou, Y.2010 Subtotal (95% CI)	5 4	30 56	11	51 1	100.0%	0.24 [0.10, 0.60]		220
Test for overall effect: 2 CKI and interleukin-2 w Hao, J.2007 Zhou, Y.2010 Subtotal (95% CI) Total events	5 4 9	26 30 56	11	51 1	100.0%	0.24 [0.10, 0.60]	*	220
Test for overall effect: 2 CKI and interleukin-2 w Hao,J.2007 Zhou,Y.2010 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.	5 4 9 05, df = 1 (26 30 56 P = 0.83)	11 22 ; l ² = 0	51 1 %	100.0%	0.24 [0.10, 0.60]	*	2200
Lest for overall effect: 2 CKI and interleukin-2 w Hao,J.2007 Zhou,Y.2010 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0. Test for overall effect: Z	5 4 9 05, df = 1 (= 3.05 (P =	26 30 56 (P = 0.83) = 0.002)	11 22 ; l ² = 09	51 1 %	100.0%	0.24 [0.10, 0.60]	*	220
lest for overall effect: Z CKI and interleukin-2 v Hao, J.2007 Zhou, Y.2010 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0. Test for overall effect: Z CKI and OK-432 versu:	5 4 05, df = 1 (= 3.05 (P = s OK-432 (26 30 56 (P = 0.83) = 0.002) (Two trial	11 22 ; i² = 09	51 1 %	100.0%	0.24 [0.10, 0.60]	•	2200
Test for overall effect: 2 CKI and Interleukin-2 v Hao,J.2007 Zhou,Y.2010 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0. Test for overall effect: 2 CKI and OK-432 versus: Wei,W.2014	5 4 05, df = 1 (= 3.05 (P = s OK-432 (6	20 30 56 (P = 0.83) = 0.002) (Two trial 40	11 22 ; I ² = 0 ls) 15	51 1 % 40	47.8%	0.24 [0.10, 0.86]	*	2 2 0 0
Test for overall effect: 2 CKI and interleukin-2 v Hao, J.2007 Zhou, Y.2010 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0, Test for overall effect: 2 CKI and OK-432 versu: Wei,W.2014 Zhong,B.2014	5 4 9 05, df = 1 (= 3.05 (P = s OK-432 (6 8	20 30 56 P = 0.83) = 0.002) (Two trial 40 44	11 22 ; I ² = 09 Is) 15 17	51 1 % 40 44	47.8% 52.2%	0.29 [0.10, 0.86] 0.30 [0.10, 0.86]	* *	2 2 0 0 2 2 0 0
Lest tor overall effect: 2 CKI and Interleukin-2 v Hao, J.2007 Zhou, Y.2010 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0. Test for overall effect: 2 CKI and OK-432 versu: Wei, W.2014 Subtotal (95% CI)	5 4 9 05, df = 1 (= 3.05 (P = s OK-432 (6 8	20 30 56 (P = 0.83) = 0.002) (Two trial 40 44 84	11 22 ; ² = 0 ls) 15 17	51 1 % 40 44 84 1	47.8% 52.2% 100.0%	0.24 [0.10, 0.60] 0.29 [0.10, 0.86] 0.35 [0.13, 0.94] 0.32 [0.16, 0.67]	* * *	2 2 0 0 2 7 0 0 7 7 0 0
Test for overall effect: 2 CKI and intertexkin-2 v Hao,J.2007 Zhou,Y.2010 Subtotal (95% CI) Total events Heterogeneity: Ch ² = 0. Test for overall effect: 2 CKI and OK-432 versu: Wei,W.2014 Zhong,B.2015 Subtotal (95% CI) Total events	5 4 05, df = 1 (= 3.05 (P = s OK-432 (6 8	20 30 56 (P = 0.83) = 0.002) (Two trial 40 44 84	11 22 (; ² = 0 (s) 15 17 32	51 1 % 40 44 84 1	47.8% 52.2% 100.0%	0.24 [0.10, 0.60] 0.29 [0.10, 0.86] 0.35 [0.13, 0.94] 0.32 [0.16, 0.67]	* *	2 2 0 2 7 0 2 7 0
Test for overall effect: 2 CKI and intertexkin-2 v Hao.J.2007 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0. Test for overall effect: 2 CKI and OK-432 versu: Wei/W.2014 Zhong,B.2015 Subtotal (95% CI) Total events Heterogeneity: Chi ² = 0.	5 4 05, df = 1 (= 3.05 (P = s OK-432 (6 8 14 06, df = 1 (20 30 56 P = 0.83) = 0.002) (Two trial 40 44 84 P = 0.81)	11 22 (; ² = 0 (s) 15 17 32 (; ² = 0	51 1 % 40 44 84 1 %	47.8% 52.2% 100.0%	0.24 [0.10, 0.60] 0.29 [0.10, 0.86] 0.35 [0.13, 0.94] 0.32 [0.16, 0.67]	* * *	778 778 778 778
Test for overall effect: 2 CKI and intertexkin-2 v Hao,J:2007 Zhou,Y:2010 Subtotal (95% CI) Total events Heterogeneity: Chi ^a = 0. Test for overall effect: 2 CKI and OK-432 versus Wei,W:2014 Zhong,B:2015 Subtotal (95% CI) Total avents Heterogeneity: Chi ^a = 0. Test for overall effect: 2	5 4 9 05, df = 1 (= 3.05 (P = s OK-432 (6 8 14 06, df = 1 (= 3.05 (P =	26 30 56 (P = 0.83) = 0.002) (Two trial 40 44 84 (P = 0.81) = 0.002)	11 22 (; ² = 0 (s) 15 17 32 (; ² = 0 (s) (s) (s) (s) (s) (s) (s) (s)	51 1 % 40 44 84 1 %	47.8% 52.2% 100.0%	0.24 [0.10, 0.60] 0.29 [0.10, 0.86] 0.35 [0.13, 0.94] 0.32 [0.16, 0.67]	* *	220 220 270
Test for overall effect: 2 CKI and intertexkin-2 v Hao.J.2007 Subtotal (95% CI) Total events Heterogeneity: Chi ^a = 0. Test for overall effect: 2 CKI and OK-432 versu: Wei,W.2014 Zhong,B.2015 Subtotal (95% CI) Total events Heterogeneity: Chi ^a = 0. CKI and OK-10 ^a = 0.	5 4 9 05, df = 1 ((= 3.05 (P = a OK-432 (6 8 14 06, df = 1 (= 3.05 (P = rsus Miton	20 30 56 (P = 0.83) = 0.002) (Two trial 40 44 84 (P = 0.81) = 0.002) nycin(On	11 22 (; ² = 0 (s) 15 17 32 (; ² = 0 (e trial)	51 1 % 40 44 84 1 %	47.8% 52.2% 100.0%	0.24 (0.10, 0.80) 0.29 (0.10, 0.86) 0.35 (0.13, 0.94) 0.32 (0.16, 0.67]	* * *	2 2 0
Test for overall effect: 2 CKI and intertexkin-2 v Hao,J:2007 Zhou,Y:2010 Subtotal (95% CI) Total events Heterogeneity: Chi ^p = 0. Test for overall effect: 2 CKI and OK-432 versu: Wel,W.2014 Zhong,B:2015 Subtotal (95% CI) Total avents Heterogeneity: Chi ^p = 0. Test for overall effect: 2 CKI and mitomych ve Zhang,X:2013 cmg,X:2013 cm	5 4 9 005, df = 1 ((= 3.05 (P = a OK-432 (6 8 14 06, df = 1 (= 3.05 (P = rsus Miton 11	20 30 56 (P = 0.83) = 0.002) Two trial 40 44 84 (P = 0.81) = 0.002) mycin(On 60 en	11 22 (; ² = 0 15 17 32 (; ² = 0 21	51 1 % 40 44 84 1 % 60 1	47.8% 52.2% 100.0%	0.24 (0.10, 0.60) 0.24 (0.10, 0.66) 0.35 (0.13, 0.84) 0.32 (0.16, 0.67) 0.42 (0.16, 0.67)	*	2700 7700 7700
lesi tor overall effect: 2 CKI and intertexkina 2 Hao, J.2007 Zhou, Y.2015 (CI) Subtotal (95% CI) Total events Heterogeneity: Chi ^a = 0. Test for overall effect: 2 CKI and OK-432 versuu Vel,W.2014 Zhong,B.2015 Subtotal (95% CI) Test for overall effect: 2 CKI and mitomycin vel Zhung, X. 2013 Subtotal (95% CI)	5 4 9 05, df = 1 (= 3.05 (P = s OK-432 (6 8 06, df = 1 (= 3.05 (P = = 3.05 (P = = 3.05 (P = = 3.05 (P = = 3.05 (P = 1)))) 14 11	20 30 56 (P = 0.83) = 0.002) (Two trial 40 44 84 (P = 0.81) = 0.002) mycin(On 60 60	11 22 (; ² = 0 15 17 32 (; ² = 0 21 21	50 1 % 40 44 84 1 % 60 1 60 1	47.8% 52.2% 100.0%	0.24 (0.10, 0.60) 0.29 (0.10, 0.86) 0.35 (0.13, 0.94) 0.32 (0.16, 0.67) 0.42 (0.18, 0.97) 0.42 [0.18, 0.97]	* * *	7700 7700 7700
Lest for overall effect: 2 CKI and Intertexkina 2 January 2007 January 2007 January 2007 Total avents Heterogeneity: Chi ² = 0. Test for overall effect: 2 CKI and OK-432 versus Wei,W-2014 Zhong,B.2015 Subtotal (95% CI) Heterogeneity: Chi ² = 0. Total avents Heterogeneity: Chi ² = 0. CKI and mitomycin ver- Subtotal (95% CI) Subtotal (95% CI) Total avents Subtotal (95% CI) Total avents Subtotal (95% CI)	5 4 9 05, df = 1 (= 3.05 (P = s OK-432 (6 8 14 06, df = 1 (= 3.05 (P = rsus Miton 11	20 30 56 (P = 0.83) = 0.002) (Two trial 40 44 84 (P = 0.81) = 0.002) nycin(On 60	11 22 (; ² = 0 15 17 32 (; ² = 0 21 21	50 1 % 40 44 84 1 % 60 1 60 1	47.8% 52.2% 100.0% 100.0%	0.24 (0.10, 0.60) 0.29 (0.10, 0.86) 0.35 (0.13, 0.84) 0.32 (0.16, 0.67] 0.42 (0.18, 0.67]	* * *	
Test for overall effect 2. (K) and Interfact/interfaction 2. (K) and Interfact/interfaction 2. (K) and Interfact/interfaction 2. (K) and (K)	5 4 9 05, df = 1 ((= 3.05 (P = s OK-432 (6 8 14 06, df = 1 (= 3.05 (P = rsus Miton 11 11 11 cable	20 30 56 (P = 0.83) = 0.002) (Two trial 40 44 84 (P = 0.81) = 0.002) mycin(On 60	11 22 (1 ² = 0 (15) 15 17 32 (1 ² = 0 (1 ² = 0 21 21	50 1 % 40 44 84 1 % 60 1 60 1	47.8% 52.2% 100.0% 100.0%	0.24 (0.10, 0.60) 0.29 (0.10, 0.66) 0.35 (0.13, 0.94) 0.32 (0.16, 0.67] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97]	* * *	7700 7700 7700
I resi tor overal etteric 2, Kit and I interfauktin 2, Hao, J2007 Zoha, Y2007 Total avents Heterogeneity, CAP = 0. Total avents Heterogeneity, CAP = 0. Kit and OK-432 versu Wei,W2014 Zhong,B. 2015 Subtotal (9%). CI Total avents Heterogeneity, CAP = 0. CKI and mitomycin ve Zhong,B. 2015 Subtotal (9%). CI Total avents Subtotal (9%). CI Total avents Heterogeneity, Not appli Heterogeneity, Not appli	5 4 9 05, df = 1 (= 3.05 (P = s OK-432 (6 8 14 06, df = 1 (= 3.05 (P = rsus Miton 11 11 11 cable = 2.04 (P =	20 30 56 P = 0.83) = 0.002) Two trial 40 44 84 P = 0.81) = 0.002) mycin(On 60 60 = 0.04)	11 22 () ² = 0 15 17 32 () ² = 0 () ² = 0 21 21 21	40 44 84 1 % 60 1 60 1	47.8% 52.2% 100.0%	0.24 (0.10, 0.60) 0.24 (0.10, 0.86) 0.35 (0.13, 0.84) 0.32 (0.16, 0.67] 0.42 (0.18, 0.67] 0.42 (0.18, 0.97]	* * *	7700 7700 7700
Test for overall effect. 2 (K) and Interfaultin 2 Hao, J.2007 Zhou, Y.2010 Subtolal (\$5% CI) Total events Helerogenehy: Chi ^{an} = 0. CKI and OK-452 versu: Wel,W.2014 Zhong, B.2015 Subtolal (\$5% CI) Total events Helerogenehy: Chi ^{an} = 0. Ki and OK-452 versu: Wel,W.2014 Extension (\$5, CI) Total events Helerogenehy: Chi ^{an} = 0. Subtolal (\$5% CI) Total events Helerogenehy: Not appli Test for overall effect. 2 CKI and extension (\$5% CI) Total events Helerogenehy: Not appli Test for overall effect. 2	5 4 9 05, df = 1 (= 3.05 (P = 6 8 06, df = 1 (= 3.05 (P = 7 sus Miton 11 11 11 cable = 2.04 (P = rsus Carb	20 30 56 (P = 0.83) = 0.002) (Two trial 40 44 84 (P = 0.81) = 0.002) mycin(On 60 60 = 0.04) ooplatin(C	11 22 (; ² = 0? 15 17 32 (; ² = 0? 21 21 21 One tria	40 44 84 1 % 60 1 60 1	47.8% 52.2% 100.0%	0.24 (0.10, 0.66) 0.29 (0.10, 0.66) 0.35 (0.13, 0.94) 0.32 (0.16, 0.67] 0.42 (0.18, 0.97] 0.42 (0.18, 0.97]	*	
I rest for overal effect 2. Kit and I interfauktin 2. Hap. J2007 Status 1. Status 1. Status 1. Heterogenetic, ChP = 0. Kit and OK-432 versus Wei,W.2014 Zhong B.2015 Subtat (95% CI) Total events Heterogenetic, ChP = 0. CKI and Mithagenetic Subtat (95% CI) Subtat (95% CI) Subtat (95% CI) Total events Subtat (95% CI) Subtat (95% CI)	5 4 95, df = 1 (5, df = 1) 8 OK-432 (6 8 14 06, df = 1 (= 3.05 (P = rsus Miton 11 11 11 cable = 2.04 (P = rrsus Carb	20 30 56 (P = 0.83) = 0.002) (Two trial 40 44 84 (P = 0.81) = 0.002) mycin(On 60 60 = 0.04) opplatin(C 21	11 22 $ ^2 = 0$ 15 17 32 $ ^2 = 0$ 17 21 21 21 One trial 9	40 44 84 1 % 60 1 60 1 60 1 al) 20 1	47.8% 52.2% 100.0% 100.0%	0.24 (0.10, 0.60) 0.24 (0.10, 0.66) 0.35 (0.13, 0.64) 0.32 (0.15, 0.67) 0.42 (0.18, 0.67) 0.42 (0.18, 0.97) 0.42 (0.18, 0.97)	* * *	
Test for overall effect. 2 (K) and Interfeukin-2 Hao, J.2007 Zhou, Y.2010 Subtolal (\$9% CI) Total events Heterogenehy: Chi ^{an} = 0. CKI and OK-452 versu: Wei,W.2014 Zhong, B.2015 Subtolal (\$9% CI) Total events Heterogenehy: Chi ^{an} = 0. Subtolal (\$9% CI) Total events Heterogenehy: Chi ^{an} = 0. Subtolal (\$9% CI) Total events Heterogenehy: Not appl Test for overail effect. 2 CKI and Chiangenia Subtolal (\$9% CI) Test for overail effect. 2 CKI and Chiangenia Subtolal (\$9% CI) Test for overail effect. 2 CKI and Chiangenia Subtolal (\$9% CI) Test for overail effect. 2 CKI and Chiangenia Subtolal (\$9% CI)	5 4 9 05, df = 1 (3.05 (P = s OK-432 (6 8 14 06, df = 1 (= 3.05 (P = rsus Miton 11 1 11 cable = 2.04 (P = rsus Carb 3	20 30 56 56 56 0.002) Two trial $4044848484P = 0.81)0.002)nycin(On 606060e = 0.004)00$	11 22 ($ ^2 = 0$) 15 17 32 ($ ^2 = 0$) 21 21 21 One trial) 9	51 1 % 40 44 84 1 % 60 1 60 1 60 1 20 1 20 1	47.8% 52.2% 100.0% 100.0% 100.0%	0.24 [0.10, 0.60] 0.29 [0.10, 0.86] 0.35 [0.13, 0.94] 0.32 [0.16, 0.67] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97] 0.20 [0.05, 0.92] 0.20 [0.05, 0.92]	* * *	
I rest for overal effect 2. Kit and I interfeasion 2. Stabiotal (8% CI) Stabiotal (8% CI) Test for overal effect 2. Zhong 2.2015 Subtat (9%) Subtat (9%) Subtat (9%) Cital events Subtat (9%) Cital eve	5 4 9 05, df = 1 (a 05, df = 1 (a 06, df = 1 (a 06, df = 1 (a 3.05 (P = rsus Miton 11 11 cable = 2.04 (P = rsus Carb 3 3	20 30 56 56 56 56 56 56 56 56 56 56	11 22 	40 44 84 1 % 60 1 60 1 60 1 20 1 20 1	47.8% 52.2% 100.0% 100.0% 100.0%	0.24 [0.10, 0.60] 0.24 [0.10, 0.86] 0.35 [0.13, 0.84] 0.32 [0.16, 0.67] 0.42 [0.18, 0.67] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97] 0.20 [0.05, 0.92] 0.20 [0.05, 0.92]	* * *	
Test for overall effect. 2 (K) and Interfeukin-2 Hao, J.2007 Zhou, Y.2010 Subtolal (\$9% CI) Total events Heterogenehy: Chi ^{an} = 0. CKI and OK-452 versus Wei,W.2014 Zhong, B.2015 Subtolal (\$9% CI) Total events Heterogenehy: Chi ^{an} = 0. Ki and Michaevin Zhong, X.2013 Subtolal (\$9% CI) Total events Heterogenehy: Not appl Test for overail effect. 2 Subtolal (\$9% CI) Total events Heterogenehy: Not appl Test for overail effect. 2 Subtolal (\$9% CI) Total events Heterogenehy: Not appl Heterogenehy: Not appl Heterogenehy: Not appl Total events Heterogenehy: Not appl	5 4 9 9 05, df = 1 (= 3.05 (P = s OK-432 (6 8 14 06, df = 1 (= 3.05 (P = rsus Miton 11 11 cable = 2.04 (P = rrsus Carb 3 cable 0 0 0 0 0 0 0 0 0 0 0 0 0	20 30 56 (P = 0.83) = 0.002) (Two trial 40 44 84 (P = 0.81) = 0.002) mycin(On 60 60 = 0.04) poplatin(C 21 21	11 22 (; ² = 0 15 17 32 (; ² = 0 21 21 21 21 21 21 9 9	40 44 84 1 % 60 1 60 1 60 1 20 1 20 1	47.8% 52.2% 100.0% 100.0% 100.0%	0.24 [0.10, 0.60] 0.24 [0.10, 0.86] 0.35 [0.13, 0.94] 0.32 [0.16, 0.67] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97]	* * *	
I rest for overal effect 2. CKI and I interfauktin 2. Hap. J2007 Zhou, Y. 2010 Subtolati (95% CI) Total events overal effect 2. CKI and OK-432 versus Wei, W.2014 Zhong B. 2015 Subtolat (95% CI) Total events Subtolat (95% CI) Subtolat (5 4 9 05, df = 1 (= 3.05 (P = s OK-432 (6 8 14 06, df = 1 (= 3.05 (P = s.05 (P = s.05 (P = s.05 (P = s.04 (P = s.04 (P = s.04 (P = s.04 (P = s.05 (P = 3) 3 cable = 2.07 (P = s.05 (P = s.05 (P = s.05 (P = s.05 (P =	20 30 35 56 P = 0.83) = 0.002) (Two trial 40 44 84 P = 0.81) = 0.002) mycin(On 60 60 = 0.04) ooplatin(C 21 21 = 0.04)	11 22 (; ² = 09 15 17 32 21 21 21 21 21 21 20 9 9	51 1 % 40 44 84 1 % 60 1 60 1 60 1 20 1 20 1	47.8% 52.2% 100.0% 100.0% 100.0%	0.24 (0.10, 0.60) 0.24 (0.10, 0.86) 0.35 (0.13, 0.84) 0.32 (0.16, 0.67) 0.42 (0.18, 0.67) 0.42 (0.18, 0.97) 0.42 (0.18, 0.97) 0.20 (0.05, 0.92) 0.20 (0.05, 0.92) 0.20 (0.05, 0.92)	* * *	
Test for overall effect 2, CKI and Interfeasible 2, Hao, J.2007 Zhou, Y.2010 Subtolal (\$9% CI) Total events Heterogenehy: Chi ^{an} = 0. CKI and OK-452 versu: Wei,W.2014 Zhong, B.2015 Subtolal (\$9% CI) Total events Heterogenehy: Chi ^{an} = 0. Restrongenetics (CKI and mitlomycin ver Zhang, X. 2013 Subtolal (\$9% CI) Total events Heterogenehy: Not appli Test for overall effect 2. Subtolal (\$9% CI) Total events Heterogenehy: Not appli Test for overall effect 2. Subtolal (\$9% CI) Total events Heterogenehy: Not appli Test for overall effect 2. Subtolal (\$9% CI) Total events Heterogenehy: Not appli Test for overall effect 2. Subtolal (\$9% CI) Total events Heterogenehy: Not appli Test for overall effect 2. Subtolal (\$9% CI) Test for overall effect 2. Subtolal (\$9% CI) Subtolal (\$9% CI)	5 4 9 9 05, df = 1 ((= 3.05 (P = s OK-432 (6 8 14 06, df = 1 ((= 3.05 (P = rsus Miton 11 11 11 cable = 2.04 (P = rsus Cabl 3 3 cable = 2.07 (P = um Parvur	20 30 56 P = 0.83) = 0.002) (Two trial 40 44 84 P = 0.81) = 0.002) mycin(On 60 = 0.04) coplatin(C 21 = 0.04) mycrsus	11 22 (; ² = 09 15 17 32 (; ² = 09 21 21 21 21 21 21 21 21 21 21	40 44 84 1 % % 60 1 60 1 60 1 60 1 20 1 20 1	47.8% 52.2% 100.0% 100.0% 100.0%	0.24 (0.10, 0.60) 0.24 (0.10, 0.86) 0.35 (0.13, 0.94) 0.32 (0.16, 0.67) 0.42 (0.18, 0.97) 0.42 (0.18, 0.97) 0.44 (0.18, 0.97) 0.44 (0.18, 0.97) 0.44 (0.18, 0.97) 0.44 (0.18, 0	* * *	
Test for overal effect 2, 2 Ki and Interfeasion 2, 2 Stabioli (95% CI) Stabioli (95% CI) Total events CKI and Orte-10, 2 Subtotal (95% CI) CKI and Ort-20, 2 Subtotal (95% CI) Total events Subtotal (95% CI) Subtotal (95% CI) Subtotal (95% CI) Subtotal (95% CI) Subtotal (95% CI) Subt	5 4 9 05, df = 1 (= 3.05 (P = s OK-432 (6 8 14 16 6 8 14 16 17 11 11 11 11 11 20ble = 2.04 (P = rsus Carba 3 cable = 2.07 (P = um Parvur 4	20 30 30 56 P = 0.83) = 0.002) Two trial 40 44 84 P = 0.81) = 0.002) mycin(On 60 60 = 0.04) 21 21 = 0.04) m versus 45	11 22 (; ² = 0? 15 17 32 (; ² = 0? 17 32 21 21 21 21 21 21 21 0 ne trial) 9 9 5 Coryn 16	40 40 44 84 1 % 60 1 60 1 80 1 80 1 20 1 20 1 20 1 20 1	47.8% 52.2% 100.0% 100.0% 100.0% 100.0% 100.0%	0.24 (0.10, 0.86) 0.29 (0.10, 0.86) 0.35 (0.13, 0.94) 0.32 (0.16, 0.67] 0.42 (0.18, 0.07] 0.42 (0.18, 0.97] 0.42 (0.18, 0.97] 0.20 (0.05, 0.92] 0.20 (0.05, 0.92] 0.20 (0.05, 0.92] 0.15 (0.05, 0.55]	* * * *	
I rest for overall effect 2, Kit and I interfaukin 2, Hao, J2007 (SC) and Interfaukin 2, Hao, J2007 (SC) and Control (SC) (Total events Heterogeneity, ChF = 0. Kit and OK-432 versus Wei,W.2014 Zhong,B.2015 Subtat (9%). C) Total events Heterogeneity, ChF = 0. Total events Subtat (9%). C) Total events Heterogeneity, ChF = 0. CKI and mitomycin 4 Subtat (9%). C) Total events Net age of the subtat (9%). C) Total events Subtat (9%). C) Total events Heterogeneity, Not appli Test for overall effect: 2 CKI and cortopiation v Heterogeneity. Not appli Test for overall effect: 2 Subtat (9%). C) Total events Heterogeneity. Not appli Test for overall effect: 2 Subtat (9%). C) Test for overall effect: 2 Subtat	5 9 9 05, df = 1 (= 3.05 (P = 6 8 14 06, df = 1 (= 3.05 (P = 7 sus Miton 11 11 cable = 2.04 (P = rrsus Carb 3 cable = 2.07 (P = 9 um Parvur 4	20 30 56 P = 0.83) = 0.002) (Two trial 40 44 84 P = 0.81) = 0.002) mycin(On 60 = 0.04) poplatin(C 21 = 0.04) my resus 45	11 22 (; ² = 0; 15 17 32 (; ² = 0; 16 17 21 21 21 21 21 21 21 21 21 21	40 44 44 84 1 84 1 60 1 60 1 60 1 20 1 20 1 20 1 20 1 45 1	47.8% 52.2% 100.0% 100.0% 100.0% 100.0% 100.0%	0.24 [0.10, 0.60] 0.24 [0.10, 0.86] 0.35 [0.13, 0.94] 0.32 [0.16, 0.67] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97] 0.42 [0.16, 0.52] 0.20 [0.05, 0.92] cum(One trial) 0.18 [0.05, 0.58] 0.18 [0.05, 0.58]	* * * *	
Test for overal effect 2, 2 Ki and Interfeasion 2, 2 Subtol (1955, CI) Subtol (1955, CI) Subtol (1955, CI) Total events Heterogeneity, CI) ² = 0, Ki and 0, 2 Subtol (1955, CI) Total events Subtol (1955, CI) Subtol	5 4 9 05, df = 1 ((= 3.05 (P = 5 s OK-432 (6 8 14 10 11 11 11 11 11 11 12 12 12 12	200 300 556 9 (0.02) 9 (0.02) 140 40 44 44 44 44 40 44 40 44 40 60 60 60 60 60 60 60 60 60 60 60 60 60	11 22 (; ² = 05 15 17 32 (; ² = 05 21 21 21 21 21 21 21 21 21 21	40 44 84 1 84 1 60 1 60 1 60 1 60 1 60 1 60 1 60 1 60	47.8% 52.2% 100.0% 100.0% 100.0% 100.0% 100.0%	0.24 (0.10, 0.86) 0.29 (0.10, 0.86) 0.35 (0.13, 0.94) 0.32 (0.16, 0.67] 0.42 (0.18, 0.97] 0.42 (0.18, 0.97] 0.42 (0.18, 0.97] 0.20 (0.05, 0.92] 0.20 (0.05, 0.92] 0.20 (0.05, 0.92] vum(One trial) 0.18 (0.05, 0.58) 0.18 (0.05, 0.58)	* * * *	
I rest for overall effect 2, Kit and I interfaukin 2, Hao, J2007 J Zhou Y, 2007 J Zhou Y, 2007 J Zhou Y, 2007 J Total events Heterogeneity, CAP = 0. Total events Wei, W.2014 Zhong, B. 2015 Subtotal (8% C) Total events Heterogeneity, CAP = 0. CKI and GN-432 versus Wei, W.2014 Zhong, B. 2015 Subtotal (8% C) Total events Heterogeneity, Rot paginary Heterogeneity, Rot paginary Heterogeneity, Rot paginary Subtotal (8% C) Total events Heterogeneity, Not appli Test for overall effect. 2 Subtotal (8% C) Total events Heterogeneity, Not appli Test for overall effect. 2 Subtotal (8% C) Total events Heterogeneity, Not appli Test for overall effect. 2 Subtotal (8% C) Total events Heterogeneity, Not appli Heterogeneity, Not appli Heterogeneity, Not appli Heterogeneity, Not appli Total events Heterogeneity, Not appli Total events Heterogeneity, Not appli Heterogeneity, Not appli Heterogeneity Heterogeneity Heterogeneity Heterogeneity Heterogeneity Hete	5 9 9 05, df = 1 (= 3.05 (P = 6 8 14 06, df = 1 (= 3.05 (P = 7 sus Miton 11 11 11 cable = 2.04 (P = 7 sus Cable = 2.07 (P = 10 3 cable = 2.07 (P = 10 4 cable	20 30 56 9.022 7.000 trial 40 44 44 44 84 84 84 80 9 0.021 21 21 21 9.004) 21 21 21 9.004) 45	11 22 (; l ² = 0; 15 17 32 (; l ² = 0; 21 21 21 21 21 0 ne trial) 9 9 0 Coryn 16 16	40 44 84 1 % 60 1 60 1 60 1 84 1 20 1 20 1 20 1 20 1 20 1 20 1 45 1	47.8% 52.2% 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%	0.24 [0.10, 0.60] 0.24 [0.10, 0.86] 0.35 [0.13, 0.94] 0.32 [0.16, 0.67] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97] 0.42 [0.16, 0.52] 0.20 [0.05, 0.92] vum(One trial) 0.18 [0.05, 0.58]	* * * *	
Test for overal effect 2. CKI and Interfeasible 2. Paol. 2. 2007 2. 2. 2007 2007 2.	5 4 9 05, df = 1 (= 3.05 (P = s OK-432 (6 8 14 06, df = 1 (= 3.05 (P = rsus Miton 11 11 11 cable = 2.04 (P = = 2.07 (P = um Parvur 4 4 cable = 2.284 (P =	200 300 56 0.002) 1700 ctrial 40 44 40 44 40 44 40 40 40 40 40 40 40	11 22 (; ² = 0 ⁵ 15 17 32 (; ² = 0 ⁵ 21 21 21 21 21 21 21 21 21 21	60 1 40 44 84 1 % 60 1 60 1 60 1 20 1 20 1 20 1 45 1 45 1	47.8% 52.2% 100.0% 100.0% 100.0% 100.0% 100.0%	0.24 (0.10, 0.86) 0.29 (0.10, 0.86) 0.35 (0.13, 0.94) 0.32 (0.16, 0.67) 0.42 (0.18, 0.97) 0.42 (0.18, 0.97) 0.42 (0.18, 0.97) 0.42 (0.05, 0.92) 0.20 (0.05, 0.92) 0.20 (0.05, 0.92) 0.20 (0.05, 0.92) 0.20 (0.05, 0.92)	* * * *	
I rest for overall effect: 2, Ki and I interfuelxin 2, Hao, J2007 Zhao, Y2007 Total avents Heterogeneity, CAP = 0. Total avents Heterogeneity, CAP = 0. Ki and OK-432 versu Wei,W2014 Zhong B, 2015 Subtal (95% CI) Total avents Heterogeneity, CAP = 0. CKI and Mitomycen and leffect: 2 CKI and convention of the and leffect: 2 Subtal (95% CI) Total avents Heterogeneity, Not appli Test for overall effect: 2 Subtal (95% CI) Total avents Heterogeneity, Not appli Test for overall effect: 2 Subtal (95% CI) Total avents Heterogeneity, Not appli Test for overall effect: 2 Subtal (95% CI) Total avents Heterogeneity, Not appli Test for overall effect: 2 Subtal (95% CI) Total avents Heterogeneity, Not appli Test for overall effect: 2 Subtal (95% CI) Total avents Heterogeneity, Not appli Test for overall effect: 2 Subtal (95% CI) Total avents Heterogeneity, Not appli Test for overall effect: 2 Subtal (95% CI) Total avents Heterogeneity, Not appli Test for overall effect: 2 Subtal (95% CI) Total avents Heterogeneity, Not appli Test for overall effect: 2 Subtal (95% CI) Total avents Heterogeneity, Not appli Test for overall effect: 2 Subtal (95% CI) Total avents Heterogeneity, Not appli Test for overall effect: 2 Subtal (95% CI) Total avents Heterogeneity, Not appli Test for overall effect: 2 Subtal (95% CI) Total avents Heterogeneity, Not appli Subtal (95% CI) Total avents Subtal (95% CI) Total avents Subtal (95% CI) Total	5 4 9 05, df = 1 (= 3.05 (P = s OK-432 (P = 3.05 (P = s OK-432 (P = rsus Miton 11 11 11 11 11 20ble = 2.04 (P = s cable = 2.07 (P = um Parvur 4 cable = 2.284 (P =	200 300 56 9 - 0.023 1700 trial 40 40 40 40 40 40 40 40 40 40 40 40 40	11 22 (; ² = 0 ⁵ 15 17 32 (; ² = 0 ⁵ 21 21 21 21 21 21 21 5 Coryn 16 16	40 44 84 1 % 60 1 60 1 60 1 20 1 20 1 20 1 45 1	47.8% 52.2% 100.0% 100.0% 100.0% 100.0% 100.0%	0.24 [0.10, 0.60] 0.24 [0.10, 0.86] 0.35 [0.13, 0.94] 0.32 [0.16, 0.67] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97] 0.42 [0.05, 0.92] 0.20 [0.05, 0.92] vum(One trial) 0.18 [0.05, 0.58]	* * * *	
Test for overal effect 2, 2 CKI and Interfeasible 2, 2 Subtol (19%) CI) Subtol (19%) CI) Subtol (19%) CI) Subtol (19%) CI) Total events Test for overal effect 2, Zhong A, 2015 Subtol (19%) CI) Total events Subtol (19%) CI) Total events CKI and carboptatin ve Heterogeneity. Not appli Subtol (19%) CI) Total events CKI and coryenbacterin Heterogeneity. Not appli Subtol (19%) CI) Total events Subtol (19%) CI) Subtol (19%) CI	5 4 9 05, df = 1 (= 3.05 (P = 1 8, 05, df = 1 6 8 06, df = 1 (= 3.05 (P = 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	200 300 56 9 (0.02) 400 40 40 40 40 44 40 84 9 (0.02) 60 60 60 60 60 60 60 60 60 60 60 60 60	11 22 (; ² = 0? 15 17 32 (; ² = 0? 17 32 21 21 21 21 21 21 21 21 21 2	40 44 84 1 % 60 1 60 1 60 1 20 1 20 1 20 1 20 1 20 1 45 1	47.8% 52.2% 100.0% 100.0% 100.0% 100.0% 100.0%	0.24 (0.10, 0.60) 0.29 (0.10, 0.66) 0.35 (0.13, 0.94) 0.32 (0.16, 0.67] 0.42 (0.18, 0.97] 0.42 (0.18, 0.97] 0.42 (0.18, 0.97] 0.20 (0.05, 0.92] 0.20 (0.05, 0.92] vum(One trial) 0.18 (0.05, 0.58]		
I res to roveral effect 2. (K) and interfeasion 2. (K) and interfeasion 2. (K) and interfeasion 2. (K) and (K)	$\begin{array}{c} 5\\ 4\\ 9\\ 9\\ 05, df=1 (\\ =3, 05 (pr=2)\\ 05, df=2\\ $	200 300 56 0.002) Two trial 40 40 40 40 40 40 40 40 40 40 40 60 60 60 60 60 60 60 60 60 60 60 60 60	11 22 (; ² = 0 ⁵ 15 17 32 21 21 21 21 21 0 ne trial) 9 9 6 Coryn 16 16	40 44 84 1 % 60 1 60 1 60 1 60 1 60 1 20 1 20 1 20 1 20 1 45 1	47.8% 52.2% 100.0% 100.0% 100.0% 100.0% 100.0%	0.24 [0.10, 0.60] 0.24 [0.10, 0.86] 0.35 [0.13, 0.94] 0.32 [0.16, 0.67] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97] 0.42 [0.05, 0.92] 0.20 [0.05, 0.92] c.20 [0.05, 0.58] 0.18 [0.05, 0.58]		
Test for overal effect 2, 2 CKI and Interfeasion 2, 2 Subtout (9%) C(1) Subtout (9%) C(1) Subtout (9%) C(1) Subtout (9%) C(1) End for overall effect 2, End for overall effect 2, End for overall effect 2, Zhong B, 2015 Subtout (9%) C(1) Subtout (9%) C(1) End for overall effect 2, CKI and mitomycin verall effect 2, CKI and mitomycin verall effect 2, CKI and carboptatin ver Heterogeneity, Not appli Subtout (9%) C(1) Subtout (9%) C(1) CI clai events Heterogeneity, Not appli Subtout (9%) C(1) CI clai events Heterogeneity, Not appli Heterogeneity, Not appli Subtout (9%) C(1) CI clai events Heterogeneity, Not appli Heterogeneity, Not appli (A) Randomisation proco (B) Deviations from the (C) Missing outcome di	5 4 9 05 cfl = 1(2) 5 cfl = 1(2) 5 cfl = 1(2) 5 cfl = 1(2) 5 (2) 5	200 300 56 0.002) 1700 trial 40 40 40 40 40 40 40 40 40 40 40 40 60 60 60 60 9.002) 21 21 21 21 21 21 21 21 21 21 21 21 21	11 22 (;) ² = 0? 15 17 32 (;) ² = 0? 32 (;) ² = 0? 21 21 21 21 21 21 0 0 16 16 16	40 44 84 1 % 60 1 60 1 60 1 60 1 60 1 20 1 20 1 20 1 45 1	47.8% 52.2% 100.0% 100.0% 100.0% 100.0% 100.0%	0.24 (0.10, 0.60) 0.29 (0.10, 0.66) 0.35 (0.13, 0.94) 0.32 (0.16, 0.67] 0.42 (0.18, 0.97] 0.42 (0.18, 0.97] 0.42 (0.18, 0.97] 0.20 (0.05, 0.92] 0.20 (0.05, 0.92] vum(One trial) 0.18 (0.05, 0.58]	0.001 0.1 1 10 Favours[Kushen] Favours[Science	♥ ♥ ● ● ♥ ♥ ● ●
I rest for overall effect: 2, CKI and I interfuelxin 2, Hab., 2007	5 4 9 95. df = 1 = 3.05 (r = 1 = 3.05 (r = 2 05. df = 1 = 3.05 (r = 3 - 3.05 (r = 2 = 3.05 (r = 2 - 3	200 300 56 0.002) Two trial 40 40 40 40 40 40 40 40 40 40 60 60 60 60 60 60 60 21 21 21 21 = 0.04) 45 5 = 0.004) 45 5 60 60 60 60 60 60 60 60 60 60 60 60 60	111 22 (; ² = 0; 15 17 32 (; ² = 0; 17 17 21 21 21 21 21 21 21 21 21 5 6 6 7 9 9 16 16 17 17 21 21 21 21 21 21 21 21 32 21 32 32 32 32 32 31 32 32 31 32 32 32 31 32 31 32 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 32 31 31 32 31 32 31 31 32 31 31 32 31 31 31 31 31 31 31 31 31 31	40 44 84 1 % 60 1 60 1 60 1 60 1 20 1 20 1 20 1 45 1 45 1	47.8% 52.2% 100.0% 100.0% 100.0% 100.0% 100.0%	0.24 [0.10, 0.60] 0.24 [0.10, 0.86] 0.35 [0.13, 0.94] 0.32 [0.16, 0.67] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97] 0.42 [0.18, 0.97] 0.42 [0.05, 0.92] 0.20 [0.05, 0.92] vum(One trial) 0.18 [0.05, 0.58]	D001 0.1 1 0 Favours[Kushen] Favours[Sclerc	9 9 0 0 9 7 7 0 9 7 7 0 9 7 0 0 0 0 9 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Test for overal effect 2, 2 CKI and Interfeasion 2, 2 Subtol (19%), CI) Subtol (19%), CI) Subtol (19%), CI) Subtol (19%), CI) Total events Test for overal effect 2, Zhong A, 2015 Subtol (19%), CI) Total events Subtol (19%), CI) Total events CKI and carboptatin ve Heterogeneity. Not appli Subtol (19%), CI) Total events Subtol (19%), CI) CI (19%	5 4 9 05, df = 1/ 6 8 14 14 14 16 11 11 11 11 11 11 11 11 11	200 300 56 P = 0.823) = 0.0022) Two trial 40 40 40 44 48 44 P = 0.811) = 0.002) nycin(On 60 60 = 0.024) 21 21 = 0.04) w resplatin(C 21 = 0.04) + 45 = 0.004) + 50 + 50	111 22 (;) ² = 09 (s) 15 17 32 (;) ² = 09 21 21 21 21 21 21 21 21 21 21	40 44 84 1 84 1 60 1 60 1 20 1 20 1 20 1 20 1 45 1	47.8% 52.2% 100.0% 100.0% 100.0% 100.0% 100.0%	0.24 (0.10, 0.66) 0.35 (0.13, 0.94) 0.32 (0.13, 0.94) 0.32 (0.16, 0.67] 0.42 (0.18, 0.67] 0.42 (0.18, 0.97] 0.42 (0.18, 0.97] 0.20 (0.05, 0.92] 0.20 (0.05, 0.92] 0.20 (0.05, 0.58] 0.18 (0.05, 0.58]	0.001 0.1 1 10 Favours[Kushen] Favours[Science	9 9 0 0 9 0 0 0 0 0 0 0

FIGURE 4 (Continued).

С	Kushen	Scleros	ants		Odds Ratio	Odds Ratio	Risk of Bias
Study or Subgroup	Events To	tal Events	Total	Weight	M-H. Fixed, 95% CI	M-H. Fixed, 95% CI	ABCDEF
Intrapleural administ	ration with co	ompound Ku	shen ir	ijection (0	CKI) and cisplatin versus Cisplatin (13 Trials)		
Zhuang, H. 2012	0	24 0	22		Not estimable		?? ? 🛨 🖶 ?
Wang, Y. 2019	2	45 17	45	19.3%	0.08 [0.02, 0.36]		?? 🕂 🖶 🕂 ?
Jiang, T 2020	1	30 8	30	9.2%	0.09 [0.01, 0.82]		?? 🛨 🖶 🕂 ?
Han, S. 2013	2	90 14	90	16.3%	0.12 [0.03, 0.56]	_ _	?? 🛨 🛨 🕈 ?
Peng.H.2020	2	25 8	25	8.8%	0.18 [0.03, 0.98]		?? + + ?
Lin. S. 2007	1	33 4	33	4.6%	0.23 [0.02, 2.15]		?? 🛨 🖶 🕈 ?
Wu, C. 2019	2	25 6	25	6.6%	0.28 [0.05, 1.53]		?? 🛨 🖶 🕈 ?
Feng. F.2023	2	34 6	34	6.7%	0.29 [0.05, 1.56]		?? 🛨 🖶 🕈 ?
Han, Z. 2012	1	28 3	28	3.4%	0.31 [0.03, 3.16]		?? 🕈 🖶 🖶 ?
Chen, F.2012	2	43 5	43	5.7%	0.37 [0.07, 2.03]		?? 🕈 🖶 🕂 ?
Xu. B. 2014	6	30 12	30	11.4%	0.38 [0.12, 1.19]		?? 🕈 🖶 🕂 ?
Zhu, M. 2013	2	28 4	28	4.4%	0.46 [0.08, 2.75]		?? 🛨 🛨 🕈 ?
Liu, D. 2015	2	46 3	42	3.6%	0.59 [0.09, 3.72]		?? 🛨 🛨 🕂 ?
Subtotal (95% CI)	4	81	475	100.0%	0.22 [0.14, 0.36]	◆	
Total events	25	90					
Heterogeneity: Chi ² = Test for overall effect:	6.15, df = 11 (Z = 6.21 (P <	P = 0.86); l ² = 0.00001)	= 0%				
CKI and lobaplatin ve	ersus Lobapla	atin(One tria	ls)			_	
Huang,L.2021 Subtotal (95% CI)	1	25 7 25	25	100.0%	0.11 [0.01, 0.95]		?? € € € ?
Total events	1	7			[]	-	
Heterogeneity: Not ap Test for overall effect:	plicable Z = 2.01 (P =	0.04)					
CKI and carboplatin	versus Carbo	platin(One t	rial)				
He R. 2010	0	21 3	20	100.0%	0 12 [0 01 2 41]		?? 🕂 🖶 🕂 ?
Subtotal (95% CI)		21	20	100.0%	0.12 [0.01, 2.41]		
Total events	0	3					
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 1.39 (P =	0.16)					
CKI and interleukin-2	versus Inter	leukin-2(One	e trial)				
Hao J 2007	0	26 4	21	100.0%	0.07 [0.00, 1.45]		?? 🗭 🖶 🗭 ?
Subtotal (95% CI)		26	21	100.0%	0.07 [0.00, 1.45]		
Total events	0	4					
Heterogeneity: Not ap	plicable						
Test for overall effect:	Z = 1.72 (P =	0.09)					
Disk of bies lessed		,					
(A) Pandamination pro							-
(A) Randomisation pro	cess	nontions				0.001 0.1 1 10 10	00
(C) Missing outcome d	e intended inte lata	erventions				Favours[Kushen] Favours[Scierosa	antsj
(D) Measurement of th							
(E) Selection of the rer	orted result						
(F) Overall hias							
(. / Ovorall blab							
FIGURE 4							
(Continued) Clinic	al response	es of comr	hound	kushen	injection in MPE (A) Meta-analysis of co	molete response: (R) meta-analysis	s of pleurodesis
failura: (C) farast -	lot of plan	ral program	cion	NUSTICIT	injection in the L. (A) meta analysis of CO	inprete response, (b) meta-anatysis	o picuroucsis
railure, (C) forest p	not of pieu	rai progres	51011.				

the evidence quality and generated the absolute estimates of effect for outcomes.

3 Results

3.1 Search results

After retrieval, 1,269 records were identified. Two reviewers read the titles, excluded duplicates, and identified 443 records. After screening abstracts and excluding irrelevant and non RCTs, 147 RCTs, six SRs/meta-analyses (Tian et al., 2010; Tang et al., 2014; Biaoxue et al., 2015; Xu et al., 2015; Yang et al., 2016; Wu et al., 2018) and four network meta-analyses (Yang et al., 2017; Li B. et al., 2019; Li, 2022; Xu et al., 2022) were selected. Further evaluating full-texts and excluding 64 ineligible studies (Supplementary Material S3), 83 were considered eligible. Additionally, 42 studies were selected from previous studies. Finally excluding duplicates, 83 eligible studies were selected for this analysis (Figure 2).

3.2 Characteristics of included studies

We clustered the 83 eligible studies from 2001 to 2023 into four themes: intrapleural perfusion with CKI alone, CKI and sclerosants, kang'ai or matrine, and platinum for controlling MPE. Eleven trials reported CKI alone (Table 1a). CKI and sclerosant developed three comparisons as CKI-versus-cisplatin (Yuan, 2007; Hu Q. et al., 2008; Chen, 2010; Liang et al., 2011; Chen, 2013; Xing, 2013; Wang and Zhou, 2016; Yan et al., 2016; Wang R. et al., 2023), mitomycin (Zhang, 2011), or interleukin-2 (Huang, 2013). All trials recruited 796 inpatients-426 male and 244 female patients aged 20-82 years. Receiving CKI were 396 patients, while another 400 received sclerosants alone. Perfusion with CKI and sclerosants was reported in 59 trials (Table 1b). The CKI and chemical drug or BRM developed ten treatment plans: perfusion with CKI and cisplatin, nedaplatin (Li, 2014; Zhang S. et al., 2015; Li et al., 2017), bleomycin (Chen and He, 2003; Liu and Wan, 2011; Sun, 2012), hydroxycamptothecin (He et al., 2009; Wu et al., 2014; Cai and Wang, 2019), lobaplatin (Liu and Xu, 2016; Huang, 2021), carboplatin (He and Xie, 2010), mitomycin (Zhang et al., 2013),

Study or Subgroup Events Total Weight MH. Fixed. 95% CI A B C D E F Sk monthe 05 rate (Compound Kushen Injection(KV) versus Calibation 0.33 [0.17, 5.02] 2010 0.33 [0.17, 5.02] 2010 Subtotal (95%, CI) 28 30 100.0% 0.33 [0.17, 5.02] 2010 0.33 [0.17, 5.02] 0010 Total events 25 27 7 4 25 27 7 Hetrogeneity: Not applicable 7 84 12 30 100.0% 0.25 [0.07, 0.90] 2010 9 9 9 9 9 0.00 % 0.25 [0.07, 0.90] 010 9	
Six months Os rate (Compounds Namen injection(CA) versus Ciplatin) Chen, X, 2010 Subtobal (95% CI) 28 27 30 100.0% 0.33 [0.17, 5.02] Total events 2 - 0.09 ($P = 0.33$) 1.5 year OS rate (CKI versus Ciplatin) Chen, X, 2010 4 28 12 30 100.0% 0.25 [0.07, 0.50] 2010 Subtobal (95% CI) 28 10 2 30 100.0% 0.25 [0.07, 0.50] Total events 4 12 Heterogeneity: Not applicable Test for overal effect: Z = 2.10 ($P = 0.03$) Chen, X, 2010 12 28 16 30 100.0% 0.66 [0.23, 1.85] 2010 Subtobal (95% CI) 28 130 100.0% 0.66 [0.23, 1.85] 2010 Subtobal (95% CI) 28 130 100.0% 0.66 [0.23, 1.85] Total events 12 16 Heterogeneity: Not applicable Test for overal effect: Z = 0.00 ($P = 0.43$) Two years OS rate (CKI versus Ciplatin) Chen, X, 2010 1 28 1 30 100.0% 1.07 [0.06, 18.04] 2010 Subtobal (95% CI) 28 30 100.0% 0.66 [0.23, 1.85] Total events 1 1 1 Heterogeneity: Not applicable Test for overal effect: Z = 0.50 ($P = 0.43$) Two years OS rate (CKI uresus Ciplatin) Chen, X, 2010 1 28 1 30 100.0% 0.06 [1.97, 13.18] Total events 1 1 1 Heterogeneity: Not applicable Test for overal effect: Z = 0.50 ($P = 0.63$) Tro overal effect: Z = 0.50 ($P = 0.63$) Tro overal effect: Z = 0.50 ($P = 0.63$) Tro overal effect: Z = 0.50 ($P = 0.63$) Tro overal effect: Z = 0.50 ($P = 0.63$) Tro overal effect: Z = 0.50 ($P = 0.63$) Tro overal effect: Z = 0.50 ($P = 0.63$) Tro overal effect: Z = 0.50 ($P = 0.63$) Tro overal effect: Z = 0.50 ($P = 0.03$) Tro overal effect: Z = 0.50 ($P = 0.03$) Tro overal effect: Z = 0.50 ($P = 0.00$) Sk months OS rate (KI and ciplatin versus Carboptatin) Chen, S, 2013 36 40 02 5 38 100.0% 0.88 [2.05, 47.58] 2008 Subtobal (95% CI) 36 43 56 30 05% 0.28 [1.97, 13.18] 2015 Subtobal (95% CI) 36 40 25 38 100.0% 0.88 [2.05, 47.58] 2008 Subtobal (95% CI) 36 40 25 38 100.0% 0.88 [2.05, 47.58] 2008 Subtobal (95% CI) 36 40 25 38 100.0% 0.88 [2.05, 47.58] 2008 Subtobal (95% CI) 36 40 0 25 38 100.0% 0.88 [2.05, 47.58] 2008 Subtobal (95% CI) 36 40 25 38 100.0% 0.88 [2.05, 47.58] 2008 Subtobal (95% CI) 20	-
Subtrain (A, 2010) 2 2 2 7 3 2 2 7 3 3 1000 % 0.33 [0.17, 5.02] 2010 Subtrain (Section (Sec	
Total events 25 27 Heterogeneity: Not applicable Test for overall effect: Z = 0.30 (P = 0.33) Total events 4 12 30 100.0% 0.25 (0.07, 0.90) 2010 Chen, X. 2010 4 28 12 30 100.0% 0.25 (0.07, 0.90) 2010 Total events 4 12 16 30 100.0% 0.25 (0.07, 0.90) 2010 Total events 4 12 16 30 100.0% 0.66 (0.23, 1.85) 2010 Chen, X. 2010 12 8 16 30 100.0% 0.66 (0.23, 1.85) 2010 Total events 12 16 16 17 16 16 17 17 17 17 17 17 17 100.0% 0.66 (0.23, 1.85) 2010 2	
Heterogeneity: Not applicable Test for overall effect: $Z = 0.90$ ($P = 0.33$) 1.5 year OS rate (CKI versus Ciplatin) Chen, X. 2010 4 28 12 30 100.0% 0.25 [0.07, 0.30] Total events 4 12 Heterogeneity: Not applicable Test for overall effect: $Z = 2.11$ ($P = 0.03$) Total events 12 16 Heterogeneity: Not applicable Test for overall effect: $Z = 2.10$ ($P = 0.43$) Two years OS rate (CKI versus Ciplatin) Chen, X. 2010 1 2 28 1 30 100.0% 0.66 [0.23, 1.85] Total events 12 16 Heterogeneity: Not applicable Test for overall effect: $Z = 2.10$ ($P = 0.43$) Two years OS rate (CKI versus Ciplatin) Chen, X. 2010 1 28 1 30 100.0% 1.07 [0.06, 18.04] 2010 Subtotal (95% Ci) 28 30 100.0% 1.07 [0.06, 18.04] 2010 Subtotal (95% Ci) 28 30 100.0% 5.09 [1.97, 13.18] Total events 1 1 1 Heterogeneity: Not applicable Test for overall effect: $Z = 3.35$ ($P = 0.008$) Six months OS rate (CKI arcsus Ciplatin) Chen, X. 2013 84 90 66 90 100.0% 5.09 [1.97, 13.18] 2013 Subtotal (95% Ci) 2 56 5 50 100.0% 5.09 [1.97, 13.18] 2013 Subtotal (95% Ci) 3 56 30 56 100.0% 2.87 [1.27, 6.46] 2015 Total events 43 30 Heterogeneity: Not applicable Test for overall effect: $Z = 3.35$ ($P = 0.008$) One year OS rate (Matrine and carboptatin versus Carboptatin) Zhang, S. 2015 43 36 02 00.0% 5.09 [1.97, 13.18] Total events 43 30 Heterogeneity: Not applicable Test for overall effect: $Z = 3.35$ ($P = 0.001$) Six months OS rate (Matrine and carboptatin versus Carboptatin) Chal events 38 25 Heterogeneity: Not applicable Test for overall effect: $Z = 2.54$ ($P = 0.01$) Six months OS rate (Matrine and carboptatin versus Carboptatin) Chal events 38 25 Heterogeneity: Not applicable Test for overall effect: $Z = 2.54$ ($P = 0.004$) One year OS rate (Matrine and carboptatin versus Carboptatin) Cuit (95% Ci) $\frac{3}{40}$ $\frac{6}{38}$ 100.0% $\frac{5.52}{2.23}$, 19.03] 2008 Subtotal (95% Ci) $\frac{2}{40}$ $\frac{6}{38}$ 100.0% $\frac{5.52}{2.23}$, 19.03] 2008 Subtotal (95% Ci) $\frac{2}{40}$ $\frac{6}{38}$ 100.0% $\frac{5.52}{2.23}$, 19.03]	
Test for overall effect: $Z = 0.08 \ (P = 0.33)$ 1.5 year OS rate (CKI versus Cipitatin) Chen, X. 2010 4 28 12 30 100.0% 0.25 [0.07, 0.90] 2010 2000 Total events 4 12 Heterogeneity: Not applicable Test for overall effect: $Z = 2.11 \ (P = 0.03)$ Chen, X. 2010 12 28 16 30 100.0% 0.66 [0.23, 1.85] 2010 2000 Subtotal (95% C) 28 13 0 100.0% 0.66 [0.23, 1.85] 2010 2000 Chen, X. 2010 12 28 16 30 100.0% 0.66 [0.23, 1.85] 2010 2000 Subtotal (95% C) 28 30 100.0% 1.07 [0.06, 18.04] 2010 2000 Chen, X. 2010 1 28 30 100.0% 1.07 [0.06, 18.04] 2010 2000 Subtotal (95% C) 28 30 100.0% 1.07 [0.06, 18.04] 2010 2000 Subtotal (95% C) 28 30 100.0% 5.09 [1.97, 13.18] 2013 2000 Subtotal (95% C) 8 90 69 0 100.0% 5.09 [1.97, 13.18] 2013 2000	
Chen, X. 2010 4 28 12 30 100.0% 0.25 0.07, 0.90 2010 27 0 0 0 0 0.25 0.07, 0.90 2010 27 0 0 0 0.25 0.07, 0.90 2010 0 0 0 0.25 0.07, 0.90 0.25 0.07, 0.90 0.25 0.07, 0.90 0.05 0.00 0.25 0.07, 0.90 0.00 0.25 0.07, 0.90 0.00 0.00 0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.66 0.23, 1.85 2010 0 0 0.00 0.66 0.23, 1.85 2010 0 0 0.00 0.66 0.23, 1.85 2010 0 0 0 0 0 0.00 0.66 0.23, 1.85 2010 0	
Subtocal (95% Cl) 28 10 30 100.0% 0.25 [0.07, 0.90] Total events 4 12 Heterogeneity: Not applicable Test for overall effect. Z = 0.25 (p = 0.93) Chen, X. 2010 12 28 16 30 100.0% 0.66 [0.23, 1.85] 2010 Subtocal (95% Cl) 28 30 100.0% 0.66 [0.23, 1.85] 2010 Chen, X. 2010 12 28 1 30 100.0% 0.66 [0.23, 1.85] Total events 12 16 Heterogeneity: Not applicable Test for overall effect. Z = 0.80 (P = 0.43) Two years OS rate (CKI versus Clipatin) Chen, X. 2010 1 28 1 30 100.0% 1.07 [0.06, 18.04] 2010 Subtocal (95% Cl) 28 30 100.0% 1.07 [0.06, 18.04] 2010 Subtocal (95% Cl) 28 30 100.0% 5.09 [1.97, 13.18] 2013 Subtocal (95% Cl) 90 90 100.0% 5.09 [1.97, 13.18] 2013 Subtocal (95% Cl) 90 90 100.0% 5.09 [1.97, 13.18] 2013 Subtocal (95% Cl) 90 90 100.0% 5.09 [1.97, 13.18] 2013 Subtocal (95% Cl) 90 90 100.0% 5.09 [1.97, 13.18] 2013 Subtocal (95% Cl) 56 56 100.0% 2.87 [1.27, 6.46] 2015 Subtocal (95% Cl) 43 56 30 66 100.0% 2.87 [1.27, 6.46] 2015 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtocal (95% Cl) 40 38 100.0% 6.52 [2.23, 19.03] 2008	
Total events 4 12 Heterogeneity: Kot applicable Test for overall effect: $Z = 2.11$ (P = 0.03) One year OS rate (CKI versus Ciplatin) Chen, X. 2010 12 28 16 30 100.0% 0.66 [0.23, 1.65] 2010 Subtotal (95% CI) 28 30 100.0% 0.66 [0.23, 1.65] 2010 Total events 12 16 Heterogeneity: Kot applicable Test for overall effect: $Z = 0.80$ (P = 0.43) Total events 1 1 1 Heterogeneity: Kot applicable Test for overall effect: $Z = 0.05$ (P = 0.96) Six monthe OS rate (CKI and ciplatin versus Ciplatin) Han, S. 2013 84 90 66 90 100.0% 5.09 [1.97, 13.18] 2013 Subtotal (95% CI) 28 30 (00.0% 5.09 [1.97, 13.18] 2013 Subtotal (95% CI) 90 90 100.0% 5.09 [1.97, 13.18] 2013 Subtotal (95% CI) 90 90 100.0% 5.09 [1.97, 13.18] 2013 Subtotal (95% CI) 55 56 100.0% 2.87 [1.27, 6.46] 2015 Six monthe OS rate (CKI and nedaplatin versus Carboplatin) Chen years 0S rate (CKI and nedaplatin versus Carboplatin) Chal events 84 66 Heterogeneity: Not applicable Test for overall effect: Z = 3.5 (P = 0.000) One year OS rate(CKI and nedaplatin versus Carboplatin) Chal events 43 30 Heterogeneity: Not applicable Test for overall effect: Z = 2.54 (P = 0.011) Six monthe OS rate (Matrine and carboplatin versus Carboplatin) Cui, A. 2008 38 40 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% CI) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% CI) 40 6 38 100.0% 6.52 [2.23, 19.03] Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] Cui (A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] Cui (A. 2008 31 6 0.00 7 40 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
Heterogeneity: Not applicable Test for overall effect: Z = 2.1 (P = 0.03) One year OS rate (CKI versus Clplatin) Chen, X. 2010 12 28 30 100.0% 0.66 [0.23, 1.85] 2010 Subtotal (95% Cl) 28 30 100.0% 0.66 [0.23, 1.85] 2010 $? ? • • • ? ? Total events 12 16 Heterogeneity: Not applicable ? ? • • • ? Total events 1 1 ? ? • • • ? ? ? • • • ? Subtotal (95% Cl) 28 30 100.0% 1.07 [0.06, 18.04] 2010 ? ? • • • ? Total events 1 1 ? ? • • • ? Subtotal (95% Cl) 28 30 100.0% 5.09 [1.97, 13.18] 2013 ? ? • • • ? Total events 84 6 = 90 2.87 [1.27, 6.46] 2015 ? ? • • • ? Total events 43 30 $	
Lest for overail effect: 2 = 2.11 (P = 0.03) One year OS rate (CKI versus Ciplatin) Chen, X. 2010 12 28 30 100.0% 0.66 [0.23, 1.85] 2010 Subtotal (95% Cl) 28 30 100.0% 0.66 [0.23, 1.85] 2010 0	
Che js. 20 fate (or versus or versus (98% Ct)) Che js. 20 fate (0.1 versus 0.2 js. 2 k) Total events 12 16 Heterogeneity: Not applicable Test for overall effect: $Z = 0.80$ ($P = 0.43$) Two years OS rate (OKI versus Cipitatin) Che js. 20 fate (OKI and cipitatin versus Cipitatin) Total events 1 1 1 Heterogeneity: Not applicable Test for overall effect: $Z = 0.06$ ($P = 0.96$) Six months OS rate (OKI and cipitatin versus Cipitatin) Han, S. 2013 84 90 66 90 100.0% 5.09 [1.97, 13.18] 2013 Subtotal (95% Ct) 90 90 100.0% 5.09 [1.97, 13.18] Total events 84 66 Heterogeneity: Not applicable Test for overall effect: $Z = 3.35$ ($P = 0.0008$) One year OS rate (Matrine and carboplatin versus Carboplatin) Zhang, S. 2015 43 56 30 56 100.0% 2.87 [1.27, 6.46] 2015 Subtotal (95% Ct) 38 40 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% Ct) 38 40 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% Ct) 38 40 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% Ct) 40 6 38 100.0% 6.52 [2.23, 19.03] 2008 Subtotal (95% Ct) 2 40 6 38 100.0% 6.52 [2.23, 19.03] 2008 Subtotal (95% Ct) 2 40 6 38 100.0% 6.52 [2.23, 19.03] 2008	
Subtotal (95% CI) 28 30 100.0% 0.66 [0.23, 1.85] Total events 12 16 Heterogeneily: Not applicable Test for overall effect: $Z = 0.80 (P = 0.43)$ Two years OS rate (CKI versus Ciplatin) Chen, X. 2010 1 28 30 100.0% 1.07 [0.06, 18.04] 2010 Subtotal (95% CI) 28 30 100.0% 1.07 [0.06, 18.04] 2010 Subtotal (95% CI) 28 30 100.0% 1.07 [0.06, 18.04] 101 Heterogeneily: Not applicable Test for overall effect: $Z = 0.05 (P = 0.96)$ Six months OS rate (CKI and ciplatin versus Ciplatin) Han, S. 2013 84 90 66 90 100.0% 5.09 [1.97, 13.18] 2013 Subtotal (95% CI) 90 90 90 90 100.0% 5.09 [1.97, 13.18] 2013 Subtotal (95% CI) 90 90 90 100.0% 2.87 [1.27, 6.46] 2015 Subtotal (95% CI) 56 56 100.0% 2.87 [1.27, 6.46] 2015 Subtotal (95% CI) 56 30 56 100.0% 2.87 [1.27, 6.46] 2015 Subtotal (95% CI) 56 30 30 66 90 0.00.0% 2.87 [1.27, 6.46] 2015 Total events 43 30 Heterogeneily: Not applicable Test for overall effect: $Z = 2.54 (P = 0.004)$ One year OS rate (Matrine and carboplatin versus Carboplatin) Cui, A. 2008 38 40 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% CI) 40 38 100.0% 6.52 [2.23, 19.03] 2008 Subtotal (95% CI) 24 06 38 100.0% 6.52 [2.23, 19.03] 2008 Subtotal (95% CI) 24 06 6 38 100.0% 6.52 [2.23, 19.03] 2008	
Total events 12 16 Heterogeneity: Not applicable Trest for overall effect: $Z = 0.80$ ($P = 0.43$) Two years OS rate (CKI versus Cipitatin) Chen, X, 2010 1 28 1 30 100.0% 1.07 [0.06, 18.04] 2010 Subtotal (95% CI) 28 1 1 1 Heterogeneity: Not applicable Total events 1 1 Total events 1 1 1 Han, S. 2013 84 90 66 90 100.0% 5.09 [1.97, 13.18] 2013 Total events 84 66 66 90 100.0% 5.09 [1.97, 13.18] 2013 Total events 84 66 66 90 100.0% 5.09 [1.97, 13.18] 2013 Total events 84 66 66 90 100.0% 2.87 [1.27, 6.46] 2015 Subtotal (95% CI) 58 56 50.00.0% 2.87 [1.27, 6.46] 2015 Total events 43 30 88 [2.05, 47.58] 2008 20 2 2 2 2 2 2 2 2	
Heterogeneity: Not applicable Test for overall effect: $2 = 0.80$ ($P = 0.43$) Two years OS rate (CKI versus Ciplatin) Chen, X, 2010 1 28 1 30 100.0% 1.07 [0.06, 18.04] 2010 Subtotal (95% CI) 28 30 100.0% 1.07 [0.06, 18.04] 2010 Total events 1 1 1 Heterogeneity: Not applicable Test for overall effect: $2 = 0.05$ ($P = 0.96$) Six months OS rate (CKI and ciplatin versus Ciplatin) Han, S, 2013 84 90 66 90 100.0% 5.09 [1.97, 13.18] 2013 Subtotal (95% CI) 90 90 100.0% 5.09 [1.97, 13.18] 2013 Subtotal (95% CI) 90 90 100.0% 5.09 [1.97, 13.18] 2013 Subtotal (95% CI) 90 90 100.0% 2.87 [1.27, 6.46] 2015 Subtotal (95% CI) 56 56 100.0% 2.87 [1.27, 6.46] 2015 Subtotal (95% CI) 43 56 30 56 100.0% 2.87 [1.27, 6.46] 2015 Subtotal (95% CI) 40 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% CI) 40 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% CI) 40 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% CI) 24 40 6 38 100.0% 6.52 [2.23, 19.03] 2008 Subtotal (95% CI) 24 40 6 38 100.0% 6.52 [2.23, 19.03] 2008 Subtotal (95% CI) 24 40 6 38 100.0% 6.52 [2.23, 19.03] 2008	
The field to build a field. $Z = 0.040$ ($r = 0.43$) Two years OS rate (CKV versus Ciplatin) Chen, X. 2010 1 28 30 100.0% 1.07 [0.06, 18.04] 2010 Subtotal (95% CI) 28 30 100.0% 1.07 [0.06, 18.04] 2010 Subtotal (95% CI) 28 30 100.0% 1.07 [0.06, 18.04] 2010 Total events 1 1 1 Heterogeneity: Not applicable Test for overall effect: $Z = 0.05$ ($P = 0.96$) Six months OS rate (CKI and ciplatin versus Ciplatin) Han, S. 2013 84 90 66 90 100.0% 5.09 [1.97, 13.18] 2013 Subtotal (95% CI) 90 90 90 100.0% 5.09 [1.97, 13.18] 2013 Total events 84 66 Heterogeneity: Not applicable Test for overall effect: $Z = 3.36$ ($P = 0.0008$) One year OS rate (CKI and nedaplatin versus Nedaplatin) Zhang, S. 2015 43 56 56 100.0% 2.87 [1.27, 6.46] 2015 Subtotal (95% CI) 56 56 100.0% 2.87 [1.27, 6.46] 2015 Subtotal (95% CI) 84 0 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% CI) 84 0 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% CI) 84 0 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% CI) 84 0 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% CI) 84 0 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% CI) 84 0 25 38 100.0% 9.52 [2.23, 19.03] 2008 Subtotal (95% CI) 40 6 38 100.0% 6.52 [2.23, 19.03] 2008 Subtotal (95% CI) 40 6 38 100.0% 6.52 [2.23, 19.03] 2008	
Chen, X. 2010 1 28 1 30 100.0% 1.07 [0.06, 18.04] 2010 ? ? • • • ? Subtotal (95% CI) 28 30 100.0% 1.07 [0.06, 18.04] 2010 ? ? • • • ? Total events 1 1 1 1 1 1 1 Heterogeneity: Not applicable Test for overall effect: Z = 0.05 (P = 0.96) Six months OS rate (CKI and cipitatin versus Cipitatin) Han, S. 2013 84 90 66 90 100.0% 5.09 [1.97, 13.18] 2013 Total events 84 90 66 90 100.0% 5.09 [1.97, 13.18] 2013 Image: Comparison of the	
Subtotal (95% Cl) 28 30 100.0% 1.07 [0.06, 18.04] Total events 1 1 1 Heterogeneity: Not applicable Test for overall effect: $Z = 0.05$ ($P = 0.96$) Six months OS rate (CKI and ciplatin versus Ciplatin) $Aaa = 0$ $Aaaa = 0$ $Aaa = 0$ $Aaa = 0$	
Total events 1 1 Heterogeneity: Not applicable Test for vorrall effect: Z = 0.05 (P = 0.96) Six months OS rate (CKI and ciplatin versus Ciplatin) 1 Han, S. 2013 84 90 66 90 100.0% 5.09 [1.97, 13.18] 2013 Subtotal (95% CI) 90 90 100.0% 5.09 [1.97, 13.18] 2013 Total events 84 66 Heterogeneity: Not applicable Test for vorall effect: Z = 3.35 (P = 0.0008) One year OS rate(CKI and nedaplatin versus Nedaplatin) Z.87 [1.27, 6.46] 2015 Zhang, S. 2015 43 56 30 56 100.0% 2.87 [1.27, 6.46] 2015 Total events 43 30 Subtotal (95% CI) 56 56 100.0% 2.87 [1.27, 6.46] 2015 Total events 43 30 Subtotal (95% CI) 56 56 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% CI) 40 38 100.0% 9.88 [2.05, 47.58] 2008 20 20 20 20 20 20 20 20 20 20 20 20	
Heterogeneity: Not applicable Test for overall effect: Z = 0.05 (P = 0.96) Six months OS rate (CKI and ciplatin versus Ciplatin) Han, S. 2013 84 90 66 90 100.0% 5.09 [1.97, 13.18] 2013 Subtotal (95% CI) 90 90 100.0% 5.09 [1.97, 13.18] 2013 Image: Comparison of the comparison o	
Six months OS rate (CKI and cipitatin versus Cipitatin) Han, S. 2013 84 90 66 90 100.0% 5.09 [1.97, 13.18] 2013 Subtotal (95% CI) 90 90 90 100.0% 5.09 [1.97, 13.18] 2013 Total events 84 66 Heterogeneity: Not applicable Test for overall effect: Z = 3.35 (P = 0.0008) One year OS rate(CKI and nedaplatin versus Nedaplatin) Zhang, S. 2015 43 56 30 56 100.0% 2.87 [1.27, 6.46] 2015 Subtotal (95% CI) 56 56 100.0% 2.87 [1.27, 6.46] 2015 Image: Comparison of the c	
Both Mathematic Optical O	
Subtotal (95% Cl) 90 90 90 100.0% 5.09 $[1.97, 13.18]$ Total events 84 66 Heterogeneity: Not applicable Test for overall effect: Z = 3.35 (P = 0.0008) One year OS rate(CKI and nedaplatin versus Nedaplatin) Zhang, S. 2015 43 56 30 56 100.0% 2.87 [1.27, 6.46] 2015 Subtotal (95% Cl) 56 56 100.0% 2.87 [1.27, 6.46] 2015 Image: Construction of the second	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	
Heterogeneity: Not applicable Test for overall effect: Z = 3.35 (P = 0.0008) One year OS rate(CKI and nedpalatin versus Nedaplatin) Zhang, S. 2015 43 56 30 56 100.0% 2.87 [1.27, 6.46] 2015 Subtotal (95% CI) 56 56 100.0% 2.87 [1.27, 6.46] 2015 Image: Comparison of the terrogeneity: Not applicable ? ? • • • ? Test for overall effect: Z = 2.54 (P = 0.01) Six months OS rate (Matrine and carboplatin versus Carboplatin) 9.88 [2.05, 47.58] 2008 ? ? • • • ? Cui, A. 2008 38 40 25 38 100.0% 9.88 [2.05, 47.58] 2008 Total events 38 25 100.0% 9.88 [2.05, 47.58] 2008 ? ? ? • • • ? Total events 38 25 100.0% 9.88 [2.05, 47.58] 2008 ? ? ? • • • ? Total events 38 25 100.0% 9.88 [2.05, 47.58] 2008 ? ? ? ? • • • ? Nor yeard effect: Z = 2.86 (P = 0.004)	
One year OS rate(CKI and nedaplatin versus Nedaplatin) Zhang, S. 2015 43 56 30 56 100.0% 2.87 [1.27, 6.46] 2015 Subtotal (95% CI) 56 56 100.0% 2.87 [1.27, 6.46] 2015 Total events 43 30 Heterogeneity: Not applicable Test for overall effect: Z = 2.54 (P = 0.01) Subtotal (95% CI) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% CI) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Total events 38 25 25 25 2015 2015 Total events 38 25 2015 2015 2015 2016 Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] 2008 2016 2016 2016<	
Zhang, S. 2015 43 56 30 56 100.0% 2.87 [1.27, 6.46] 2015 Subtotal (95% Cl) 56 56 100.0% 2.87 [1.27, 6.46] 2015 Total events 43 30 Heterogeneity: Not applicable 7 ? ● ● ● ? Test for overall effect: Z = 2.54 (P = 0.01) Six months OS rate (Matrine and carboplatin versus Carboplatin) 0.00% 9.88 [2.05, 47.58] 2008 Subtotal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 ? ? ● ● ● ? Total events 38 25 Heterogeneity: Not applicable ? ? ? ● ● ● ? Total events 38 25 Heterogeneity: Not applicable ? ? ? ● ● ● ? Test for overall effect: Z = 2.86 (P = 0.004) One year OS rate (Matrine and carboplatin versus Carboplatin) . . ? ? ● ● ● ? One year OS rate (Matrine and carboplatin versus Carboplatin) Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] 2008 . ? ? ? ● ● ● ? Subtotal (95% Cl) 40 38 100.0% 6.52 [2.23, 19.03] 2008 . . ? ? ? ● ● ?	
Subtotal (95% Cl) 56 56 100.0% 2.87 $[1.27, 6.46]$ Total events 43 30 Heterogeneity: Not applicable Test for overall effect: $Z = 2.54$ (P = 0.01) Six months OS rate (Matrine and carboplatin versus Carboplatin) 0.01% Cui, A. 2008 38 40 25 38 100.0% 9.88 [2.05, 47.58] 2008 Total events 38 40 25 38 100.0% 9.88 [2.05, 47.58] 2008 Total events 38 25 100.0% 9.88 [2.05, 47.58] 2008	
Total events 43 30 Heterogeneity: Not applicable Test for overall effect: $Z = 2.54$ (P = 0.01) Six months OS rate (Matrine and carboplatin versus Carboplatin) Cui, A. 2008 38 40 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Total events 38 25 Heterogeneity: Not applicable Test for overall effect: $Z = 2.86$ (P = 0.004) One year OS rate (Matrine and carboplatin versus Carboplatin) Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] 2008 Subtotal (95% Cl) 40 38 100.0% 6.52 [2.23, 19.03] 2008	
Heterogeneity: Not applicable Test for overall effect: $Z = 2.54$ (P = 0.01) Six months OS rate (Matrine and carboplatin versus Carboplatin) Cui, A. 2008 38 40 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Total events 38 25 100.0% 9.88 [2.05, 47.58] 2008 Total events 38 25 100.0% 9.88 [2.05, 47.58] 2008 Total events 38 25 100.0% 9.88 [2.05, 47.58] 2008 Done year OS rate (Matrine and carboplatin versus Carboplatin) Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] 2008 Subtotal (95% Cl) 40 38 100.0% 6.52 [2.23, 19.03] 2008 2 ?	
Six months OS rate (Matrine and carboplatin versus Carboplatin) Cui, A. 2008 38 40 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Total events 38 25 100.0% 9.88 [2.05, 47.58] 2008 Total events 38 25 100.0% 9.88 [2.05, 47.58] 2008 Total events 38 25 100.0% 9.88 [2.05, 47.58] 100.0% 9.89 [2.05, 47.58] One year OS rate (Matrine and carboplatin versus Carboplatin) 000 000% 6.52 [2.23, 19.03] 2008 2008 Subtotal (95% Cl) 40 38 100.0% 6.52 [2.23, 19.03] 2008 2 ? ? * * * ?	
Cui, A. 2008 38 40 25 38 100.0% 9.88 [2.05, 47.58] 2008 Subtotal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] 2008 Total events 38 25 100.0% 9.88 [2.05, 47.58] 2008 2 ? ? ● ● ● ? Total events 38 25 100.0% 9.88 [2.05, 47.58] 2008 ? ? ● ● ● ? Total events 38 25 100.0% 9.88 [2.05, 47.58] 2008 ? ● ● ? Test for overall effect: Z = 2.86 (P = 0.004) 0 0ne year OS rate (Matrine and carboplatin versus Carboplatin) 0.06 6.52 [2.23, 19.03] 2008 ? ? ? ● ● ● ? Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] 2008 ? ? ? ● ● ● ? Subtotal (95% Cl) 40 38 100.0% 6.52 [2.23, 19.03] 2008 ? ? ? ● ● ● ?	
Subtotal (95% Cl) 40 38 100.0% 9.88 [2.05, 47.58] Total events 38 25 Heterogeneity: Not applicable	
Total events 38 25 Heterogeneity: Not applicable Test for overall effect: Z = 2.86 (P = 0.004) One year OS rate (Matrine and carboplatin versus Carboplatin) Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] 2008 Subtotal (95% Cl) 40 38 100.0% 6.52 [2.23, 19.03] 2008	
Heterogeneity: Not applicable Test for overall effect: Z = 2.86 (P = 0.004) One year OS rate (Matrine and carboplatin versus Carboplatin) Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] 2008 Subtotal (95% Cl) 40 38 100.0% 6.52 [2.23, 19.03] 2008	
One year OS rate (Matrine and carboplatin versus Carboplatin) Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] 2008 Subtotal (95% Cl) 40 38 100.0% 6.52 [2.23, 19.03] 2008	
Cui, A. 2008 22 40 6 38 100.0% 6.52 [2.23, 19.03] 2008 Subtotal (95% Cl) 40 38 100.0% 6.52 [2.23, 19.03] 7 7 9 9 9 7	
Subtotal (95% Cl) 40 38 100.0% 6.52 [2.23, 19.03]	
Total quanta 20 G	
rotarevents 22 o	
Heterogenetic, Not applicable Test for overall effect $Z = 3.43$ ($P = 0.0006$)	
1.5 year OS rate (Matrine and carboplatin versus Carboplatin)	
Cui, A. 2008 17 40 5 38 100.0% 4.88 [1.58, 15.11] 2008 🗖 🔮 🐨 😗 🤋	
Subtotal (95% Cl) 40 38 100.0% 4.88 [1.58, 15.11]	
Total events 17 5	
Test for overall effect; Z = 2.75 (P = 0.006)	
Two years OS rate (Matrine and carboplatin versus Carboplatin)	
Cui, Á. 2008 3 40 2 38 100.0% 1.46 [0.23, 9.25] 2008 🦷 🔽 🤈 🤈 😗 🕀 🕀 🍞	
Subtotal (95% Cl) 40 38 100.0% 1.46 [0.23, 9.25]	
Total events 3 2	
Heterogeneity: Not applicable Table ($D = 0.69$)	
One year OS rate (Kanqai and cisplatin versus Cisplatin)	
He, J. 2011 12 20 10 20 100.0% 1.50 [0.43, 5.25] 2011 — ??? 🕏 🕏 ?	
Subtotal (95% Cl) 20 20 100.0% 1.50 [0.43, 5.25]	
Total events 12 10	
Test for overall effect: $Z = 0.63$ ($P = 0.53$)	
Risk of bias legend	
(A) Randomisation process 0.001 0.1 1 10 1000	
(b) Deviations from the intended interventions Favours[Sclerosants] Favours[Kushen]	
(v) insering outcome data (D) Measurement of the outcome	
(E) Selection of the reported result	
(F) Overall bias	
Forest plot of overall survivals.	

interleukin-2 (Hao and Liang, 2007; Zhou et al., 2010), OK-432 (Wei et al., 2014; Zhong et al., 2015), and *Corynebacterium parvum* (Huang et al., 2012). There were 41 trials which evaluated perfusion with CKI and cisplatin, recruiting 2,823 inpatients aged

15–91, with 1,346 male and 909 female patients. Some 1,424 patients received perfusion with CKI and cisplatin, while another 1,399 received cisplatin alone. CKI was administrated 10–60 mL/ time, once to thrice per week, lasting one to twelve times; the

p = 0.30

p <

p =0.0003

p < 0.00001

p =

D <

No

p =

p < 0.00001

p < 0.00001

p <

0.00001

p = 0.54

p = 0.61

0.00001

p <

p <

p < 0.00001

No

p =

p =0.0007

0.006

p = 0.05

0.0001

0.002

p = 0.65

0.0003

0.0001

0.0001

TABLE 3 Meta-analysis results of quality of life and adverse events (Supplementary Figures S12–S24). Odds Outcomes Kushen preparations with ratios 95% Cl (events/total) a. Compound kushen injection (CKI) versus cisplatin Quality of life (Supplementary 144/207 127/212 Random-effects 1.52 [0.69, 3.35] 6 67% Figure S12) model Random-effects Myelosuppression 6 3/193 109/197 0.02 [0.00, 0.15] 69% (Supplementary Figure S14) model Fixed-effects model Leukopenia (Supplementary 3 2/88 22/90 0.10 [0.03, 0.35] 0% Figure S15) Gastrointestinal reaction 9 10/281 167/287 Random-effects 0.03 [0.01, 0.12] 67% (Supplementary Figure S18) model 1/201 Fixed-effects model Hepatotoxicity 6 22/197 0.09 [0.02, 0.33] 0% (Supplementary Figure S19) 1/221 Fixed-effects model 0.09 [0.03, 0.29] Nephrotoxicity 7 26/217 0% (Supplementary Figure S20) 0/30 0/30 Not applicable Cardiotoxicity (Supplementary 1 Not estimable No Figure S21) Random-effects Thoracodynia (Supplementary 6 22/175 74/173 0.15 [0.04, 0.48] 69% Figure S22) model Fever (Supplementary 5 29/159 31/158 Random-effects 0.67 [0.12, 3.76] 81% Figure S23) model b. CKI and cisplatin versus cisplatin Quality of life (Supplementary 19 497/682 298/670 Fixed-effects model 3.60 [2.84, 4.56] 0% Figure S12) Fixed-effects model 0.34 [0.24, 0.47] 17 149/574 229/558 0% Myelosuppression (Supplementary Figure S14) 178/711 291/703 Fixed-effects model Leukopenia (Supplementary 0.35 [0.26, 0.46] 0% 20 Figure S15) Anemia (Supplementary 2 5/120 7/118 Fixed-effects model 0.69 [0.21, 2.24] 0% Figure S16) Thrombocytopenia 5 7/215 9/213 Fixed-effects model 0.76 [0.27, 2.12] 0% (Supplementary Figure S17) Gastrointestinal reaction 254/1,053 440/1,035 Fixed-effects model 0.36 [0.29, 0.44] 31 8% (Supplementary Figure S18) Hepatotoxicity 22 43/837 87/824 Fixed-effects model 0.42 [0.28, 0.63] 0% (Supplementary Figure S19) Fixed-effects model Nephrotoxicity 31 75/1,105 169/1,090 0.32 [0.24, 0.44] 0% (Supplementary Figure S20) 5 0/1520/151 Not applicable Cardiotoxicity (Supplementary Not estimable No Figure S21) 49/402 Thoracodynia (Supplementary 66/394 Fixed-effects model 0.65 [0.42, 1.00] 0% 11

(Continued on following page)

0%

0%

No No

0.50 [0.30, 0.82]

Not estimable

3.95 [1.78, 8.74]

Quality of life (Supplementary

Figure S22)

Figure S23)

Figure S19)

Figure S13)

Fever (Supplementary

TRAEs (Supplementary

c. Kang'ai and cisplatin versus cisplatin

26

3

2

65/853

0/144

34/57

97/828

0/140

15/55

Fixed-effects model

Fixed-effects model

Not applicable

Outcomes	Trials	<i>Kushen</i> preparations with sclerosants (events/total)	Sclerosants (events/total)	Statistical method	Odds ratios 95% CI	 ²	Р
Leukopenia (Supplementary Figure S15)	4	31/113	67/110	Fixed-effects model	0.20 [0.11, 0.38]	25%	<i>p</i> < 0.0001
Gastrointestinal reaction (Supplementary Figure S18)	5	42/133	65/131	Fixed-effects model	0.34 [0.19, 0.63]	0%	<i>p</i> = 0.0006
Hepatotoxicity (Supplementary Figure S19)	1	0/24	0/22	Not applicable	Not estimable	No	No
Nephrotoxicity (Supplementary Figure S20)	2	0/57	0/55	Not applicable	Not estimable	No	No
Thoracodynia (Supplementary Figure S22)	2	5/60	10/57	Fixed-effects model	0.41 [0.13, 1.29]	0%	<i>p</i> = 0.13
Fever (Supplementary Figure S23)	1	2/36	2/35	Not applicable	0.97 [0.13, 7.30]	No	<i>p</i> = 0.98
TRAEs (Supplementary Figure S24)	1	0/24	0/22	Not applicable	Not estimable	No	No
d. Matrine and cisplatin ve	rsus cispla	atin			1		
Quality of life (Supplementary Figure \$13)	2	32/50	20/50	Fixed-effects model	2.95 [1.25, 6.97]	0%	p = 0.02
Myelosuppression (Supplementary Figure S14)	3	14/97	19/86	Fixed-effects model	0.49 [0.21, 1.11]	43%	P = 0.09
Leukopenia (Supplementary Figure S15)	2	7/70	31/66	Random-effects model	0.10 [0.02, 0.61]	66%	P = 0.01
Anemia (Supplementary Figure S16)	1	14/30	26/30	Not applicable	0.13 [0.04, 0.48]	No	<i>p</i> = 0.002
Thrombocytopenia (Supplementary Figure S17)	1	8/30	9/30	Not applicable	0.85 [0.28, 2.61]	No	<i>p</i> = 0.77
Gastrointestinal reaction (Supplementary Figure S18)	5	36/167	55/152	Fixed-effects model	0.35 [0.19, 0.66]	0%	<i>p</i> = 0.001
Hepatotoxicity (Supplementary Figure S19)	3	15/117	22/102	Fixed-effects model	0.52 [0.23, 1.15]	0%	<i>p</i> = 0.10
Nephrotoxicity (Supplementary Figure S20)	4	7/137	11/122	Fixed-effects model	0.56 [0.19, 1.59]	0%	<i>p</i> = 0.27
Cardiotoxicity (Supplementary Figure S21)	1	0/20	0/20	Not applicable	Not estimable	No	No
Thoracodynia (Supplementary Figure S22)	4	9/120	31/116	Fixed-effects model	0.21 [0.10, 0.48]	0%	<i>p</i> = 0.0002
Fever (Supplementary Figure S23)	4	7/147	15/132	Fixed-effects model	0.41 [0.16, 1.07]	0%	<i>p</i> = 0.07
TRAEs (Supplementary Figure S24)	1	0/20	0/20	Not applicable	Not estimable	No	No

TABLE 3 (Continued) Meta-analysis results of quality of life and adverse events (Supplementary Figures S12-S24).

Note: CI, confidence interval. TRAEs, thoracentesis-related adverse events.

cisplatin was administrated with 20–80 mg/time. *Kang'ai* or matrine and platinum developed four plans. Six trials involving 334 inpatients aged 36–84 years (Zhang, 2006; Hu J. et al., 2008; Xu and Xiong, 2008; He, 2011; Qu et al., 2012; Wang, 2016) evaluated perfusion with *kang'ai* and cisplatin (Table 1c). Received *kang'ai* and cisplatin were 168 patients, while another 166 received only cisplatin. *Kang'ai* was administrated 40–60 mL/ time, once or twice per week, lasting one to four times. Six trials recruiting 319 inpatients aged 30–85 (Du et al., 2009; Li and Yang, 2009; He, 2010; Wang et al., 2010; Ji, 2011; Ji et al., 2012) evaluated perfusion with matrine and cisplatin (Table 1d). A total of 167 patients received matrine and cisplatin, while another 152 only received cisplatin. Matrine was administrated 150–800 mg/time, once a week, lasting 2 to 6 weeks.

Of 83 eligible studies, 58 (69.88%, 58/83) involved inpatients with miscellaneous tumors, 24 (28.92%, 24/83) with lung cancer, and

Subgroups	Trials	Cases	Complete resp	oonse		Pleurodesis fa	ilure	
			Odds ratios (95%CI)	Univariable*	Multiple*	Odds ratios (95%CI)	Univariable*	Multiple*
a. Subgroups analysis via	primary of	disease (<mark>Su</mark>	pplementary Figur	es S25–S28)				
Miscellaneous tumors	28	2053	2.77 [2.29, 3.37]	0.69	0.65	0.25 [0.20, 0.31]	0.89	0.89
Lung cancer	12	724	2.68 [1.93, 3.72]			0.29 [0.21, 0.40]		
Hematologic malignancies	1	46	1.10 [0.30, 3.98]			0.58 [0.16, 2.07]		
b Subgroup analysis via J	oleural eff	usion (Sup	plementary Figure	s S29–S32)				
Small to large	1	52	1.87 [0.52, 6.73]	0.12	0.28	0.47 [0.23, 0.95]	0.49	0.71
Moderate to large	10	640	2.15 [1.51, 3.05]			0.30 [0.21, 0.43]		
Large	3	158	2.32 [1.20, 4.50]			0.28 [0.13, 0.59]		
Unclear	27	1973	2.98 [2.45, 3.63]			0.25 [0.20, 0.31]		
c. Subgroups analysis via	Karnofsky	y performa	ince status score (S	Supplementary Fig	ures S33–S36)			
Karnofsky performance status score (≥50)	7	404	2.24 [1.44, 3.49]	0.94	0.38	0.29 [0.19, 0.45]	0.15	0.55
Karnofsky performance status score (≥60)	15	1,195	2.67 [2.07, 3.44]			0.22 [0.17, 0.29]		
Karnofsky performance status score (≥70)	2	174	2.97 [1.52, 5.79]			0.27 [0.12, 0.61]		
Unclear	17	1,050	2.91 [2.22, 3.80]			0.31 [0.23, 0.41]		
d. Subgroup analysis via	anticipate	d survival	time (Supplementa	ary Figures S37–S4	0)			
Anticipated survival time (unclear)	26	1803	2.83 [2.31, 3.47]	0.74	0.77	0.28 [0.23, 0.35]	0.53	0.52
Anticipated survival time (≥3 months)	13	922	2.41 [1.79, 3.25]			0.22 [0.16, 0.31]		
Anticipated survival time (≥1 months)	2	98	3.30 [1.40, 7.82]			0.38 [0.15, 0.99]		
e. Subgroup analysis via	treatment	history (<mark>S</mark>	upplementary Figu	res S41–S44)				
Primary treatment	9	549	2.49 [1.71, 3.63]	0.23	0.88	0.28 [0.19, 0.41]	0.47	0.60
Retreatment	2	112	1.57 [0.67, 3.67]			0.36 [0.16, 0.81]		
Others	30	2,162	2.84 [2.35, 3.43]			0.25 [0.21, 0.31]		
f. Subgroup analysis via t	he draina	ge metho	d (Supplementary F	Figures S45–S48)				
Indwelling pleural catheter	33	2,349	2.63 [2.19, 3.16]	0.68	0.76	0.24 [0.20, 0.29]	0.04	0.08
Thoracentesis	8	474	3.09 [2.09, 4.56]			0.40 [0.26, 0.62]		
g. Subgroups analysis via	CKI dosa	ge (Supple	ementary Figures S	49–S52)				
Compound <i>kushen</i> injection (20–30 mL)	31	2045	2.60 [2.15, 3.16]	0.72	0.61	0.27 [0.22, 0.33]	0.92	0.90
Compound <i>kushen</i> injection (40–60 mL)	8	676	3.27 [2.32, 4.59]			0.24 [0.17, 0.34]		
Compound <i>kushen</i> injection (others)	2	102	1.71 [0.71, 4.13]			0.37 [0.16, 0.89]		
h. Subgroups analysis via	treatmer	nt frequend	cy (Supplementary	Figures S53–S56)				
One time/week	35	2,493	2.62 [2.20, 3.11]	0.25	0.67	0.27 [0.23, 0.33]	0.34	0.96

TABLE 4 Subgroups and meta-regression analysis (Supplementary Figures S25–S72).

Subgroups	Trials	Cases	Complete res	ponse		Pleurodesis failure				
			Odds ratios (95%CI)	Univariable*	Multiple*	Odds ratios (95%CI)	Univariable*	Multiple*		
Others (1-2 times/week or 2-3 time/week)	6	330	3.66 [2.18, 6.14]			0.20 [0.12, 0.34]				
i Subgroups analysis via	treatment	times (<mark>Su</mark>	pplementary Figure	es S57–S60)						
Two to four times	25	1783	2.49 [2.02, 3.06]	0.27	0.59	0.27 [0.22, 0.34]	0.76	0.46		
Others (>4 times or unclear)	16	1,040	3.13 [2.39, 4.11]			0.25 [0.19, 0.34]				
j Subgroup analysis via c	isplatin de	osage (<mark>Sup</mark>	plementary Figure	s S61–S64)						
Cisplatin (20–30 mg each time)	6	450	2.47 [1.60, 3.83]	0.31	0.62	0.23 [0.15, 0.36]	0.92	0.93		
Cisplatin 40–50 mg each time)	18	1,119	2.55 [1.98, 3.29]	-		0.28 [0.21, 0.37]	-			
Cisplatin (60–80 mg each time)	11	724	2.71 [1.95, 3.77]	-		0.31 [0.22, 0.44]	-			
Cisplatin (others)	6	530	3.31 [2.25, 4.85]	-		0.22 [0.15, 0.33]	-			
k Subgroups analysis via	dosage d	ifference c	of cisplatin (Supple	mentary Figures S	65–S68)					
Equivalent dosage	35	2,439	2.58 [2.16, 3.08]	0.33	0.43	0.26 [0.21, 0.31]	0.49	0.95		
Low vs. high dosage	6	384	3.64 [2.34, 5.67]	-		0.31 [0.19, 0.50]	-			
I Subgroups analysis via	criterion (Supplemer	ntary Figures S69–S	572)						
Millar	28	1867	2.49 [2.04, 3.04]	0.16	0.18	0.27 [0.21, 0.33]	0.88	0.86		
Ostrowskimj	13	956	3.23 [2.40, 4.33]			0.26 [0.19, 0.35]				

TABLE 4 (Continued) Subgroups and meta-regression analysis (Supplementary Figures S25–S72).

Note: Others: unclear or ungroupable; CI: confidence interval. Univariable*: univariable meta-regression (P>|t|); Multiple*: multiple meta-regression (P>|t|).

only one with hematologic malignancies (Huang, 2013) or breast cancer (Wang R. et al., 2023). Most studies described demographic characteristics, but only 16 to 50 (19.28%, 16/83% to 60.24%, 50/83) reported the pleural fluid volume, KPS, AST, and treatment history. All studies reported the drainage methods and characteristics of interventions and assessed the clinical responses 5–10 weeks after treatment began using Ostrowskimj or Millar criteria. Only 36 studies (43.37%, 36/83) reported the QOL, and six reported overall survival (Cui et al., 2008; Chen, 2010; He, 2011; Han, 2013; Zhang S. et al., 2015). Some 79 studies (95.18%, 79/83) reported the AEs, 38 (45.78%, 38/83) assessed ADRs using WHO or CTEC3.0 criteria, and only four assessed TRAEs (Wang et al., 2010; Yang, 2012; Wei et al., 2014; Liu and Li, 2015; Song and Jia, 2015). No study reported conflicts of interest.

3.3 Methodological quality

Of 83 studies, 79 (95.18%, 79/83) expressed concerns at overall bias for clinical responses, and four showed high risk (Qu et al., 2012; Wu et al., 2014; Wang and Zhou, 2016; Lin et al., 2023). At domainlevel, only one study had low risk at D1 (Liu and Li, 2015), one showed high risk at D1 (Lin et al., 2023) or D2 (Wang and Zhou, 2016), and others had some concerns. All had low risk at D3 and D4. Two studies showed high risk at D5 (Qu et al., 2012; Wu et al., 2014), and others had low risk (Figure 3A; Supplementary Figures S1, S2). For overall survival, five studies had concerns of overall bias (Cui et al., 2008; Chen, 2010; He, 2011; Han, 2013; Zhang S. et al., 2015). All had some concerns at D1 and D2, and low risk at D3, D4, and D5 (Supplementary Figure S4).

Since studies were limited, we only assessed the methodological quality of QOL and adverse events in CKI versus cisplatin, and perfusion with CKI, *kang'ai*, or matrine and cisplatin. QOL was reported by 29 studies and showed high risk at overall bias. Only one study (Liu and Li, 2015) had low risk, and one (Lin et al., 2023) had high risk at D1. All showed some concern at D2, low risk at D3 and D5, and high risk at D4 (Figure 3B and S3). A total of 57 studies reported AEs, 35 (61.40%, 35/57) showed high risk at overall bias, and 21 had some concerns. There were 55 studies (96.49%, 55/57) with some concerns at D1and D2, two with low risk at D1 (Liu and Li, 2015; Lin et al., 2023), and one with high risk at D2 (Wang and Zhou, 2016). All studies had low risk at D3. High risk was shown by 16 studies (28.07%, 16/57), and 39 had low risk at D4. A total of 34 studies (59.65%, 34/57) showed high risk, and 21 had low risk at D5 (Figure 3C and Figure. S5).

3.4 Clinical responses

Nine trials reported clinical responses about CKI versus cisplatin (Table 2a; Supplementary Figures S6–S8). Cochran's χ^2 test and I^2

Indicators	Trials	Compound <i>kushen</i>	Cisplatin		Egge	r's test		Risk
		cisplatin (events/total)	total)	(93% CI)	Coefficient	95% CI	P> t	assessment
Complete response	41	649/1,424	342/1,399	2.71 [2.30, 3.19]	-1.07	-2.52 to 0.38	0.14	Objective
Pleurodesis failure	41	235/1,424	590/1,399	0.26 [0.22, 0.32]	0.13	-1.35 to 1.60	0.87	Objective
Pleural progression	13	25/481	90/475	0.22 [0.14, 0.36]	-0.28	-2.93 to 2.37	0.82	Objective
Quality of life	19	497/682	298/670	3.60 [2.84, 4.56]	-2.47	-4.62 to -0.32	0.03	Underestimation
Myelosuppression	17	149/574	229/558	0.34 [0.24, 0.47]	1.20	-1.76 to 4.16	0.39	Objective
Leukopenia	20	178/711	291/703	0.35 [0.26, 0.46]	-0.45	-1.59 to 0.67	0.41	Objective
Gastrointestinal reactions	31	254/1,053	440/1,035	0.36 [0.29, 0.44]	-1.46	-2.71 to -0.21	0.02	Underestimation
Hepatotoxicity	22	43/837	87/824	0.42 [0.28, 0.63]	-0.007	-0.76 to 0.78	0.98	Objective
Nephrotoxicity	31	75/1,105	169/1,090	0.32 [0.24, 0.44]	-0.15	-0.91 to 0.60	0.67	Objective
Thoracodynia	11	49/402	66/394	0.66 [0.43, 1.02]	0.06	-1.49 to 1.61	0.93	Objective
Fever	26	65/853	97/828	0.50 [0.33, 0.76]	0.35	-1.42 to 2.13	0.68	Objective

TABLE 5 Publication bias risk (Supplementary Figures S73-S83).

Note: OR, odds ratios; CI, confidence interval.

statistic revealed no heterogeneity ($I^2 = 0\%$). We pooled the OR using a FEM. The results of meta-analyses revealed that CKI perfusion displayed a complete response (1.10, 95% CI 0.76 to 1.60), pleurodesis failure (0.80, 95% CI 0.56 to 1.14), and pleural progression (0.63, 95% CI 0.33 to 1.21) similar to cisplatin alone. Only single trial reported that CKI achieved clinical response similar to mitomycin and better than interleukin-2.

The CKI and chemical drug or BRM developed ten treatment plans (Table 2b; Figure 4C; Figure 5). Perfusion with CKI and cisplatin was evaluated by 41 trials. With no statistical heterogeneity $(I^2 = 0\%)$, an FEM was used to pool the OR. The results demonstrated it significantly improving the complete response (2.71, 95% CI 2.30 to 3.19) and displaying a low pleurodesis failure (0.26, 95% CI 0.22 to 0.32) and pleural progression (0.22, 95% CI 0.14–0.36) than cisplatin alone. One to three trials reported nine other treatment plans. Compared with sclerosants alone, the results revealed that nine treatment plans achieved a low pleurodesis failure, while only CKI and bleomycin, hydroxycamptothecin, or interleukin-2 significantly improved the complete response.

Kang'ai or matrine and platinum developed four treatment plans (Table 2c, 2d; Supplementary Figures S9–S11). With no statistical heterogeneity ($I^2 = 0\%$), an FEM was used. The results demonstrated that perfusion with *kang'ai* or matrine and cisplatin significantly improved the complete response (3.04, 95% CI 1.76 to 5.26 and 1.87, 95% CI 1.26–2.78) and achieved a low pleurodesis failure (0.23, 95% CI 0.14 to 0.41 and 0.27, 95% CI 0.17–0.44) than

cisplatin alone. Additionally, matrine and cisplatin achieved a low pleural progression (0.29, 95% CI 0.09–0.95).

3.5 Overall survivals

Of 83 studies, only six (Cui et al., 2008; Chen, 2010; Chen et al., 2011; He, 2011; Han, 2013; Zhang S. et al., 2015) reported the OS of perfusion with CKI alone, CKI and cisplatin or nedaplatin, *kang'ai* and cisplatin, or matrine and carboplatin (Figure 5). Compared with sclerosants alone, only one trial reported that perfusion with CKI and cisplatin might improve the 0.5-year OS rate (Han, 2013), and it might prolong median survival time and PFS (Chen et al., 2011). Perfusion with CKI and nedaplatin might improve the 1-year OS rate (Zhang S. et al., 2015), and matrine and carboplatin might improve the 0.5-year OS rates (Cui et al., 2008).

3.6 Quality of life

Due to limited trials, we only assessed the QOL of perfusion with CKI alone, CKI, *kang'ai*, or matrine and cisplatin (Table 3; Supplementary Figures S12, S13). Six trials reported the QOL about CKI alone (Yuan, 2007; Hu Q. et al., 2008; Liang et al., 2011; Chen, 2013; Xing, 2013; Yan et al., 2016). Statistical heterogeneity ($I^2 = 67\%$) was found, and an REM was used. Compared with

TABLE 6 Sensitivity analysis.

Outcomes	Before	exclu	ding trials			Excluded trials with high risk		After excluding trials				
	Trials	SM	OR (95% CI)	l ²	Ρ	and over- estimating efficacy and safety	Trials	SM	OR (95% CI)	l ²	Ρ	
a. Compound kus	<i>hen</i> inject	ion (CK	l) alone									
CKI versus cisplati	in											
Complete response	9	FEM	1.10 [0.76, 1.60]	0%	<i>p</i> = 0.60	Poor*: (Wang and Zhou, 2016), Over*:no	8	FEM	1.07 [0.73, 1.58]	0%	p = 0.72	Robustness
Pleurodesis failure	9	FEM	0.80 [0.56, 1.14]	0%	p = 0.21	Poor*: (Wang and Zhou, 2016), Under*: (Xing, 2013)	8	FEM	0.76 [0.52, 1.11]	0%	p = 0.15	Robustness
Pleural progression	6	FEM	0.63 [0.33, 1.21]	0%	p = 0.17	Poor*:no, Under*:no	6	FEM	0.63 [0.33, 1.21]	0%	p = 0.17	Robustness
Quality of life	6	REM	1.52 [0.69, 3.35]	67%	p = 0.30	Poor*: (Yuan, 2007; Hu et al., 2008b; Liang et al., 2011; Chen, 2013; Xing, 2013; Yan et al., 2016), Over*:no	No	No	No	No	No	Poor
Myelosuppression	6	REM	0.02 [0.00, 0.15]	69%	p < 0.0001	Poor*:no (Wang and Zhou, 2016; Yan et al., 2016), Under*: (Yuan, 2007; Liang et al., 2011; Xing, 2013)	1	No	0.46 [0.09, 2.41]	No	<i>p</i> = 0.36	Poor
Neutropenia	4	FEM	0.10 [0.03, 0.35]	0%	<i>p</i> = 0.0003	Poor*: (Chen, 2013), Under*: no	2	FEM	0.07 [0.01, 0.60]	0%	p = 0.01	Robustness
Gastrointestinal reaction	9	REM	0.03 [0.01, 0.12]	67%	<i>p</i> < 0.00001	Poor*: (Chen, 2013; Wang and Zhou, 2016; Yan et al., 2016), Under*: (Yuan, 2007; Chen, 2010; Liang et al., 2011; Xing, 2013)	2	REM	0.26 [0.02, 3.08]	57%	p = 0.28	Poor
Hepatotoxicity	6	FEM	0.09 [0.02, 0.33]	0%	p = 0.0003	Poor*: (Wang and Zhou, 2016), Under*: (Liang et al., 2011)	4	FEM	0.19 [0.04, 0.92]	0%	p = 0.04	Robustness
Nephrotoxicity	7	FEM	0.09 [0.03, 0.29]	0%	p < 0.0001	Poor*: (Wang and Zhou, 2016), Under*: (Liang et al., 2011)	5	FEM	0.16 [0.04, 0.63]	0%	<i>p</i> = 0.009	Robustness
Thoracodynia	6	REM	0.15 [0.04, 0.48]	69%	p = 0.002	Poor*: (Chen, 2013), Under*: (Yuan, 2007; Hu et al., 2008b; Chen, 2010; Wang et al., 2023b)	1	Not	0.97 [0.34, 2.78]	No	p = 0.96	Poor
Fever	5	REM	0.67 [0.12, 3.76]	81%	<i>p</i> = 0.65	Poor*: (Chen, 2013), Under*: (Hu et al., 2008b)	3	REM	1.96 [0.09, 43.10]	88%	p = 0.67	Robustness
b. CKI and scleros	ants											
CKI and cisplatin	versus cis	platin										
Complete response	41	FEM	2.71 [2.30, 3.19]	0%	p < 0.00001	Poor*: (Lin et al., 2023), Over *: (Ning et al., 2001; Lin et al., 2007; Deng et al., 2008; Li, 2008; Li et al., 2009; Chen et al., 2011; Han, 2013; Xu, 2014a; Liu and Li, 2015; Song and Jia, 2015; Huang et al., 2017; Wang	26	FEM	1.94 [1.56, 2.43]	0%	p < 0.00001	Robustness

Outcomes	Before	exclu	iding trials			Excluded trials	After excluding trials					Sensitivity
	Trials	SM	OR (95% CI)	l ²	Ρ	and over- estimating efficacy and safety	Trials	SM	OR (95% Cl)	l ²	Ρ	
						et al., 2019; Jiang and Li, 2020; Peng, 2020)						
Pleurodesis failure	41	FEM	0.26 [0.22, 0.32]	0%	p < 0.00001	Poor*:Lin et al., 2023), Under*: (Lin et al., 2007; Ding et al., 2009; Wang, 2010; Chen et al., 2011; Li and Tian, 2011; Ran and Liao, 2012; Han et al., 2012; Yang, 2012; Guo et al., 2013; Han, 2013; Zheng and Jia, 2013; Jiang, 2014; Xu, 2014b; Liu and Li, 2015; Song and Jia, 2015; Qin and Fan, 2016; Yan et al., 2016; Huang et al., 2017; Liu et al., 2017; Tang et al., 2018; Wang et al., 2019; Wu et al., 2019; Jiang and Li, 2020; Peng, 2020; Feng and Shi, 2023)	14	FEM	0.41 [0.29, 0.56]	0%	p < 0.00001	Robustness
Pleural progression	13	FEM	0.22 [0.14, 0.36]	0%	p < 0.00001	Poor*:no, Under*: (Han, 2013; Wang et al., 2019; Jiang and Li, 2020; Peng, 2020)	9	FEM	0.35 [0.19, 0.64]	0%	P = 0.0006	Robustness
Quality of life	19	FEM	3.60 [2.84, 4.56]	0%	p < 0.00001	Poor*: (Pan et al., 2007; Ding et al., 2009; Ran and Zang, 2011; Han et al., 2012; Yang, 2012; Guo et al., 2013; Han, 2013; Chen et al., 2014; Jiang, 2014; Xu, 2014b; Liu and Li, 2015; Yan et al., 2016; Liu et al., 2017; Shi, 2017; Tang et al., 2018; Wang et al., 2019; Wu et al., 2019; Feng and Shi, 2023; Lin et al., 2023), Over*:no	No	No	No	No	No	Poor
Myelosuppression	17	FEM	0.34 [0.24, 0.47]	0%	p < 0.00001	Poor*: (Lin et al., 2007; He et al., 2010; Li and Tian, 2011; Zheng and Jia, 2013; Jiang, 2014; Xu, 2014a; Liu and Li, 2015; Song and Jia, 2015; Yan et al., 2016; Huang et al., 2017; Lin et al., 2023), Under*: (Yang, 2012)	5	FEM	0.35 [0.18, 0.69]	0%	p = 0.002	Robustness
Neutropenia	20	FEM	0.35 [0.26, 0.46]	0%	p < 0.00001	Poor*: (Ning et al., 2001; Pan et al., 2007; Deng et al., 2008; Li, 2008; He et al., 2010; Wang, 2010; Chen et al., 2011; Ran and Zang, 2011; Zhu et al., 2013; Jiang, 2014; Liu et al., 2017; Shi, 2017; Tang et al., 2018). Under*: (Huang, 2007; Li et al., 2009; Chen et al., 2014)	4	FEM	0.43 [0.23, 0.82]	0%	P = 0.01	Robustness

Outcomes	Before	exclu	iding trials			Excluded trials	After excluding trials					Sensitivity
	Trials	SM	OR (95% CI)	l ²	Ρ	and over- estimating efficacy and safety	Trials	SM	OR (95% CI)	²	Ρ	
Thrombocytopenia	5	FEM	0.76 [0.27, 2.12]	0%	p = 0.61	Poor*: (Pan et al., 2007; Chen et al., 2011; Jiang, 2014), Under*:no	2	Not	Not	Not	Not	Poor
Anemia	2	FEM	0.69 [0.21, 2.24]	0%	p = 0.54	Poor*: (Pan et al., 2007; Chen et al., 2011), Under*:no	No	No	No	No	No	Poor
Gastrointestinal reaction	31	FEM	0.37 [0.30, 0.47]	8%	p < 0.00001	Poor*: (Lin et al., 2007; He et al., 2010; Ran and Zang, 2011; Zheng and Jia, 2013; Zhu et al., 2013; Jiang, 2014; Xu, 2014a; Liu and Li, 2015; Song and Jia, 2015; Qin and Fan, 2016; Yan et al., 2016; Huang et al., 2017; Liu et al., 2017; Shi, 2017; Tang et al., 2018; Wang et al., 2019; Peng, 2020; Lin et al., 2023), Under*: (Ding et al., 2009; Yang, 2012; Guo et al., 2013; Chen et al., 2014; Wu et al., 2019; Feng and Shi, 2023)	7	FEM	0.48 [0.31, 0.74]	0%	P = 0.0009	Robustness
Hepatotoxicity	22	FEM	0.42 [0.28, 0.63]	0%	p < 0.0001	Poor*: (Lin et al., 2007; Pan et al., 2007; He et al., 2010; Chen et al., 2011; Li and Tian, 2011; Zhu et al., 2013; Jiang, 2014; Liu and Li, 2015; Song and Jia, 2015; Qin and Fan, 2016; Lin et al., 2023), Under*:no	11	FEM	0.37 [0.22, 0.63]	0%	p = 0.0002	Robustness
Nephrotoxicity	31	FEM	0.32 [0.24, 0.44]	0%	p < 0.0001	Poor*: (Ning et al., 2001; Lin et al., 2007; Pan et al., 2007; Deng et al., 2008; Li, 2008; He et al., 2010; Wang, 2010; Chen et al., 2011; Li and Tian, 2011; Ran and Zang, 2011; Zheng and Jia, 2013; Zhu et al., 2013; Jiang, 2014; Xu, 2014a; Liu and Li, 2015; Song and Jia, 2015; Qin and Fan, 2016; Lin et al., 2023), Under*: (Wu et al., 2019)	12	FEM	0.35 [0.21, 0.59]	0%	p < 0.0001	Robustness
Thoracodynia	11	FEM	0.65 [0.42, 1.00]	0%	p = 0.05	Poor*: (Li and Tian, 2011; Ran and Zang, 2011; Liu and Li, 2015; Wang et al., 2019; Peng, 2020), Under*:no	6	FEM	0.50 [0.28, 0.89]	0%	p = 0.02	Robustness
Fever	15	FEM	0.50 [0.30, 0.82]	0%	p = 0.006	Poor*: (Lin et al., 2007; Li and Tian, 2011; Ran and Zang, 2011; Zhu et al., 2013; Liu and Li, 2015; Qin and Fan, 2016; Wang et al., 2019; Peng, 2020), Under*:no	7	FEM	0.35 [0.15, 0.79]	0%	p = 0.01	Robustness

Outcomes	Before	fore excluding trials				Excluded trials	After e	After excluding trials				
	Trials	SM	OR (95% CI)	l ²	Ρ	with high risk and over- estimating efficacy and safety	Trials	SM	OR (95% Cl)	l ²	Ρ	
CKI and nedaplati	n versus	nedapla	atin									
Complete response	3	FEM	1.72 [0.99, 2.98]	0%	p = 0.05	Poor*:no, Over*:no	3	FEM	1.72 [0.99, 2.98]	0%	p = 0.05	Robustness
Pleurodesis failure	3	FEM	0.33 [0.19, 0.57]	0%	p < 0.0001	Poor*:no, Under*: (Li, 2014; Zhang et al., 2015a; Li et al., 2017)	No	No	No	No	No	Poor
CKI and lobaplatin	n versus le	obaplat	in									
Complete response	2	FEM	1.57 [0.73, 3.36]	44%	p = 0.25	Poor*:no, Over *:no	2	FEM	1.57 [0.73, 3.36]	44%	p = 0.25	Robustness
Pleurodesis failure	2	FEM	0.35 [0.13, 0.93]	0%	p = 0.04	Poor*:no, Under*: (Huang, 2021)	1	No	0.46 [0.08, 2.75]	No	p = 0.40	Poor
CKI and bleomyci	n versus l	oleomy	cin									
Complete response	3	FEM	2.62 [1.23, 5.58]	0%	p = 0.01	Poor*:no, Over *: (Chen and He, 2003)	2	FEM	2.17 [0.91, 5.16]	0%	p = 0.08	Poor
Pleurodesis failure	3	FEM	0.23 [0.11, 0.52]	0%	p = 0.0004	Poor*:no, Under*: (Liu and Wan, 2011; Sun, 2012)	1	No	0.13 [0.01, 1.29]	No	p = 0.08	Poor
CKI and hydroxyc	amptothe	cin ver	sus hydroxyc	ampto	othecin							
Complete response	2	FEM	3.01 [1.54, 5.87]	0%	p = 0.001	Poor*:no, Under*: (He et al., 2009; Cai and Wang, 2019)	No	No	No	No	No	Poor
Pleurodesis failure	3	FEM	0.37 [0.19, 0.72]	0%	p = 0.004	Poor*: (Wu et al., 2014), Under*: (Cai and Wang, 2019)	1	No	0.55 [0.16, 1.93]	No	p = 0.35	Poor
CKI and interleuki	n-2 versu	s interle	eukin-2					1				
Complete response	2	FEM	3.21 [1.41, 7.34]	0%	p = 0.006	Poor*:no, Under*: (Hao and Liang, 2007)	1	No	2.67 [0.92, 7.70]	No	p = 0.07	Poor
Pleurodesis failure	2	FEM	0.24 [0.10, 0.60]	0%	p = 0.002	Poor*:no, Under*: (Hao and Liang, 2007; Zhou et al., 2010)	No	No	No	No	No	Poor
CKI and OK-432 v	ersus OK-	432										
Complete response	2	FEM	1.58 [0.77, 3.21]	0%	p = 0.21	Poor*:no, Over*:no	2	FEM	1.58 [0.77, 3.21]	0%	p = 0.21	Robustness
Pleurodesis failure	2	FEM	0.32 [0.16, 0.67]	0%	p = 0.002	Poor*:no, Under*: (Wei et al., 2014; Zhong et al., 2015)	No	No	No	No	No	Poor
c. Kang'ai and cis	olatin ver	sus cisp	olatin									
Complete response	5	FEM	3.04 [1.76, 5.26]	0%	p < 0.0001	Poor*:no, Over*: (Hu et al., 2008a; Xu and Xiong, 2008; Wang, 2016)	2	FEM	2.00 [0.72, 5.57]	0%	p = 0.18	Poor
Pleurodesis failure	6	FEM	0.23 [0.14, 0.41]	0%	P < 0.00001	Poor*: (Qu et al., 2012), Under*: (Hu et al., 2008a; Xu and Xiong, 2008; Wang, 2016)	2	FEM	0.49 [0.18, 1.31]	0%	P = 0.15	Poor
Quality of life	2	FEM		0%			No	No	No	No	No	Poor

Outcomes	Before excluding trials					Excluded trials with high risk		After excluding trials				
	Trials	SM	OR (95% CI)	²	Ρ	and over- estimating efficacy and safety	Trials	SM	OR (95% CI)	²	Ρ	
			3.95 [1.78, 8.74]		p = 0.0007	Poor*: (Xu and Xiong, 2008; Qu et al., 2012), Over*:no						
Neutropenia	4	FEM	0.20 [0.11, 0.38]	25%	p < 0.0001	Poor*: (Hu et al., 2008a; Xu and Xiong, 2008; He, 2011; Qu et al., 2012), Under*:no	No	No	No	No	No	Poor
Gastrointestinal reaction	5	FEM	0.34 [0.19, 0.63]	0%	p = 0.0006	Poor*: (Zhang, 2006; Hu et al., 2008a; Xu and Xiong, 2008; He, 2011; Qu et al., 2012), Under*:no	No	No	No	No	No	Poor
Thoracodynia	2	FEM	0.41 [0.13, 1.29]	0%	p = 0.13	Poor*: (Hu et al., 2008a; Qu et al., 2012), Under*:no	No	No	No	No	No	Poor
d. Matrine and ci	splatin ve	rsus cis	platin (six tri	als)								
Complete response	6	FEM	1.87 [1.26, 2.78]	0%	p = 0.002	Poor*:no, Over*: (Li and Yang, 2009)	5	FEM	1.73 [1.13, 2.66]	0%	p = 0.01	Robustness
Pleurodesis failure	6	FEM	0.27 [0.17, 0.44]	0%	P < 0.00001	Poor*:no, Under*: (Du et al., 2009; Li and Yang, 2009; He, 2010)	2	FEM	0.32 [0.16, 0.64]	0%	P = 0.001	Robustness
Pleural progression	2	FEM	0.29 [0.09, 0.95]	0%	p = 0.04	Poor*:no, Under*:no	2	FEM	0.29 [0.09, 0.95]	0%	p = 0.04	Robustness
Quality of life	2	FEM	2.93 [1.23, 6.96]	0%	p = 0.02	Poor*: (Wang et al., 2010; Ji, 2011), Over*:no	No	No	No	No	No	Poor
Myelosuppression	3	FEM	0.49 [0.21, 1.11]	43%	P = 0.09	Poor*: (He, 2010; Wang et al., 2010; Ji, 2011), Under*:no	No	No	No	No	No	Poor
Neutropenia	2	REM	0.10 [0.02, 0.61]	66%	P = 0.01	Poor*:no, Under*: (Li and Yang, 2009)	1	No	0.26 [0.05, 1.40]	No	P = 0.12	Poor
Gastrointestinal reaction	5	FEM	0.35 [0.19, 0.66]	0%	p = 0.001	Poor*: (He, 2010; Wang et al., 2010; Ji, 2011),Under*: (Li and Yang, 2009)	1	No	0.42 [0.07, 2.45]	No	p = 0.34	Poor
Hepatotoxicity	3	FEM	0.52 [0.23, 1.15]	0%	p = 0.10	Poor*: (He, 2010), Under*:no	2	FEM	0.40 [0.16, 1.04]	0%	p = 0.06	Robustness
Nephrotoxicity	4	FEM	0.56 [0.19, 1.59]	0%	p = 0.27	Poor*: (He, 2010; Wang et al., 2010), Under*:no	2	FEM	0.56 [0.19, 1.59]	0%	p = 0.27	Robustness
Thoracodynia	4	FEM	0.21 [0.10, 0.48]	0%	p = 0.0007	Poor*: (Wang et al., 2010; Ji, 2011), Under*:no	2	FEM	0.24 [0.09, 0.64]	0%	p = 0.004	Robustness
Fever	4	FEM	0.41 [0.16, 1.07]	0%	p = 0.07	Poor*: (He, 2010; Ji, 2011), Under*:no	2	FEM	0.57 [0.17, 1.86]	0%	p = 0.35	Robustness

Note: SM, statistical method; FEM, fixed-effects model, REM: random-effects model, OR, odds ratios; CI, confidence interval. High-risk trials (Poor*) had at least one domain considered as high risk of bias. Over*:over-estimating efficacy or Under*: under-estimating risk, trials with results which were significantly different and beneficial to *kushen* administration.

cisplatin alone, CKI perfusion acquired a similar QOL. There were 21 trials reporting QOL about perfusion with CKI, *kang'ai*, or matrine and cisplatin. No heterogeneity was found ($I^2 = 0\%$), and an FEM was used to pool the OR. Compared with cisplatin

alone, the results demonstrated that perfusion with CKI, *kang'ai* or matrine and cisplatin significantly improved QOL (3.60, 95% CI 2.84 to 4.56; 3.95, 95% CI 1.78 to 8.74 and 2.95, 95% CI 1.25–6.97).

TABLE 7 Results of trial sequential analysis.

Outcomes (trials, patients)	Relative risk reduction (RRR)	Incidence	l ²	D²	RIS	% of RIS attained	Z-curve passed conventional boundaries?	Z-curve passed TSA/ futility boundaries?	Z-curve passed RIS?
a. Compound kushe	en injection (CKI) v	ersus cisplatin	(Suppl	ement	ary Figi	ures S84–S86)			
Complete response (9 trials, n = 568)	25%	30%	0%	0%	1,081	52.54	No	Yes	No
Pleurodesis failure (9 trials, n = 568)	25%	36%	0%	0%	837	67.86	No	Yes	No
Pleural progression (6 trials, n = 348)	25%	16%	0%	0%	2,363	14.73	No	No	No
b. CKI and cisplatin	versus cisplatin (F	igure 6 and Su	pplem	entary	Figure	s S87–S90)			
Complete response (41 trials, n = 2,823)	25%	24%	0%	0%	1,447	195.09	Yes	Yes	Yes
Pleurodesis failure (41 trials, n = 2,823)	25%	42%	0%	0%	662	426.44	Yes	Yes	Yes
Pleural progression (13 trials, n = 956)	25%	19%	0%	0%	1929	49.56	Yes	Yes	No
Quality of life (19 trials, n = 1,352)	25%	44%	0%	0%	615	219.84	Yes	Yes	Yes
Myelosuppression (17 trials, n = 1,132)	20%	38%	0%	0%	1,224	92.48	Yes	Yes	No
Neutropenia (20 trials, n = 1,414)	20%	41%	0%	0%	1,088	130.00	Yes	Yes	Yes
Gastrointestinal reaction (31 trials, n = 2088)	20%	41%	19%	22%	1,394	149.78	Yes	Yes	Yes
Hepatotoxicity (22 trials, n = 1,661)	20%	11%	0%	0%	5,787	28.70	Yes	Yes	No
Nephrotoxicity (31 trials, n = 2,195)	20%	16%	0%	0%	3,780	58.07	Yes	Yes	No
Fever (15 trials, n = 954)	20%	10%	0%	0%	6,429	14.84	9	No	No
c. Kang'ai and cispl	atin versus cisplati	n (Supplementa	ary Fig	jures S	91, S92	.)			
Complete response (5 trials, n = 288)	25%	17%	0%	0%	2,201	13.08	Yes	No	No
Pleurodesis failure (6 trials, n = 334)	25%	42%	0%	0%	662	50.45	Yes	Yes	No
c. Matrine and cisp	latin versus cisplat	in (Supplement	ary Fig	gures S	593, S94	4)			
Complete response (6 trials, n = 471)	25%	30%	0%	0%	1,081	43.57	Yes	No	No
Pleurodesis failure (6 trials, n = 471)	25%	33%	0%	0%	948	49.68	Yes	Yes	No

Note: I², inconsistency; D², diversity; RIS, required information size; RRR, relative risk reduction.

3.7 Adverse events

Nine trials reported eight AEs about CKI alone (Table 3a; Supplementary Figures S14, S15, S18–S23). Cochran's χ^2 test and I^2 statistic only identified statistical heterogeneity for myelosuppression ($I^2 = 69\%$), gastrointestinal reaction ($I^2 =$ 67%), thoracodynia (I² = 69%), and fever (I² = 81%), and an REM or FEM was used to synthesize the OR. Compared with cisplatin alone, meta-analysis revealed that perfusion with CKI alone showed a low myelosuppression (0.02, 95% CI 0.00 to 0.15), leukopenia (0.10, 95% CI 0.03–0.35), gastrointestinal reaction (0.03, 95% CI 0.01 to 0.12), hepatotoxicity (0.09, 95%)

0.02-0.33), nephrotoxicity (0.09, 95% CI 0.03 to 0.29), and thoracodynia (0.15, 95% CI 0.04 to 0.48).

Ten AEs were reported by 38 trials about CKI and cisplatin (Table 3; Supplementary Figures S14–S23). We only identified minimal heterogeneity for gastrointestinal reaction ($I^2 = 8\%$), and an FEM was used. The results demonstrated that perfusion with CKI and cisplatin showed a low myelosuppression (0.34, 95% CI 0.24–0.47), neutropenia (0.35, 95% CI 0.26 to 0.46), gastrointestinal reaction (0.36, 95% CI 0.29–0.44), and hepatorenal toxicity (0.42, 95% CI 0.28 to 0.63 and 0.32, 95% CI 0.24–0.44) and fever (0.50, 95% CI 0.30–0.82).

Five trials reported six AEs to *kang'ai* and cisplatin (Table 3c; Supplementary Figures S15–S24). We only identified minimal heterogeneity leukopenia ($I^2 = 25\%$), and an FEM was used. The results revealed that *kang'ai* and cisplatin showed low neutropenia (OR = 0.20, 95% CI 0.11–0.38) and gastrointestinal reaction (OR = 0.34, 95% CI 0.19–0.63).

Five trials reported ten AEs to matrine and cisplatin (Table 3d; Supplementary Figures S14–S23). We only identified statistical heterogeneity for neutropenia ($I^2 = 66\%$) and minimal heterogeneity for myelosuppression ($I^2 = 43\%$), and an REM or FEM was used. The results revealed that matrine and cisplatin showed low neutropenia (0.10, 95% CI 0.02–0.61), gastrointestinal reaction (0.35, 95% CI 0.19–0.66), and thoracodynia (0.21, 95% CI 0.10–0.48). evaluation criteria, this treatment plan obtained significant improvement in the complete response and low pleurodesis failure. For patients with moderate-to-large effusion, KPS \geq 50 to \geq 70 scores, AST \geq 3 months, or primary treatment, it significantly improved clinical responses. Perfusion with CKI (20–50 mL/time, once per week, two to four times) and cisplatin (20–80 mg/time) could significantly improve the clinical responses. Moreover, perfusion with low-dosage cisplatin and CKI could obtain clinical responses like high-dosage. However, the univariate regression and multiple meta-regression analysis did not reveal any correlation between clinical response and each variable (Table 4; Supplementary Figures S25–S72).

3.9 Publication bias analysis

Only perfusion with CKI and cisplatin was included in more than ten trials (Table 5; Supplementary Figures S73–S83). The funnel plot and Egger's test did not identify publication bias for the complete response, pleurodesis failure, pleural progression, myelosuppression, neutropenia, hepatorenal toxicity, thoracodynia, and fever, which were objectively reported. Significant publication bias was identified for QOL (coefficient = -2.47, 95% CI -4.62 to -0.32) and gastrointestinal reaction (coefficient = -1.49, 5% CI -2.71 to -0.21); both results were under-estimated.

3.10 Sensitivity analysis

In targeting perfusion with CKI and cisplatin, subgroup analysis revealed that under different primary tumors, drainage, and In CKI versus cisplatin, 11 outcomes were pooled using metaanalysis. Before and after excluding the trials with high risk and

3.8 Subgroup analysis

TABLE 8 GRADE evidence profiles.

Outcomes (trials)	Quality	assessr	nent			Malignant pleural effusion		Clinical effectiveness and safety		Quality		
				iv		RSF	Sclerosants	Odds ratios (95% CI)	Absolute effect			
a. Compound kushen injection (CKI) versus cisplatin (DDP)												
Complete response (9)	Serious ^a	Not	Not	Not	None	86/ 281 (30.6%)	86/287 (30%)	1.07 (0.74–1.54)	14 more per 1,000 (from 59 fewer to 98 more)	⊕⊕⊕O		
Pleurodesis failure (9)	Serious ^a	Not	Not	Not	None	86/ 281 (30.6%)	104/287(36.2%)	0.77 (0.54 to 1.1)	58 fewer per 1,000 (from 128 fewer to 22 more)	⊕⊕⊕O		
Pleural progression (6)	Serious ^b	Not	Not	Not	None	16/ 175 (9.1%)	28/173 (16.2%)	0.51 (0.26 to 0.98)	72 fewer per 1,000 (from 3 fewer to 114 fewer)	⊕⊕⊕O		
Quality of life (6)	Very serious ^c	Serious ^g	Not	Not	None	144/ 207 (69.6%)	127/212 (59.9%)	1.52 (0.69–3.35)	95 more per 1,000 (from 91 fewer to 234 more)	⊕OOO		
Myelosuppression (6)	Sery serious ^c	serious ^g	Not	Not	None	3/ 193 (1.6%)	109/197 (55.3%)	0.02 (0 to 0.15)	529 fewer per 1,000 (from 397 fewer to 553 fewer)	⊕OOO		
Neutropenia (3)	Seriousª	Not ^d	Not	Serious ^e	none	2/88 (2.3%)	22/90 (24.4%)	0.1 (0.03–0.35)	213 fewer per 1,000 (from 143 fewer to 235 fewer)	⊕⊕OO		
Gastrointestinal reaction (9)	Very serious ^c	Serious ^g	Not	Not	None	10/ 281 (3.6%)	167/287 (58.2%)	0.03 (0.01 to 0.12)	542 fewer per 1,000 (from 439 fewer to 568 fewer)	⊕OOO		
Hepatotoxicity (6)	Seriousª	Not	Not	Not	None	1/ 201(0.5%)	22/197(11.2%)	0.09 (0.02 to 0.33)	100 fewer per 1,000 (from 72 fewer to 109 fewer)	⊕⊕⊕O		
Nephrotoxicity (6)	Seriousª	Not	Not	Not	None	1/ 221 (0.5%)	26/217 (12%)	0.09 (0.03 to 0.29)	108 fewer per 1,000 (from 82 fewer to 116 fewer)	⊕⊕⊕O		
Thoracodynia (6)	Very serious ^f	Serious ^g	Not	Not	None	17/ 159 (10.7%)	63/158 (39.9%)	0.14 (0.03 to 0.61)	314 fewer per 1,000 (from 111 fewer to 379 fewer)	⊕OOO		
Fever (5)	Serious ^a	Not ^d	Not	Not	None	29/ 159 (18.2%)	31/158 (19.6%)	0.94 (0.55–1.59)	10 fewer per 1,000 (from 78 fewer to 83 more)	⊕⊕⊕O		
Table 8b. Intrapleural administration with CKI and sclerosants												
CKI and Cisplatin versus cisplatin												
Complete response (41)	Serious ^b	Not	Not	Not	None	649/ 1,424 (45.6%)	342/ 1,399 (24.4%)	2.71 (2.3 to 3.19)	223 more per 1,000 (from 182 more to 263 more)	⊕⊕⊕O		
Pleurodesis failure (41)	Serious ^b	Not	Not	Not	None	235/ 1,424 (16.5%)	590/ 1,399 (42.2%)	0.26 (0.22 to 0.32)	262 fewer per 1,000 (from 233 fewer to 283 fewer)	⊕⊕⊕O		
Pleural progression (13)	Serious ^b	Not	Not	Not	None	25/ 481 (5.2%)	90/475 (18.9%)	0.22 (0.14–0.36)	141 fewer per 1,000 (from 112 fewer to 158 fewer)	⊕⊕⊕O		
Quality of life (19)	Very serious ^c	Not	Not	Not	Reporting bias ^h	497/ 682 (72.9%)	298/670 (44.5%)	3.56 (2.8 to 4.53)	296 more per 1,000 (from 247 more to 339 more)	⊕OOO		

TABLE 8 (Continued) GRADE evidence profiles.

Outcomes (trials)	Quality	assessr	nent			Malignant pleural effusion		Clinical effectiveness and safety		Quality	
				iv		RSF	Sclerosants	Odds ratios (95% CI)	Absolute effect		
Myelosuppression (17)	Serious ^a	Not	Not	Not	None	149/ 574 (26%)	229/558 (41%)	0.34 (0.24 to 0.47)	219 fewer per 1,000 (from 164 fewer to 267 fewer)	⊕⊕⊕O	
Neutropenia (20)	Serious ^a	Not	Not	Not	None	178/ 711 (25%)	291/703 (41.4%)	0.35 (0.27–0.46)	216 fewer per 1,000 (from 169 fewer to 254 fewer)	@@@ O	
Thrombocytopenia (5)	Very serious ^f	Not	Not	Not	None	7/ 215 (3.3%)	9/213 (4.2%)	0.76 (0.27–2.12)	10 fewer per 1,000 (from 30 fewer to 43 more)	⊕⊕OO	
Anemia (2)	Very serious ^c	Not	Not	Serious ^e	None	5/ 120 (4.2%)	7/118 (5.9%)	0.69 (0.21–2.24)	18 fewer per 1,000 (from 46 fewer to 64 more)	⊕ OOO	
Gastrointestinal reaction (31)	Serious ^a	Not ^d	Not	Not	None ⁸ⁱ	254/ 1,053 (24.1%)	440/ 1,035 (42.5%)	0.36 (0.29 to 0.44)	215 fewer per 1,000 (from 180 fewer to 249 fewer)	⊕⊕⊕О	
Hepatotoxicity (22)	Seriousª	Not	Not	Not	None	43/ 837 (5.1%)	87/824 (10.6%)	0.42 (0.28 to 0.63)	58 fewer per 1,000 (from 36 fewer to 74 fewer)	⊕⊕⊕O	
Nephrotoxicity (31)	Serious ^a	Not	Not	Not	None	75/ 1,105 (6.8%)	169/ 1,090 (15.5%)	0.32 (0.24 to 0.44)	100 fewer per 1,000 (from 80 fewer to 113 fewer)	⊕⊕⊕O	
Thoracodynia (11)	Very serious ^f	Not	Not	Not	None	49/ 402 (12.2%)	66/394 (16.8%)	0.65 (0.42-1)	52 fewer per 1,000 (from 90 fewer to 0 more)	⊕⊕OO	
Fever (15)	Serious ^a	Not	Not	Not	None	25/ 481 (5.2%)	47/473 (9.9%)	0.5 (0.3–0.82)	47 fewer per 1,000 (from 16 fewer to 67 fewer)	⊕⊕⊕O	
CKI and Nedaplatin	versus neo	daplatin									
Complete response (3)	Serious ^b	Not	Not	Serious ^e	None	44/ 129 (34.1%)	30/129 (23.3%)	1.72 (0.99–2.98)	110 more per 1,000 (from 2 fewer to 242 more)	⊕⊕OO	
Pleurodesis failure (3)	Serious ^b	Not	Not	Serious ^e	None	28/ 129 (21.7%)	58/129 (45%)	0.33 (0.19–0.57)	237 fewer per 1,000 (from 132 fewer to 315 fewer)	⊕⊕OO	
CKI and lobaplatin	versus loba	platin									
Complete response (2)	Serious ^b	Not ^d	Not	Serious ^e	None	26/ 55 (47.3%)	20/55 (36.4%)	1.57 (0.73–3.36)	109 more per 1,000 (from 69 fewer to 294 more)	⊕⊕OO	
Pleurodesis failure (2)	Serious ^b	Not	Not	Serious ^e	None	9/ 55 (16.4%)	18/55 (32.7%)	0.35 (0.13–0.93)	182 fewer per 1,000 (from 16 fewer to 268 fewer)	⊕⊕OO	
CKI and bleomycin versus bleomycin											
Complete response (3)	Serious ^b	Not	Not	Serious ^e	None	33/ 77 (42.9%)	16/69 (23.2%)	2.62 (1.23-5.58)	210 more per 1,000 (from 39 more to 396 more)	@@ OO	
Pleurodesis failure (3)	Serious ^b	Not	Not	Serious ^e	None	12/ 77 (15.6%)	30/69 (43.5%)	0.23 (0.11–0.52)	284 fewer per 1,000 (from 149 fewer to 357 fewer)	⊕⊕OO	
CKI and hydroxycamptothecin											

TABLE 8 (Continued) GRADE evidence profiles.

Outcomes (trials)	Quality assessment					Malignant pleural effusion		Clinical effectiveness and safety		Quality	
				iv		RSF	Sclerosants	Odds ratios (95% CI)	Absolute effect		
Complete response (2)	Serious ^b	Not	Not	Serious ^e	None	41/ 78 (52.6%)	21/78 (26.9%)	3.01 (1.54–5.87)	257 more per 1,000 (from 93 more to 415 more)	⊕⊕OO	
Pleurodesis failure (3)	Very serious ^f	Not	Not	Serious ^e	None	15/ 120 (12.5%)	33/118 (28%)	0.37 (0.19–0.72)	154 fewer per 1,000 (from 61 fewer to 211 fewer)	⊕OOO	
CKI and interleukin-2 versus interleukin-2											
Complete response (2)	Serious ^b	Not	Not	Serious ^e	None	29/ 56 (51.8%)	13/51 (25.5%)	3.21 (1.41–7.34)	268 more per 1,000 (from 71 more to 460 more)	⊕⊕OO	
Pleurodesis failure (2)	Serious ^b	Not	Not	Serious ^e	None	9/ 56 (16.1%)	22/51 (43.1%)	0.24 (0.1–0.6)	277 fewer per 1,000 (from 119 fewer to 361 fewer)	⊕⊕OO	
CKI and OK-432 ver	sus OK-432	2									
Complete response (2)	Serious ^b	Not	Not	Serious ^e	None	24/ 84 (28.6%)	17/84 (20.2%)	1.58 (0.77–3.21)	84 more per 1,000 (from 39 fewer to 246 more)	⊕⊕OO	
Pleurodesis failure (2)	Serious ^b	Not	Not	Serious ^e	None	14/ 84 (16.7%)	32/84 (38.1%)	0.32 (0.16-0.67)	216 fewer per 1,000 (from 89 fewer to 291 fewer)	⊕⊕OO	
c. Intrapleural admi	nistration v	with <i>kang</i>	<i>'ai</i> and	l cisplatin	versus cispl	atin					
Complete response (5)	Very serious ^f	Not	Not	Not	None	56/ 144 (38.9%)	25/144 (17.4%)	3.04 (1.76–5.26)	216 more per 1,000 (from 96 more to 351 more)	⊕⊕OO	
Pleurodesis failure (6)	Very serious ^f	Not	Not	Not	None	26/ 168 (15.5%)	69/166 (41.6%)	0.23 (0.14-0.41)	275 fewer per 1,000 (from 190 fewer to 325 fewer)	⊕⊕OO	
Quality of life (2)	Very serious ^c	Not	Not	Serious ^e	None	34/ 57 (59.6%)	15/55 (27.3%)	3.95 (1.78-8.74)	324 more per 1,000 (from 128 more to 493 more)	⊕OOO	
Neutropenia (4)	Very serious ^c	Serious ^g	Not	Serious ^e	None	31/ 113 (27.4%)	67/110 (60.9%)	0.2 (0.11-0.38)	372 fewer per 1,000 (from 237 fewer to 463 fewer)	⊕OOO	
Gastrointestinal reaction (5)	Very serious ^c	Not	Not	Serious ^e	None	42/ 133 (31.6%)	65/131 (49.6%)	0.34 (0.19–0.63)	245 fewer per 1,000 (from 113 fewer to 339 fewer)	⊕OOO	
Thoracodynia (2)	Very serious ^c	Not	Not	Serious ^e	None	5/60 (8.3%)	10/57 (17.5%)	0.41 (0.13–1.29)	95 fewer per 1,000 (from 149 fewer to 40 more)	⊕OOO	
d. Intrapleural administration with matrine and cisplatin versus cisplatin											
Complete response (6)	Serious ^b	Not	Not	Not	None	106/ 249 (42.6%)	66/222 (29.7%)	1.87 (1.26–2.78)	144 more per 1,000 (from 50 more to 243 more)	⊕⊕⊕O	
Pleurodesis failure (6)	Serious ^b	Not	Not	Not	None	32/ 249 (12.9%)	74/222 (33.3%)	0.27 (0.17–0.44)	214 fewer per 1,000 (from 153 fewer to 255 fewer)	⊕⊕⊕O	
Pleural progression (2)	Serious ^b	Not	Not	Serious ^e	None	4/ 122 (3.3%)	11/106 (10.4%)	0.29 (0.09–0.95)	71 fewer per 1,000 (from 5 fewer to 93 fewer)	⊕⊕OO	

TABLE 8 (Continued) GRADE evidence profiles.

Outcomes (trials)	Quality assessment					Malignan effusion	t pleural	Clinical effectiveness and safety		Quality
				iv		RSF	Sclerosants	Odds ratios (95% CI)	Absolute effect	
Quality of life (2)	Very serious ^c	Not	Not	Serious ^e	None	32/ 50 (64%)	20/50 (40%)	2.95 (1.25-6.97)	263 more per 1,000 (from 55 more to 423 more)	⊕OOO
Myelosuppression (3)	Very serious ^c	Serious ^g	Not	Serious ^e	None	14/ 97 (14.4%)	19/86 (22.1%)	0.49 (0.21–1.11)	99 fewer per 1,000 (from 165 fewer to 18 more)	⊕OOO
Neutropenia (2)	Serious ^b	Serious ^g	Not	Serious ^e	None	7/70 (10%)	31/66 (47%)	0.1 (0.02–0.61)	388 fewer per 1,000 (from 119 fewer to 452 fewer)	⊕OOO
Gastrointestinal reaction (5)	Very serious ^f	Not	Not	No	None	36/ 167 (21.6%)	55/152 (36.2%)	0.35 (0.19–0.66)	196 fewer per 1,000 (from 90 fewer to 265 fewer)	⊕⊕OO
Hepatotoxicity (3)	Serious ^a	Not	Not	Serious ^e	None	15/ 117 (12.8%)	22/102 (21.6%)	0.52 (0.23–1.15)	91 fewer per 1,000 (from 156 fewer to 25 more)	⊕⊕OO
Nephrotoxicity (4)	Serious ^a	Not	Not	Serious ^e	None	7/ 137 (5.1%)	11/122 (9%)	0.56 (0.19–1.59)	38 fewer per 1,000 (from 72 fewer to 46 more)	⊕⊕OO
Thoracodynia (4)	Serious ^a	Not	Not	Serious ^e	None	9/ 120 (7.5%)	31/116 (26.7%)	0.21 (0.1–0.48)	196 fewer per 1,000 (from 118 fewer to 232 fewer)	⊕⊕OO
Fever (4)	Seriousª	Not	Not	Serious ^e	None	7/ 147 (4.8%)	15/132 (11.4%)	0.41 (0.16–1.07)	64 fewer per 1,000 (from 94 fewer to 7 more)	⊕⊕ОО

Note: i: risk of bias; ii: inconsistency; iii: indirectness; iv: imprecision; v: publication bias; OR: odds ratios. RSF: Radix Sophorae flavescentis. Not: not serious.

^aMost trials had some concerns, and with high risk, sensitivity analysis showed good robustness, and evidence was rated down by only one level.

^bAll trials had some concerns, and evidence was rated down by only one level.

"All trials had high risk, and evidence was rated down by two levels.

^dHeterogeneity was found, sensitivity analysis showed good robustness, and not rated down.

^eSample size for indicator was fewer than 300 cases, and evidence was rated down by one level.

⁶Most trials had some concerns, and with high risk, sensitivity analysis showed poor robustness, and evidence was rated down by two levels.

^gHeterogeneity was found, sensitivity analysis showed poor robustness, and evidence was rated down by one level.

^hPublication bias was found, excluded the under- or over-estimated studies and high risk studies, sensitivity analysis showed poor robustness, and evidence was rated down by one level. ⁱPublication bias was found, excluded the under- or over-estimated studies and high risk studies, sensitivity analysis showed good robustness, and was not downgraded.

over-estimating efficacy/safety, the OR of QOL, myelosuppression, gastrointestinal reaction, and thoracodynia showed poor robustness, and the others had good robustness. In perfusion with CKI and cisplatin, 13 outcomes were pooled, and QOL, thrombocytopenia and anemia showed poor robustness. In CKI and nedaplatin, lobaplatin, bleomycin, hydroxycamptothecin, interleukin-2, or OK-432, 12 outcomes were pooled, and only the complete response of CKI and nedaplatin, lobaplatin, or OK-432 showed good robustness. In *kang'ai* and cisplatin, six outcomes were pooled, showing poor robustness. In matrine and cisplatin, 11 outcomes were pooled, and the QOL, myelosuppression, neutropenia, and gastrointestinal reaction showed poor robustness (Table 6).

3.11 Trial sequential analyses

Since the trials were limited, we only assessed the RIS for clinical responses in CKI versus cisplatin. The TSA identified firm information

size for supporting a similar complete response and pleurodesis failure between CKI and cisplatin, and no reliable information for pleural progression. We further assessed the RIS for clinical responses, QOL, and AEs in perfusion with CKI and cisplatin. Further analysis identified sufficient and conclusive information sizes for complete response, pleurodesis failure, QOL, neutropenia, and gastrointestinal reaction, and firm information for pleural progression, myelosuppression, and hepatorenal toxicity. Finally, we only assessed the RIS for clinical responses in *kang'ai* or matrine and cisplatin. The analysis identified firm information sizes for pleurodesis failure in both treatments and no reliable information for complete response (Table.7; Figure 6; Supplementary Figures S84–S94).

3.12 Evidence quality

We applied a revised GRADE approach to identify the evidence quality as "high", "moderate", "low", and "very low". In CKI versus

cisplatin, 11 results were pooled. Clinical responses, hepatorenal toxicity, and fever were summarized as moderate quality, while other five results were low to very low (Table 8a). In perfusion with CKI and cisplatin, 13 results were pooled. Clinical responses,

myelosuppression, neutropenia, gastrointestinal reaction, hepatorenal toxicity, and fever were summarized as moderate, while the other four were low to very low. In CKI and nedaplatin, lobaplatin, bleomycin, hydroxycamptothecin, interleukin-2, or OK-432, 12 results were pooled. The clinical responses were very low to low (Table 8b). In *kang'ai* and cisplatin, six results were pooled at low to very low (Table 8c). In matrine and cisplatin, 11 results were pooled. The complete response and pleurodesis failure were summarized as moderate, with the other nine results as low to very low (Table 8d).

4 Discussion

After integrating previous six SRs/meta-analyses (Tian et al., 2010; Tang et al., 2014; Biaoxue et al., 2015; Xu et al., 2015; Yang et al., 2016; Wu et al., 2018) and four network meta-analyses (Yang et al., 2017; Li B. et al., 2019; Li, 2022; Xu et al., 2022), we collected 83 RCTs for analysis and supplemented 39 trials in previous studies. We found three kushen preparations-CKI, kang'ai and matrine injection-which were administrated for controlling MPE through intrapleural perfusion. For kushen preparation alone, nine trials evaluated perfusion with CKI versus cisplatin alone. CKI mainly contains matrine, oxymatrine, and sophoridine, which have significant anti-tumor activity, regulate tumor microenvironment, and downregulate tumor-associated inflammation (Guo et al., 2015; Ma et al., 2016; Cao and He, 2020; Chen et al., 2021; Chen et al., 2022; Liu et al., 2023). The meta-analysis results demonstrated that perfusion with CKI alone showed clinical responses similar to cisplatin and a lower hepatorenal toxicity (Figure 7). These results were of moderate quality following the revised GRADE approach (Wang et al., 2022; Wang C. Q. et al., 2023), and the TSA found firm information sizes for supporting them. CKI perfusion showed low hematotoxicity, gastrointestinal reaction, and thoracodynia of low to very low quality. Zhang Z. et al. (2015), Zhong et al. (2015), Zhu and Hou (2021), Fan et al. (2022); Feng and Shi (2023) reported that CKI perfusion might prevent pleural effusion recurrence by downregulating the vascular endothelial cell growth factor and reducing angiogenesis. In all, these results suggest that CKI may serve as a new palliative intervention for MPE. Clinically, CKI, kang'ai, and matrine injections have been widely used as an adjuvant therapy for various solid tumors (Ma et al., 2016; Wang et al., 2016; Li H. et al., 2019; Liu et al., 2022; Liu et al., 2023). Apparently, this analysis further revealed a new therapeutic value and clinical application population of CKI. Unfortunately, no evidence supports the possibility of using kang'ai and matrine alone to treat MPE, which requires new trials to investigate.

Clinically, CKI is often combined with other sclerosants to control MPE through intrapleural perfusion. We found that CKI combined with seven chemical drugs or three BRMs to build ten homogenous treatment plans. The clinical values of perfusion with CKI and cisplatin have been reported by 41 trials. Compared with cisplatin alone, the results of meta-analyses demonstrated that perfusion with CKI and cisplatin significantly improved complete response and QOL with a low pleurodesis failure and pleural progression, and showed a low incidence rate of hematotoxicity, gastrointestinal reaction, and hepatorenal toxicity. Excluding QOL, these results were moderate quality following the revised GRADE approach (Wang et al., 2022; Wang C. Q. et al., 2023). The results of pleural progression, myelosuppression, and hepatorenal toxicity had firm information in support, while other results obtained sufficient and conclusive information support. In all, these results demonstrate that CKI infusion can improve clinical responses and QOL and reduce ADRs. Like high dosage, the subgroup analysis revealed that CKI combined with low-dosage cisplatin also obtained similar clinical responses. These results indicate that CKI and cisplatin have cooperative effect, and CKI may reduce cisplatin dosage while ensuring similar clinical benefits. Previous SR/meta-analyses have reported that as important BRMs, staphylococcal enterotoxin C (Jiang et al., 2022) and mannatide (Zhang et al., 2011; Chen et al., 2013) perfusion showed a high risk of fever. In this analysis, we found that perfusion with CKI might reduce the risk of fever. This finding may be the unique value of CKI in controlling MPE. The results of meta-analysis of other nine treatment plans further revealed that perfusion with CKI and lobaplatin, nedaplatin, bleomycin, hydroxycamptothecin, interleukin-2, or OK-432 might also improve clinical responses. However, the results had very low to low quality and lacked sufficient or firm information sizes in support. Comprehensively examining both information sizes and methodological quality, we conclude that among ten treatment plans, perfusion with CKI and cisplatin may be an optimal treatment plan for MPE, which shows significant improvement in clinical responses and low incidence of ADRs, especially fever (Figure 7). Further subgroup analysis revealed that perfusion with CKI (20-50 mL each time, once a week lasting two to four times) and cisplatin (20-80 mg each time) could obtain ideal clinical responses for MPE inpatients with moderate to large effusion, KPS \geq 50 to \geq 70 scores, AST \geq 3 months, or primary treatment. Furthermore, the primary tumor, drainages or evaluation criteria showed no negative effect on clinical responses. These results suggest that inpatients with moderate-to-large effusion, KPS \geq 50 to \geq 70 scores, AST \geq 3 months, or primary treatment are a possible suitable population. The CKI with 20 to 50 ml each time, once a week lasting two to four times and cisplatin with 20 to 80 mg each perfusion may be an optimal usage for obtaining desired responses and safety (Figure 7). Unfortunately, both metaregression analyses did not find any correlation. These results require new evidence for confirmation.

Matrine and kang'ai are also important kushen preparations. Kang'ai mainly contains Astragalus polysaccharides, astragalosides, ginsenosides, ginseng polysaccharides, and oxymatrine (Wan et al., 2018; Sun et al., 2021). Six trials each evaluated the clinical benefit of perfusion with kang'ai or matrine and cisplatin (Zhang, 2006; Hu J. et al., 2008; Xu and Xiong, 2008; He, 2011; Qu et al., 2012; Wang, 2016). The meta-analysis results showed that perfusion with kang'ai and cisplatin significantly improved the complete response and QOL with low pleurodesis failure. Matrine is a principal active ingredient of CKI and kang'ai. The results further demonstrated that matrine and cisplatin could improve complete response and QOL with low pleurodesis failure and pleural progression. These results provide a theoretical basis for the clinical value of kang'ai or CKI in MPE. Perfusion with kang'ai or matrine and cisplatin all showed low neutropenia and gastrointestinal reaction. However, only the pleurodesis failure of both treatment plans had a firm quantity of information in support, and no reliable information indicated that both can improve the complete response. For matrine and cisplatin, the complete response and pleurodesis failure had moderate quality, while other results were low to very low. Overall, these results suggest that kang'ai or matrine may be potentially valuable

alternative interventions which may improve clinical responses with firm information size (Figure 7). Further rigorous trials will be needed to reveal their clinical significance, suitable population, and optimal usage.

Kushen preparations alone or plus chemical drugs or BRMs form rich treatment plans. To validate their therapeutic value for MPE, we applied clustering SR/meta-analysis, successfully addressing clinical heterogeneity and revealing their clinical efficacy and safety based on homogeneous treatment units. First, we found that CKI may serve as a new palliative intervention for MPE. This analysis confirmed the clinical possibility of using CKI perfusion to control MPE and further revealed its new therapeutic value and clinical application population. Second, among ten treatment plans, we found that perfusion with CKI and cisplatin may be an optimal treatment plan for MPE. Subgroup analysis results further provide a suitable population and optimal use for perfusion with CKI and cisplatin treating MPE. Third, we found that kang'ai or matrine may be potential valuable alternative interventions for MPE. In all, this analysis confirms and reveals the therapeutic value and clinical application population for using kushen preparations to control MPE. These findings will be beneficial for developing rational medication strategies based on kushen preparations to improve clinical benefits and reduce ADRs and medication costs in MPE.

There were some limitations to this new SR/meta-analysis. This analysis customized its retrieval strategies and retrieved both Chinese and English databases, which may exhibit potential bias risk. Among 14 treatment plans, most-like perfusion with CKI, kang'ai, or matrine and other sclerosants-only had limited trials reporting their clinical benefit. In particular, only single trials reported the clinical benefit between CKI and interleukin-2 (Huang, 2013) or mitomycin (Zhang, 2011), as well as perfusion with CKI and carboplatin (He and Xie, 2010), mitomycin (Zhang et al., 2013), or corynebacterium parvum (Huang et al., 2012). Most treatment plans lacked reliable information support, and their results were low to very low quality. Obviously, their clinical effectiveness, safety, indications, and optimal usage still require more high-quality evidence and sufficient information to confirm them. Regarding methodological quality, most studies had some concerns at overall bias about clinical response and overall survival. For both outcomes, D1 and D2 had some concerns.

QOL about perfusion with CKI alone were reported by 29 studies, and CKI, kang'ai, or matrine and cisplatin. All had high risk of overall bias, and D4 was a high-risk domain. AEs were reported by 57 studies. High risk of overall bias was evident in 35 studies, with D4 and D5 as high-risk domains. Such findings suggest that strengthening random allocation, concealment, and blinding methods, and emphasizing the measurement and complete report of indicators will become key issues for improving methodological quality in future trials. Regarding PICO features, most studies did not clearly report patient characteristics such as pleural fluid volume, KPS, AST, or treatment history. Most studies failed to clearly report the TRAEs. Six studies reported overall survival (Cui et al., 2008; Chen, 2010; He, 2011; Han, 2013; Zhang S. et al., 2015). Only single study reported that perfusion with CKI and cisplatin (Chen et al., 2011; Han, 2013) or nedaplatin (Zhang S. et al., 2015) and matrine and carboplatin (Cui et al., 2008) might improve overall survival or progression-free survival. Additionally, no evidence reported recurrence and hospitalization time or conflicts of interest. Such shortcomings of PICO are important issues for design and quality improvement in future trials.

5 Conclusion

Current moderate evidence demonstrates that CKI may be an effective palliative intervention for controlling MPE. Perfusion with CKI and cisplatin may be an optimal treatment plan which can improve clinical responses and QOL and reduce ADRs, especially fever. This analysis further confirms a suitable population and optimal usage for CKI and cisplatin perfusion. CKI, *kang'ai*, or matrine and chemical drugs or BRMs formed rich treatment plans for MPE. More rigorous trials with low-risk and standardized PICOs will be needed to reveal their clinical significance, suitable populations, and optimal usage.

Data availability statement

The original contributions presented in the study are included in the article/Supplementary Material; further inquiries can be directed to the corresponding author.

Author contributions

YZ: writing – original draft, data curation, formal analysis, resources, and software. ZX: writing – original draft, conceptualization, funding acquisition, methodology, project administration, supervision, and writing – review and editing. HL: data curation, resources, software, formal analysis, and writing – review and editing. D-CC: data curation, methodology, software, resources, and writing – review and editing. Y-QL: data curation, resources, software, and writing – review and editing. JX: methodology, software, and writing – review and editing. FL: formal analysis, software, and writing – review and editing. JH: formal analysis, software, and writing – review and editing. T-YF: writing – review and editing. JZ: writing – review and editing. XX: writing – review and editing. J-HF: writing – review and editing.

Funding

The authors declare that financial support was received for the research and/or publication of this article. This work was funded by a Guizhou Provincial Science and Technology Program [Qian Kehe Zhicheng(2025), Yiban 056], a special fund for academic seedlings training and innovation at Zunyi Medical College [Qian Kehe Pingtai Rencai No. (2017) 5733-034], a special fund for science and technology research into traditional Chinese and national medicine in Guizhou (No QZYY 2017-084), and a high-level innovative talent program in Guizhou (No. fzc 120171001).

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The authors declare that no generative AI was used in the creation of this manuscript.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations,

References

Biaoxue, R., Shuxia, M., Wenlong, G., and Shuanying, Y. (2015). Thoracic perfusion of matrine as an adjuvant treatment improves the control of the malignant pleural effusions. *World J. Surg. Oncol.* 13, 329. doi:10.1186/s12957-015-0729-9

Bibby, A. C., Dorn, P., Psallidas, I., Porcel, J. M., Janssen, J., Froudarakis, M., et al. (2018). ERS/EACTS statement on the management of malignant pleural effusions. *Eur. Respir. J.* 52, 1800349. doi:10.1183/13993003.00349-2018

Cai, H., and Wang, Q. (2019). Effect of Compound Kushen Injection on elderly patients with lung cancer complicated with malignant pleural effusion. *Contemp. Med. Symp.* 17, 161–162.

Cao, X., and He, Q. (2020). Anti-tumor activities of bioactive phytochemicals in Sophora flavescens for breast cancer. *Cancer Manag. Res.* 12, 1457–1467. doi:10.2147/CMAR.S243127

Chen, B., Xu, X.-M., Yu, T.-T., and Yang, J. (2013). Meta analysis of Lifein combined with Cisplatin in chest catheterization perfusion chemotheapy for malignant pleural effusion. *Med J Wuhan Univ* 34, 755–761. doi:10.14188/j.1671-8852.2013.05.039

Chen, F., and Liao, D. (2012). Clinical observation of compound Kushen injection combined with cisplatin on malignant pleural effusion. *World Health Dig.* 9, 49–50. doi:10.3969/j.issn.1672-5085.2012.42.039

Chen, F., Pan, Y., Xu, J., Liu, B., and Song, H. (2022). Research progress of matrine's anticancer activity and its molecular mechanism. *J. Ethnopharmacol.* 286, 114914. doi:10.1016/j.jep.2021.114914

Chen, L. (2013). Effect of compound matrine injection on malignant pleural effusion. Chin. J. New Drugs 22, 2069–2070+2074.

Chen, M., and He, B. (2003). Treatment of carcinomatous hydrothorax with small tube for closing drainage and infusing Bieomycini Hydrochkuridum and Yanshu. J. Minim. Invasive Med. 22, 457–458. doi:10.3969/j.issn.1673-6575.2003.04.011

Chen, M. H., Gu, Y. Y., Zhang, A. L., Sze, D. M., Mo, S. L., and May, B. H. (2021). Biological effects and mechanisms of matrine and other constituents of Sophora flavescens in colorectal cancer. *Pharmacol. Res.* 171, 105778. doi:10.1016/j.phrs.2021.105778

Chen, X. (2010). Yanshu injection in the treatment of malignant pleural effusion -28 cases study. J. Jiangxi TCM 41, 41-42. doi:10.3969/j.issn.0411-9584.2010.01.019

Chen, Y. (2009). Kangai injection combined with carboplatin in the treatment of malignant pleural effusion. *Heilongjiang J. TCM* 38, 27–28.

Chen, Y., Li, Q., Xiang, S., and Yang, G. (2011). Compound Kushen Injection combined with cisplatin for malignant pleural effusion: A clinical study. *Eval. Anal. Drug-Use Hosp. China* 11, 366–367. doi:10.14009/j.issn.1672-2124.2011.04.016

Chen, Y., Luo, Y., and Qin, Z. (2014). Effect of compound Kushen injection combined with cisplatin on malignant pleural effusion in aged patients. *Res. Integr. Tradit. Chin. West Med.* 6, 196–197+199. doi:10.3969/j.issn.1674-4616.2014.04.011

Cui, A., Du, C., Yan, J., and Zhou, Q. (2008). Clinical study on the treatment of malignant pleural effusion by pleural catheter drainage and infusion of oxymatrine and carboplatin. *J. Baotou Med.* 32, 65–66. doi:10.3969/j.issn.1007-3507.2008.02.001

Deng, M., Wei, W., and Wang, Y. (2008). Observation on efficacy of Yanshu injection combined cisplatin in treating malignant hydrothorax of 40 cases. *Chin. Med. Mod. Dist. Edu China* 6, 270. doi:10.3969/j.issn.1672-2779.2008.03.048

Ding, L., Cui, C., and Xin, B. (2009). The clinical observation of compound Kushen injection combined with cisplatin in the treatment of malignant pleural effusion by intrathoracic injection. *J. Mod. Oncol.* 17, 1274–1275. doi:10.3969/j.issn.1672-4992. 2009.07.026

Dipper, A., Jones, H. E., Bhatnagar, R., Preston, N. J., Maskell, N., and Clive, A. O. (2020). Interventions for the management of malignant pleural effusions: a network meta-analysis. *Cochrane Database Syst. Rev.* 2020. doi:10.1002/14651858.cd010529. pub3

Du, C., Wang, A., and Yan, S. (2009). Comparison of pleural injection of oxymatrine combined with cisplatin in the treatment of malignant pleural effusion. *J. Dis. Monit. Control* 3, 472–473.

or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphar.2025.1519794/ full#supplementary-material

Fan, Q. Q., She, G. M., Wei, J., Li, Z. Q., Chen, M. L., Dong, Y., et al. (2022). Antitumor and analgesic activity evaluation and mechanism of Compound Kushen Injection. *Zhongguo Zhong Yao Za Zhi* 47, 2712–2720. doi:10.19540/j.cnki.cjcmm. 20211129.701

Feller-Kopman, D. J., Reddy, C. B., Decamp, M. M., Diekemper, R. L., Gould, M. K., Henry, T., et al. (2018). Management of malignant pleural effusions. An official ATS/ STS/STR clinical practice guideline. *Am. J. Respir. Crit. Care Med.* 198, 839–849. doi:10. 1164/rccm.201807-1415ST

Feng, F., and Shi, X. (2023). Clinical study of Compound Kushen Injection combined with cisplatin in treatment of non-small cell lung cancer malignant pleural effusion. *Drugs and Clin.* 38, 1717–1721. doi:10.7501/j.issn.1674-5515.2023.07.028

Gayen, S. (2022). Malignant pleural effusion: presentation, diagnosis, and management. Am. J. Med. 135, 1188-1192. doi:10.1016/j.amjmed.2022.04.017

Guo, L., Luo, D., and Yang, S. (2013). Observation on efficacy of compound Kushen injection combined with cisplatin in the treatment of malignant pleural fluid. *China Med. Her.* 10, 79–81. doi:10.3969/j.issn.1673-7210.2013.25.029

Guo, Y. M., Huang, Y. X., Shen, H. H., Sang, X. X., Ma, X., Zhao, Y. L., et al. (2015). Efficacy of compound kushen injection in relieving cancer-related pain: a systematic review and meta-analysis. *Evid. Based Complement. Altern. Med.* 2015, 840742. doi:10. 1155/2015/840742

Guyatt, G. H., Oxman, A. D., Vist, G. E., Kunz, R., Falck-Ytter, Y., Alonso-Coello, P., et al. (2008). GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *Bmj* 336, 924–926. doi:10.1136/bmj.39489.470347.AD

Guyot, P., Ades, A. E., Ouwens, M. J., and Welton, N. J. (2012). Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves. *BMC Med. Res. Methodol.* 12, 9. doi:10.1186/1471-2288-12-9

Han, S. (2013). Effect of compound Kushen injection combined with cisplatin pleural perfusion on malignant pleural effusion. *J. Clin. Res.* 30, 1191–1193. doi:10.3969/j.issn. 1671-7171.2013.06.055

Han, Z., Tian, M., Chen, X., and Shi, F. (2012). Effect of closed drainage combined with compound Kushen injection and cisplatin on malignant pleural effusion of lung cancer. *Zhejiang J. ITCWM* 22, 524–526. doi:10.3969/j.issn.1005-4561.2012.07.011

Hao, J., and Liang, K. (2007). Continuous catheter drainage combined with Yanshu injection and interleukin-2 intrapleural injection in the treatment of malignant pleural effusion. *Chin. J. IMCCD* 5, 1131–1132. doi:10.3969/j.issn.1672-1349.2007.11.051

Hassan, M., Harriss, E., Mercer, R. M., and Rahman, N. M. (2021). Survival and pleurodesis outcome in patients with malignant pleural effusion - a systematic review. *Pleura Perit.* 6, 1–5. doi:10.1515/pp-2020-0147

He, J. (2011). Clinical study of Kangai injection combined with cisplatin in treatment of malignant pleural effusion. *Med. Inf.* 24, 3756–3757. doi:10.3969/j.issn.1006-1959. 2011.08.280

He, L., Chen, Z., Wen, S., Ren, D., and Chen, H. (2010). Compound Kushen Injection as a local therapy for patients with advanced lung cancer associated with malignant pleural effusion. *Eval. Anal. Drug-Use Hosp. China* 10, 1025–1027. doi:10.14009/j.issn. 1672-2124.2010.11.012

He, P., Zeng, S., Xue, Z., Wang, Y., and Pan, B. (2009). Effect of hydroxycamptothecin and Yanshu injection by intrapleural infusion in treatment of 30 cases malignant pleural effusion. *J. Mod. Clin. Med.* 35, 261–262. doi:10.3969/j.issn.1673-1557.2009.04.009

He, R., and Xie, X. (2010). Effect of compound Kushen injection combined with carboplatin on malignant pleural effusion. *J. Shandong Med.* 50, 27. doi:10.3969/j.issn. 1002-266X.2010.33.017

He, X., Fang, J., Huang, L., Wang, J., and Huang, X. (2015). Sophora flavescens Ait.: traditional usage, phytochemistry and pharmacology of an important traditional Chinese medicine. *J. Ethnopharmacol.* 172, 10–29. doi:10.1016/j.jep.2015.06.010

He, Y. (2010). Clinical observation of cisplatin combined with oxymatrine in the treatment of malignant pleural effusion. *Med. Forum* 14, 415–416. doi:10.3969/j.issn. 1672-1721.2010.13.018

Higgins, J., Thomas, J., Chandler, J., Cumpston, M. L. T., Page, Mj, and Welch, V. A. (2021). Cochrane handbook for systematic reviews of interventions version 6.2 (updated february 2021). *Cochrane*. Available online at: www.training.cochrane.org/ handbook.

Hu, J., Li, Q., and Xie, Y. (2008a). Intrathoracic administration of Kushenhuangqi injection combined with cisplatin in treatment of malignant pleural efusion. *Chin. J. Gen. Pract.* 7, 561–563. doi:10.3760/cma.j.issn.1671-7368.2008.08.027

Hu, Q., Wang, H., and Pan, J. (2008b). Effect of Yanshu injection on malignant pleural effusion of advanced lung cancer. *J. Chengdu Univ. TCM* 31, 15–17. doi:10.3969/j.issn. 1004-0668.2008.01.006

Huang, H., He, Z., Li, X., and Wang, R. (2017). Analysis of curative effect by compound Kushen injection combined with cisplatin through intrapleural infusion in the treatment of malignant pleural effusion. *Chin. J. Mod. Drug Appl.* 11, 29–31. doi:10.14164/j.cnki.cn11-5581/r.2017.07.012

Huang, L. (2021). Clinical effect of compound sophora flavescens injection in palliative treatment of advanced lung cancer patients with malignant pleural effusion. *Health Manag.*, 71–72.

Huang, X. (2007). Clinical observation on treating pleural effusion of lung cancer with Yan-shu inject plus cisplatin J. Pract. Chin. Mod. Med. 20, 1106–1106.

Huang, X. (2013). Clinical study on intrapleural compound matrine injection in treating malignant hepatocellular carcinoma with bloody pleural effusion. *Acta Med. Sin.* 26, 692-693. doi:10.3969/j.issn.1008-2409.2013.04.010

Huang, Z., Zhang, H., Zhang, K., and Gao, L. (2012). The clinical research of compound Kushen injection and corynebacterium parvum as a local therapy for patients with advanced lung cancer associated with malignant pleural effusion. *J. Clin. Pulm. Med.* 17, 497–498. doi:10.3969/j.issn.1009-6663.2012.03.056

Ji, F., Shen, N., and Jin, H. (2012). Clinical observation of 82 cases of malignant pleural effusion treated with cisplatin combined with matrine. *J. Shandong Med.* 52, 92–93. doi:10.3969/j.issn.1002-266X.2012.29.039

Ji, H. (2011). Clinical study of 30 cases of malignant pleural effusion treated by cisplatin combined with oxymatrine. *China Prac. Med.* 6, 155–156. doi:10.3969/j.issn. 1673-7555.2011.29.121

Jiang, H., Yang, X. M., Wang, C. Q., Xu, J., Huang, J., Feng, J. H., et al. (2022). Intrapleural perfusion with staphylococcal enterotoxin C for malignant pleural effusion: a clustered systematic review and meta-analysis. *Front. Med. (Lausanne)* 9, 816973. doi:10.3389/fmed.2022.816973

Jiang, J. (2014). Clinical effect of compound Kushen Injection combined with cisplatin in treatment of malignant pleural effusion. *China Mod. Med.* 21, 113–115.

Jiang, T., and Li, J. (2020). Compound Sophora flavescens injection and cisplatin in the treatment of malignant pleural effusion: a clinical study. *Med. and Health* 11, 1–2.

Jie Wang, X., Miao, K., Luo, Y., Li, R., Shou, T., Wang, P., et al. (2018). Randomized controlled trial of endostar combined with cisplatin/pemetrexed chemotherapy for elderly patients with advanced malignant pleural effusion of lung adenocarcinoma. *J. buon* 23, 92–97.

Keeratichananont, W., Limthon, T., and Keeratichananont, S. (2015). Efficacy and safety profile of autologous blood versus tetracycline pleurodesis for malignant pleural effusion. *Ther. Adv. Respir. Dis.* 9, 42–48. doi:10.1177/1753465815570307

Kessinger, A., and Wigton, R. S. (1987). Intracavitary bleomycin and tetracycline in the management of malignant pleural effusions: a randomized study. *J. Surg. Oncol.* 36, 81–83. doi:10.1002/jso.2930360202

Li, B., Yuan, Q., Wang, Y., Shi, M., Ren, X., and Dong, Y. (2019a). Network metaanalysis of 8 traditional Chinese medicine injections combined with cisplatin for malignant pleural effusion. *Chin. Hosp. Pharm. J.* 39, 1052–1057. doi:10.13286/j. cnki.chinhosppharmacyj.2019.10.13

Li, H., Ji, Y., Zhang, S., Gao, Z., Hu, C., Jiang, R., et al. (2019b). Kangai injection combined with platinum-based chemotherapy for the treatment of stage III/IV non-small cell lung cancer: a meta-analysis and systematic review of 35 randomized controlled trials. *J. Cancer* 10, 5283–5298. doi:10.7150/jca.31928

Li, L., and Tian, F. (2011). Clinical study of cisplatin compound Kushen injection in treating malignant pleural efusion. *China J. Chi Med.* 26, 1289–1290. doi:10.16368/j. issn.1674-8999.2011.11.062

Li, L., and Yang, F. (2009). Clinical study of oxymatrine injection combined with cisplatin injection in the treatment of malignant pleural effusion. *China Prac. Med.* 4, 39–41. doi:10.3969/j.issn.1673-7555.2009.36.023

Li, R., Yu, J., Zhang, S., and Wang, A. (2017). Eficacy of compound Kushen Injection combined with nedaplatin for malignant pleurai efusion. *Liaoning J. TCM* 44, 789–790. doi:10.13192/j.issn.1000-1719.2017.04.041

Li, S. (2014). Clinical observation of compound Kushen injection combined with nedaplatin in the treatment of malignant pleural effusion. *Res. Integr. Tradit. Chin. West Med.* 6, 88–89+91. doi:10.3969/j.issn.1674-4616.2014.02.010

Li, Y. (2008). The clinical value of cisplatin combined with compound Kushen Injection in treatment of cancerours hydrothorax. *Mod. Prev. Med.* 35, 1978–1979. doi:10.3969/j.issn.1003-8507.2008.10.078

Li, Y., Chen, C., and Li, Q. (2009). Compound Kushen injection combined with cisplatin pleural injection for lung cancer pleural effusion. *China Naturop.* 17, 42. doi:10.3969/j.issn.1007-5798.2009.04.043

Li, Z. (2022). "Network meta-analysis and network pharmacology study of Chinese medicine injection combined with cisplatin in the treatment of malignant pleural effusion of lung cancer," in *Master master*. Nanning: Guangxi University of Traditional Chinese Medicine. doi:10.27879/d.cnki.ggxzy.2022.000202

Liang, N., Kong, Z., Lu, C. L., Ma, S. S., Li, Y. Q., Nikolova, D., et al. (2019). Radix Sophorae flavescentis versus other drugs or herbs for chronic hepatitis B. *Cochrane Database Syst. Rev.* 6, Cd013106. doi:10.1002/14651858.CD013106.pub2

Liang, Z., Li, X., Liu, Z., Li, R., and Zhai, Y. (2011). Efficacy of compound matrine injection for malignant pleural effusion. *Eval. Anal. Drug-Use Hosp. China* 11, 547–548. doi:10.14009/j.issn.1672-2124.2011.06.014

Lin, S., Wang, Y., and Cong, X. (2007). Thoracic perfusion of compound Kushen injection plus cisplatin for malignant pleural fluid. *Eval. Anal. Drug-Use Hosp. China* 7, 465–466. doi:10.3969/j.issn.1672-2124.2007.06.024

Lin, W., Yuan, S., Li, F., Yu, Y., Liu, Y., Deng, M., et al. (2023). Effect of intracavitary perfusion of compound Sophora Flavescens injection on the immune function and tumor markers in patients with malignant pleural effusion. *Prog. Mod. Biomed.* 23, 3758–3762. doi:10.13241/j.cnki.pmb.2023.19.032

Liu, D., and Li, D. (2015). Curative effect and nursing of thoracic cavity drainage and compound Kushen injection combined with cisplatin in the treatment of lung cancer patients companying with malignant pleural effusion. *J. Clin. Med. Pract.* 19, 21–24. doi:10.7619/jcmp.201508007

Liu, J., Yu, Q., Wang, X. S., Shi, Q., Wang, J., Wang, F., et al. (2023). Compound kushen injection reduces severe toxicity and symptom burden associated with curative radiotherapy in patients with lung cancer. *J. Natl. Compr. Canc Netw.* 21, 821–830.e3. doi:10.6004/jnccn.2023.7036

Liu, L., Zhong, S., and Li, G. (2017). Effects and safety of compound Kushen injection combined with cisplatin on malignant pleural effusion. *J. Mod. Oncol.* 25, 230–233. doi:10.3969/j.issn.1672-4992.2017.02.018

Liu, S., Zhang, K., and Hu, X. (2022). Comparative efficacy and safety of Chinese medicine injections combined with capecitabine and oxaliplatin chemotherapies in treatment of colorectal cancer: a bayesian network meta-analysis. *Front. Pharmacol.* 13, 1004259. doi:10.3389/fphar.2022.1004259

Liu, X., and Xu, J. (2016). Therapeutic effects and action mechanism of lobaplatin combined with Kushen injection on malignant pleural effusion in patients with advanced lung cancer. *Hebei Med. J.* 38, 1461–1464. doi:10.3969/j.issn.1002-7386. 2016.10.005

Liu, Y., and Wan, L. (2011). Clinical study of compound Kushen injection combined with bleomycin in the treatment of malignant pleural effusion. *Chin. Community Doct* 13, 178–179. doi:10.3969/j.issn.1007-614x.2011.09.176

Ma, X., Li, R. S., Wang, J., Huang, Y. Q., Li, P. Y., Wang, J., et al. (2016). The therapeutic efficacy and safety of compound kushen injection combined with transarterial chemoembolization in unresectable hepatocellular carcinoma: an update systematic review and meta-analysis. *Front. Pharmacol.* 7, 70. doi:10.3389/fphar.2016.00070

Miller, A. B., Hoogstraten, B., Staquet, M., and Winkler, A. (1981). Reporting results of cancer treatment. *Cancer* 47, 207–214. doi:10.1002/1097-0142(19810101)47:1<207:: aid-cncr2820470134>3.0.co;2-6

Ning, X., Yang, S., and Jin, Q. (2001). Clinical obversation of treatint 30 cases of cancerous hydrothorax with injection of cisplation and Yanshu. *Guid. J. TCMP* 7, 70–71. doi:10.3969/j.issn.1672-951X.2001.02.016

Page, M. J., Mckenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., et al. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. *Bmj* 372, n71. doi:10.1136/bmj.n71

Paladine, W., Cunningham, T. J., Sponzo, R., Donavan, M., Olson, K., and Horton, J. (1976). Intracavitary bleomycin in the management of malignant effusions. *Cancer* 38, 1903–1908. doi:10.1002/1097-0142(197611)38:5<1903::aid-encr2820380506>3.0.co;2-a

Pan, J., Chu, D., Hu, Z., and Sun, S. (2007). Clinical observation intracavity Kushen injection combined with cisplatin for the treatment of malignant pleural efusion. *Chin. J. Clin. Pharm.* 16, 139–141. doi:10.3969/j.issn.1007-4406.2007.03.002

Peng, H. (2020). Clinical effect of compound sophora flavescens injection in palliative treatment of advanced lung cancer patients with malignant pleural effusion. *Health Everyone* 27, 595.

Qin, D., and Fan, K. (2016). Analysis of the therapeutic effect of compound sophora flavescens injection and cisplatin thoracic perfusion therapy in patients with malignant pleural effusion. *Med. Health*, 257.

Qu, D., Liang, X., and Zhou, B. (2012). Clinical observation of Kangai injection combined with cisplatin in the treatment of malignant pleural effusion. *Mod. J. ITCWM* 21, 2311–2312. doi:10.3969/j.issn.1008-8849.2012.21.014

Ran, F., and Zang, A. (2011). Efficacy of Compound Kushen Injection combined with cisplatin for malignant pleural effusion. *Eval. Anal. Drug-Use Hosp. China* 11, 739–740. doi:10.14009/j.issn.1672-2124.2011.08.015

Shi, W. (2017). Clinical efficacy and safety of compound Kushen injection combined with cisplatin in the treatment of malignant pleural effusion caused by lung cancer. *Chi J. Conval. Med.* 26, 857–859. doi:10.13517/j.cnki.ccm.2017.08.032

Song, X., and Jia, Y. (2015). Compound Kushen injection combined with cisplatin pleural perfusion in the treatment of 59 cases of malignant pleural effusion. *Forum TCM* 30, 30–31. doi:10.13913/j.cnki.41-1110/r.2015.03.020

Sterne, J. a.C., Savović, J., Page, M. J., Elbers, R. G., Blencowe, N. S., Boutron, I., et al. (2019). RoB 2: a revised tool for assessing risk of bias in randomised trials. *Bmj* 366, 14898. doi:10.1136/bmj.14898

Sun, C., Dong, F., Xiao, T., and Gao, W. (2021). Efficacy and safety of Chinese patent medicine (Kang-ai injection) as an adjuvant in the treatment of patients with hepatocellular carcinoma: a meta-analysis. *Pharm. Biol.* 59, 472–483. doi:10.1080/13880209.2021.1915340

Sun, Y. (2012). Bleomycin combined with compound Kushen injection in the treatment of 25 cases of malignant pleural effusion. *Zhejiang J. TCM* 47, 143. doi:10.3969/j.issn.0411-8421.2012.02.048

Tang, J., Fang, S., Fu, S., and Liu, G. (2014). Meta-analysis of Kang'ai injection combined with cisplatin in the treatment of malignant pleural effusion. *Chin. J. Ethnomed Ethnopharm* 23, 19–21+25. doi:10.3969/j.issn.1007-8517.2014.19. zgmznijyzz201419013

Tang, X., Jiang, M., Li, J., and Luo, B. (2018). Cinical objective on sixty cases of compound Kushen Injection combined with cisplatin in treatment of lung cancer pleural effusion. *Liaoning J. TCM* 45, 1668–1670. doi:10.13192/j.issn.1000-1719.2018. 08.036

Thorlund, K., Devereaux, P. J., Wetterslev, J., Guyatt, G., Ioannidis, J. P., Thabane, L., et al. (2009). Can trial sequential monitoring boundaries reduce spurious inferences from meta-analyses? *Int. J. Epidemiol.* 38, 276–286. doi:10.1093/ije/dyn179

Thorlund, K., Engstrøm, J., Wetterslev, J., Brok, J., Imberger, G., and Gluud, C. (2016). *User manual for trial sequential analysis (TSA)*. Copenhagen: Copenhagen Trial Unit, Centre for Clinical Intervention Research. Rigshospitalet.

Tian, X., Wang, W., and Jia, L. (2010). Meta-Analysis of TCM injection in the treatment of malignant pleural effusion. *Chin. Med. MDE China* 8, 175–178. doi:10. 3969/j.issn.1672-2779.2010.18.133

Trotti, A., Colevas, A. D., Setser, A., Rusch, V., Jaques, D., Budach, V., et al. (2003). CTCAE v3.0: development of a comprehensive grading system for the adverse effects of cancer treatment. *Semin. Radiat. Oncol.* 13, 176–181. doi:10.1016/S1053-4296(03) 00031-6

Wan, Y. M., Li, Y. H., Xu, Z. Y., Wu, H. M., Xu, Y., Yang, M., et al. (2018). The effect of transarterial chemoembolization in combination with Kang'ai injection on patients with intermediate stage hepatocellular carcinoma: a prospective study. *Integr. Cancer Ther.* 17, 477–485. doi:10.1177/1534735417334913

Wang, C. Q., Shen, Y. S., Chen, X. F., Jiang, H., Yang, X. M., Fan, T. Y., et al. (2022). The intrapleural administration with thymic peptides in malignant pleural effusion: a clustered systematicreview and meta-analysis. *Int. Immunopharmacol.* 107, 108688. doi:10.1016/j.intimp.2022.108688

Wang, C. Q., Xu, J., Jiang, H., Zheng, X. T., Zhang, Y., Huang, X. R., et al. (2023a). The evidence framework of traditional Chinese medicine injection (Aidi injection) in controlling malignant pleural effusion: a clustered systematic review and meta-analysis. *Phytomedicine* 115, 154847. doi:10.1016/j.phymed.2023.154847

Wang, C. Q., Zheng, X. T., Chen, X. F., Jiang, H., Huang, J., Jiang, Y., et al. (2021). The optimal adjuvant strategy of aidi injection with gemcitabine and cisplatin in advanced non-small cell lung cancer: a meta-analysis of 70 randomized controlled trials. *Front. Pharmacol.* 12, 582447. doi:10.3389/fphar.2021.582447

Wang, H. (2016). Sophora radix astragali injection combined cisplatin intrathoracic injection clinical observation on treatment of lung cancer hydrothorax. *Clin. Res.* 24, 2–3.

Wang, R., Chen, M., Wang, Y., Liu, X., Hai, L., and Shuai, B. (2023b). Efficacy and safety of compound Kushen injection in the treatment of malignant pleural effusions caused by breast cancer. *China Licens. Pharm.* 20, 67–71. doi:10.3969/j.issn.2096-3327. 2023.10.011

Wang, S., Lian, X., Sun, M., Luo, L., and Guo, L. (2016). Efficacy of compound Kushen injection plus radiotherapy on nonsmall-cell lungcancer: a systematic review and metaanalysis. *J. Cancer Res. Ther.* 12, 1298–1306. doi:10.4103/0973-1482.199538

Wang, S., and Zhou, W. (2016). Clinical observation of Compound Kushen Injection in the treatment of malignant pleural effusion. *China Pract. Med.* 11, 148–149. doi:10. 4103/0973-1482.199538

Wang, Y. (2010). Clinical study of compound Kushen injection combined with cisplatin in the treatment of malignant pleural effusion. *Chin. J. Mod. Drug Appl.* 4, 148–149. doi:10.3969/j.issn.1673-9523.2010.05.144

Wang, Y., Fan, S., Luo, Q., Bai, C., and Li, T. (2019). Short term efficacy of pleural cavity drainage and infusion of compound Sophora flavescens injection combined with cisplatin in the treatment of malignant pleural effusion in lung cancer. *World Latest Med. Inf.* 19, 116+121. doi:10.19613/j.cnki.1671-3141.2019.02.075

Wang, Y., Lin, C., and Xiao, R. (2010). Effect of closed thoracic drainage with central venous catheters and combining cisplatinum(DDP) with matrine to pure into the thoracic cavity with malignant pleural effusion. *Hainan Med. J.* 21, 13–15.

Wei, M., and Sun, Q. (2011). Efficacy of compound Kushen injection combined with cisplatin in the treatment of malignant pleural effusion. JCM 9, 26–27.

Wei, W., Lan, Y., Li, Y., Zhong, B., Li, P., and Bai, L. (2014). A clinical observation of intrathoracic injection of OK-432 combined with compound Kushen injection for patients with malignant pleural effusion. *J. Mod. Oncol.* 22, 352–354. doi:10.3969/j.issn. 1672-4992.2014.02.33

Wetterslev, J., Thorlund, K., Brok, J., and Gluud, C. (2008). Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. *J. Clin. Epidemiol.* 61, 64–75. doi:10.1016/j.jclinepi.2007.03.013

Wetterslev, J., Thorlund, K., Brok, J., and Gluud, C. (2009). Estimating required information size by quantifying diversity in random-effects model meta-analyses. *BMC Med. Res. Methodol.* 9, 86. doi:10.1186/1471-2288-9-86

Wu, C., Wu, J., Wu, X., and Cheng, D. (2019). Clinical study of compound radix sophorae flavescentis injection combined with cisplatin in treatment of malignant pleural effusion. *Liaoning J. TCM* 46, 85–87. doi:10.13192/j.issn.1000-1719.2019.01.029

Wu, H., Qiu, X., Dong, Z., and Liu, H. (2018). Systematic review on the efficacy and safety of adjuvant therapy of compound kushen injection for pleural effusion in elderly patients with malignant cancer. *China Pharm.* 29, 2421–2425. doi:10.6039/j.issn.1001-0408.2018.17.27

Wu, Z., Zhang, R., Liu, Q., and Liu, G. (2014). Therapeutic effect of hydroxycamptothecin combined with Kushen Injection on malignant pleural effusion in elderly patients with lung cancer *Hebei Med. J.* 36, 3705–3707. doi:10. 3969/j.issn.1002-7386.2014.24.007

Xiao, Z., Jiang, Y., Chen, X. F., Wang, C. Q., Zheng, X. T., Xu, W. H., et al. (2020a). Intrathoracic infusion therapy with Lentinan and chemical irritants for malignant pleural effusion: a systematic review and meta-analysis of 65 randomized controlled trials. *Phytomedicine* 76, 153260. doi:10.1016/j.phymed.2020.153260

Xiao, Z., Jiang, Y., Wang, C. Q., Hu, S. S., Huang, X. R., Chen, X. F., et al. (2020b). Clinical efficacy and safety of aidi injection combination with vinorelbine and cisplatin for advanced non-small-cell lung carcinoma: a systematic review and meta-analysis of 54 randomized controlled trials. *Pharmacol. Res.* 153, 104637. doi:10.1016/j.phrs.2020.104637

Xiao, Z., Wang, C. Q., Zhou, M. H., Li, N. N., Liu, S. Y., He, Y. J., et al. (2018). Clinical efficacy and safety of CIK plus radiotherapy for lung cancer: a meta-analysis of 16 randomized controlled trials. *Int. Immunopharmacol.* 61, 363–375. doi:10.1016/j.intimp.2018.06.012

Xing, H. (2013). Clinical observation of compound Kushen injection in the treatment of malignant pleural effusion. *Chin. J. Mod. Drug Appl.* 7, 84–85. doi:10.14164/j.cnki. cn11-5581/r.2013.17.204

Xu, B. (2014a). Pleural instillation by Yanshu injection and chemotherapy drugs in the treatment of malignant pleural effusion. *J. Basic Clin. Oncol.* 27, 44–45. doi:10.3969/j.issn.1673-5412.2014.01.014

Xu, C., Hu, Z., Xie, M., and Liu, Y. (2015). Meta-analysis of intrapleural injection of compound kushen injection combined with chemotherapy in treating malignant pleural effusion. *China Pharm.* 24, 31–32.

Xu, L. (2014b). Efficacy observation of compound Kushen injection and cisplatin for malignant pleural effusion. *Contemp. Med. Symp.* 12, 88–89. doi:10.3969/j.issn.2095-7629.2014.03.079

Xu, M., and Xiong, B. (2008). Intrapleural injection of Kangai zhusheye with cisplatin in malignant pleural efusion. *Pract. J. Card. Cereb. Pneum. Vasc. Dis.* 16, 114–117. doi:10.3969/j.issn.1008-5971.2008.02.010

Xu, Y. F., Chen, Y. R., Bu, F. L., Huang, Y. B., Sun, Y. X., Li, C. Y., et al. (2022). Chinese herbal injections versus intrapleural cisplatin for lung cancer patients with malignant pleural effusion: a Bayesian network meta-analysis of randomized controlled trials. *Front. Oncol.* 12, 942941. doi:10.3389/fonc.2022.942941

Yan, G., Jiang, H., Wang, P., and Du, H. (2016). The application of compound sophora injection combined with cisplatin in the treatment of malignant pleural effusion by pleural perfusion. *Jilin Med. J.* 37, 574–576. doi:10.3969/j.issn.1004-0412.2016.03.025

Yang, G. (2012). The recent efficacy of compound Kushen injection combined with cisplafin chest perfusion for malignant pleurai effussion. *China Med.* 7, 1079–1080. 10.3760/cma.j.issn.1673-4777.2012.09.011

Yang, M., Ren, J., Wen, S., Guo, C., Pan, R., Fu, X., et al. (2016). Compound Kushen injection combined with cisplatin for treatment of malignant pleural effusion: A Meta -analysis. J. Mod. Oncol. 24, 3393–3398. doi:10.3969/j.issn.1672-4992.2016.21.013

Yang, X., Wei, X., and Jiang, L. (2017). Network meta-analysis of 5 kinds of TCM injections in the treatment of malignant pleural effusion. *China Pharm.* 28, 4686–4690. doi:10.6039/j.issn.1001-0408.2017.33.22

Yuan, Y. (2007). Thoracentesis and drainage combined with Yanshu injection for malignant pleural effusion. *China Pharm.* 18, 1891–1892. doi:10.3969/j.issn.1001-0408. 2007.24.023

Zhang, L.-H., Guo, Y.-F., Sheng, Y.-C., Xie, W., Ji, R., and Mei, Q.-B. (2011). Systematic review of platinum antitumor drugs combined with Mannatide in the treatment of malignant pleural effusion. *China Pharm.* 22, 1691–1695.

Zhang, S., Chen, X., Chen, Y., Bao, L., and Zhang, T. (2015a). Effiacy and safety of compound Kushen injection plus nedaplatin for malignant pleural effusion in patients with lung cancer. *Eval. Anal. Drug-Use Hosp. China* 15, 601–603. doi:10.14009/j.issn. 1672-2124.2015.05.015

Zhang, S., Jia, Y., Yao, L., Yin, S., and Ye, X. (2008). Clinical study of compound Kushen injection combined with cisplatin on malignant pleural effusion. *World Health Dig.* 5, 1218–1219.

Zhang, X. (2006). Clinical effect of Kangai injection combined with cisplatin on malignant pleural effusion. *Liaoning J. TCM* 33, 1427–1428. doi:10.3969/j.issn.1000-1719.2006.11.028

Zhang, X. (2011). Clinical observation of compound sophora flavescens injection in the treatment of cancerous Pleural effusion. *J. Chin. Pract. Diagn Ther.* 25, 281–282.

Zhang, X., Geng, S., and Wang, Y. (2013). Clinical study of compound Kushen injection combined with mitomycin for malignant pleural efusion. *Chin. J. Clin. Oncol. Rehabil.* 20, 780–782. doi:10.13455/j.cnki.cjcor.2013.07.019

Zhang, Z., An, J., Zhang, F., and Yuan, Y. (2015b). Effect of compound matrine intracavity perfusion on VEGF, MMP levels in hydrothorax in patients of malignant pleural effusion. *Hainan Med. J.* 26, 166–168. doi:10.3969/j.issn.1003-6350.2015.02.0059

Zheng, S., and Jia, X. (2013). Clinical observation of pleural perfusion in the treatment of malignant pleural effusion. *Hebei Med. J.* 35, 416–417.

Zhong, B., Wei, W., Li, Y., Li, P., Lan, Y., and Bai, L. (2015). A clinical observation of intrapleural perfusion of OK-432 combined with compound Kushen injection in treatment of malignant pleural effusion. *Mod. Med. J. China* 17, 8–10. doi:10.3969/j. issn.1672-9463.2015.03.003

Zhou, Y., Xu, X., and Zhou, P. (2010). Clinical observation on compound matrine injection plus interleukin-2 in the treatment of malignant pleural effusion induced by lung cancer in elder. *Chin. J. Clin. Pharm. Ther.* 15, 1402–1405.

Zhu, M., Jiang, H., Zhu, Z., and Xu, H. (2013). Clinical study of perfusion with compound Kushen injection plus cisplatin for malignant pleural fluid. *Tianjin Pharm.* 25, 30–32.

Zhu, N., and Hou, J. (2021). Molecular mechanism of the anti-inflammatory effects of Sophorae Flavescentis Aiton identified by network pharmacology. *Sci. Rep.* 11, 1005. doi:10.1038/s41598-020-80297-y

Zhuang, H., Ren, J., Zhou, Y., Chen, X., Wu, Y., Li, F., et al. (2012). Matrine injection combined with intrapleural cisplatin in treatment of 24 patients with hematologic malignancies complicated by pleural effusion. *Chin. J. New Drugs* 21, 1013–1015. doi:10. 3969/j.issn.1002-7386.2013.03.055