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Background: Small cell lung cancer (SCLC) is characterized by an exceedingly low
mutation rate in oncogenic driver alterations, and there are currently no articles or
case reports documenting SCLC patients carrying ROS1 fusions. Tyrosine kinase
inhibitors (TKIs) have demonstrated significant efficacy and safety in patients with
ROS1 fusion-positive non-small cell lung cancer (NSCLC). However, effective
treatmentmodalities for ROS1 fusion-positive SCLC patients remain poorly defined.

Materials and Methods: We report the first case of an extensive-stage SCLC (ES-
SCLC) patient harboring ROS1 fusion, along with TP53, RB1, PTEN, and TERT
mutations. The patient exhibited primary resistance to a 3-week course of
crizotinib as first-line treatment. Following this, the patient was administered
second-line therapy, including chemotherapy coupled with immune checkpoint
inhibitor (ICI) and ICI maintenance treatment, resulting in a partial response (PR).
Notably, the clinical response to second-line therapy persisted for over 19months,
surpassing the previously reported efficacy of immuno-chemotherapy in ES-SCLC
cases (5.7 months) while maintaining a satisfactory quality of life.

Conclusion:We hypothesize that ROS1 fusion may not function as an oncogenic
driver alteration in ES-SCLC. Immuno-chemotherapy, not ROS1-TKIs, might
provide superior efficacy in ES-SCLC patients with ROS1 fusion.
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Introduction

The ROS proto-oncogene 1 (ROS1) encodes a receptor tyrosine kinase belonging to the
insulin receptor family. ROS1 fusions are recognized as actionable oncogenic alterations
underlying the carcinogenesis of non-small cell lung cancer (NSCLC), occurring in
approximately 1%–2% of NSCLC patients (Drilon et al., 2021). Numerous studies
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indicate that patients with NSCLC harboring ROS1 fusions exhibit
high sensitivity to ROS1 tyrosine kinase inhibitors (ROS-TKIs)
(Shaw et al., 2019; Shaw et al., 2017; Malik et al., 2014), leading
to their incorporation into clinical guidelines as standard first-line
therapies for this patient population. Similarly, ROS1 fusion is
extremely rare in patients with small cell lung cancer (SCLC),
and there is a notable absence of clinical trials or case reports
documenting SCLC patients with ROS1 fusions. For extensive-stage
SCLC (ES-SCLC), the standard first-line treatment typically
comprises chemotherapy or immunotherapy combined with
chemotherapy, yet there is a distinct lack of therapeutic research
specifically addressing the subset of ES-SCLC patients harboring
ROS1 fusions, which hampers the establishment of clinical evidence
for effective treatment strategies.

In this article, we present the first reported case of an ES-SCLC
patient harboring a rare TCB1D32-ROS1 fusion, along with TP53,
RB1, PTEN, and TERT mutations. This patient exhibited primary
resistance to crizotinib after 3 weeks of treatment despite its
documented efficacy in ROS1 fusion-positive NSCLC. Following
this, second-line treatments, including immune checkpoint
inhibitors (ICI) combined with chemotherapy and ICI
maintenance, were administered, leading to a partial response
(PR) and progression-free survival (PFS) exceeding
19 months so far.

Case report

A 70-year-old female patient was admitted to the First
Affiliated Hospital of Guangzhou University of Chinese
Medicine due to a persistent dry cough and breathlessness
lasting 1 month. She had a 20-year history of hypertension,
well-controlled with regular administration of amlodipine
besylate. She had no history of smoking or family history of
cancer. A PET scan conducted in January 2023 showed enlarged
lymph nodes (LN) in the right supraclavicular and infraclavicular
fossa, mediastinal areas, and the left hilum of lung, with increased
fluorodeoxyglucose uptake levels, indicating tumor metastasis
(Figure 2A). Biopsy and immunohistochemical examination of
the right cervical LN confirmed the diagnosis of metastatic small-
cell carcinoma (Figure 1). Serum biomarkers, including neuronal
specific enolase (NSE) and pro-gastrin-releasing peptide
(ProGRP), were elevated at 238.7 ng/mL and 420.3 pg/mL,
respectively. A comprehensive review of the patient’s medical
history, pathology, and imaging data led to a diagnosis of ES-
SCLC per the Veterans Administration Lung Study Group
criteria (Micke et al., 2002). Next-generation sequencing
(NGS) of tumor tissue specimens from cervical LN identified
ROS1 fusion, along with TP53, RB1, PTEN, and TERT mutations;
microsatellite stability; tumor mutational burden (TMB) of
34.9 mutations/Mb; PD-L1 (Tumor proportion score: 0%) (As
shown in Table 1; Figure 2).

The patient initiated first-line treatment with crizotinib on
14 February 2023, at the standard oral dosage of 250 mg twice
daily. However, as treatment progressed, her cough exacerbated,
and a subsequent CT scan performed 3 weeks later showed
progressive disease (PD). According to the Response Evaluation
Criteria in Solid Tumors 1.1 (RECIST 1.1), the CT image disclosed

rapid enlargement of multiple lymph nodes throughout the body
(Figure 3B). Consequently, on 9 March 2023, the patient
commenced a second-line treatment regimen consisting of the
ICIs Serplulimab, in combination with etoposide and cisplatin,
encompassing four sessions. After two treatment cycles, the CT
scan (Figure 3C) demonstrated a PR, and the patient reported a
partial alleviation of cough symptoms. On 2 June 2023, the patient
transitioned to ICI maintenance therapy with Serplulimab. As of
this writing, she has completed over 24 sessions of Serplulimab
monotherapy. Her symptoms were relieved, and she displayed a
strong willingness to continue treatment. The most recent
evaluation in August 2024 showed complete resolution of lung
tumor on CT (Figure 3F) with full remission of cough symptoms
(NRS [Numerical Rating Scale] score reduced from eight to 0).
Detailed assessments of the patient’s CT images, treatment
timeline, and serum NSE and ProGRP levels are illustrated in
Figures 3, 4, Supplementary Figure S1, and Supplementary Videos
S1-6, respectively. All procedures performed in this study were in
accordance with the ethical standards of the institutional and/or
national research committee(s) and with the Declaration of
Helsinki. Written informed consent was obtained from the
patient for publication of this case report and
accompanying images.

Discussion

In this article, we report the first case of ROS1 fusion-positive
ES-SCLC patient. This patient experienced primary resistance after
receiving 3 weeks of oral crizotinib as first-line treatment.
Subsequently, the patient received second-line therapy, which
included chemotherapy combined with ICI and ICI
maintenance treatment, resulting in a PR and PFS exceeding
19 months to date.

ROS1 alterations can be classified into several categories:
fusion, overexpression, splice variant, mutation, and
amplification (Drilon et al., 2021). As a proto-oncogene located
on chromosome 6q22.1, ROS1 encodes a receptor tyrosine kinase.
ROS1 fusion prompts the expression of constitutively activated
fusion kinases, thereby exerting a potent oncogenic effect (Davies
et al., 2012). Similarly, the TBC1D32 gene, also known as
C6orf170, encodes a protein associated with ciliary function and
is predicted to contain Tre-2, Bub2, and Cdc16 domains, which
directly interact with cell cycle-related kinases (Peng et al., 2019).
In this case, the targeted NGS found a novel TBC1D32-ROS1
fusion. This variant derives from the fusion of exon 22 of the
TBC1D32 gene with exon 33 of ROS1 gene (T22: R33) and
preserves the structural domain of ROS1 kinase.

Clinical evidence (Shaw et al., 2014; Shaw et al., 2019)
confirms that ROS1 fusion-positive NSCLC patients treated
with crizotinib achieve an objective response rate (ORR) of
72%, with median progression-free survival (mPFS) of
19.3 months and median overall survival (mOS) of
51.4 months, demonstrating favorable safety profiles
(incidence of grade ≥3 adverse events <10%). Supported by
multicenter retrospective analyses and prospective trials,
crizotinib has received regulatory approvals from the U.S.
Food and Drug Administration (FDA), European Medicines
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Agency (EMA), and China’s National Medical Products
Administration (NMPA) as first-line standard therapy for
advanced ROS1 fusion-positive NSCLC. This therapeutic
paradigm informed our selection of crizotinib as the primary
intervention for the index case. Crizotinib is a multi-target kinase
inhibitor with differential inhibitory potency against ROS1,
Anaplastic Lymphoma Kinase (ALK), and Mesenchymal-
Epithelial Transition (MET). Cell-based assays reveal its IC50

(Half maximal inhibitory concentration) values for MET and
ALK to be 11 and 24 nmol/L, respectively, while the IC50 value for
ROS1 ranges from 3.9 to 5.4 nmol/L. Notably, the Ki (Ki
Inhibition Constant) value in ROS1 fusion-positive cell lines is
0.6 nmol/L, indicating stronger binding affinity and inhibitory
activity toward ROS1 compared to other targets (Zhong et al.,
2025). However, contrary to expectations, disease progression
occurred in this patient after 3 weeks of treatment.

While crizotinib demonstrates robust efficacy in
ROS1 fusion-positive NSCLC, our ES-SCLC case exhibited
primary resistance. We propose three potential resistance
mechanisms supported by molecular profiling and prior
evidence. First, the TBC1D32 fusion partner may induce
conformational alterations in the ROS1 kinase domain (e.g.,
steric hindrance or allosteric effect), thereby interfering with
crizotinib binding to the target (Zhao et al., 2024). The
breakpoint location and fusion partner identity in
ROS1 fusions can influence the efficacy of first-line crizotinib
therapy. Li et al. (2024) demonstrated that patients with long
fusion variants (exon 32 breakpoints) had significantly shorter
mPFS compared to those with short fusions (exons 34/
35 breakpoints). Studies (Li et al., 2018) focusing on the
CD74 fusion partner have shown that patients with non-
CD74-ROS1 fusions had longer PFS (17.63 vs. 12.63 months)
and higher ORR (94.11% vs. 73.68%) when treated with
crizotinib. Second, SCLC is characterized by high genomic
instability and complex signaling networks (Peifer et al.,
2012), with core drivers of its development including classic
events such as TP53/RB1 co-inactivation and MYC family

amplification. In this context, the ROS1 fusion may be present
as a “passenger mutation,” and the SCLC may harbor other more
critical driver genes or bypass signaling pathways (Liu et al., 2024;
Chatterjee et al., 2018; Stockhammer et al., 2024). Finally, the
multiple co-occurring gene mutations in this case may
synergistically promote tumor progression and induce
crizotinib resistance. Studies (Zhang et al., 2021) have shown
that ROS1 fusion-positive NSCLC patients with co-occurring
oncogenic drivers (e.g., EGFR, MET amplification, or KRAS
mutations) or tumor suppressor gene mutations (e.g., TP53,
RB1, or PTEN) have significantly shorter PFS compared to
those without concomitant mutations. Based on the above
evidence, the observed crizotinib resistance in this case may
be related to the following factors: ROS1 kinase
conformational changes induced by the rare TBC1D32 fusion
partner; the unique biological role of ROS1 fusions in SCLC; and
the impact of multiple co-occurring gene mutations.

Due to the unsatisfactory outcomes with first-line therapy, this
patient received immuno-chemotherapy, followed by
immunotherapy maintenance as second-line treatment. This
approach aligns with the standard first-line treatment
recommended by guidelines for SCLC patients. However, no
clinical studies confirmed whether ES-SCLC patients with
ROS1 fusions can benefit from ICIs. In this case, the patient
achieved over 19 months of PFS following second-line immuno-
chemotherapy and immunotherapy maintenance, demonstrating a
favorable safety profile. Notably, previous studies suggested that
mPFS for ES-SCLC patients receiving first-line Serplulimab
treatment coupled with chemotherapy is 5.7 months (Cheng
et al., 2022). We hypothesize that this excellent efficacy to
immuno-chemotherapy may be related to the presence of
multiple gene mutations, including ROS1, TP53, and TERT, as
well as a higher TMB (TMB level of this patient was
34.9 mutations/Mb). Biomarker levels, including PD-L1,
microsatellite instability (MSI), and TMB, significantly influence
the efficacy of immunotherapy in cancer patients (Wang et al.,
2021). Li et al. identified a correlation between ROS1 gene alterations

FIGURE 1
Hematoxylin and eosin staining and immunohistochemistry of tumor issue. (A) HE staining suggested that the lesion is consistent with metastatic
small cell carcinoma. (B–G) The immunohistochemical showed: CK (+), TTF-1 (+), CgA (−), Syn (+), CD56 (+), SSTR-2 (−), Ki-67 (95%+). (H) Programmed
cell death-ligand 1 staining was negative. HE, hematoxylin-eosin staining; CK, Cytokeratin; TTF-1, Thyroid transcription factor 1; CgA, Chromogranin A;
Syn, Synaptophysin; CD56, Neural cell adhesion molecule; SSTR-2, Somatostatin Receptor 2; Ki-67, Ki-67 antigen; TP53, Tumor Protein 53; RB1, RB
transcriptional corepressor 1; TERT, Telomerase Reverse Transcriptase; ROS1, ROS proto-oncogene 1, receptor tyrosine kinase.
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TABLE 1 Gene mutations associated with tumor targeted therapy.

Gene Base changes Amino acid change VAF (%)/CN

TP53 Nonsense mutation in exon 6:c.586C>T p.Arg196* 83.80

RB1 Copy number deletions in exons 4-exon6 — 0.6

PTEN Missense mutation in exon 5: c.275A>G p.Asp92Gly 83.04

TERT Promoter mutation: c.219-C>A — 54.72

ROS1 TBC1D32-ROS1 fusion — 42.44

TP53, Tumor Protein 53; RB1, RB, transcriptional corepressor 1; TERT, telomerase reverse transcriptase; ROS1, ROS, proto-oncogene 1, receptor tyrosine kinase; VAF, variant allele frequency;

CN, copy number.

FIGURE 2
Identification of TBC1D32-ROS1 Fusion in Tumor Samples. (A) Integrative Genomics Viewer (IGV) screenshots demonstrate chimeric reads
identified by next-generation sequencing (NGS), indicating the presence of the TBC1D32-ROS1 fusion (T22:R33). This fusion arose from a deletion on
chromosome 6 [del (6) (q21q22.32)] between the 5′region of TBC1D32 (NM_152730.5) and the 3′region of ROS1 (NM_000313.3), resulting in the fusion of
TBC1D32 exons 1-22 to ROS1 exons 33-43. The breakpoint is located at 6:121494094_6:117647767. The gene structure, depicting exons (colored
boxes) and introns (gray lines), is shown for TBC1D32 (blue) and ROS1 (yellow). (B) Schematic representation of the TBC1D32-ROS1 fusion gene.
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FIGURE 3
PET-CT and follow-up Enhanced CT images of this patient. (A) The patient was diagnosed as ES-SCLC. Pre-treatment PET-CT scan suggested
enlarged lymph nodes (LNs) in the right supraclavicular and infraclavicular fossa, mediastinal areas, and left hilum of the lung, with increased
fluorodeoxyglucose uptake level, indicating tumor metastasis. (B) Enhanced CT scan suggested enlarged area of the initial metastatic lesions in the right
supraclavicular and infraclavicular fossa, mediastinal areas, and left hilum of the lung after 3 weeks of crizotinib treatment. (C) Enhanced CT
evaluation revealed the significant shrinkage of multiple LNs after two courses of Etoposide, Cisplatin and Sapolizumab treatment. (D–F) During the
therapeutic period of Sapolizumab as maintenance therapy, regular enhanced CT scans suggested stable disease.

FIGURE 4
The treatment timeline of this ES-SCLC patient with ROS1 mutation. TS, tumor size; PD, progressive disease; PR, partial response; BID, twice a day;
Q3W, once every 3 weeks; wks, weeks; mo, month.
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and increased TMB levels through analyzing an immunotherapy
database, a finding that aligns with our observations, suggesting that
ROS1 may serve as a favorable prognostic biomarker for various
cancer patients undergoing ICIs treatment (Li et al., 2020).
Additionally, Dong et al., investigated multiple lung cancer and
immunotherapy databases and found that TP53 mutations could
enhance the expression of immune checkpoints and TMB levels.
Further clinical trials confirmed the favorable clinical response of
ICIs in patients with TP53 mutations (Dong et al., 2017). Moreover,
Jiang et al. found a correlation between TERT mutations and
increased tumor immunogenicity and antitumor immune
inflammation, with cancer patients harboring TERT mutations
exhibiting significantly improved OS after receiving ICIs. The
predictive value of TERT alterations was independent of tumor
mutational burden and microsatellite status (Jiang et al., 2020). This
suggests that TERT mutations could function as a potential pan-
cancer predictive biomarker for ICI therapy. Considering the above
findings and mechanistic analyses, we speculate that the prolonged
PFS observed in this patient (currently exceeding 19 months)
following immuno-chemotherapy may be attributed to the
presence of ROS1, TP53, and TERT mutations, along with a
higher TMB level. Moreover, Liu et al. (2019) have shown that
crizotinib, in combination with cisplatin, can induce immunogenic
cell death in NSCLC, as evidenced by surface exposure of calreticulin
and extracellular release of ATP. These damage-associated
molecular patterns facilitate the recruitment of dendritic cells
into the tumor microenvironment and the subsequent activation
of tumor antigen-specific CD8+ T lymphocytes. Consequently, we
hypothesize that the durable PFS achieved with immuno-
chemotherapy in our patient may be, at least in part, attributable
to prior crizotinib exposure.

Implication and limitation

This study presents the first reported ES-SCLC case with
ROS1 fusion, along with the different interventions employed.
Initial attempts at targeted therapy with crizotinib led to primary
drug resistance within 3 weeks. In contrast, a subsequent second-line
treatment combining immunotherapy with chemotherapy, followed
by immunotherapy maintenance, yielded durable drug responses
(mPFS >19 months). These findings suggest that crizotinib may not
confer clinical benefits for ES-SCLC patients with ROS1 fusions,
whereas immuno-chemotherapy may prove to be a more effective
therapeutic strategy for this patient cohort. Currently, there is a
notable paucity of clinical evidence concerning ROS1 fusions in
SCLC, and this study contributes preliminary insights into this
underexplored area within the clinical landscape.

Several limitations of this study warrant consideration. Due to
financial constraints, the patient declined repeat genomic profiling
following disease progression, which precluded a thorough
evaluation of potential resistance mechanisms and consequently
limited evidence-based selection of subsequent therapies. This
represents a significant limitation of the study. Additionally, It is
based on a single-patient case report, rendering its conclusions
provisional and serving only as a preliminary reference for
managing ES-SCLC patients with ROS1 fusion. further
investigation is necessary to determine whether ROS1 functions

as a driver oncogene in SCLC. The specific efficacy and mechanism
of response to crizotinib and immuno-chemotherapy in patients
with ROS1 fusion remain unclear. Consequently, additional high-
quality preclinical and clinical studies are essential to substantiate
these issues.

Conclusion

This research provides an important contribution by
documenting the first case of an ES-SCLC patient with a
ROS1 fusion, accompanied by TP53, RB1, PTEN, and TERT
mutations. Following the administration of crizotinib as first-line
treatment, the patient exhibited primary resistance; thus, the
treatment was escalated to a second-line regimen involving
chemotherapy combined with ICI, followed by ICI maintenance
therapy. This approach resulted in a PR and a PFS significantly
superior to the previously reported efficacy of immuno-chemotherapy
in ES-SCLC patients (19 months compared to 5.7 months),
underscoring the potential of immuno-chemotherapy in this
setting. Based on the clinical evidence presented, we suggest that
ROS1 may not act as a driver oncogene in ES-SCLC. Additionally, the
presence of multiple mutations, various ROS1 fusion partners, and
distinct ROS1 breakpoints in this case could influence the
responsiveness to crizotinib therapy. The combination of ICI with
chemotherapy and subsequent ICI maintenance therapy may provide
enhanced therapeutic efficacy for patients with ES-SCLC, potentially
due to the existence of ROS1 fusions alongside TP53 and TERT
mutations. Given the complex genomic landscape and high
heterogeneity characteristic of SCLC, further clinical investigations
are imperative to explore and validate these findings.
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