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Bone infection remains a challenging condition to fully eradicate due to its
intricate nature. Traditional treatment strategies, involving long-term and
high-dose systemic antibiotic administration, often encounter difficulties in
achieving therapeutic drug concentrations locally and may lead to antibiotic
resistance. Bone cement, serving as a local drug delivery matrix, has emerged as
an effective anti-infective approach validated in clinical settings. Calcium
phosphate cements (CPCs) have garnered widespread attention and
application in the local management of bone infections due to their injectable
properties, biocompatibility, and degradability. The interconnected porous
structure of calcium phosphate particles, not only promotes osteoconductivity
and osteoinductivity, but also serves as an ideal carrier for antibacterial agents.
Various antimicrobial agents, including polymeric compounds, antibiotics,
antimicrobial peptides, therapeutic inorganic ions (TIIs) (and their
nanoparticles), graphene, and iodine, have been integrated into CPC matrices
in numerous studies aimed at treating bone infections in diverse applications such
as defect filling, preparation of metal implant surface coatings, and coating of
implant surfaces. Additionally, for bone defects and nonunions resulting from
chronic bone infections, the utilization of calcium phosphate-calcium sulfate
composite multifunctional cement loaded with antibacterial agents serves to
efficiently deal with infection, stimulate new bone formation, and attain an
optimal degradation rate of the bone cement matrix. This review briefly delves
into various antibacterial strategies based on calcium phosphate cement for the
prevention and treatment of bone infections, while also discussing the
application of calcium phosphate-calcium sulfate composites in the
development of multifunctional bone cement against bone infections.
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1 Introduction

Bone infection, an inflammatory disease resulting from pyogenic bacterial infection,
leads to osteolysis and necrosis. Its primary causes include trauma, orthopedic surgeries,
joint replacements, and the dissemination of diabetic foot infection (DFI) lesions.
Hematogenous diseases have also been implicated as a source of bone infection (Zhong
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et al., 2023; Kavanagh et al., 2018; Senneville et al., 2020). This
condition is associated with high recurrence and disability rates,
prolonged hospital stays, and a significant economic burden for
patients (Kavanagh et al., 2018; Vallet-Regí et al., 2020; Schade et al.,
2021). Staphylococcus aureus (S. aureus) infection is particularly
prevalent, with approximately 30% of cases involving Methicillin-
resistant S. aureus (MRSA) (Zhong et al., 2023; Nandi et al., 2016).
The treatment of bone infection poses a significant challenge for
both patients and orthopedic surgeons (Zhong et al., 2023; Geurts
et al., 2021; McNally et al., 2020).

1.1 Analysis of the challenges associatedwith
the treatment of bone infections

S. aureus stands as the foremost etiological agent responsible for
bone infections, exhibiting the highest pathogenicity among
microbial pathogens. The genesis of S. aureus infection is
attributed to the emergence of drug-resistant bacterial strains and
their evasion of host immune surveillance. The recalcitrant nature of
osteomyelitis instigated by S. aureus primarily arises from
intracellular infection within the host, invasion of osteocyte
lacuno-canicular network (OLCN), biofilm formation, and the
development of staphylococcal abscesses (Masters et al., 2022).
(Figure 1) Concurrently, diabetic foot osteomyelitis (DFO) and
soft tissue infection, recognized as significant complications of
diabetes, pose formidable treatment challenges and impart a
considerable burden on both public health systems and
individual patients (Leone et al., 2020; Senneville et al., 2024;
Rubitschung et al., 2021).

1.1.1 Intracellular bacterial colonization
Extensive research has demonstrated that S. aureus is capable of

persisting within a diverse range of cellular environments, including
macrophages, osteoblasts, osteoclasts, osteocytes, and fibroblasts, for
prolonged durations (Masters et al., 2022). Macrophages harboring
intracellular bacterial invasion are referred to as “Trojan horse”
macrophages, facilitating the accumulation of small bacterial colony

variants (Garzoni and Kelley, 2011). This intracellular residency of S.
aureus accelerates osteoblast apoptosis and further augments
osteoclast activity. Additionally, when pathogenic bacteria
colonize bone cells, they trigger the secretion of inflammatory
factors that induce osteoclasts, ultimately leading to pathological
bone loss (Tong et al., 2022; Yoshimoto et al., 2022). Furthermore, S.
aureus colonization within osteoblasts promotes their
differentiation and maturation into osteocytes, serving as a
vehicle for long-term immune evasion within the host (Alder
et al., 2020; Watkins and Unnikrishnan, 2020).

1.1.2 OLCN invasion
The invasion of OLCN by S. aureus represents a novel

mechanism of bacterial persistence and immune evasion in
chronic osteomyelitis (Masters et al., 2021). Traditionally, S.
aureus was considered a non-motile bacterium. However, recent
advancements in research have established that S. aureus is capable
of invading and residing within OLCN for extended durations (Yu
et al., 2020). Notably, it has been demonstrated that the bacterium
can successfully traverse the narrow spaces within the tubules by
altering its shape (Jensen et al., 2023). In vitro investigations have
revealed that the cell wall transpeptidase-penicillin-binding protein
4 (PBP4) and surface adhesin-S. aureus surface protein C (SasC)
play pivotal roles in S. aureus’s ability to deform and replicate during
its traversal through the tubules (Masters et al., 2021).

1.1.3 Biofilm formation
The intricate mechanism underlying biofilm formation during

osteomyelitis has garnered significant attention in recent research.
Biofilms, particularly those formed by S. aureus play a vital role. in
persistent infections. Firstly, the biofilm matrix, composed of
extracellular polymeric substances (EPS) including
polysaccharides, proteins, and extracellular DNA secreted by
bacteria during growth, serves as a protective barrier. This matrix
not only hinders the diffusion of antibiotics to bacteria within the
biofilm but also inhibits the penetration of immune cells, thereby
contributing to bacterial persistence (Masters et al., 2022; Schilcher
and Horswill, 2020). Secondly, the interaction between EPS and

FIGURE 1
There are four principal reasons underlying the difficulty in eradicating S. aureus in bone infections: (A) intracellular bacterial colonization; (B)
invasion of osteocyte lacuno-canicular network (OLCN); (C) biofilm formation; (D) abscess formation.
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bacterial aggregates confers cohesion and viscoelasticity to the
biofilm, enabling bacteria to adhere firmly to both biotic and
abiotic surfaces and resist external mechanical forces (Peng et al.,
2022). Thirdly, S. aureus exhibits altered metabolic phenotypes
within biofilms, rendering it more resilient against the effects of
antibiotics (Muthukrishnan et al., 2019). Additionally, the accessory
gene regulator (Agr) quorum sensing system serves as a crucial
regulator of S. aureus biofilm formation, which is intricately linked
to imbalances in bone homeostasis and disease progression (Masters
et al., 2022; Butrico and Cassat, 2020).

1.1.4 Staphylococcal abscess formation
Abscess formation serves as an additional mechanism for the

long-term survival and immune evasion of S. aureus. Initially, S.
aureus overcomes the host’s innate immune defense mechanisms by
expressing microbial surface components recognizing adhesive
matrix molecules (MSCRAMMs). As S. aureus cells accumulate
and establish colonies, a significant influx of neutrophils occurs in
the affected area. These neutrophils undergo necrosis due to the
effects of S. aureus, inadvertently creating a “protective barrier” that
hinders the ability of newly recruited host immune cells to eliminate
the bacteria within the abscess. Eventually, as the abscess ruptures,
the bacteria disseminate to new anatomic locations, perpetuating the
infection process (Masters et al., 2022; Muthukrishnan et al., 2019).

Furthermore, as inflammation ensues, the delicate balance
between osteoblasts and osteoclasts within the local bone tissue is
disrupted. Osteoclasts, the sole cell type responsible for bone
resorption, exhibit excessive differentiation and proliferation,
which are intricately linked to bone loss and ultimately give rise
to infectious bone defects. S. aureus can directly bind to osteoclasts
and promote bone resorption through its own virulence factors,
such as Staphylococcal protein A (SpA), peptidoglycan, and
lipoproteins. Additionally, it can indirectly stimulate osteoclasts
to increase bone resorption by upregulating the synthesis of
macrophage colony-stimulating factor (M-CSF) and receptor
activator of nuclear factor-κB ligand (RANKL) in osteoblasts.
Notably, the activated immune system generates a copious
amount of proinflammatory cytokines, which further promote
osteoclast differentiation and exacerbate bone resorption (Tong
et al., 2022; Mendoza et al., 2016; Kassem and Lindholm, 2016;
Udagawa et al., 2021).

1.1.5 DFI
The involvement of bone as a secondary complication of DFIs is

particularly severe, especially in cases of the most advanced soft
tissue DFIs. Therefore, a high degree of vigilance is essential in the
occurrence of DFO (Senneville et al., 2020).

DFIs are defined as infections involving soft tissue or bone
located anywhere below the ankle in diabetic patients. These
infections frequently originate from diabetic foot ulcers (DFUs)
and are closely correlated with the eventual risk of lower limb
amputation in affected patients (Noor et al., 2017; Mohseni et al.,
2019). Multiple pathological factors elevate the risk of foot infections
in individuals with diabetes, including neuropathy, vascular
insufficiency, immune dysfunction, and alterations in foot
biomechanics, all of which are contributing elements to the
development of DFIs (Rubitschung et al., 2021; Noor et al.,
2017). Neurological complications in diabetic patients encompass

motor, sensory, and autonomic dysfunction. Motor neuropathy
results in atrophy of foot muscles and associated deformities,
leading to traumatic injuries. Impaired sensory function often
leads to the body overlooking damage to the lower limbs,
fostering a vicious cycle of injury. Autonomic neuropathy
disrupts normal blood flow to the soles of the feet. When
accompanied by a loss of sweat and sebaceous gland function,
the skin becomes dry and keratinized, rendering it more
susceptible to rupture and serving as a portal for initial infection
(Pitocco et al., 2019). Concurrently, the presence of peripheral artery
disease exacerbates tissue ischemia, impairs wound healing
processes, and fosters an environment conducive to infection
(Armstrong et al., 2023). Hyperglycemia-induced decreases in
host defense capacity encompass deficiencies in neutrophil
function, alterations in macrophage morphology, elevations in
proinflammatory cytokines, and impairments in diabetic
polymorphonuclear cell functions, including chemotaxis,
phagocytosis, and bactericidal activity. Additionally, locally
elevated blood glucose levels serve as an optimal medium for
enhancing the virulence of pathogenic bacteria (Baroni and
Russo, 2014).

Given that DFIs are the culmination of multiple factors, their
treatment necessitates a multidisciplinary and coordinated
comprehensive approach. Effective antibacterial interventions and
necessary surgical procedures are pivotal. Local antimicrobial
therapy and strategies to combat local drug resistance,
encompassing antibiotic-impregnated biomaterials, novel
antimicrobial peptides, nanomedicine, and photodynamic
therapy, represent key considerations in the management of DFIs
(Maity et al., 2024). Clinicians are continually focused on addressing
how to facilitate the healing of locally damaged tissue, which
involves revascularization, while rigorously managing blood
glucose levels. Local growth factors, shockwave therapy, negative
pressure wound therapy, and stem cell therapy have emerged as
promising avenues for accelerating wound healing and reducing the
incidence of DFUs as well as the amputation rate (Raja et al., 2023).

1.2 Recent advances in local treatment of
bone infection

Conventional treatment strategies for bone infection have
historically encompassed surgical debridement and long-term,
high-dose systemic antibiotic therapy. However, these
approaches exhibit notable limitations. Firstly, the attainment
of effective antibiotic concentrations at the lesion site is
challenging due to bone loss, sequestrum formation, and soft
tissue insufficiency (Zhong et al., 2023). Secondly, bone loss at the
osteomyelitis lesion and surgical debridement-induced bone
defects pose significant challenges for natural healing,
particularly when exceeding a certain threshold, significantly
compromising patient recovery and quality of life (Yoshimoto
et al., 2022; Migliorini et al., 2021). Furthermore, since the
introduction of antibiotics in osteomyelitis treatment in the
1940s, the emergence of bacterial resistance has garnered
increasing attention from orthopedic surgeons, posing a
significant obstacle in the therapeutic process (Zhong et al.,
2023; Wang X. et al., 2023).
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As an effective and feasible alternative strategy to solve the above
shortcomings, local treatment has been successfully used in clinical
practice (Zhong et al., 2023). The utilization of multifunctional
antibacterial materials in clinical practice has successfully
demonstrated their therapeutic potential in achieving slow-release
of high-dose local antibacterial agents, effectively eradicating
bacteria, and promoting angiogenesis and bone formation (Wang
X. et al., 2023; Cobb and McCabe, 2020). Notably, the integration of
antibacterial drugs with bone cement in a local drug delivery system
has proven effective in both preventing and treating bone infections,
while simultaneously enhancing osseointegration efficiency of bone
cement implants (Alegrete et al., 2023; Boyle et al., 2019; Wu et al.,
2021). Currently, three types of bone cement are commonly
employed in clinical settings for the local treatment of bone
infections: poly (methyl methacrylate)(PMMA) cements, CPCs,
and calcium sulfate cements (CSCs). Each of these cements
exhibits distinct characteristics that contribute to their respective
therapeutic outcomes (Quan et al., 2023).

2 Essential characteristics of CPCs for
medical applications

CPCs are defined as a combination of one or multiple calcium
phosphate powders or particles. Upon mixing with the
corresponding liquid phase, they transform into a paste capable
of solidifying and hardening within the bone defect site, ultimately
forming a scaffold (Ginebra et al., 2012). The common CPCs
encompass tricalcium phosphate (TCP), tetracalcium phosphate
(TTCP), octacalcium phosphate (OCP), hydroxyapatite (HA),
and calcium-deficient hydroxyapatite (CDHA), among others.
Unlike acrylic bone cements, which are hardened by
polymerization reactions, CPCs are the result of a dissolution
and precipitation process and fall into two main categories:
precipitated apatite cement and brushite cement. In the context
of apatite cement formation, CDHA is formed when a single-
composition calcium phosphate compound undergoes hydrolysis
without altering the Ca/P ratio. Conversely, precipitated HA results
from an acid-base reaction yielding multiple calcium phosphate
compounds. Brushite cement is primarily obtained through the
acid-base reaction involving more than one type of calcium
phosphate (Ginebra et al., 2012; Vezenkova and Locs, 2022).
Under physiological conditions, brushite cement exhibits more
rapid dissolution rates in comparison to apatite cement (Ginebra
et al., 2012; Apelt et al., 2004). CPCs possess injectable properties
and their composition closely resembles the chemical structure of
bone mineral. HA, a bioactive inorganic ceramic with a chemical
and crystal structure resembling that of natural bone apatite
[Ca10(PO4)6(OH)2], exhibits excellent biological properties (Fang
et al., 2006). When compared to PMMA cements, CPCs exhibit
superior biocompatibility and bioabsorbability. Their degradation
products provide essential calcium and phosphate ions at the
implantation site, vital for local mineralization. Furthermore,
CPCs demonstrate greater osteoconductivity and osteoinductivity
than CSCs, thereby facilitating new bone formation (Ginebra et al.,
2012; Vezenkova and Locs, 2022).

The inherent interconnected macropores (pore size> 100 μm)
and micropores (pore size <100 μm) of CPCs not only surpass CSCs

in osteoconductivity and osteoinduction, thereby promoting new
bone formation (Ginebra et al., 2012; Vezenkova and Locs, 2022),
but also expand their specific surface area for the adsorption of
bioactive substances. These substances, including drugs, bioactive
molecules, and metal or non-metal ions, further enhance the
functionality of CPCs (Ginebra et al., 2012; Vezenkova and Locs,
2022; Grosfeld et al., 2016; Kost et al., 2023) (Figure 2)

Furthermore, CPCs possess the ability to harden at normal or
room temperature, permitting bioactive substances to penetrate
their inherent pores without compromising their activity
(Ginebra et al., 2012; Vezenkova and Locs, 2022; Rh Owen et al.,
2018). Consequently, CPCs exhibit exceptional biocompatibility in
vivo and serves as an optimal drug delivery system for the locally
controlled release of antibacterial agents.

3 CPC-based bone filler for the
treatment of bone infection

From a clinical perspective, selecting appropriate CPC
application strategies tailored to patients’ individual conditions is
pivotal for disease treatment. The appropriate form of CPC
implantation is closely associated with various patient factors,
including whether the bone defect is located in a weight-bearing
area, its size, and whether it is a complex defect. Furthermore,
certain intrinsic properties of CPC also influence the choice of its
final application form, encompassing porosity, mechanical strength,
injectability, solidification reaction and time, cohesion,
biodegradability, and the inclusion of additives. These factors are
interdependent and collectively determine the ultimate
characteristics of CPC in practical applications (Ginebra et al.,
2012; Vezenkova and Locs, 2022; Mucalo, 2019). In cases where
bone infection leads to significant defects, the Masquelet technique
is initially employed for membrane induction, followed by
autologous bone transplantation. To address the defects, larger
porous particles of CPC, which have been pre-solidified and
sterilized prior to surgery, can be utilized as a replacement
(Andrzejowski et al., 2020; Gupta et al., 2019). It is noteworthy
that CPC particles exhibit brittleness and possess limited mechanical
strength, with pores playing a crucial role in this context (Baudín
et al., 2019). This limits application to weight-bearing sites.
Additional interventions, such as internal fixation, are
necessary to augment the mechanical strength of the affected
region. Ideally, the mechanical properties of the implant should
closely approximate those of the surrounding bone tissue
(Vezenkova and Locs, 2022). On the other hand, in cases
where the bone defect is small or irregularly shaped, to
prevent cavity residuals, the use of paste-form CPC with high
injectability is recommended for cavity filling (Demir-Oğuz et al.,
2023). The injectability of the material is intimately associated
with the ratio of solid to liquid components, as well as the particle
size distribution of the material (Vezenkova and Locs, 2022). Luo
et al. (2018) developed a pre-mixed acid cement formulated from
monocalcium phosphate monohydrate (MCPM) paste and β-
TCP paste, specifically tailored for the rapid and minimally
invasive filling of bone defects. This approach is effective in
reducing procedure time and minimizing the risk of
contamination.
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For the drug loading of CPCs, two primary methods can be
employed (Parent et al., 2017): direct loading and indirect loading.
Direct loading involves the mixing of solid or liquid antibacterial
drugs directly with the bone cement prior to administration (Yu
et al., 2010). During surgical intervention, when CPC powder is
intended for mixing with the corresponding curing liquid, the
therapeutic agent is generally incorporated directly within the
bone cement compound. While this approach enables CPCs
hardening at low temperatures, thereby preventing drug
denaturation or inactivation that might occur at higher
temperatures as compared to PMMA (Ginebra et al., 2012;
Vezenkova and Locs, 2022; Rh Owen et al., 2018), it is not
without its limitations. These include a lack of standardization in
the production process, inhomogeneous drug distribution within
the bone cement matrix, restricted drug quantities to maintain
mechanical strength, and challenges in achieving an optimal
in vitro release profile for macromolecular drugs (Mouriño and
Boccaccini, 2010; Chen L. et al., 2024). Indirect loading, on the other
hand, involves impregnating a calcium phosphate carrier in a drug

solution or suspension, followed by separation of the impregnated
carrier from the liquid phase and evaporation of the solvent to
obtain a dry drug-loaded carrier (Wang et al., 2022). This method is
particularly suitable when the micro three-dimensional structure of
CPCs is crucial for exerting its therapeutic effects and when the
fragility of the material is a concern (Parent et al., 2017). When
selecting pre-mixed bone cement prior to surgery, antibiotics can be
incorporated via dipping to enhance their antibacterial efficacy.
However, the limitation of a shortened shelf life associated with
this method cannot be overlooked (Luo et al., 2018).

The regulation of release kinetics from a drug carrier is pivotal in
maintaining the therapeutic window, defined as the concentration
range between the minimal inhibitory concentration for bacteria
and the minimal toxic concentration for humans, for the
administered drug (McInnes et al., 2016; Wu et al., 2024). A
research team has demonstrated the efficacy of utilizing calcium
phosphate-loaded antibiotics for the localized treatment of bone
infections. Notably, the serum concentration of the antibiotic in
patients remains low, staying below the manufacturer-

FIGURE 2
Antibacterial agents loaded in calcium phosphate bone cement.
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recommended safety limits (Sasaki et al., 2005). For a constant
quantity of a given drug, when blended directly with CPC matrix
components, drug release is primarily governed by matrix diffusion,
with the concentration and duration of release exhibiting a positive
correlation with the drug dosage. Conversely, when the drug is
adsorbed onto the substrate surface through incubation, the release
mechanism becomes anomalous, displaying an increase in release as
the drug loading augments (Fosca et al., 2022).

The rate of drug release from the carrier is influenced by various
factors, encompassing not only the method of drug loading but also
characteristics of the bone cement matrix, drug type, drug loading
quantity or concentration, and the utilization of additives (Parent
et al., 2017; Fosca et al., 2022). Specifically, the porosity, pore size
distribution, specific surface area, and crystallinity of the bone
cement matrix all play a significant role. Furthermore, the
addition of polymer additives to the CPC matrix represents a
relatively straightforward approach to regulate drug release kinetics.

3.1 Organic antibacterial substances loaded
with CPCs

3.1.1 Polymer-doped CPCs
By incorporating biodegradable polymers, such as chitosan (CS),

mannitol, hyaluronic acid, alginate, gelatin, collagen, hydroxypropyl
methyl cellulose (HPMC), and poly (lactic-co-glycolic acid) (PLGA),
into the drug-loaded matrix under specific conditions, it is possible
to mitigate the initial burst release of drugs from the carriers. This
modulation results in a more sustained and controlled drug release
profile from the cement matrix (Vezenkova and Locs, 2022; Fosca
et al., 2022; Mistry et al., 2016; Xu et al., 2017; Dorozhkin, 2019),
thereby effectively fulfilling the objective of preventing and treating
bone infection.

The influence of additives on the drug release rate within CPC
manifests firstly through alterations in the drug’s affinity for the
matrix, where a negative correlation exists between affinity and
release rate. Secondly, the intrinsic properties of the additives
themselves can modulate the rate of drug release. When
polymers are employed as additives, they induce a spatial effect
by swelling and filling the pores of the matrix, thereby inhibiting
drug release. Subsequently, as the polymer undergoes degradation,
the release rate augments due to the facilitated diffusion of drug
molecules (Vezenkova and Locs, 2022; Fosca et al., 2022; Li et al.,
2007; David Chen et al., 2011). When the local concentrations of
antibiotics released by CPC remain subtherapeutic for an extended
period following the initial burst release, the potential for bacterial
resistance may arise (Thomes et al., 2002; Kendall et al., 1996). The
incorporation of a polymer as an additive in the CPC matrix results
in a reduction of the initial burst release of the drug and promotes a
more sustained release profile of the drug over time (David Chen
et al., 2011; Jin, 2015). This characteristic of the polymer is
advantageous for modulating drug release within the therapeutic
window in CPC, thereby mitigating the adverse effects of bacterial
resistance and ensuring the antibacterial efficacy of the treated area
within a safe concentration range. Furthermore, the rate of drug
release in the CPC matrix can be controlled by adjusting the
concentration of the polymer in the reaction solution (Tiğli
et al., 2009).

Normal human bone comprises a complex combination of
inorganic and organic materials. By incorporating polymeric
organic polymers into CPC, we can better mimic the natural
state of bone tissue, thereby enhancing the biocompatibility of
CPC in vivo. Additionally, the inclusion of these polymers is
advantageous in improving the injectability and mechanical
strength of the bone cement matrix. Furthermore, it has been
demonstrated that the antimicrobial properties of drug-loaded
cement are also enhanced through the addition of polymers (Wu
et al., 2021; Wu et al., 2020a; Bose et al., 2023).

CS is a polysaccharide compound derived from chitin through
deacetylation (Bakshi et al., 2020). Its molecular structure harbors
multiple functional groups, facilitating modifications and chemical
reactions (Zhong et al., 2023). Apart from its biodegradability and
biocompatibility, CS exhibits a strong affinity towards negatively
charged bacterial membranes due to its cationic nature, thereby
displaying moderate antibacterial activity (Tao et al., 2020; Negm
et al., 2020). Yang et al. (2018) successfully fabricated a PLGA-HA
scaffold grafted with CS using 3D printing technology. Both in vitro
and animal experiments confirmed that the CS-PLGA-HA scaffold
demonstrated remarkable antibacterial properties against S. aureus,
along with bone conductivity, offering a novel approach to enhance
the local therapeutic efficacy of CPCs in the treatment of infectious
bone defects.

3.1.2 Antibiotic-loaded CPCs
Antibiotics have long been extensively studied as a primary

approach for preventing and treating bone infections. Surgical
procedures such as wound contamination, fracture repair with or
without internal fixation, joint prosthesis implantation, and spinal
surgery can often lead to severe bone infections. Therefore, the
successful osseointegration of CPCs during surgical procedures
critically depends on the loading of antibacterial drugs, which
effectively prevents bone infection at the surgical site (Ginebra
et al., 2006). To prevent bone infection, it is essential that the
antibiotics released from the bone cement carrier rapidly reach
the minimum inhibitory concentration (MIC) of the corresponding
pathogenic bacteria, while avoiding prolonged exposure to sub-
inhibitory concentrations that may promote bacterial resistance. For
the treatment of bone infection, it is necessary to achieve local long-
term antibiotic release (Ginebra et al., 2012).

Currently, the antibiotics loaded into CPCs for the treatment of
bone infections are primarily derived from a diverse range of
antimicrobial agents. These include, but are not limited to,
aminoglycosides such as gentamicin sulfate, tobramycin, and
amikacin; β-lactams like meropenem and hydroxy
benzylpenicillin; glycopeptides such as vancomycin and
teicoplanin; quinolones like moxifloxacin and ciprofloxacin; and
tetracyclines, such as doxycycline. These antibiotics, used singly or
in combination, have demonstrated effectiveness in the prevention
and treatment of bone infections (Ginebra et al., 2012; Mistry et al.,
2016; Ribeiro et al., 2022; Nasser et al., 2022; Mabroum et al., 2023;
Radwan et al., 2021; Liu et al., 2023; Mistry et al., 2022; Pradeep et al.,
2023; Bhanwala and Kasaragod, 2022; Kumar Dewangan et al.,
2023) (Table 1)

However, the emergence of antibiotic-resistant bacteria,
including those that are refractory to almost all antibiotics and
the challenges associated with the removal of biofilms, has garnered
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TABLE 1 Antibiotics loaded into calcium phosphate bone cement.

Antibiotic type Antibiotic(s) CPC Ingredient(s) Antibacterial efficiency References

Aminoglycosides Gentamicin On the basis of the commercially available CPC
(Neocement®), CS and HPMC were added to
enhance its performance and ensure sustained

release of gentamicin

The formula containing 42% Liquid phase +
HPMC + 1.87% wt gentamicin was identified as
the optimal formulation, exhibiting desirable
coagulation and mechanical properties, with an
injectability of approximately 87% (compared

to the original Neocement at 31%). This
formulation ensures local release of gentamicin

for 14 days at concentrations above
antibacterial levels, demonstrating excellent

antibacterial activity against S. epidermidis and
moderate activity against S. aureus

Ribeiro et al. (2022)

β-lactams Amoxicillin
(AMX)

Citrate-modified mesoporous hydroxyapatite
nanocarrier (Ctr-mpHANCs)

In vitro: AMX @ Ctr-mpHANs significantly
reduced the growth of S. aureus, E. coli, and P.

aeruginosa compared to Ctr-mpHANs

Nasser et al. (2022)

Quinolones Ciprofloxacin A reactive mixture containing 25% wt of
bioactive glass (46S6) powder, along with an
equimolar blend of calcium carbonate and

dicalcium phosphate dihydrate, was prepared.
Subsequently, these reactive powders were
combined with a gel consisting of sodium
alginate dissolved in a 0.25 M disodium

hydrogen phosphate solution, maintaining an
Liquid/Powder ratio of 0.7

In vitro: the cement composite loaded with
ciprofloxacin exhibited excellent antibacterial

activity against S. aureus and E. coli

Mabroum et al. (2023)

Moxifloxacin Biodegradable composite scaffolds of poly-
lactide-co-ε-caprolactone/calcium phosphate
(calcium phosphate: commercial-β-TCP,
commercial-HA, commercial-dicalcium

hydrogen phosphate)

The composite calcium phosphate scaffold
effectively reduces bacterial load, inflammation,
and sequestrum formation in the local lesions of
an animal model of chronic osteomyelitis

caused by S. aureus. As a result, it represents a
promising candidate material for further
clinical trials in the treatment of chronic

osteomyelitis

Radwan et al. (2021)

Tetracycline class Doxycycline α-TCP (CAM Bioceramics B.V.) powders
contained: 40 wt% PLGA, 1.5 wt%

carboxymethyl cellulose (CMC), or 39.4 wt%
PLGA plus 1.5 wt% CMC

In vitro: doxycycline released from the bone
cement retained its antibacterial activity against
S. aureus. Animal implantation models: a rapid
reduction in the number of S. aureus bacteria
on the surface of CPC and in surrounding

tissues following implantation

Liu et al. (2023)

Glycopeptides (with other
antibiotics)

Vancomycin
Tobramycin

50 wt% HA+50 wt% β-TCP+α-CSH. After
drug loading, BCP particles were encapsulated

with PLGA for sustained release

Utilizing a rabbit tibial osteomyelitis model
(MRSA), the superiority of composite bone
cement in controlling infection rates and
promoting bone healing was demonstrated
compared to PMMA bone cement and

parenteral therapy alone

Mistry et al. (2016)

In the treatment of patients with chronic
osteomyelitis (MRSA), composite bone cement
exhibits superior performance in terms of
cellular compatibility, hemostatic activity,
infection control effectiveness, and bone

regeneration compared to PMMA bone cement
and parenteral therapy

Mistry et al. (2022)

Vancomycin
Amikacin

TTCP + Phosphoserine (PS) (The mass ratio:
10:6)

In vitro: antibacterial bone cement exerted
inhibitory effects on the formation of biofilms
by E. coli, K. pneumoniae, and S. aureus, and
also suppressed the growth of these bacteria
when cocultured. In vivo: the application of
bone cement to rats with sternal infections
caused by S. aureus or E. coli significantly

inhibited bacterial activity

Pradeep et al. (2023)

Vancomycin
Meropenem

HA A case report about Single step treatment of
frontal sinus osteomyelitis using bone cement.
During the follow-up period, no intracranial,
nasal, or intraorbital complications were
observed. Additionally, no recurrence or

Bhanwala and
Kasaragod (2022)

(Continued on following page)
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increasing attention. Consequently, the development of effective
non-antibiotic alternatives has become a significant research focus
in recent years (Aslam et al., 2018; Nir-Paz et al., 2019; Kalelkar et al.,
2022). Additionally, the inclusion of antibiotics in bone cement
matrices has been shown to compromise their mechanical stability,
further emphasizing the need for alternative antimicrobial strategies
(Arciola et al., 2018).

3.1.3 Antimicrobial peptide-loaded CPCs
In the context of the escalating problem of antibiotic resistance

in pathogenic bacteria, particularly caused by multidrug-resistant
pathogens and biofilm formation (Peng et al., 2022; Muthukrishnan
et al., 2019; van Staden and Heunis, 2011), the urgent need to
identify reliable alternatives to antibiotics has become paramount.

This is due to the difficulties in discovering new antibiotics that can
effectively address this challenge in the near future (Volejníková
et al., 2019; Sinha and Shukla, 2019; Costa et al., 2021).

Antimicrobial peptides (AMPs) represent a class of basic active
peptides that exhibit broad-spectrum antibacterial activity against
both Gram-positive and Gram-negative bacteria. These peptides
demonstrate high antimicrobial efficacy even at low concentrations,
possess anti-biofilm activity, and exert immunomodulatory effects
(Costa et al., 2021; Melicherčík et al., 2018; Yazici et al., 2019; Luo
and Song, 2021). Given that AMPs target multiple components
within the plasma membrane and cytosol of bacteria, the likelihood
of them inducing pathogen resistance is extremely low (Costa et al.,
2021; Van Staden and Dicks, 2012). Currently, several AMPs have
been approved by the U.S. Food andDrug Administration (FDA) for

TABLE 1 (Continued) Antibiotics loaded into calcium phosphate bone cement.

Antibiotic type Antibiotic(s) CPC Ingredient(s) Antibacterial efficiency References

residual disease was detected at the conclusion
of the 6-month period

Vancomycin
Gentamicin
Meropenem
Rifampicin

CDHA In vitro experiments have demonstrated that
eggshell-derived apatite bone cement is a more
suitable injectable bone substitute for anterior
use compared to injection-molded synthetic
bone cement, effectively avoiding postoperative

implant-related and other types of bone
infections

Kumar Dewangan et al.
(2023)

Vancomycin α-TCP based CPC modification with
vancomycin loaded poly (lactic acid) (PLA)

microcapsules

CPC modification with vancomycin loaded
PLA microcapsules decreased the initial burst
release of drug down to 7.7% ± 0.6%, while only
30.4% ± 1.3% of drug was transferred into the
dissolution medium within 43days, compared
to pure vancomycin loaded CPC, where 100%
drug release was observed already after 12days

Loca et al. (2015)

Teicoplanin An injectable drug delivery system based on
poloxamer 407 hydrogel containing undoped

Mg, Zn-doped β-TCP, and teicoplanin

The encapsulated teicoplanin showed a
sustained release over the evaluated period,
enough to trigger antibacterial properties
against Gram-positive bacteria. Besides, the
formulations were biocompatible and showed
bone healing ability and osteogenic properties.
Finally, in vivo studies confirmed that the

proposed locally injected formulations yielded
osteomyelitis treatment with superior outcomes

than parenteral administration while
promoting bone regeneration

Kai et al. (2024)

Teicoplanin CPC powder containing 3% teicoplanin To assess the effectiveness of calcium phosphate
as a delivery system of teicoplanin, MRSA

osteomyelitis was induced in 36 rabbits. And
calcium phosphate cement with 3% teicoplanin
was implanted. Bacterial eradication signified a
considerable decrease of the total histologic

scores of osteomyelitis compared with controls,
accompanied with newly growing host bone

Lazarettos et al. (2004)

Teicoplanin CPC (Biopex; Pentax, Tokyo, Japan) A 71-year-old man developed skin ulceration
with cranial osteomyelitis after bypass surgery
for diffuse cerebral infarction and internal

carotid artery obstruction. MRSA was detected
on wound culture test. Cranioplasty with a
combination of calcium phosphate bone

cement impregnated with teicoplanin, and a
titaniummesh sheet and scalp reconstruction
were performed. As of 6 months after surgery,

no infection has relapsed

Ogino et al. (2020)

S. epidermidis, Staphylococcus epidermidis; S. aureus, Staphylococcus aureus; E. coli, Escherichia coli; P. aeruginosa, Pseudomonas aeruginosa; MRSA,Methicillin-resistant Staphylococcus aureus;

K. pneumoniae, Klebsiella pneumoniae.
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the treatment of severe bacterial infections, underscoring their
potential as viable alternatives to traditional antibiotics (Dijksteel
et al., 2021).

Notably, the application of drug-eluting coatings loaded with
antimicrobial peptides onto porous calcium phosphate substrates
represents a promising strategy for the prevention of orthopedic
implant-related infections and the formation of biofilms on
their surfaces:

Kazemzadeh-Narbat et al. (2010) selected the broad-spectrum
AMP Tet213 and applied it to a titanium surface, creating coatings
composed of microporous OCP as a drug carrier. These coatings,
with a thickness of 7 μm and an AMP loading of 9 μg/cm2, exhibited
antimicrobial activity in vitro against both S. aureus (Gram-positive)
and P. aeruginosa (Gram-negative). These results indicate that
calcium phosphate-Tet213 coatings could potentially serve as an
effective solution for the prevention of infections associated with
orthopedic implants. Furthermore, the team demonstrated
significantly lower in vitro cytotoxicity (200 μg/mL) of AMP
HHC36 compared to AMP Tet213 (50 μg/mL) in calcium
phosphate-HHC36 coatings applied to a titanium surface.
Additionally, these coatings exhibited antimicrobial activity
against both S. aureus and P. aeruginosa (Kazemzadeh-Narbat
et al., 2012). Additionally, they also validated the ideal
cytotoxicity and antibacterial efficiency of AMP HHC36 in vitro
through antibacterial experiments utilizing titanium surface
nanotubes coated with a palmitoyl oleoyl phosphatidyl-choline
(POPC) film after loading AMP HHC36 into a supersaturated
calcium phosphate coating matrix for sustained drug release
(Kazemzadeh-Narbat et al., 2013).

Yazici et al. (2019) aimed to enhance the delivery efficiency of
AMPs to localized regions and consequently developed bifunctional
peptides by fabricating titanium surface nanotubes through HA
deposition. The dual functionality of these peptides was achieved by
conjugating hydroxyapatite binding peptide-1 (HABP1) with AMP
using a flexible linker. The resulting HABP1-AMP conjugate
demonstrated favorable affinity for HA and exhibited high
antibacterial activity against S. mutans (Gram-positive) and
E. coli (Gram-negative), thus presenting a promising approach
for targeted delivery of AMPs to specific areas.

3.2 Inorganic antibacterial substances
loaded with CPCs

3.2.1 TII-loaded CPCs
In the realm of biomaterial engineering stents, the integration of

drug delivery functionality with therapeutic efficacy is a common
strategy employed to augment stent performance. From a
pharmaceutical standpoint, the manufacturing methodologies of
stents must ensure compatibility with drug stability and sustained
release profiles. In comparison to organic macromolecular drug
molecules, TIIs exhibit several notable advantages, including
reduced cost, superior stability, enhanced safety, and fewer
constraints on the fabrication process of tissue-engineered
scaffolds (Mouriño et al., 2012; Hoppe et al., 2013). Currently, in
the ongoing research endeavors aimed at utilizing CPC as scaffolds
for bone tissue engineering, researchers have selected specific metal
ions as TIIs. These TIIs have been successfully validated for their

notable efficacy in combating bacterial infections and enhancing the
material matrix’s capacity to induce new bone formation (Gritsch
et al., 2019; Feng et al., 2021).

Metals have been utilized as antibacterial agents and as materials
for various biomedical research and applications (Zhong et al., 2023;
Samuel et al., 2020; Makvandi et al., 2020). When CPC is employed
as a drug delivery device for bone infections, a small quantity of ions
within the calcium phosphate lattice can be substituted by other
ions. Several studies have corroborated that the doping of metal ions,
such as silver, copper, and zinc, into the bone cement matrix enables
calcium phosphate to exhibit antibacterial properties (Kamphof
et al., 2023).

Silver (Ag) is among the most extensively studied metal ions
incorporated into calcium phosphate due to its remarkable
antibacterial properties (Kamphof et al., 2023). Notably, silver
nanoparticles (AgNPs) exhibit potent antibacterial activity by
releasing silver ions that attach to the bacterial cell membrane,
altering the lipid bilayer or surface charge state. This process
generates reactive oxygen species (ROS) and free radicals, which
damage organelles and biomolecules and regulate associated signal
transduction pathways, ultimately leading to antibacterial efficacy
(Zheng et al., 2018; Lee and Jun, 2019).

Choi et al. (2023) conducted a study evaluating the antibacterial
effect of TTCP-dicalcium phosphate dihydrate (DCPD) cement
impregnated with AgNPs. In a rat tibial infection model, local
treatment with TTCP-DCPD cement containing varying
concentrations of AgNPs was administered for either 3 or
12 weeks. The findings revealed a decrease in bacterial colony
counts in the 12-week treatment group compared to the 3-week
group. Furthermore, a trend towards a lower bacterial colony count
was observed in groups treated with higher doses of AgNPs
compared to those without AgNP impregnation. Separately, Köse
et al. (2021) established amodel of methicillin-induced osteomyelitis
in the proximal tibia of New Zealand white rabbits. The animals
were divided into three groups: the control group received
vancomycin-impregnated PMMA bone cement beads, the
experimental group received silver ion-doped calcium phosphate
beads, and the negative control group received pure calcium
phosphate beads. After 10 weeks, radiographic assessments
demonstrated significant improvement in osteomyelitis in the
experimental group compared to the control group. These results
suggest that silver ion-doped calcium phosphate beads have the
potential to stimulate bone tissue growth, resist infection, and
ultimately treat experimental chronic osteomyelitis in animal
models. However, it is crucial to acknowledge that the
cytotoxicity of silver towards normal tissues and cells cannot be
overlooked, posing a limitation to its widespread application in the
treatment of bone infections (Mijnendonckx et al., 2013;
Rizzello, 2014).

Copper (Cu), an essential trace element in the human body,
possesses diverse biological functions, including broad-spectrum
antibacterial effects, bone regeneration capabilities, and
angiogenesis properties (Shen et al., 2021; Marziya et al., 2023;
Holloway, 2019).

Foroutan et al. (2019) conducted a study to investigate the
influence of Cu2+ release on the properties and underlying
mechanisms of CPCs. They synthesized CPC containing varying
concentrations of Cu2+ (0, 2, 4, and 6 mol%) through a room
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temperature precipitation reaction. In vitro experiments
demonstrated that as the Cu content increased, the release of
phosphorus and calcium decreased, while the release of Cu2+

escalated. Furthermore, an analysis of the antibacterial activity
against S. aureus revealed that the antimicrobial potential of the
bone cement enhanced with increasing Cu2+ concentration.
Additionally, when human osteoblast-like osteosarcoma cells
(Saos-2, HTB85) were inoculated onto the bone cement particles
for a defined period, a significant increase in cell count was observed,
thereby confirming its biocompatibility. This study underscores the
dual benefits of copper-doped CPCs, which not only exhibit
antimicrobial activity but also possess bone regeneration
properties. Näf et al. (2024) developed bilayer nanocomposites
consisting of PLGA and amorphous calcium phosphate,
incorporating various copper nanoparticles, specifically copper
oxide (CuONPs) and copper-doped tricalcium phosphate
(CuTCPNPs). To assess the antimicrobial properties of these
copper-containing materials, clinically isolated S. aureus and S.
epidermidis were employed. Furthermore, the angiogenic
potential of these nanocomposites was evaluated using the chick
embryo chorioallantoic membrane (CAM) model. The findings
revealed that both CuONPs and CuTCPNPs possess
antimicrobial activities and serve as effective components for
stimulating angiogenesis.

Moreover, numerous in vitro and in vivo experiments have
demonstrated the antimicrobial properties of metals and their
alloys, including magnesium, strontium, and zinc, when
incorporated into CPCs against bone infections. Additionally,
these metals have been shown to enhance the antimicrobial
effectiveness of existing therapeutic agents (Daskalova et al.,
2023; Sikder et al., 2020; Wang Y. et al., 2023; Dapporto et al.,
2022; Shu et al., 2024; Wolf-Brandstetter et al., 2020). However, it
is crucial to emphasize that the precise correlation between the
antimicrobial activity and cytotoxicity of metal-doped CPCs
remains to be elucidated in future investigations (Kamphof
et al., 2023).

3.2.2 Graphene-loaded CPCs
Graphene, an allotropic isomer of carbon, has been shown to

enhance the mechanical properties of CPC matrices and improve
their biocompatibility for bone repair and regeneration (Seonwoo
et al., 2022; Ozder et al., 2023). Furthermore, studies have confirmed
the antimicrobial efficacy of graphene against a broad range of
bacteria, including both Gram-positive and Gram-negative strains
(Akhavan et al., 2011; Gurunathan et al., 2012; He et al., 2015;
Veerapandian et al., 2013).

Wu et al. (2020b) pioneered the preparation of an injectable
CPC-CS-GO slurry through the doping of graphene oxide (GO) into
CPC. This novel slurry exhibited a robust inhibitory effect against S.
aureus, demonstrating an inhibition zone of 55.2 ± 2.5 mm,
significantly surpassing that of the control CPC-CS (30.1 ±
2.0 mm) (p < 0.05). Furthermore, CPC-CS-GO displayed
superior antibacterial activity against S. aureus biofilm in vitro
(p > 0.05). Khosalim et al. (2022) synthesized biomaterials
composed of HA, agarose, and GO. Incorporating 1.0wt% GO
into these biomaterials resulted in a notable reduction of S.
aureus in vitro colony-forming unit tests. Additionally, the
excellent biocompatibility of these materials was confirmed

through tests using mouse embryo osteoblast precursor cells
(MC3T3-E1).

3.2.3 Iodine-loaded CPCs
Iodine possesses a broad antimicrobial spectrum, demonstrating

effectiveness against viruses,Mycobacterium tuberculosis, fungi, and
bacteria (Tsuchiya et al., 2012). In a groundbreaking study,
Morinaga et al. (2023) impregnated CPC with various
concentrations of iodine to assess its in vitro antibacterial activity
and in vivo biocompatibility. Their findings revealed that CPC
containing 5% iodine retained a higher iodine content compared
to other CPCs after 1 week of release. Furthermore, this CPC
formulation exhibited antimicrobial efficacy against S. aureus and
E. coli for up to 8 weeks, while maintaining a similar number of
fibroblast colony formations as the control sample.

However, there are limited reports on the application of doping
graphene or iodine into CPCs for the treatment of bone infections,
and further exploration of these possibilities is warranted.

4 Multifunctional calcium phosphate-
calcium sulfate complex bone cement
for the treatment of bone infections

As a bone cement filler for the treatment of bone infections, it
aims to promote functional recovery of the affected limb or area
while ensuring the desired preventative and therapeutic outcomes.
Consequently, orthopedic surgeons face stringent requirements in
selecting an appropriate bone cement matrix. A crucial aspect of this
selection process is ensuring that the degradation rate of the cement
matrix aligns with the rate of new bone formation.

Although CPC possesses ideal biocompatibility and
recapitulates the inorganic phase of human bone, exhibiting
porosity that renders it a suitable carrier for the slow release of
osteoconductive drugs (Ginebra et al., 2012; Vezenkova and Locs,
2022; Fang et al., 2006), it is recognized that its degradation rate is
rather sluggish. Studies have demonstrated that the degradation and
absorption of CPC in vivo requires over 20 weeks to complete
(Russell et al., 2008; Bohner, 2000). Conversely, CSC, a frequently
utilized bone defect filler in clinical practice, is associated with
limitations such as its limited osteogenic potential, rapid drug
elution rate (Mistry et al., 2016), and swift degradation rate in
vivo (<12 weeks) (Zhao et al., 2020).

To harmonize the resorption rate of the bone cement matrix
with the rate of new bone formation, a multifunctional calcium
phosphate-calcium sulfate complex bone cement was developed,
exhibiting antimicrobial, osseointegrative, and degradable
properties. Building upon the established potential of this
cement as an effective antibiotic delivery system, as
demonstrated by Mistry et al. (2016) through animal
experiments, Zhao et al. (2020) reported the first clinical
application of calcium phosphate (dicalcium phosphate (DCP)
+ β-TCP)-calcium sulfate complex bone cement impregnated with
vancomycin in the treatment of chronic osteomyelitis caused by S.
aureus infection. When compared to vancomycin-impregnated
CSC used as a control, the composite bone cement exhibited
superior new bone growth and a lower rate of infection
recurrence (Table 2; Figure 3).
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TABLE 2 Postoperative data of the two groups (�x ±s).

Group A
(CS/CP)

Group B
(CS)

P value

Hospital stay (days), mean ± SD 35.05 ± 14.83 29.30 ± 7.12 0.156

Follow-up (weeks), mean ± SD 61.29 ± 33.75 61.29 ± 33.75 0.041*

Systemic antibiotic treatment duration (days), mean ± SD 36.33 ± 18,45 45.80 ± 8.92 0.064

Post-op ESR (mm/h), mean ± SD 9.10 ± 8.69 27.50 ± 26.24 0.056

Post-op serum hs-CRP (mg/L), mean ± SD 4.91 ± 7.78 15.65 ± 18.09 0.100

Post-op WBC (◊109), mean ± SD 6.65 ± 2.59 6.64 ± 1.48 0.984

Filling dose, mean ± SD 3.95 ± 1.56 4.49 ± 1.36 0.353

Defect length, mean ± SD 5.28 ± 0.98 5.66 ± 0.74 0.280

Defect width, mean ± SD 2.31 ± 0.50 2.28 ± 0.54 0.883

Microorganisms isolated (Staph, E. cloacae, Bacillus subtilis, negative) 14/1/1/5 5/1/0/4 0.643

Internal fixation 4/17 2/8 1.000

Complications 1/20 3/7 0.087

Recurrence 0/20 2/8 0.034*

*, P < 0.05. ESR, erythrocyte sedimentation rate; hs-CRP, high-sensitivity C-reactive protein; WBC, white blood cell count; CS, calcium sulfate; CP, calcium phosphate (Zhao et al., 2020).

Reprinted with permission from. Copyright 2020 Annals of Palliative Medicine.

FIGURE 3
Typical radiographs of chronic osteomyelitis treatedwith CS/CP preoperatively (A), immediately (B), at 3 months (C), at 6months (D) and at 1 year (E)
postoperatively. With the formation of new bone, the bone substitute composite was gradually absorbed and no new defects formed until the formation
of new bone completed (E). Typical radiographs of chronic osteomyelitis treated with CS preoperatively (F), immediately (G), at 3 months (H), at 6months
(I) and at 1 year (J) postoperatively. Three months after the surgery, CS had been greatly absorbed. However, the new bone formation was slow and
bone defect cavities still existed (H, I, J). CS, calcium sulfate; CP, calcium phosphate (Zhao et al., 2020). Reprinted with permission from. Copyright
2020 Annals of Palliative Medicine.
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On the other hand, Mistry et al. (2022) employed biphasic
calcium phosphate (BCP), consisting of HA blended with β-TCP
and processed through foaming and high-temperature sintering, in
the development of a calcium sulfate complex bone cement loaded
with antibiotics (vancomycin + tobramycin). This formulation had
been previously validated in animal experiments. It was utilized in
the treatment of chronic osteomyelitis caused by MRSA infection,
with gentamicin sulfate-loaded PMMA bone cement and
intravenous vancomycin drip serving as control groups. Over
time, clinical and radiological assessments demonstrated the
superiority of the composite bone cement compared to the other
two treatment modalities, evident in its antimicrobial efficacy,
rapidity in sepsis control, and enhancement of new bone
production.

Orthopaedic surgeons continue to grapple with the challenges of
fracture-related infections (FRI) and periprosthetic infections (PJI).
To address these issues, Freischmidt et al. (2020) introduced a novel,
individualized surgical technique utilizing HA-calcium sulfate
complexes impregnated with antibiotics (vancomycin or
gentamicin sulphate). These composites were applied to
intramedullary nails and plates, aiming to prevent biofilm
formation and subsequent recurrence of bone or joint infections.
The antimicrobial and osteoconductive properties of the composite
bone cement coating the internal fixation devices yielded promising
results in three reported cases of bone infection.

Recently, magnesium phosphate cement (MPC) has garnered
significant attention as a novel bone repair material. Besides
possessing advantages such as mechanical strength,
biocompatibility, injectability, and modifiability, MPC exhibits
superior bone conductivity and absorbability compared to CPC.
These properties are particularly beneficial for bone tissue
regeneration and repair. Furthermore, MPC offers a simpler
operation and a degradation rate that is more in harmony with
new bone formation (Tian et al., 2024; Ostrowski and Roy, 2016;
Kaiser et al., 2022; Goldberg et al., 2020). Therefore, in comparison
to calcium phosphate-calcium sulfate complex bone cement, MPC
may exhibit comparable or even superior performance in exerting
multiple effects simultaneously. However, this hypothesis
necessitates further verification in subsequent studies.

5 Conclusion

Extensive research efforts have been directed towards addressing
bone infections and the associated bone defects, focusing on
osteointegration through the incorporation of antimicrobial drugs
into CPCs or enhancing the physicochemical properties of CPCs.
This review aims to present a comprehensive overview of various
CPC-based antimicrobial agents, aimed at augmenting the
antimicrobial efficacy and osteointegrative capabilities of bone
cement fillers or coatings. While antibiotics remain the most
extensively studied antimicrobial agents loaded into CPCs, the
emergence of drug-resistant pathogens has garnered increasing
attention. Additionally, several research teams have validated
alternative antimicrobial agents, such as antimicrobial peptides
and metal ions, through in vitro and animal experiments. The
physicochemical properties of CPC play a pivotal role in both the
antimicrobial activity of drugs loaded within the cement matrix and

the stimulation of new bone formation. Notably, the interconnected
pores inherent to calcium phosphate particles serve as reservoirs for
antimicrobial agents. By encapsulating these pores with polymers,
the localized and sustained release of these drugs can be modulated,
thereby facilitating the expression of CPC’s osteoconductive and
osteoinductive properties. Utilizing advanced techniques,
antimicrobial drug-loaded calcium phosphates can be formulated
as surface coatings on metallic endoprostheses (such as titanium
alloys) or as slurries applied to endoprosthetic surfaces. This
approach offers not only robust mechanical support but also
localized antimicrobial and osseointegrative effects, thereby
enhancing the overall therapeutic outcome.

However, a significant drawback of developing multifunctional
CPC is the loading of diverse antimicrobial drugs. This loading
process can compromise the physicochemical properties of the CPC
matrix, thereby hindering the maximizaion of the antimicrobial
efficacy of these drugs. Furthermore, the intricate nature of the
antimicrobial CPCs fabrication process, coupled with the stringent
regulations imposed by national legislatures and regulatory agencies
regarding the approval of in vivo implants in the healthcare industry,
has restricted the commercial viability of CPCs in the treatment of
bone infections to a certain extent.

6 Future perspectives

In the future, multifunctional CPCs are poised to play a pivotal
role in the prevention and treatment of bone infections. However,
the sole reliance on calcium phosphate-loaded antimicrobial agents
has proven insufficient in clinical practice. Therefore, it is imperative
to integrate local drug delivery technology with antimicrobials to
develop CPCs that possess optimal physicochemical properties,
including antimicrobial activity, osseointegration promotion, and
self-degradability. Additionally, it is crucial to mitigate cytotoxicity
through the judicious combination of antimicrobial agents, such as
bioactive metallic silver. Nonetheless, the pursuit of multifunctional
modifications in bone cements often necessitates the utilization of
multiple techniques, thereby increasing the overall cost and time
required for the preparation of antimicrobial bone cements.

The development of anti-infective CPCs capable of specifically
targeting pathogenic bacteria colonized within host cells, coupled
with advanced targeting technologies, remains a pressing challenge
for researchers. To address this challenge, future research should
focus on modifying antimicrobial drugs while maintaining the
biocompatibility and osseointegrative properties of CPCs, aiming
to effectively treat chronic bone infections that persist due to
intracellular bacterial colonization (Watkins and Unnikrishnan,
2020). Silver-copper-boron (AgCuB) nanoparticles (NPs), as
prepared by Qadri et al. (2019), have demonstrated no harmful
effects on host cells in vitro at concentrations ranging from 1 to 5 μg/
g of CPC. In vitro experiments have shown that AgCuB NPs at
concentrations of 1–5 μg/mL significantly reduce the internalization
of S. aureus infection in osteoblasts in a dose-dependent manner,
with a single treatment dose, without causing harm to host cells. To
enhance the anti-cellular properties of AgCuB NPs, Abdulrehman
et al. (2020) conjugated the cadherin-11 antibody (OBAb) to the
original nanoparticles in vitro, resulting in AgCuB-OBAb NPs that
could specifically target osteoblasts and subsequently exhibited
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remarkable antibacterial activity against intracellular S. aureus.
Additionally, the use of liposomes for delivering antimicrobial
drugs to host cells has been reported to effectively kill
intracellular pathogens (Ferreira et al., 2021). The antimicrobial
efficacy of liposomes can be further validated by utilizing targeting
technology to identify specific markers on host cells and
subsequently delivering the drugs to these cells efficiently.

The employment of bacteriophages (phages) in the combat against
bone infections, notably those orchestrated by S. aureus, has garnered
substantial attention. Phage therapy, in contrast to conventional
antibiotic regimens, showcases remarkable benefits including
pronounced heterogeneity and a diminished proclivity for eliciting
bacterial resistance (Plumet et al., 2022; Kim et al., 2021). By
efficiently lysing pathogenic bacteria and mitigating biofilm
accumulation, phages assume an optimal stance in the prophylaxis
and management of bone infections (Young et al., 2024). Notably, the
therapeutic efficacy is further bolstered when phages are synergistically
administered with antibiotics, heralding a novel, non-antibiotic
approach to counteract drug-refractory bacterial pathogens
implicated in bone infections (Moghadam et al., 2024; Bouchart
et al., 2020). Innovatively, researchers have harnessed 3D-printed
calcium phosphate bioceramics as targeted phage delivery vehicles,
enabling direct infusion of phages to the infected site. This strategy not
only mitigates systemic adverse effects but also augments therapeutic
outcomes (Bouchart et al., 2020). Nevertheless, the clinical translation of
phage-based interventions for bone infection prevention and treatment
faces undeniable challenges, encompassing the safety profile, stability of
the phages themselves, as well as regulatory hurdles that necessitate
careful consideration and ongoing investigation.

Numerous studies have explored the application of photodynamic
therapy (PDT) in the treatment of malignant tumors. Calcium
phosphate, as a biomaterial with broad application potential in the
biomedical field, has demonstrated anti-tumor effects when combined
with PDT through the construction of bionic systems. This integration
can involve strategies such as the combination of chemotherapy with
PDT, pH responsiveness, and other mechanisms (Zhong et al., 2021;
Nomoto et al., 2016; Liu et al., 2019). Recently, several studies have
confirmed the beneficial effects of combining calcium phosphate with
PDT in combating bacterial infections (Tan et al., 2024; Chen X. et al.,
2024; Hu et al., 2022). In the pathological progression of infected bone
defects, the advancement of infection serves as the primary obstacle to
successful bone regeneration, thereby complicating treatment strategies.
Consequently, the management of infectious bone defects necessitates a
coordinated approach that addresses both anti-infection measures and
the promotion of new bone formation. Tan et al. (2024) successfully
incorporated 2D Ti3C2 MXene and berberine (BBR) into a 3D-printed
calcium phosphate scaffold. Through both in vitro and in vivo
experiments, the Ti3C2-BBR functionalized calcium phosphate
scaffold exhibited remarkable antibacterial and osteogenic properties.
The persistence of intracellular bacterial colonization in bone infections
has posed a formidable challenge for an extended period. Traditional
antibiotics targeting intracellular bacteria often struggle to achieve
satisfactory anti-infective outcomes and may carry the risk of
inducing bacterial resistance. Chen X. et al. (2024) introduced a
novel photodynamic/photothermal calcium phosphate nanoparticle
coated with mannose-based lipids (MAN-LCaP@Indocyanine green
(ICG)) for the eradication of intracellular MRSA. Both in vitro and in
vivo experiments demonstrated that MAN-LCaP, serving as a drug

delivery vehicle, exhibited preferential uptake by macrophages and
facilitated the transport of ICG to intracellular pathogens. MAN-
LCaP@ICG offers a promising avenue for the clinical application in
the treatment of anti-intracellular infections.

Furthermore, the immune response is frequently overlooked in
traditional therapeutic approaches for bone infections.When CPC is
implanted as an inlay material, it is recognized as a foreign substance
by the immune system. Bone immunomodulation introduces a
novel concept for antimicrobial bone cement, aiming to mitigate
bacterial colonization (Chen et al., 2016). Additionally, the
integration of immunomodulatory effects into biomaterials can
mitigate the body’s excessive immune response locally, fostering
the establishment of favorable osseointegration between the
implanted material and surrounding bone tissues. Olechnowicz
et al. (2018) demonstrated that zinc can reduce local tissue
damage during repair by activating antioxidant enzymes,
scavenging reactive oxygen species, and mitigating oxidative
stress, thus promoting the progression of localized damage
towards repair. Macrophages have emerged as crucial players in
enhancing the osseointegration of CPCs (Li et al., 2020; Wu et al.,
2022). It is crucial to highlight that, while pursuing the desired
immunomodulatory effects, further research is imperative to
elucidate strategies that safeguard the antimicrobial efficiency of
CPCs and their physicochemical properties, vital for the formation
of new bone, from being compromised.
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Glossary
CPC(s) Calcium phosphate cement(s)

TII(s) Therapeutic inorganic ion(s)

DFI(s) Diabetic foot infection(s)

S. aureus Staphylococcus aureus

MRSA Methicillin-resistant Staphylococcus aureus

OLCN Osteocyte lacuno-canicular network

DFO Diabetic foot osteomyelitis

PBP4 Penicillin-binding protein 4

SasC Surface adhesin-S. aureussurface protein C

EPS Extracellular polymeric substances

Agr Accessory gene regulator

MSCRAMMs Microbial surface components recognizing adhesive
matrix molecules

SpA Staphylococcal protein A

M-CSF Macrophage colony-stimulating factor in osteoblasts

RANKL Receptor activator of nuclear factor-κB ligand

DFU(s) Diabetic foot ulcer(s)

PMMA Poly(methyl methacrylate)

CSC(s) Calcium sulfate cement(s)

TCP Tricalcium phosphate

TTCP Tetracalcium phosphate

OCP Octacalcium phosphate

HA Hydroxyapatite

CDHA Calcium-deficient hydroxyapatite

MCPM Monocalcium phosphate monohydrate

CS Chitosan

HPMC Hydroxypropyl methyl cellulose

PLGA Poly (lactic-co-glycolic acid)

MIC Minimum inhibitory concentration

AMX Amoxicillin

PLA Poly (lactic acid)

Ctr-
mpHANCs

Citrate-modified mesoporous hydroxyapatite nanocarrier

CMC Carboxymethyl cellulose

PS Phosphoserine

S. epidermidis Staphylococcus epidermidis

E. coli Escherichia coli

P. aeruginosa Pseudomonas aeruginosa

K. pneumoniae Klebsiella pneumoniae

AMP(s) Antimicrobial peptide(s)

FDA The U.S. Food and Drug Administration

POPC Palmitoyl oleoyl phosphatidyl-choline

HABP1 Hydroxyapatite binding peptide-1

Ag Silver

AgNP(s) Silver nanoparticle(s)

ROS Reactive oxygen species

DCPD Dicalcium phosphate dihydrate

Saos-2, HTB85 Human osteoblast-like osteosarcoma cells

CuONP(s) Copper oxide nanoparticle(s)

CuTCPNP(s) Copper-doped tricalcium phosphate

CAM Chorioallantoic membrane

GO Graphene oxide

MC3T3-E1 Mouse embryo osteoblast precursor cell(s)

DCP Dicalcium phosphate

ESR Erythrocyte sedimentation rate

hs-CRP High-sensitivity C-reactive protein

WBC White blood cell count

CS Calcium sulfate

CP Calcium phosphate

BCP Biphasic calcium phosphate

FRI Fracture-related infection(s)

PJI Periprosthetic infection(s)

MPC(s) Magnesium phosphate cement(s)

AgCuB Silver-copper-boron

NP(s) Nanoparticle(s)

OBAb Cadherin-11 antibody

PDT Photodynamic therapy

BBR Berberine

MAN-LCaP Calcium phosphate nanoparticle coated with mannose-based lipids

ICG Indocyanine green
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