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Introduction: Thyroid cancer, a prevalent endocrine malignancy, has an age-
standardized incidence rate of 9.1 per 100,000 people and a mortality rate of
0.44 per 100,000 as of 2024. Despite significant advances in precision oncology
driven by large-scale international consortia, gaps persist in understanding the
genomic landscape of thyroid cancer and its impact on therapeutic efficacy
across diverse populations.

Methods: To address this gap, we performed comprehensive data mining and in
silico analyses to identify pathogenic variants in thyroid cancer driver genes,
calculate allele frequencies, and assess deleteriousness scores across global
populations, including African, Amish, Ashkenazi Jewish, East and South Asian,
Finnish and non-Finnish European, Latino, and Middle Eastern groups.
Additionally, pharmacogenomic profiling, in silico drug prescription, and
clinical trial data were analyzed to prioritize targeted therapeutic strategies.

Results:Our analysis examined 56,622 variants in 40 thyroid cancer-driver genes
across 76,156 human genomes, identifying 5,001 known and predicted
oncogenic variants. Enrichment analysis revealed critical pathways such as
MAPK, PI3K-AKT-mTOR, and p53 signaling, underscoring their roles in thyroid
cancer pathogenesis. High-throughput validation strategies confirmed
actionable genomic alterations in RET, BRAF, NRAS, KRAS, and EPHA7.
Ligandability assessments identified these proteins as promising therapeutic
targets. Furthermore, our findings highlight the clinical potential of targeted
drug inhibitors, including vandetanib, dabrafenib, and selumetinib, for
improving treatment outcomes.

Discussion: This study underscores the significance of integrating genomic
insights with pharmacogenomic strategies to address disparities in thyroid
cancer treatment. The identification of population-specific oncogenic variants
and actionable therapeutic targets provides a foundation for advancing precision
oncology. Future efforts should focus on including underrepresented
populations, developing population-specific prevention strategies, and
fostering global collaboration to ensure equitable access to
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pharmacogenomic testing and innovative therapies. These initiatives have the
potential to transform thyroid cancer care and align with the broader goals of
personalized medicine.
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Introduction

Thyroid cancer is among the most commonly diagnosed endocrine
malignancies, characterized by abnormal cellular growth within the
thyroid gland (Xing, 2013). Its development is influenced by various
factors, including hormonal imbalances, genetic predisposition,
ethnicity, environmental exposures, epigenetic modifications, driver
mutations, and dysregulation of protein expression and signaling
pathways (Hanahan, 2022). Despite its high incidence rate, thyroid
cancer generally exhibits relatively low mortality. According to the
World Health Organization (WHO) and Global Cancer Statistics
(GLOBOCAN), the global age-standardized incidence rate of thyroid
cancer is 9.1 per 100,000 inhabitants, with an age-standardized
mortality rate of 0.44 per 100,000 (Bray et al., 2024).

Advances in genomics, particularly following the Human Genome
Project in 1990 (Green et al., 2020; Nurk et al., 2022), have significantly
enhanced our understanding of the genetic and molecular mechanisms
underlying thyroid cancer. Modern sequencing technologies have been
instrumental in identifying cancer driver genes (Kandoth et al., 2013;
Lawrence et al., 2014), germline variants (Lu et al., 2015), cancer-driving
mutations in both coding and non-coding regions (Sjöblom et al., 2006;
Tamborero et al., 2013; Porta-Pardo et al., 2017; Rheinbay et al., 2020),
druggable enzymes (Rubio-Perez et al., 2015), drug resistance genes
(Vasan et al., 2019), and pharmacogenomic annotations (Quinones
et al., 2014; López-Cortés et al., 2020c; 2017; Varela et al., 2021).
Moreover, artificial intelligence predictions (López-Cortés et al.,
2020a; Jumper et al., 2021; López-Cortés et al., 2024; Cabrera-
Andrade et al., 2020a) have contributed to identifying novel
therapeutic targets associated with thyroid cancer progression.

Despite these advancements, treatment responses among thyroid
cancer patients remain highly variable (Raguz and Yagüe, 2008;
Mansoori et al., 2017). Precision oncology provides a promising
approach to address this variability by tailoring therapies to
individual patients based on their specific genomic alterations and
clinical data (Quinones et al., 2014; Garraway et al., 2013). This
approach has already facilitated the development of targeted
therapies, such as inhibitors for BRAF and RET mutations, which
are commonly implicated in thyroid cancer (Espinosa et al., 2007;
Salvatore et al., 2021). However, patient heterogeneity and variable
outcomes highlight the need for further refinement of these strategies.

Thyroid cancer also demonstrates significant differences in
incidence, progression, and outcomes across ethnic groups,
suggesting a complex interplay between genetic predisposition
and environmental factors (Bhattacharya et al., 2023; Özdemir
and Dotto, 2017). These disparities underscore the importance of
population-specific genomic studies to ensure equitable access to
precision medicine (López-Cortés et al., 2020c). However, the
underrepresentation of diverse populations in cancer research
limits the generalizability and applicability of existing findings on

a global scale (Guerrero et al., 2018; García-Cárdenas et al., 2024).
This gap poses significant challenges to developing inclusive
pharmacogenomic strategies and precision oncology frameworks.
To address these challenges, we performed in silico analyses to
identify actionable genomic variants—alterations with potential
therapeutic relevance that are associated with pathways or
mechanisms amenable to pharmacological or experimental
interventions in thyroid cancer. Furthermore, we assessed the
prevalence of these variants across different populations and
prioritized therapeutic approaches aligned with the principles of
precision medicine.

Methods

Incidence and mortality of thyroid cancer

The Global Cancer Observatory (https://gco.iarc.fr/) allows for a
comprehensive evaluation of the global cancer burden. Using the
most recent version of GLOBOCAN, we have retrieved and ranked
the countries worldwide with the highest estimated age-
standardized incidence and mortality rates for thyroid cancer
(Bray et al., 2024).

Thyroid cancer driver genes

The intOGen framework (https://www.intogen.org) is a tool that
identifies cancer genes and determines their mechanism of action
across different types of tumors (Martínez-Jiménez et al., 2020). The
current version of the intOGen pipeline uses seven methods to
identify cancer driver genes based on point mutations: dNdScv
(Martincorena et al., 2017), CBaSE (Weghorn and Sunyaev, 2017),
MutPanning (Dietlein et al., 2020), OncodriveCLUSTL (Arnedo-
Pac et al., 2019), HotMAPS (Tokheim et al., 2016), smRegions
(Martínez-Jiménez et al., 2020), and OncodriveFML (Mularoni et al.,
2016). Therefore, we retrieved 40 thyroid cancer driver genes and
identified their involvement as oncogenes (Sondka et al., 2018),
tumor suppressor genes (Sondka et al., 2018), kinase genes
(Manning et al., 2002; Eid et al., 2017), DNA-repair genes (Lange
et al., 2011; Wood et al., 2001), RNA-binding proteins (Hentze et al.,
2018), cell cycle genes (Bar-Joseph et al., 2008), metastatic genes (Zheng
et al., 2018), and cancer immunotherapy genes (Patel et al., 2017).

Identification of the oncogenic variome

The identification of the thyroid oncogenic variome was divided
into two steps. In the first step, we extracted 56,622 single nucleotide

Frontiers in Pharmacology frontiersin.org02

Espinoza-Ferrao et al. 10.3389/fphar.2025.1524623

https://gco.iarc.fr/
https://www.intogen.org/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1524623


and insertion/deletion variants belonging to 40 thyroid cancer driver
genes from the Genome Aggregation database (gnomAD v3.2.1)
(https://gnomad.broadinstitute.org/), using the complete sequence
of a human genome (GRCh38/hg38) as the reference genome
(Collins et al., 2020; Karczewski et al., 2020; Nurk et al., 2022).
In the second step, we performed the OncodriveMUT and boostDM
methods integrated into the Cancer Genome Interpreter platform
(https://www.cancergenomeinterpreter.org) to assess the
tumorigenic potential of the 56,622 aforementioned genomic
variants (Muiños et al., 2021; Tamborero et al., 2018).
OncodriveMUT is a developed rule-based approach that
combines genomic features such as clusters of somatic mutations,
regions depleted by germline variants, gene mechanism of action,
and gene signals of positive selection, whereas boostDM is amachine
learning-based methodology for in silico saturation mutagenesis of
cancer genes to assess the oncogenic potential of mutations in
human tissues. Both methods let us classify driver variants into
known, predicted, and passenger mutations using the Catalog of
Validated Oncogenic Mutations (Muiños et al., 2021; Tamborero
et al., 2018).

Deleteriousness score of the
oncogenic variome

Combined Annotation-Dependent Depletion (CADD) version
1.4 (https://cadd.gs.washington.edu/) is an integrative annotation
built from more than 60 genomic features that measure the
deleteriousness of single nucleotide and insertion/deletion
variants in the human genome (Kircher et al., 2014). This
framework is adapted to the GRCh38/hg38 human reference
genome and integrates multiple annotations into one metric by
contrasting variants that survived natural selection with simulated
mutations (Rentzsch et al., 2019). In this study, we calculated the
CADD score for ranking the deleteriousness of the known and
predicted oncogenic variome located in thyroid cancer driver genes.
The deleteriousness of the oncogenic variome was categorized
according to its CADD score in very high (30–50), high (25–30),
medium (15–25), low (10–15), and very low (0–10).

Protein-protein interactome network

To better understand the connectivity among thyroid cancer
driver proteins, we constructed a protein-protein interactome (PPi)
network. This analysis utilized human proteome data obtained
through the Cytoscape StringApp, focusing on high-confidence
interactions (cutoff = 0.9) based on experimental evidence
(Szklarczyk et al., 2015; Shannon et al., 2003; Doncheva et al.,
2019). The analysis included all thyroid cancer driver proteins
identified in the human proteome using the intOGen pipeline
and the Catalogue of Somatic Mutations in Cancer (COSMIC) -
Cancer Gene Census (CGC) database (Martínez-Jiménez et al., 2020;
Sondka et al., 2018). To characterize the network, we calculated
degree centrality, which quantifies the number of edges connected to
each node within the network (López-Cortés et al., 2018; López-
Cortés et al., 2021b; López-Cortés et al., 2022a; Cabrera-Andrade
et al., 2020b). These calculations were performed using the

CytoNCA app (Tang et al., 2015). For improved organization
and visualization, the nodes and edges were arranged using the
degree-sorted circle layout. The PPi network was then visualized
with Cytoscape software v.3.10 (Szklarczyk et al., 2015; Shannon
et al., 2003). Finally, the degree centrality analysis offered valuable
insights into the network properties of thyroid cancer driver
proteins, shedding light on their roles within the
interaction network.

Functional enrichment analysis

The enrichment analysis gives scientists curated interpretation
of gene/protein sets from omics-scale experiments (López-Cortés
et al., 2020b; López-Cortés et al., 2022b; López-Cortés et al., 2021a).
In this context, we performed a functional enrichment analysis of
thyroid cancer driver genes/proteins that carry known and predicted
oncogenic variants by using g:Profiler version e101_eg48_p14_
baf17f0 (https://biit.cs.ut.ee/gprofiler/gost) (Raudvere et al., 2019)
to obtain significant annotations (Benjamini–Hochberg, false
discovery rate (FDR) q < 0.001) related to gene ontology (GO)
biological processes (The Gene Ontology Consortium, 2021), Kyoto
Encyclopedia of Genes and Genomes (KEGG) signaling pathways
(Kanehisa and Goto, 2000), Reactome signaling pathways (Fabregat
et al., 2016), Wikipathways (Slenter et al., 2018), and human
phenotype ontology (HP) (Köhler et al., 2021). Lastly, significant
annotations related to signaling pathways and thyroid cancer were
manually curated and visualized through a Manhattan plot.

Allele frequencies across human
populations

The gnomAD resource harmonizes genome sequencing data
from a variety of large-scale sequencing projects worldwide
(Karczewski et al., 2020). The v3.1.2 data set (GRCh38/hg38)
spans 76,156 genomes from unrelated individuals of diverse
ancestries. In this study, we calculated the allele frequencies of
the known and predicted thyroid cancer oncogenic variome
belonging to nine human populations worldwide such as African
(n = 20,744), Amish (n = 456), Latino (n = 7,647), Ashkenazi Jewish
(n = 1,736), East Asian (n = 2,604), European Finnish (n = 5,316),
European non-Finnish (n = 34,029), Middle Eastern (n = 158), and
South Asian (n = 2,419) (Karczewski et al., 2020; Collins et al., 2020).

Validation strategies

The first validation strategy involved utilizing the thyroid cancer
dependency map from the DepMap project (https://depmap.org/
portal/), a collaborative initiative between the Broad Institute and
the Wellcome Sanger Institute (Tsherniak et al., 2017). Cancer cells
frequently harbor multiple genetic or epigenetic alterations,
resulting in specific vulnerabilities that are absent in normal cells.
Although the genomic landscape of cancer has been extensively
studied, our understanding of the biological impact of these
alterations on tumor-specific vulnerabilities remains limited
(Baylin and Jones, 2016; Zhang et al., 2024). This knowledge gap
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impedes the effective application of precision medicine in clinical
practice. To address this issue, the primary objective of the DepMap
project is to develop a comprehensive preclinical reference map that
links tumor features to tumor dependencies, thereby expediting the
advancement of precision treatments.

To validate the actionability of prioritized thyroid cancer genes/
proteins with oncogenic variants, the DepMap project conducted
systematic loss-of-function screens in well-characterized thyroid
cancer cell lines, representing the tumor’s heterogeneity.
Clustered Regularly Interspaced Short Palindromic Repeats
(CRISPR)-based functional genomic screening data from the
DepMap Public 24Q4 dataset were employed to identify gene
dependencies in thyroid cancer (Tsherniak et al., 2017). This
technology systematically knocks out genes across 588 cancer cell
lines, including the 11 thyroid cancer cell lines (Cancer Cell Line
Encyclopedia Consortium and Genomics of Drug Sensitivity in
Cancer Consortium, 2015). The resulting gene dependency scores
were processed using the Chronos algorithm, an advanced
computational tool that models the effects of CRISPR knockouts
while accounting for variables such as cell growth rates and guide
RNA efficiency (Dempster et al., 2021). The dependency scores were
analyzed to uncover genetic vulnerabilities and identify potential
therapeutic targets specific to thyroid cancer. In this scoring system,
lower values indicate higher gene essentiality. A score of 0 denotes a
non-essential gene, while a score of ≤ −1 corresponds to the median
dependency of all common essential genes. This approach provides
high-resolution insights into gene dependencies, facilitating the
identification of novel targets for precision oncology strategies in
thyroid cancer (López-Cortés et al., 2020b; Tsherniak et al., 2017).

The second validation strategy to determine the relevance of the
genes/proteins prioritized in our analysis involved evaluating the
frequency of genomic alterations in a cohort of thyroid cancer
human patients. These findings were then compared with a set of
genes and proteins not associated with cancer with an
OncoScore <20 (Piazza et al., 2017). To achieve this, we retrieved
genomic, transcriptomic, and proteomic alteration data from the
PanCancer Atlas, which is part of The Cancer Genome Atlas
(TCGA) consortium (Hoadley et al., 2018; Huang et al., 2018;
Armendáriz-Castillo et al., 2020). Genomic alterations, including
driver mutations, structural variants, copy number variants (CNVs),
mRNA upregulation, mRNA downregulation, protein upregulation,
and protein downregulation, were analyzed in a cohort of
496 thyroid cancer patients. According to the Genomics Data
Commons of the National Cancer Institute (https://portal.gdc.
cancer.gov/) and cBioPortal (http://www.cbioportal.org/) (Cerami
et al., 2012; Gao et al., 2013), driver mutations were identified
through whole-exome sequencing. mRNA upregulation and
downregulation were analyzed using RNA sequencing V2 RSEM,
where tumor sample expression Z-scores were compared with the
distribution of log-transformed mRNA expression in adjacent
normal samples (Li and Dewey, 2011). CNV amplifications and
deep deletions were identified using GISTIC2.0 (Mermel et al.,
2011). Protein upregulation and downregulation were measured
using reverse-phase protein arrays, with tumor sample expression
Z-scores compared against adjacent normal samples. Finally, a
Bonferroni correction (P < 0.001) was applied to perform a
multiple comparison test. This test assessed alteration frequencies
across three groups: all thyroid cancer driver genes and proteins, the

prioritized thyroid cancer driver genes and proteins, and non-cancer
driver genes and proteins.

The third validation strategy aimed to assess the ligandability
of the thyroid cancer genes/proteins prioritized in our study. This
analysis was conducted using canSAR (http://cansar.icr.ac.uk), a
comprehensive knowledgebase designed to facilitate drug
discovery. canSAR integrates extensive datasets from
genomics, proteomics, pharmacology, drugs, and chemicals,
alongside structural protein information and protein networks
(Mitsopoulos et al., 2021). The resource encompasses the entire
human proteome, comprising 20,375 sequences derived from the
UniProt Swiss-Prot database (UniProt Consortium, 2019).
Additionally, canSAR provides a detailed structure-based
ligandability assessment, evaluating over 4.5 million protein
cavities (Gingrich et al., 2024).

Protein ligandability is quantified using a chemistry-based
scoring system, categorized into four levels: low (0%–24%),
indicating the protein is unlikely to be a successful drug target;
moderate (25%–49%), suggesting a moderate probability of
druggability; high (50%–74%), indicating a good likelihood of
druggability; and very high (75%–100%), signifying that the
protein is highly druggable and often prioritized for drug
development due to its strong potential for successful drug
binding. Using this resource, we retrieved both the chemistry-
based scores and cancer-specific scores to validate the
ligandability of the prioritized thyroid cancer genes and proteins,
determining their potential as viable therapeutic targets
(Mitsopoulos et al., 2021; Gingrich et al., 2024).

Therapeutic actionable genomic alterations
and in silico drug prescription

Another approach in CGI is the in silico drug prescription,
which involves identifying therapeutic actionable genomic
alterations for drug response in tumors and organizing them
based on their level of clinical relevance (Muiños et al., 2021).
This method uses two resources, the Cancer Biomarker database
(Dienstmann et al., 2015) and the Cancer Bioactivities database
(Tamborero et al., 2018), to explore the association between the
oncogenic variome genomic and drug response. As such, we
performed an in silico analysis to determine the druggability of
thyroid cancer driver proteins carrying known and predicted
oncogenic variants. This analysis allowed us to identify the most
relevant therapeutic strategies based on precision oncology.

Drugs involved in clinical trials

The Open Targets Platform (https://www.targetvalidation.org)
displays a comprehensive and robust data integration system for
access to and visualization of potential therapeutic targets and drugs
involved in clinical trials associated with cancer (Carvalho-Silva
et al., 2019; Ochoa et al., 2021). Additionally, the Drug Repurposing
Hub (https://www.broadinstitute.org/drug-repurposing-hub) is a
bioinformatics resource that allowed us to identify the
mechanism of action of the US Food and Drug Administration
(FDA)-approved drugs (Corsello et al., 2017). Lastly, we created
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Sankey plots to better understand which drugs are involved in the
most advanced phases (III and IV) of thyroid cancer clinical trials.

Results

Incidence and mortality of thyroid cancer

According to the WHO and GLOBOCAN, the top ten countries
worldwide with the highest estimated age-standardized incidence rates
of thyroid cancer per 100,000 inhabitants were Cyprus (31,8), China
(24,6), South Korea (23,2), French Polynesia (16,9), Hungary (16,3),
Portugal (15,6), Türkiye (15,6), NewCaledonia (14,4), Croatia (14), and
Costa Rica (13,8) (Figure 1A; Supplementary Table S1); meanwhile, the
top ten countries worldwide with the highest estimated age-
standardized mortality rate were Vanuatu (2,7), Chad (2,1), Samoa

(2), Fiji (1,9), Papua New Guinea (1,9), United Arab Emirates (1,6),
Djibouti (1,5), Ethiopia (1,4), Eritrea (1,3), and Mali (1,2) (Figure 1B;
Supplementary Table S2) (Bray et al., 2024).

Thyroid cancer driver genes

Wehave retrieved 40 thyroid cancer driver genes from the intOGen
framework (Martínez-Jiménez et al., 2020). Of them, 17 (43%) were
metastatic genes (Zheng et al., 2018), 15 (38%) were oncogenes and
tumor suppressor genes (Sondka et al., 2018), 10 (25%) were kinase
genes (Manning et al., 2002; Eid et al., 2017), 5 (13%) were cancer
immunotherapy genes (Patel et al., 2017), 5 (13%) encoded RNA-
binding proteins (Hentze et al., 2018), 4 (10%) were DNA-repair genes
(Lange et al., 2011; Wood et al., 2001), and 1 (3%) were cell cycle genes
(Bar-Joseph et al., 2008) (Supplementary Table S3).

FIGURE 1
Epidemiology of thyroid cancer. (A) Heatmap and ranking of estimated age-standardized incidence rate of thyroid cancer per 100,000 inhabitants
worldwide. (B) Heatmap and ranking of estimated age-standardized mortality rate of lung cancer per 100,000 inhabitants worldwide.

Frontiers in Pharmacology frontiersin.org05

Espinoza-Ferrao et al. 10.3389/fphar.2025.1524623

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1524623


Identification of the thyroid oncogenic
variome and its deleteriousness scores

Figure 2A shows the results of the OncodriveMUT and
boostDM analyzes to identify the oncogenic variome of

40 thyroid cancer driver genes by using the GRCh38/
hg38 human reference genome. After the analysis of
56,622 variants, we identified 5,001 oncogenic variants. Of them,
93 (2%) were known and 4,908 (98%) were predicted. The consensus
role showed that 2,640 (53%) variants produced a loss of function

FIGURE 2
Thyroid cancer driver genes, oncogenic variants, and CADD deleteriousness scores. (A) Features of thyroid cancer driver genes, oncogenic variants,
consequence type, and CADD deleteriousness scores. (B) Bean plots of CADD deleteriousness scores of the thyroid oncogenic variome, and ranking of
annotated and predicted oncogenic variants with the highest CADD deleteriousness scores. (C) Ranking of the thyroid cancer driver genes with the
highest number of oncogenic variants and their mean CADD deleteriousness scores.
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and 953 (19%) produced protein activation. Regarding the
deleteriousness score, 769 (15%) oncogenic variants had very
high CADD scores, and 2,675 (53%) oncogenic variants had high
CADD scores. Additionally, the consequence type showed that 4,602

(92%) were missense variants, 228 (5%) were stop gained variants,
76 (1.5%) were splice acceptor variants, 61 (1%) were splice donor
variants, 33 (0.7%) were splice region variants, and 1 (0.02%) was a
start lost variant (Supplementary Table S4). Figure 2B shows violin

FIGURE 3
Protein-protein interactome and functional enrichment analysis. (A) Protein-protein interactome of the thyroid cancer driver genes where the top
ten proteins with the highest degree of centrality were HRAS, KRAS, TP53, PPP2R1A, NRAS, HSP90AA1, PAK2, AKT1, BRAF, and PTEN. (B) Heatmap of
thyroid cancer driver genes with oncogenic variants being part of oncogenes, tumor suppressor genes, cell cycle genes, DNA repair genes, kinome,
metastatic genes, cancer immunotherapy genes, and genes encoding RNA-binding proteins. (C) Manhattan plot of the most significant GO
biological processes, KEGG signaling pathways, Reactome signaling pathways, WikiPathways, and Human Phenotype Ontology annotations. (D) Most
significant (Benjamini–Hochberg FDR q-value <0.001) GO biological processes, KEGG signaling pathways, Reactome signaling pathways, WikiPathways,
and Human Phenotype Ontology annotations where the thyroid cancer driver genes with oncogenic variants were involved.
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plots and ranking of CADD scores of the known and predicted
oncogenic variome related to thyroid cancer driver genes. The mean
CADD score of the known oncogenic variants was 26.3. The known
oncogenic variant with the highest CADD score was DNMT3A
rs139293773 (score = 49). The mean CADD score of the predicted
oncogenic variants was 26.9. The predicted oncogenic variant with
the highest CADD score was LRP1B rs1180082899 (score = 57). The
ranking of the 5,001 oncogenic variants is fully detailed in
Supplementary Table S5. Finally, Figure 2C details the number of
known and predicted oncogenic variants per thyroid cancer driver
gene. Genes with the highest number of oncogenic variants were
FAT3 (n = 567), LRP1B (n = 547), and HERC2 (n = 531).

Protein-protein interactome network

The PPi network was generated to better understand the
connectivity between thyroid cancer driver proteins with high-
confidence interactions (cutoff = 0.9). This network comprised
40 nodes (100%) and 50 high-confidence edges, as shown in
Figure 3A. Among the 40 nodes, 30 (75%) represented thyroid
cancer driver genes carrying oncogenic variants, while 10 (25%) did
not carry oncogenic variants. To further analyze the network’s
structure, the degree centrality of the nodes was calculated,
identifying the top ten thyroid cancer driver proteins with the
highest degree of connectivity: HRAS (12), KRAS (10), TP53 (9),
PPP2R1A (9), NRAS (8), HSP90AA1 (7), PAK2 (6), AKT1 (5),
BRAF (5), and PTEN (4). These results provide insights into the key
proteins and their interactions within the thyroid cancer driver
protein network, emphasizing the potential roles of these central
nodes in thyroid cancer progression.

Functional enrichment analysis

Figure 3B displays a heatmap of the 30 thyroid cancer driver
genes carrying known and predicted oncogenic variants involved in
several tumorigenic processes. We identified 15 tumor suppressor
genes, 14 metastatic genes, 12 oncogenes, 8 kinome genes, 4 DNA
repair genes, 3 genes encoding RNA binding proteins, 2 cancer
immunotherapy genes, and 1 cell cycle gene. Using the g:Profiler
bioinformatics tool (Raudvere et al., 2019), we performed functional
enrichment analysis on these 29 thyroid cancer driver genes with
known and predicted oncogenic variants and identified 156 GO
biological processes (The Gene Ontology Consortium, 2021),
31 KEGG signaling pathways (Kanehisa and Goto, 2000),
11 Reactome signaling pathways (Fabregat et al., 2016),
30 Wikipathways (Slenter et al., 2018), and 230 HP ontologies
(Köhler et al., 2021), as shown in the Manhattan plot of
Figure 3C. Subsequently, we found the most significant
(Benjamini–Hochberg, FDR q < 0.001) annotations related to
thyroid cancer to be apoptotic (GO:0097190), sphingolipid
(KEGG:04071), neurotrophin (KEGG:04722), FoxO (KEGG:
04068), p53 (KEGG:04115), ErbB (KEGG:04012), MAPK (KEGG:
04010), PI3K-AKT-mTOR (WP:WP3844), and TNF-α (WP:
WP231) signaling pathways. Finally, we observed that the thyroid
carcinoma annotation was significant as a human phenotype
ontology (HP:0002890) (Figure 3D; Supplementary Table S6).

Deleteriousness scores and allele
frequencies across human populations

Figure 4 presents scatter plots that highlight oncogenic variants
with the highest allele frequencies and the most deleterious CADD
scores per human population. The Amish population had the
highest mean CADD score (29.9), followed by Middle Eastern
(27.3), Latino (27.0), European Finnish (27.0), European non-
Finnish (26.9), East Asian (26.9), African (26.9), Ashkenazi
Jewish (26.9), and South Asian (26.7) populations.

Globally, the top five oncogenic variants with the highest allele
frequencies were ATM rs1800054 (0.00727), SETBP1 rs146193261
(0.00625), LRP1B rs150879175 (0.00582), LRP1B rs146867394
(0.00564), and RGPD3 rs190902687 (0.00544. The ARID2
rs76994389 oncogenic variant displayed the highest allele
frequency in the European Finnish population (0.01331); ATM
rs1800054 in the European non-Finnish population (0.01307);
SETBP1 rs146193261 in the Latino population (0.04314); FAT3
rs150453320 in the East Asian population (0.02568); LRP1B
rs370586151 in the South Asian population (0.03360); RGPD3
rs190902687 in the African population (0.01826); LRP1B
rs150879175 in the Middle Eastern population (0.01582); ATM
rs56009889 in the Ashkenazi Jewish population (0.02938); and
FAT3 rs370778887 in the Amish population (0.18640). Finally, a
complete ranking of oncogenic variants with the highest allele
frequencies and CADD scores per human population is provided
in Figure 4 and Supplementary Table S5.

Validation strategies

The first validation strategy consisted in identifying genes/
proteins essential for thyroid cancer cell proliferation and
survival by performing systematic loss-of-function screens in
11 well-annotated cell lines, as outlined in the thyroid cancer
dependency map from the DepMap project (Tsherniak et al.,
2017). Figure 5A presents boxplots showing the distribution of
dependency scores for 6 thyroid cancer driver genes/proteins,
calculated using the Chronos algorithm (DepMap Public
24Q4+Score, Chronos). Our analysis identified 19 gene/protein
dependencies with scores ≤ −1 across the 6 driver genes in
thyroid cancer cell lines. Specifically, KRAS showed a
dependency score of −1.91 in the CAL62 cell line, while NRAS
exhibited a dependency score of −1.90 in the TT2609C02 cell line.
PABPC1 demonstrated five dependencies, with scores of −1.58
(CAL62), −1.38 (TT2609C02), −1.36 (8305C), −1.12 (FTC133),
and −1.06 (IHH4). PPP2R1A exhibited seven dependencies, with
scores of −1.89 (8305C), −1.64 (HOTHC), −1.54 (ASH3), −1.48
(BCPAP), −1.12 (BHT101), −1.11 (MB1), and −1.09 (FTC133).
STAG2 showed two dependencies with scores of −1.14 (IHH4)
and −1.05 (ASH3), while BRAF displayed three dependencies with
scores of −1.48 (8305C), −1.24 (BHT101), and −1.04 (BCPAP)
(Supplementary Table S7).

The second validation strategy involved calculating the
frequency of alterations, including driver mutations, structural
variants, CNVs, mRNA upregulation, mRNA downregulation,
protein upregulation, and protein downregulation, in a cohort of
496 thyroid cancer patients from the TCGA PanCancer Atlas

Frontiers in Pharmacology frontiersin.org08

Espinoza-Ferrao et al. 10.3389/fphar.2025.1524623

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1524623


(Figure 5B; Supplementary Table S8). The set of 40 thyroid cancer
driver genes/proteins had a mean alteration frequency of 0.230,
while our 30 prioritized thyroid cancer driver genes/proteins

exhibited a mean frequency of 0.239. In comparison, the set of
40 non-cancer driver genes/proteins (OncoScore <20) showed a
significantly lower mean frequency of 0.043. A Bonferroni

FIGURE 4
Thyroid cancer oncogenic variants with the highest allele frequencies and CADD deleteriousness scores. Scatter plots and ranking of the annotated
and predicted oncogenic variants with the highest allele frequencies and CADD deleteriousness scores from the European Finnish, European non-
Finnish, Latino, East Asian, South Asian, African, Middle Eastern, Ashkenazi Jewish, and Amish populations.
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correction (P < 0.001) was applied to perform amultiple comparison
test among these three groups. Our prioritized genes/proteins did
not show a significant difference compared to the entire set of

thyroid cancer driver genes/proteins. However, they exhibited a
statistically significant difference when compared to the non-cancer
driver genes (P < 0.001). These results demonstrate that the

FIGURE 5
Validation strategies. (A) Thyroid cancer dependency map analyzed through CRISPR and the Chronos algorithm. This analysis identifies
19 dependencies of the KRAS, NRAS, PABPC1, PPP2R1A, STAG2, and BRAF into 11 cell lines. The essential proteins have a dependency score < −1. (B)
Genomic, transcriptomic, and proteomic alterations of 496 thyroid cancer patients from the TCGA PanCancer Atlas. Boxplots are shown to demonstrate
the significant statistical difference of alterations between the 30 prioritized thyroid cancer driver genes/proteins and non-cancer driver genes
(Bonferroni correction, P < 0.001). (C) Ligandability analysis through canSAR. Boxplots are shown to demonstrate the cancer score and chemistry-based
score of the 30 prioritized thyroid cancer driver genes/proteins. The analysis reveals that 16 (%) of these proteins have very high ligandability scores
(75–100), while 14 have high ligandability scores (50–75).
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prioritized genes/proteins, which are altered in healthy individuals
worldwide, also exhibit high frequencies of alterations in a cohort of
thyroid cancer patients.

The third validation strategy focused on evaluating the
ligandability of the thyroid cancer genes/proteins prioritized in
our study. Ligandability refers to a protein’s ability to efficiently
bind to a drug, a key factor in identifying and prioritizing effective
targets for drug development. Proteins with high ligandability are
more likely to enable the development of highly specific drugs,
reducing time and cost in pharmaceutical development (Wang et al.,
2019; López-Cortés et al., 2024). This analysis was performed using
canSAR, a comprehensive knowledgebase dedicated to drug
discovery that provides an extensive structure-based ligandability
assessment (Mitsopoulos et al., 2021; Gingrich et al., 2024). From
canSAR, we retrieved both the chemistry-based scores and the
cancer-specific scores for the 30 previously prioritized thyroid
cancer driver proteins. The mean chemistry-based score of these
proteins was 77.4, while the mean cancer-specific score was 87.3.
Our results revealed that 16 (53.3%) exhibited very high ligandability
(scores ranging from 75 to 100), and 14 (47.7%) showed high
ligandability (scores ranging from 50 to 74) (Figure 5C;
Supplementary Table S9). The identification of proteins with

high and very high ligandability underscores their potential as
effective therapeutic targets for thyroid cancer.

In silico drug prescription targeting
therapeutic actionable genomic alterations

Putative biomarkers for drug response and resistance in thyroid
cancer treatments, as identified from the Cancer Biomarker Database,
are presented as a circos plot in Figure 6A (Dienstmann et al., 2015).
Patients with RET oncogenic mutations respond well to vandetanib.
Those with BRAF mutations show responsiveness to dabrafenib,
sorafenib, RDEA-119, and CI-1040. NRAS mutations respond well
to selumetinib but exhibit resistance to vemurafenib. Similarly, KRAS
mutations respond to dasatinib but are resistant to vemurafenib. Lastly,
individuals with RET-TPCN1 fusions respond to sunitinib,
cabozantinib, and vandetanib (Supplementary Table S10).

Drugs involved in clinical trials

The Open Targets Platform provides updates on the progression
of clinical trials targeting proteins implicated in cancer (Echeverría-

FIGURE 6
Landscape of therapeutic strategies based on precision oncology. (A) Circos plot showing in silico drug prescriptions of responsive and resistant
effects targeting thyroid cancer actionable genomic alterations. (B) Sankey plot of early-stage and late-stage clinical trials for gastric cancer connecting
therapeutic targets, drugs, and mechanisms of action.
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Garcés et al., 2024a; 2024b; Ochoa et al., 2023), while the Drug
Repurposing Hub details the mechanism of action of the FDA-
approved drugs (Corsello et al., 2017). Figure 6B illustrates a Sankey
plot representing 11 clinical trial events where small molecules were
involved in early-stage phases (I and II) and late-stage phases (III
and IV) for thyroid cancer. These trials involve three targetable
proteins (including BRAF, RET, and EPHA7), and 9 small molecule
drugs with 5 mechanisms of action. Dabrafenib, vemurafenib, and
encorafenib were RAF inhibitors, sorafenib and sunitinib were
FLT3 inhibitors, regorafenib was an FGFR inhibitor, vandetanib
was an EGFR inhibitor, and pralsetinib and selpercatinib were RET
inhibitors (Supplementary Table S11).

Discussion

Thyroid cancer, one of the most prevalent endocrine
malignancies, exhibits substantial heterogeneity in its incidence,
progression, and response to treatment. This variability arises a
complex interplay of genetic, epigenetic, and environmental factors
(Hanahan, 2022; Hanahan and Weinberg, 2011; Ocaña-Paredes
et al., 2024; Singh et al., 2021). Such diversity underscores the
urgent need for comprehensive strategies to identify actionable
genomic alterations, validate therapeutic targets, and advance
precision oncology approaches tailored to individual and
population-specific needs (Echeverría-Garcés et al., 2024a;
Echeverría-Garcés et al., 2024b; Tan et al., 2021). This study
addresses these challenges through an integrated, multi-step
analysis, leveraging advanced computational tools and diverse
datasets to enhance our understanding of thyroid cancer biology
and therapeutic opportunities.

Our analysis of GLOBOCAN data revealed significant
disparities in thyroid cancer incidence and mortality rates
worldwide. High incidence rates were observed in countries such
as Cyprus, China, and South Korea, while mortality rates were
disproportionately higher in nations like Vanuatu and Chad (Bray
et al., 2024). These variantions reflect the interplay of genetic
predisposition, healthcare access, environmental exposures, and
diagnostic practices. Addressing these disparities is critical for
guiding resource allocation and implementing targeted public
health interventions, particularly in high-mortality regions with
limited healthcare infrastructure (Lyu et al., 2024).

Identifying driver genes is fundamental to understanding
tumorigenesis and developing therapeutic targets. Using the
intOGen pipeline, 40 thyroid cancer driver genes were identified
and categorized by function, including metastatic genes, oncogenes,
tumor suppressor genes, and DNA repair genes (Martínez-Jiménez
et al., 2020). Analysis of 56,622 single nucleotide and insertion/
deletion variants across these genes uncovered 5,001 known and
predicted oncogenic variants, with FAT3, LRP1B, HERC2, KMT2C,
ATM, KMT2A, DNMT3A, NF1, MAP3K1, and SETBP1 among the
most recurrently altered. Deleteriousness scores calculated using
CADD revealed several variants with very high scores, including
those in RGPD3, LRP1B, and RET, emphasizing their critical roles in
thyroid cancer progression and therapeutic potential (Rentzsch
et al., 2019; Schubach et al., 2024).

The PPi network highlighted the centrality and connectivity of
critical thyroid cancer driver proteins, including HRAS, KRAS, and

TP53, which act as hubs in tumorigenic signaling pathways
(Doncheva et al., 2019). This network analysis underscores the
importance of these proteins as potential therapeutic targets and
their broader roles in influencing tumor progression through
interactions with other proteins (Porta-Pardo et al., 2015). On
the other hand, functional enrichment analysis of the
30 prioritized driver genes/proteins identified key biological
pathways implicated in thyroid cancer (Reimand et al., 2019).
Pathways such as FoxO, p53, ErbB, MAPK, PI3K-AKT-mTOR,
and TNF-α signaling were significantly enriched, highlighting their
roles in tumorigenesis and as therapeutic targets. These findings
provide a foundation for exploring pathway-specific inhibitors and
combination therapies to address pathway redundancies and
resistance mechanisms (Tomuleasa et al., 2024).

Three validation strategies confirmed the therapeutic relevance
of the 30 prioritized thyroid cancer driver genes/proteins. The first
utilized CRISPR-based functional genomics through loss-of-
function screens from the DepMap project (Tsherniak et al.,
2017). This approach identified significant dependencies on key
genes/proteins such as KRAS, NRAS, PABPC1, PPP2R1A, STAG2,
and BRAF in thyroid cancer cell lines, underscoring their potential
as critical therapeutic targets. The second strategy analyzed genomic
alteration frequencies in a cohort of 496 thyroid cancer patients
from the TCGA PanCancer Atlas, demonstrating significantly
higher alteration frequencies in prioritized genes/proteins
compared to non-cancer-associated genes/proteins, further
validating their clinical utility (Cerami et al., 2012; Gao et al.,
2013). The third strategy assessed ligandability using canSAR,
identifying 16 proteins with very high ligandability scores and
14 with high scores. These findings reinforce the suitability of
these proteins as druggable targets, enhancing the specificity and
efficacy of therapies while reducing drug development costs
(Gingrich et al., 2024).

A significant challenge in advancing thyroid cancer treatment is
the limited diversity in genomic research. Cancer genomic studies
have predominantly focused on Caucasian populations, which
restricts the generalizability of pharmacogenomic findings to
other ethnic groups (Guerrero et al., 2018; García-Cárdenas et al.,
2024). This lack of diversity can lead to disparities in treatment
efficacy, as certain genetic variants may be more prevalent or behave
differently in various populations. Expanding research to encompass
a wider demographic could allow for the identification of
population-specific variants and enable the refinement of
treatment protocols to address genetic variability (Zavala et al.,
2021; Spratt et al., 2016). In this context, our study identified
219 pathogenic alterations in the European Finnish population,
1,688 in European non-Finnish, 738 in Latino, 447 in East Asian,
447 in South Asian, 1,817 in African, 51 in Middle Eastern, 157 in
Ashkenazi Jewish, and 20 in the Amish population. Notably, the
most frequent pathogenic variant in the European Finnish
population was ARID2 rs76994389 (0.01331), in European non-
Finnish was ATM rs1800054 (0.01307), in Latino was SETBP1
rs146193261 (0.04314), in East Asian was FAT3 rs150453320
(0.02568), in South Asian was LRP1B rs370586151 (0.03360), in
African was RGPD3 rs190902687 (0.01826), in Middle Eastern was
LRP1B rs370586151 (0.01582), in Ashkenazi Jewish was ATM
rs56009889 (0.02938), and in Amish was FAT3 rs370778887
(0.18640). A deep understanding of these variants is critical for
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devising preventive strategies and tailoring effective treatment
options for lung cancer patients in these populations.

Emerging technologies such as artificial intelligence and in silico
modeling are becoming invaluable in precision oncology (Yumiceba
et al., 2020; López-Cortés et al., 2021a; 2022b; Pérez-Villa et al.,
2023). These tools facilitate high-throughput screening of potential
therapeutic compounds, analysis of drug response, and prediction of
resistance mechanisms, all of which are essential for refining
treatment protocols (López-Cortés et al., 2020b; López-Cortés
et al., 2020a; López-Cortés et al., 2018; López-Cortés et al., 2024).
By identifying common alterations across different populations, our
research has integrated these findings with in silico drug
recommendations (Tamborero et al., 2018) and data from early-
and late-stage clinical trials (Ochoa et al., 2021), thus enhancing the
ability to detect significant oncogenic alterations in thyroid cancer
patients. This approach supports the development of more tailored
and effective treatment plans for thyroid cancer patients across
diverse ethnic backgrounds. The use of drug inhibitors (sunitinib,
dasatinib, cabozantinib, vemurafenib, selumetinib, dabrafenib,
sorafenib, RDEA-119, CI-1040, vandetanib, encorafenib,
regorafenib, pralsetinib, and selpercatinib) targeting RET, BRAF,
NRAS, KRAS, and EPHA7mutations has shown efficacy in reducing
tumor progression in thyroid cancer patients. However, as with
other targeted therapies, resistance remains a considerable obstacle.
Exploring combination therapies that target multiple pathways
simultaneously may mitigate resistance and improve patient
outcomes (Cabanillas et al., 2019; Zhong et al., 2021).

Pharmacogenomic research in thyroid cancer focuses on
personalizing treatment by evaluating how genetic variations affect
drug response and toxicity (Quinones et al., 2014; Ocaña-Paredes et al.,
2024; Salas-Hernández et al., 2023). While pharmacogenomic
guidelines are emerging, standardized recommendations remain
underdeveloped. Establishing comprehensive guidelines is critical for
optimizing drug dosing, reducing adverse effects, and improving patient
adherence to treatments (López-Cortés et al., 2020c).

Advancing precision oncology in thyroid cancer requires
expanding research to include diverse populations, integrating
bioinformatics tools, and developing comprehensive
pharmacogenomic guidelines. Building on the success of targeted
therapies in other cancers, ongoing clinical trials should continue
exploring novel therapeutic targets and drug combinations.
Strengthening international collaboration could expedite the creation
of multi-ethnic genomic databases, fostering more inclusive and
representative research. Precision oncology holds significant promise
for transforming thyroid cancer treatment. Addressing gaps in genomic
diversity, overcoming therapeutic resistance, and leveraging advanced
technologies will enable the development of tailored therapies,
improving outcomes for patients across diverse populations. This
approach aligns with the principles of personalized medicine and
emphasizes equity in cancer treatment globally.
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