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Hepatocellular carcinoma (HCC) has a relatively poor prognosis and a high
degree of malignancy. However, the therapeutic drugs are limited. In recent
years, abnormal lipid metabolism and its important role in HCC has been
reported, and emerging studies found that some formulae and active
components of traditional Chinese medicine (TCM) can regulate abnormal
lipid metabolism in HCC, showing their good application prospects. Therefore,
this article summarizes the changes and the roles of lipid metabolites in HCC
progression, and discusses the role of formulae and active components of TCM
for the treatment of HCC based on their regulation on abnormal lipidmetabolism.
A deeper understanding of their relationship may help the precise use of these
formulae and active components in HCC.
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1 Introduction

Hepatocellular carcinoma (HCC) is a common cancer affecting individuals globally
(Vogel et al., 2022). Half of the world’s HCC cases come from China, and HCC ranks as the
second most common cause of death in China (Xie et al., 2020). HCC is usually developed
through a gradual process: chronic hepatitis, liver fibrosis, liver cirrhosis, and finally HCC
(Kanda et al., 2019). Over the past decade, althoughmany breakthroughs in the treatment of
HCC have been made, there is still facing difficulties. The high recurrence rate after surgery
and interventional therapy, coupled with the difficulty of chemotherapy and targeted
medicines to achieve the desired efficacy, makes the overall survival rate of HCC patients
not optimistic, and only about 10% of patients can survive the 5-year survival period (Wang
and Lu, 2024). Therefore, there is an urgent need to find new strategies for HCC treatments.
The metabolic changes in patients with HCC have garnered significant interest in recent
years. Abnormal lipid metabolism has shown strong associations with the incidence and
development of HCC in previous studies (Sangineto et al., 2020). For example, scientists
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have found that HCC is typically characterized by upregulation of
genes associated with fatty acids (FAs) synthesis (Budhu et al., 2013).
In another study, enhanced lipid synthesis as well as the
upregulation of some lipid metabolism-related genes was
observed in β-catenin-activated HCCs (Berndt et al., 2019a).
Consequently, abnormal lipid metabolism has become a new
target for treating HCC.

Normal lipid metabolism involves the uptake, synthesis, and
decomposition of FAs, phospholipids, and cholesterol. Synthesized
and stored lipids function as energy sources for cells, secondary
messengers that transmit information, and involved in biofilm
synthesis, thereby maintaining normal cell survival. Abnormal
lipid metabolism, which manifests as abnormal FA synthesis and
lipid accumulation, is observed in patients with HCC (Bort et al.,
2020; Xu et al., 2023). It provides cancer cells with a large amount of
energy for proliferation, survival, invasion, and metastasis while
facilitating FA-induced reprogramming of lipid metabolism (Hu
et al., 2020; Peng et al., 2022; Seo et al., 2020). Moreover, it aids in
biofilm synthesis and signaling molecules for cancer treatment

response and the tumor microenvironment (Bian et al., 2021).
Lipids play an important role in signal transduction and
molecular recognition, acting as first (extracellular) and second
(intracellular) messengers. Specifically, membrane glycerides and
sphingolipids are able to hydrolyze to transduce signals to produce
biologically active molecules such as ceramides and sphingosine-1-
phosphate (S1P). Steroids (including oxysterols, bile acids (BAs),
steroid hormones) and FAs are involved in these processes through
direct interactions with receptors (Paul et al., 2022). Among them,
C24 ceramide is associated with the aggregation of cancer. The
proportion of C24 ceramide in tumor-derived exosomes indicates
the tumor dry-like phenotype of glioblastoma. Besides, the loss of
ceramide and S1P signaling leads to a decrease in the amount of
exosome release (Jia et al., 2024). Thus, regulating lipid metabolism
is believed to affect the development of HCC. Several studies have
observed that drugs targeting key or rate-limiting metabolic
enzymes, metabolites, and drivers of metabolic changes are
effective in treating HCC. For instance, the likelihood of HCC in
individuals with severe liver disease may be diminished through the

FIGURE 1
The roles of lipid metabolites and lipid metabolism-related signaling pathways in HCC progression. ↑ An increase in the level or a positive effect. ↓ A
decrease in the level or an inhibitory effect. Promoting HCC progression. Inhibiting HCC progression. The change in the color of the liver in
this figure indicates the progression of the disease, the reddening of the liver indicates inflammation in the liver, and the darkening of the liver indicates
fibrosis and tissue damage.
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use of 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA)
reductase inhibitors, commonly referred to as statins (Hsiang
et al., 2015). The inclusion of statins, as has been noted in
numerous clinical trials, extends survival for patients suffering
from advanced HCC (Kawata et al., 2001; Shao et al., 2015).
Fenofibrate, commonly used to treat hypertriglyceridemia and
dyslipidemia, is a fibrillic acid derivative. It plays a role in cancer
treatment by regulating related lipid metabolism pathways, such as
the PPARα/RXR pathway (La Fountaine et al., 2020; Lian et al.,
2018). However, efficacy and safety of these drugs in HCC treatment
still require further clinical validation.

Formulae and active components of traditional Chinese
medicine (TCM) have been used to treat various cancers and
metabolic related diseases with good efficacy and safety (Wei
et al., 2022). It could regulate metabolic processes by influencing
glycolysis, mitochondrial oxidative phosphorylation, glutaminolysis,
FA biosynthesis and so on (Wang et al., 2021). Recently, emerging
researches revealed that some TCM formulae and active
components exert therapeutic effects in patients with HCC by
regulating lipid metabolism and the products of lipid metabolism
or affecting the pathways of lipid metabolism. However, the unclear
action characteristics and therapeutic mechanisms limit the precise
application of TCM formulations in clinic. Therefore, we searched
the English articles from PubMed in the last 5 years for the
keywords: traditional Chinese medicine, hepatocellular
carcinoma, and lipid metabolism, hepatocellular carcinoma and
linoleic acid, hepatocellular carcinoma and cholesterol,
hepatocellular carcinoma and arachidonic acid, hepatocellular

carcinoma and triglycerides, hepatocellular carcinoma and
lipoprotein, traditional Chinese medicine and linoleic acid,
traditional Chinese medicine and cholesterol, traditional Chinese
medicine and arachidonic acid, traditional Chinese medicine and
triglycerides, traditional Chinese medicine and lipoprotein. Then,
we collected and summarized them, so as to describe the changes
and the roles of lipid metabolites in HCC progression (Figure 1), and
discuss the effect of TCM formulae and active components in the
treatment of HCC based on their regulation on abnormal lipid
metabolism (Figure 2).

2 Abnormal lipid metabolism in HCC

2.1 Abnormal FAs levels in HCC

Normally, FAs can be categorized into two primary groups
based on their molecular structure: unsaturated fatty acids (UFAs)
and saturated fatty acids (SFAs). Within the UFAs category, there
are further distinctions made between polyunsaturated fatty acids
(PUFAs) and monounsaturated fatty acids (MUFAs). Among
PUFAs, specific types include linoleic acid, linolenic acid, and
arachidonic acid (AA), et al. It has been observed that abnormal
levels of linoleic acid are prevalent in individuals diagnosed with
HCC (Cai et al., 2020). Researchers have discovered that the
concentration of linoleic acid in the portal vein is reduced in
patients with HCC compared to healthy individuals (Liu J. et al.,
2022). Vlock EM and colleagues used amouse model of leanMASH-

FIGURE 2
The effects of TCM formulae and active components on lipid metabolism of HCC. ↑ An increase in the level or a positive effect. ↓ A decrease in the
level or an inhibitory effect. Note: GFL, Ganfule capsules; FZYLD, Fuzheng Yiliu Decoction; FZXZP, Fuzheng Xiaozheng prescription; PZH, Pien Tze Huang;
SNKAF, Sinikangai fang; SHHZF, Shuihonghuazi Formula; DMY, Dihydromyricetin; CUR, Curcumin; ArBu, Arenobufagin.
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TABLE 1 The composition and effect of TCM formulae.

Formulae of Chinese
medicine

Composition Preparation Model Administration Effect References

Ganfule capsules Codonopsis pilosula (Franch.) Nannf,
Trionyx sinensis Weigmann, Paris
polyphylla var.chinensis (Franch.) H.Hara,
Atractylodes macrocephala Koidz,
Astragalus mongholicus Bunge, Citrus
reticulata Blanco, Steleophaga
plancyi(Boleny), Rheum palmatum L,
Prunus persica (L.)Batsch, Scutellaria
barbata D.Don, Patrinia villosa (Thunb.)
Dufr, Poria cocos (Schw.)Wolf, Coix
lacryma-jobi L.var.ma-yuen (Roman.)Stapf,
Curcuma longaL, Biancaea sappan (L.)Tod,
Ostrea gigas Thunberg, Artemisia scoparia
Waldst.et Kit, Akebia quinata(Thunb.)
Decne, Cyperus rotundus L, Aquilaria
sinensis(Lour.)Gilg, Bupleurum chinense
DC. (Ke et al., 2022)

The active components of GFL
capsules(specification: 0.5 g/capsule,
production batch number: 20180505, Kamp
Pharmaceutical Co., Ltd) were analyzed by
UPLC-Q-TOF/MS. 50 mg of the capsule
contents powder was weighed, dispersed in
10mL of methanol-water mixed solvent (1:1,
v/v) by ultrasonic-assisted extraction
technology (working frequency 40 kHz,
duration 30 min), centrifugation (relative
centrifugal force 401×g, for 15 min) to
obtain a clear extract, and 3 μL of
supernatant was injected for analysis. The
separation capsule step was performed on a
Waters ACQUITY UPLC BEH
C18 reversed-phase column (100 mm ×
2.1mm, particle size, 1.7 μm) with a constant
temperature of 35°C in positive ion mode
(POS) and negative ion mode (NEG)

Nude murine model induced by
HepG2 cell

The mice were gavaged with 0.2 mL of
GFL (7.4 g/kg) every day, continuous
administration for 2 weeks

• ↑1-Arachido noylglycerophosphoinositol
• ↓Pi-Methylimidazoleacetic acid

Xu et al. (2022)

Fuzheng Yiliu Decoction Astragalus mongholicus Bunge, Ligustrum
lucidum W.T.Aiton, Dioscorea polystachya
Turcz., Rhinacanthus nasutus (L.) Kurz.

Astragali Radix and Ganoderma made in
Fuzhou Huichun Chinese medicine Yinpian
Factory Co. Ltd. (batch number:
10010818 and 10010605), Fructus ligustri
lucid (Shanghai Leiyun Shang decoction
piece, batch number 20110101) and
Dioscoreae Rhizoma (Anhui Wansheng
Traditional Chinese Medicine, batch
number 110108). After ultrafine grinding
(through 60 mesh sieve), the medicinal
materials were accurately weighed and
matched according to the mass ratio of 2:2:1:
1 to form a compound system with a total
mass of 450 g (including 150 g of Astragali
Radix, 150 g of Ganoderma, 75 g of Fructus
ligustri lucid and 75 g of Dioscoreae
Rhizoma). Preparation process: In the first
decoction stage, the mixed herbs were
soaked with 6 times (2.7 L) of deionized
water at room temperature for 30 min, and
then the decoction was carried out by
gradient heating method (after boiling, the
temperature was maintained for 20 min),
and 1.5 L of the initial decoction liquid was
collected. The second decoction was re-
extracted with the same process parameters,
and the two decoctions were refined through
a double-layer microporous filter membrane
(0.45 μm), and then concentrated to a final
volume of 1 mL under reduced pressure at
60°C, and the concentration was confirmed
to be equivalent to 0.45 g/mL of raw
medicinal materials by quality control
testing

Orthotopic transplantation rat model
induced by HepG2 cells

The rats were gavaged with 0.1 mL of FZYLD
every day, continuous administration for
2 weeks

• ↓UFAs and cholesterol
• ↑HDL, VLDL, LDL and FAs

Zhang et al. (2022b)

Fuzheng Xiaozheng prescription Astragalus mongholicus Bunge, Trionyx
sinensis Weigmann, Sparganium

The main herbs in FZXZP are provided by
Beijing Tong Ren Tang Science and

HCC rat model induced by
diethylnitrosamine

• ↑Lipid-related metabolism
• Regulating some lipid-related metabolism

Liu et al. (2022c), Li et al.
(2022)

(Continued on following page)
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TABLE 1 (Continued) The composition and effect of TCM formulae.

Formulae of Chinese
medicine

Composition Preparation Model Administration Effect References

stoloniferum (Buch. - Ham. ex Graebn.)
Buch. - Ham. ex Juz., Curcuma aromatica
Salisb., Prunus persica (L.) Batsch,
Carthamus tinctorius L., Angelica sinensis
(Oliv.) Diels, Glycyrrhiza uralensis Fisch.
ex DC.

Technology Development Co., Ltd.
(Beijing). Differentiated treatment strategies
were implemented: plant medicinal
materials were infiltrated with deionized
water at room temperature (30 min), and
animal-derived medicinal materials were
treated with extended pretreatment cycle
(40–50 min). Referring to the standard
decoction process (water added: 10 times the
volume of the material), the initial decoction
stage: after the animal medicinal materials
were decocted for 20 min, plant medicinal
materials were added for co-decoction, and
the extraction was maintained at a simmer
for 30 min
After the liquid formulae is collected by the
residue filtration system, the circular
extraction process (1–2 repeats) is adopted.
Multiple batches of extracts were combined,
refined by a three-stage gradient filtration
system, concentrated to a density of 1.26 g/
cm3 under vacuum decompression at 60°C,
and stored in the cold chain at 4°C. The
whole process follows the specifications of
the Chinese Pharmacopoeia

The rats were gavaged with 0.1 mL of FZXZP
(12.6 g/kg, 6.3 g/kg and 25.2 g/kg) every day,
continuous administration for 14–18 weeks

such as AA, linoleic acid and retinol
• ↑The biosynthesis of steroid hormones

Pien Tze Huang Pana.c notoginseng(Burk.) F.H.Chen,
Abelmoschus moschatusMedik., Bos taurus
domesticus Gmelin, Snake galla

The pharmaceutical product PZH (batch
1607039) was manufactured and certified by
Zhangzhou Pien Tze Huang Pharmaceutical
Co., Ltd., (located in Zhangzhou, China,
under CFDA approval number Z35020243)

HCCmice model introduced by Hepa1-
6 cells

The mice were gavaged with PZH
(234 mg/kg) every day, continuous
administration for 3 weeks

• ↓Phosphorylation of ACSL1 associated with
FA biosynthesis/degradation pathway

Lin et al. (2023)

Sinikangai fang Hedyotis diffusa var. longipes Nakai,
Eupolyphaga sinensis Walker, Scutellaria
barbata D.Don, Solanum nigrum Acerbi ex
Dunal, Akebia trifoliata (Thunb.) Koidz.,
Bupleurum chinenseDC., Paeonia lactiflora
Pall., Glycyrrhiza glabra L.
Codonopsis pilosula (Franch.) Nannf.,
Atractylodes macrocephala Koidz., Coix
lacryma-jobi var. ma-yuen (Rom.Caill.)
Stapf, Poria cocos (Schw.) Wolf, Prunus
persica (L.) Batsch, Cremastra
appendiculata (D. Don) Makino.

The samples were completely immersed in
quantitative distilled water and then allowed
to stand for 30 min, and then gradually
heated to boiling (100°C ± 1°C) to complete
two independent decoction procedures.
Immediately after each decoction, the filtrate
is collected by means of a double-layer sterile
gauze for solid-liquid separation. After
combining the two clarification solutions,
they were concentrated and stored at a
constant temperature of 4°C ± 0.5°C

HCC xenograft mouse model
introduced by MHCC-97H cells

The mice were gavaged with SNKAF
(15.3 g/kg, 30.6 g/kg and 61.2 g/kg) every
day, continuous administration for 15 days

• Regulating the PI3K/Akt pathway Guo et al. (2022a)

Shuihonghuazi Formula Persicaria orientalis (L.) Spach, Imperata
cylindrica (L.) Raeusch., Ophicalcitumb,
Coix lacryma-jobi var. ma-yuen
(Rom.Caill.) Stapf

This formula was prepared in the laboratory
in strict accordance with the standards of the
2020 edition of the Chinese Pharmacopoeia,
and Qinhuangdao Taijihuan Nano
Technology Co., Ltd. was entrusted to
implement the transformation of nanoscale
particle preparations

HCC rats model induced by
diethylnitrosamine

The rats were gavaged with SNKAF
(757 mg/kg, soluble in PEG-400) every day,
continuous administration for 9 weeks

• ↑The absorption and utilization of linoleic
acid and oleic acid

• ↑AA-like substances
• ↓The abnormal metabolism of BAs

Bao et al. (2017)

Notes: The standard names of some medicine are not available and are explained here.
aThe dry gallbladder of a snake.
bThis product is a metamorphic rock type rock, serpentine marble. Main contains (CaCO3).

↑ An increase in the level or a positive effect.

↓ A decreased in the level or an inhibitory effect.
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HCC to determine the changes of linoleic acid levels in HCC. The
findings indicated these mice model had a decrease in linoleic acid
levels; however, in mice fed choline-deficient, high trans-fat, sucrose,
and cholesterol diets, levels increased over time (Vlock et al., 2020).
In contrast, AA, another metabolite belonging to PUFA, was
elevated in HCC. One experiment used the metabolomics to
distinguish HCC patients from those without cancer, researchers
discovered that the concentration of AA was notably elevated in
HCC cohort relative to the control group (Jee et al., 2018).
Additionally, some other FAs were also discovered to be
abnormal in HCC. Researchers examined the association between
free FAs and advanced liver fibrosis or HCC in hispanics in South
Texas who have high rates of HCC. They found that HCC has

showed a significant association with low expression of some types
of FAs, such as very long chain (VLC) SFAs, odd chain SFAs, and
VLC n-3 PUFAs (Jiao et al., 2021).

2.2 Abnormal cholesterol levels in HCC

Cholesterol is an essential lipid for maintaining cellular
homeostasis synthesized mainly in the liver (Luo et al., 2020). A
study aimed to compare the metabolic signature between MASH
and MASH-HCC patients. The results showed that compared with
the MASH group, BAs metabolism and cholesterol metabolism
were significantly upregulated in MASH-HCC group (Ahmed

TABLE 2 The effect of the active components from TCM.

TCM active
components

Chemical structure Model Administration Effect Target References

Dihydromyricetin HepG2, Hep-
3B, 97H,
SMMC-7721,
Sk-Hep1, and
Huh7 cells

DMY (0, 20, 40, 80, 160,
320 μM)

• ↓EGFR and its
downstream pathways.

• ↓Cholesterol level
• ↓The expression of lipid
raft markers

CAV1, FLOT1,
EGFR, PI3K, Akt
and STAT3

Zhang et al.
(2023)

Arctigenin HepG2 and
Hep-3B cells

Arctigenin (20 μM) • ↑The binding between
C/EBPα and PPARα

• ↓gankyrin

C/EBPα, PPARα Sun et al. (2018)

Emodin Bel-7402 cell Emodin (100 μM) • ↓The TG levels and FA
desaturation

• ↓SREBP1 and acid
metabolism-related
proteins (ACC α, FASN,
and stearoyl-CoA A
desaturase D)

SREBP1 Yang et al.
(2019)

Curcumin HepG2 cells CUR (0, 20, 40, and
60 μM)

• ↑HepG2 cell apoptosis
• ↑HepG2 autophagy

P53 and AMPK/
ULK1 pathway

Chen et al.
(2022)

H22 bearing
mice

The mice were gavaged
with CUR (25 mg/kg),
continuous
administration for for
3 weeks

• ↓FASN and lipid
synthesis

PI3K/Akt
pathway

Man et al.
(2020)

Arenobufagin HepG2 cells ArBu (1.1 ng/mL and
3.3 ng/mL)

• ↓The expression of
65 differential proteins
related to lipid
metabolism, cell
apoptosis, and
autophagy

PI3K/Akt and
JAK-STAT3
pathway

Zhao et al.
(2020)

Berberine HepG2 cells Berberine (15 μM) • ↓TG content AMPK Cao et al. (2018)

Notes: ↑ An increase in the level or a positive effect. ↓ A decreased in the level or an inhibitory effect.
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et al., 2022). Plasma cholesterol in 132 HCC patients and
287 patients without HCC cirrhosis was studied by Venturini
et al. and the result suggested that the enhanced cholesterol
biosynthesis led to a rise in plasma cholesterol of patients with
cancer (Venturini et al., 1999). Besides, researchers assessed the
extent of FA synthesis in the liver, as well as levels of triglycerides
and cholesterol to investigate the role of unconstrained lipogenesis
in human HCC. The findings revealed that the synthesis of FAs, as
well as triglyceride and cholesterol levels, was significantly elevated
in HCC compared to the surrounding liver tissue (Calvisi et al.,
2011). Additionally, it was discovered that HCC patients with
shorter survival times exhibited higher serum cholesterol levels (Li
et al., 2023a). However, it has also been reported to the contrary
that high cholesterol is associated with a low risk of HCC. In one
experiment, underwent health screenings in 2009, a total of
8,528,790 patients were analyzed using Cox regression to
investigate the hazard ratios for HCC. The findings indicated
that as levels of low-density lipoprotein cholesterol and total
cholesterol increased, the incidence of HCC progressively
decreased. Compared to individuals in the lowest quartile of
total cholesterol, those with higher levels of total cholesterol
were associated with a reduced risk of developing HCC (Cho
et al., 2021).This result suggests that the relationship between HCC
progression and cholesterol levels still needs to be further studied.

Bile acids (BAs) play a crucial role in cholesterol metabolism,
with the conversion of cholesterol into BAs being the most
important metabolic pathway. At the same time, about 40% of
the cholesterol in the body of a normal person is converted into BA
every day. An enhanced BA pool has been observed in patients
with MASH-associated HCC (Conde de la Rosa et al., 2021). The
quantification and analysis of 35 types of BAs in the pre- diagnostic
sera of 100 patients with HCC and 100 healthy individuals in
China revealed the levels of conjugated primary BAs are markedly
elevated (Thomas et al., 2021). An increased risk of HCC is
associated with higher BAs concentrations, particularly in
conjugated primary BAs (Petrick et al., 2020). One study
observed an association between the elevated levels of major
circulating BAs and the increased risk of HCC through
analyzing 233 cases of HCC. With increasing concentrations of
BAs, the BAs profile shifted towards a higher proportion of
taurine-conjugated BAs, suggesting the progression of HCC and
early metabolic changes in BAs metabolism (Stepien et al., 2022).
BA synthesis and transport are regulated by farnesoid X receptor
(FXR). It has been reported that in mice lacking the FXR, both
hepatic and serum levels of BAs are elevated. The accumulation of
BAs in these FXR-deficient mice led to a spontaneous development
of HCC in nearly 90% of cases (Kim et al., 2007). However, not all
studies found that BAs was elevated. In one study, scientists
investigated BAs levels and genes associated with BAs
homeostasis in 37 patients with HCC in both tumor-adjacent
and cancer tissues, finding a 36% reduction in total BAs (Chen
W. et al., 2023). In another study involving 348 patients with
chronic liver disease and 396 patients with HCC, the findings
revealed that the total BAs levels in HCC patients, both prior to
and following propensity score matching analysis, were lower
compared to those with persistent liver diseases. Additionally,
there was a significant reduction in the total BAs levels
observed in HCC patients (Dai et al., 2024).

2.3 Abnormal triglycerides levels in HCC

An increase in the levels of saturated triglycerides (TG) had been
reported in HCC. Using untargeted metabolomics and lipidomics to
study the biomarkers of HCC in patients with cirrhosis, researchers
established that TG levels were significantly raised in blood of HCC
cases (Rashid et al., 2023). To better comprehend the molecular
pathogenesis of lipid metabolism levels, separate tests of blood from
patients with HCC, healthy people, and patients with chronic liver
disease was used. The results indicated that several predominantly
saturated TGs in the blood showed a sustained increase in HCC
trajectories (Ismail et al., 2020). Excessive carbohydrates being
converted to TG or an increased delivery of TG to the liver
causes excessive accumulation of fat in the liver (Lee J. et al.,
2017). Experimental results have shown that lipid deposition
within the tumor is a characteristic feature of HCCs, with the
accumulation of diglycerides and TG being observed in the
tumor tissue of mice (Haberl et al., 2021). A study established
mouse models of lean and obese MASH-HCC to compare their
progression towardMASH-HCC. The results revealed that TG levels
in both groups had elevated (Hymel et al., 2022). In another study,
the progression of high-fat diet-induced MASLD-MASH-HCC and
elevated cholesterol and TG levels were also detected in the mice
(Tessitore et al., 2016). Scientists used protein intensity profiles of
11 human HCCs to parameterize tumor-specific kinetic models of
cellular lipid metabolism. They found that compared to the HCC
tumor-adjacent tissue, TG content in HCC was significantly higher
(Berndt et al., 2019b). Logistic regression analysis showed that the
TG levels were an separate risk factor for the incidence of HCC (Ali
et al., 2022).

2.4 Abnormal lipoprotein and apolipoprotein
levels in HCC

Abnormal lipoprotein metabolism is also closely associated with
tumorigenesis. There are some typical human lipoproteins: low-
density lipoproteins (LDL), very-low-density lipoproteins (VLDL),
high-density lipoproteins (HDL) and chylomicrons (CM). Increased
secretion of lipoprotein lipase from the tumor cells into the
peripheral blood has been observed in patients with HCC. A
significant decrease in the serum VLDL levels, and a significant
increase in the serum LDL levels have been observed in patients with
HCC (Zuo et al., 2021). Apolipoprotein A1 (ApoA-1) is an
indispensable protein in the synthesis of HDL. Scientists have
found that ApoA-1 levels correlated with the degree of
malignancy in HCC. Patients with HCC and tumor recurrence
exhibited significantly reduced serum ApoA-1 levels.
Additionally, higher serum ApoA-1 levels were observed in
patients with reduced levels of circulating tumor cells (Ma X. L.
et al., 2016). Analysis of prospective data collected by the Türkiye
HCC multi-agency cooperative working group revealed that low
HDL and high LDL levels showed significant correlations with an
increase in maximum tumor diameter. Elevated LDL levels and
reduced HDL levels in plasma are significantly associated with a
more aggressive HCC phenotype, especially when these conditions
occur together. This combination is also linked to an increased risk
of death (Akkiz et al., 2021). Lipoprotein (a) [Lp (a)] is a molecule
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bound to apolipoprotein (a) (Tasdighi et al., 2024). Scientists
assessed the relationship between HCC and Lp(a) levels in serum
by Kaplan-Meier curves and log-rank tests. Comparing data from
healthy individuals and HCC patients, Lp(a) levels in HCC patients
were found to be significantly lower than in healthy individuals. In
addition, there is an association between HCC recurrence and Lp(a)
levels, HCC patients with low Lp(a) levels have a higher recurrence
rate and shorter survival than those with high Lp(a) levels (Gao
et al., 2018).

3 Abnormal lipid metabolism affects
HCC progression

3.1 Affecting cell proliferation and apoptosis

The recognition of abnormal cholesterol metabolism in HCC
has led to an increase in the focus on the effects of it in HCC. In an
experiment in which researchers fed mice with high fat/cholesterol,
it developed HCC and decreased tryptophan metabolism associated
with the gut microbiota, correlation analysis showed that dysbiosis
of gut microbiota in MASLD-HCC was associated with cholesterol
levels. Germ-free mice gavaged with stools from mice fed high fat/
cholesterol manifested hepatic lipid accumulation, inflammation
and cell proliferation. Scientists have shown that dietary
cholesterol-regulated microbiota promotes MASLD and
hepatocyte proliferation by inducing metabolite alterations,
thereby promoting cholesterol-induced MASLD-HCC formation
(Zhang et al., 2021). Not only cholesterol, but also some FAs can
influence the cell proliferation and apoptosis in HCC. Scientists have
studied the functional importance of linoleic acid in HCC cell lines.
They found that linoleic acid could significantly inhibit the
proliferation and induce the apoptosis of HCC cells (Liu J. et al.,
2022). Ferroptosis, characterized by lipid peroxidation and iron
accumulation that is strongly associated with HCC progression, is an
emerging iron-dependent programmed cell death modality (Yang
et al., 2024). Accumulating evidence suggests that activation of
ferroptosis may prevent HCC cell proliferation (Nie et al., 2018).
Lipidomic analysis has shown that promoting the selective uptake of
MUFAs could induce an increase in phosphatidylcholine and
phosphatidylethanolamine levels in HCC cells, which induces
resistance to lipid peroxidation and ferroptosis (Li et al., 2023b).
Meanwhile, in another experiment, scientists found that
downregulation of IR/SREBP axis-mediated MUFA synthesis
could promote ferroptosis in HCC, thus inhibiting HCC (Yuan
et al., 2024).

3.2 Affecting tumor invasion and metastasis

The lipid transporter high-density lipoprotein-binding protein
(HDLBP) is clinically relevant to tumor metastasis in patients with
HCC. Cholesterol-induced HCC metastasis needs HDLBP.
Scientists suggested that cholesterol-induced HDLBP promoted
HCC metastasis and invasion through BRAF-dependent
epithelial-mesenchymal transition (EMT) signaling. Further
studies have shown that knockdown or overexpression of
HDLBP significantly inhibited or enhanced the metastasis,

invasion and EMT of HCC cells, respectively (Yuan et al., 2022).
Known as an indispensable adaptive survival mechanism, autophagy
was speculated by researchers that may play a role in HCC
metastasis by promoting the metastatic colonization of HCC cells
(Peng et al., 2013). Scientists found that glycochenodeoxycholate,
which is important for the synthesis of BAs, mediated autophagy in
HCC cells through the AMP-activated protein kinase (AMPK)/
mTOR signaling pathway, exhibiting a pro-metastatic effect both
in vitro and in vivo (Gao et al., 2019).

3.3 Affecting the tumor microenvironment

The tumor microenvironment (TME) is an intricate network,
predominantly consisting of cancer cells, vascular endothelial cells,
penetrating immune cells, carcinoma-linked fibroblasts, and adipose
tissues. This milieu is vital for the advancement and multiplication
of HCC (Giraldo et al., 2019; Li et al., 2007). Immune cell infiltration
including CD4(+) T cells, CD56 NK cells, macrophage and so on
(Liu Y. et al., 2022; Bao et al., 2019). In the TME of HCC, the lipid
profile of macrophages changes (Yeung et al., 2015). Previous
studies have shown that activating M2 macrophage polarization
could promote HCC cell invasion and migration (Huang et al.,
2023). Aberrant BAs metabolism has been found to modulate the
TME by preventing natural killer T (NKT) cell recruitment and
increasing M2-like tumor-associated macrophages (TAMs)
polarization, thereby promoting tumor immune escape and HCC
development (Xia et al., 2022). Immune responses requires CD4(+)
T cells to against pathogens and cancer cells (Malyshkina et al.,
2023). Previous studies have suggested that the development of HCC
may be related to the contribution of CD4(+) T cells loss to the
impact. Scientists suggested that linoleic acid can disrupt
mitochondrial function and cause more oxidative damage,
producing more mitochondria-derived reactive oxygen species
(ROS), which could promote the selective loss of intrahepatic
CD4(+) T cells, accelerated MASLD-facilitated HCC (Ma C.
et al., 2016). Moreover, the long chain of FA is transported from
the cytoplasm into the mitochondria by the carnitine palmitoyl
transferase (CPT) system and β oxidation occurs. In HCC, induction
of the CPT gene increases ROS and leads to apoptosis of CD4(+)
T cells. Linoleic acid, on the other hand, can induce CPT gene
expression. This suggests that upregulation of the CPT gene by
linoleic acid induces CD4(+) T cell apoptosis, thereby promoting
HCC development (Brown et al., 2018). This seems to be contrary to
the results of the previous experiments, perhaps due to the different
models of research, and the role of linoleic acid in serum and cells
may be different.

4 Signaling pathways affecting lipid
metabolism in HCC

4.1 PPAR related signaling pathways

Peroxisome proliferator-activated receptor (PPAR) is a FA-
activated transcription factor. It has three PPAR subtypes: PPAR
α, PPAR γ, and PPAR β/δ. PPAR can trigger FA biosynthesis, is the
“bridge” between FA imbalance and the maintaining of cancer cell
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stemness (Feng et al., 2022). PPAR γ is a key transcription factor
related to lipid metabolism. The increased expression of PPAR γ,
ATP citrate lyase (ACLY) and acetyl-CoA carboxylase (ACC) are
associated with steatosis of HCC (Ning et al., 2022). Besides, PPAR γ
regulates lipid synthesis by upregulating the transcription of lipid
synthesis enzymes (ACLY, ACC, and FASN) (Desvergne et al.,
2006). Numerous studies have established the role of PPAR α in
lipid and lipoprotein metabolism of HCC, too. After the activation of
PPAR α, the expression of its downstream target genes in liver
samples and the level of enzymes involved in the β oxidation of FAs
increased. And high PPAR α expression in HCC is associated with
poor prognosis (Chen et al., 2021). One study showed that activation
of PPAR α in rat HCC cell lines led to reduced triglyceride
concentrations in liver, plasma, and very low-density lipoprotein
(König and Eder, 2006). Besides, increased expression of PPAR α
enhances intracellular oxidative stress, thereby promoting HCC
invasion and metastasis (Lin et al., 2021). Retinoid X receptor α
(RXR α) is a nuclear receptor for retinoid (Sakai et al., 2022). It has
been found a dysregulation of both RXR α function and FA
metabolism in HCC (Castro-Gil et al., 2022). Scientists believe
that the PPAR α/RXR α signaling pathway can be involved in
metabolic diseases in humans by regulating oxidative stress, lipid
metabolism, and inflammatory pathways (Yang et al., 2022).

4.2 PI3K/AKT related signaling pathways

Phosphatidylininosine-3 kinases (PI3Ks) are promising
medicine targets for therapy of HCC, with four PI3Ks: PI3K α,
PI3K β, PI3K δ, and PI3K γ. Studies have shown that loss of PI3K γ
reduces tumor development of obesity-promoted HCC through
multiple cell types and mechanisms, including steatosis (Becattini
et al., 2021). Researchers found that the PI3K-AKT-mTOR pathway
can activate lipid synthesis and promote NAFLD-HCC progression
(Chen et al., 2019). The oncogenic activation of PI3K-AKT-mTOR
signaling can activate sterol regulatory element-binding protein 1
(SREBP1), a central transcription factor that regulates lipid
metabolism, which then affects adipogenesis in HCC, thereby
killing cancer cells. At the same time, stearoyl-coenzyme A
desaturase-1 (SCD 1) is the transcriptional target of SREBP1.
Hyperactive mutations in PI3K-AKT-mTOR signaling protect
cancer cells from oxidative stress and ferroptosis through
SREBP1/SCD 1-mediated lipogenesis. Besides, the AKT/mTOR
pathway can regulate SREBP1c and thus regulate de novo
adipogenesis (Yi et al., 2020; Yecies et al., 2011).

4.3 AMPK related signaling pathways

AMP-activated protein kinases (AMPKs) are key cellular energy
sensors (Li et al., 2011). The AMPK signaling pathway is related to
lipid synthesis in HCC, and inhibition of the AMPK pathway can
induce lipid synthesis in HCC. This is mainly done by regulating its
downstream genes, ACC1 and ACLY (Zhang Y. et al., 2022).
Previous studies demonstrate that AMPK could inhibit the
transactivity of SREBP1. One study found that the interaction
between the HCC-associated protein TD26 and the truncated
nuclear SREBP1 form (nSREBP1) could block AMPK-mediated

SREBP1 inhibition, resulting in increased lipogenesis and
enhanced HCC progression (Wang et al., 2018).

4.4 Others

Exosomes are important tools for intracellular communication
and have a significant impact on HCC progression and metastasis. A
study investigated the changes of lipid classes in HCC derived
exosomes. The researcher collected the exosomes from plasma in
patients with cirrhosis (31 with HCC and 41 without HCC). The
results demonstrated that some lipid species, such as
phosphatidylcholines (18:3e/22:4), phosphatidylcholines (16:1e/22:
6), TG (18:0/14:0/16:0), TG (25:0/16:0/17:0),
monogalactosyldiacylglycerols (16:0/21:6), et al., were detected in
the majority of HCC exosomes but in none of the non-HCC
exosomes. Further pathway analysis showed that
glycerophospholipid metabolism, retrograde endocannabinoid
signaling and ferroptosis were associated with the changes in
lipid composition in HCC exosomes (Sanchez et al., 2021).

5 TCM formulae and active
components alleviates HCC
progression by regulating lipid
metabolism

Dysregulated lipid metabolism has been identified as a critical
driver of HCC progression. Notably, emerging research reveals that
specific TCM formulae and active components may exert anti-HCC
activity by regulating lipid metabolism through targeting aberrant
cholesterol synthesis, fatty acid oxidation, and lipid droplet
accumulation (Tables 1, 2; Figure 2). This metabolic regulation
not only suppresses HCC growth but also enhances the efficacy of
biological agents, offering a dual therapeutic advantage.

5.1 TCM formulae

Ganfule capsules (GFL), approved by the National Medical
Products Administration of China, is used as a complementary
alternative therapy for the treatment of HCC. It comprised of
21 herbs, including Codonopsis pilosula (Franch.) Nannf, Trionyx
sinensis Weigmann, et al. (Ke et al., 2022). Xu F et al. demonstrated
that GFL exerted anti-HCC effects by regulating lipid metabolism.
Metabolomics identified 426 metabolites and 343 metabolite
variants in the positive and negative ion patterns after GFL
treatment in a nude murine model of HepG2 cell injection.
These genetic variations are potentially associated with lipid
metabolic pathways, and the metabolites derived from these
pathways have been implicated in mediating the protective
actions of GFL against HCC. For example, GFL can increase the
1-Arachido noylglycerophosphoinositol levels while decreasing Pi-
Methylimidazoleacetic acid levels (Xu et al., 2022).

Fuzheng Yiliu Decoction (FZYLD) consists of four herbs:
Astragalus mongholicus Bunge, Ligustrum lucidum W.T.Aiton,
Dioscorea polystachya Turcz., and Rhinacanthus nasutus (L.)
Kurz. Scientists have been using FZYLD in clinical practice for

Frontiers in Pharmacology frontiersin.org09

Liu et al. 10.3389/fphar.2025.1528671

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1528671


the treatment of liver tumors for many years, and it can improve
clinical symptoms, slow down physical weakness after
chemotherapy or radiotherapy, improve the quality of life, and
prolong the survival time of cancer patients (Chen et al., 2014).
In recent years, studies have found that FZYLD could also
ameliorate energy and lipid metabolism disorders. Zhang
Hongcheng established a rat HCC model to observe the
therapeutic effect of FZYLD. They found that the levels of
endogenous serum metabolites and cholesterol decreased,
whereas those of HDL, VLDL, and FAs significantly increased
when the rats in the HCC model group received FZYLD.
Furthermore, the serum UFA levels in the HCC group exhibited
a significant reduction after treatment (Zhang H. et al., 2022).

Fuzheng Xiaozheng prescription (FZXZP), derived from the
famous decoction powder recorded in the Book ofWenyilun during
the Ming Dynasty, effectively improves liver function and has
beneficial effects on patients with HCC (Liu et al., 2022c). In a
rat HCC model induced by diethylnitrosamine, scientists found that
FZXZP administration significantly inhibited the progression of
HCC in rats. Then, they performed microarrays of circRNA,
miRNA and mRNA to further explore the mechanism of action.
After a series of screening, they established the competing
endogenous RNA networks. Go and KEGG analysis showed that
FZXZP promoted lipid-related metabolism by activating the PPAR
signaling pathway, AA metabolism, and bile secretion (Li et al.,
2022). In another study, researchers also found FZXZP improved
the pathological characteristics of HCC rats. Moreover, FZXZP
influenced lipid metabolic processes by managing substances like
AA, linoleic acid and retinol, as well as increased the production of
steroid hormones (Liu et al., 2022d).

Pien Tze Huang (PZH), a formula of Chinese patent medicine,
has been used for more than 500 years in China and Southeast Asia
to treat various inflammation-related diseases such as hepatitis (Liu
et al., 2020). It has also been widely employed in clinical settings for
treating various human malignancies, including HCC (Yan et al.,
2023). PZH has been approved by the National Medical Products
Administration of China for the clinical trial of medicines in
advanced primary liver cancer (Lin et al., 2023). A study used
PZH to treat Hepa1-6 mice, and the results demonstrated that
PZH significantly inhibited xenograft tumor growth. Moreover, a
four-fold inhibition of ACSL1 phosphorylation, which is associated
with FA biosynthesis/degradation pathway, has been observed in
PZH-treated mice (Lin et al., 2023).

Sinikangai fang (SNKAF) decoction is a formula that has been
widely used for the treatment of HCC in China. Guo et al. used 4-
week-old BALB/c nude mice to construct an HCC xenograft mouse
model. They revealed that the anti-cancer effect of SNKAF on HCC
was related to cell proliferation and apoptosis, and its action
pathway involved the PI3K/Akt pathway axis. SNKAF enables
PI3K to induce the activation of the core signaling kinase Akt,
which controls a number of downstream effector molecules and
drives protein and lipid synthesis and cell development (Guo W.
et al., 2022).

Shuihonghuazi Formula (SHHZF), a formula of Chinese
medicine, is often used in the treatment of HCC. It consists of
four herbs: Persicaria orientalis (L.) Spach, Imperata cylindrica (L.)
Raeusch., Ophicalcitumb, and Coix lacryma-jobi var. ma-yuen
(Rom.Caill.) Stapf. A study used diethylnitrosamine induced rats

as HCC animal model, its results showed that SHHZF promoted the
absorption and utilization of linoleic acid and oleic acid, increased
the content of AA-like substances, translation of
phosphatidylethanolamine to phosphatidylcholine, metabolism of
linoleic acid, and inhibited the of abnormal metabolism of BAs in
rats with HCC (Bao et al., 2017).

Overall, the above studies showed the positive effect of these
formulae in the regulation of abnormal lipid metabolism in HCC.
However, the specific targets and signaling pathway by which these
formulae regulate lipid metabolism remain insufficiently explored in
some studies. Moreover, every formula contains multiple active
components. Current research has not fully elucidated which
specific components drive lipid metabolism regulation.
Additionally, whether the different preparation methods of these
formulae will affect the effect of lipid metabolism regulation is still
obscure. Therefore, the specific mechanism of these formulae on the
regulation of abnormal lipid metabolism in HCC is still worth
conducting further research.

5.2 TCM active components

Dihydromyricetin (DMY) is the major flavonoid in Ampelopsis
grossedentata (Hand.-Mazz.) W.T.Wang and its pharmacological
action has attracted increasing attention in recent years (Guo et al.,
2019). The researchers gave HCC cells different concentrations of
DMY (0, 20, 40, 80, 160, 320 μM) and observed their effects. The
result showed that DMY inhibited EGFR and its downstream
pathways by lowering the cholesterol levels, thereby disrupting
lipid rafts, which resulted in the inhibition of HCC.
Pharmacological experiments revealed that DMY inhibited the
migration and invasion of HCC cells and reduced cholesterol
levels. At the same time, it also inhibited the proliferation of
HCC cells. Furthermore, DMY downregulated the expression of
lipid raft markers (CAV1 and FLOT1), as well as EGFR, PI3K, Akt,
and STAT3 (Zhang et al., 2023).

Arctium lappa L. is an edible medicinal plant. Arctigenin is a
dibenzyl butyrolactone lignan which extracted from Arctium lappa
L. (Wang et al., 2023). Previous studies investigating the potential
anti-tumor effects of arctigenin using HCC cell lines, and luciferase
assays have shown that arctigenin targeted the −450 to −400 region
of the ankyrin promoter. This region is also a potential binding site
for C/EBPα (a putative tumor suppressor that is upregulated in HCC
subsets and required for growth and proliferation of cells).
HepG2 and Hep-3B cells were treated with 20 μM arctigenin,
and the co-immunoprecipitation assays have shown that the
presence of arctigenin increases the binding between C/EBPα and
PPAR α. Arctigenin can negatively regulate gankyrin by promoting
the binding of C/EBPα and PPAR α, thereby inhibiting HCC (Sun
et al., 2018). In addition, researchers have found that the ethanolic
extract of Arctium lappa L. root also attenuates MASH-related
hepatocarcinogenesis. The administration of Arctium lappa L.
reduced the total FAs and lipid hydroperoxide levels in a
steatohepatitis-induced HCC model (Romualdo et al., 2020).

Emodin is extracted from Chinese herbs, such as Magnolia
champaca (L.) Baill. ex Pierre and Reynoutria japonica Houtt.,
which can affect the synthesis of FAs (Lee K. H. et al., 2017; Guo
Y. et al., 2022). Bioinformatics analysis has shown that emodin
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effectively inhibits the growth and movement of HCC cells (Gao
et al., 2024; Zhou et al., 2019). Emodin-treated humanHCC cell, Bel-
7402, has been used to study intrinsic lipid production. The
researchers treated HCC cell line with different concentration of
emodin (0, 25, 50, 100, 200, 400, and 600 μmol/L). After examining
the cell viability, 100 μmol/L was considered the optimal
concentration and experiments were performed. They found that
the TG levels and FA desaturation in Bel-7402 cells decreased upon
exposure to emodin. In addition, the expression levels of
SREBP1 mRNA, and acid metabolism-related proteins (ACC α,
FASN, and stearoyl-CoA A desaturase D) were also reduced. These
findings indicate that emodin could promote apoptosis of HCC cells
by regulating lipid metabolism in an SREBP1-dependent manner
(Yang et al., 2019).

Curcumin (CUR), isolated from Curcuma aromatica Salisb., has an
inhibitory effect on inflammation, oxidation, and tumors. It exhibits
therapeutic benefits in various types of cancers (Bai et al., 2022; Shelash
Al-Hawary et al., 2023). In a study based on network pharmacology of
CUR-related mechanisms against HCC, scientists treated HepG2 cells
with different concentrations of CUR (0, 20, 40, and 60 μmol/L), and the
results revealed that CUR treated HCC by regulating the PI3K-Akt
pathway, AMPK pathway, apoptosis and autophagy. It promoted
HepG2 cell apoptosis through the p53 pathway and
HepG2 autophagy through the AMPK/ULK1 pathway (Chen et al.,
2022). Another study used CUR combining with sorafenib to treat
H22 bearing mice and the results indicated that CUR prevented HCC
progression by downregulating FASN and reducing lipid synthesis. The
effect of CUR on lipid metabolism disorders is based on the PI3K/Akt
pathway (Man et al., 2020).

Arenobufagin (ArBu), a bufadienolide isolated from Ampelopsis
delavayana var. glabra (Diels & Gilg) C.L.Li, exhibits broad-spectrum
anti-tumor activity (Chen K. et al., 2023). ArBu regulates lipid
homeostasis in HCC cells. HepG2 cells and a xenograft model
were used to assess the anti-HCC activity of ArBu. Scientists
treated HepG2 cells with ArBu at 1.1 ng/mL and 3.3 ng/mL. The
results showed that the effect was better at a concentration of 3.3 ng/
mL. ArBu decreased the expression of 65 differentially expressed
proteins related to autophagy, apoptosis, and lipid metabolism. This
may be related to the arbus glycerophospholipid pathway, which is
closely related to the PI3K/Akt pathway and JAK-STAT3 signaling
pathway and is an important pathway for ArBu to affect lipid
homeostasis (Zhao et al., 2020).

Berberine, an isoquinoline alkaloid extracted from Coptis
chinensis Franch., promotes autophagic death in cancer cells (La
et al., 2017). It has been reported that berberine can effectively
inhibit HCC (Shou and Shaw, 2023). Scientists have isolated and
synthesized several berberine analogues (A1-A13) and studied their
roles in TG production in HepG2 cells. Berberine at a dose of 15 μM
and berberine substituted by 9-O-benzoyl decreased intracellular
TG content in HepG2 cells by activating AMPK, a major regulator of
lipid metabolism (Cao et al., 2018).

6 Conclusion and perspectives

As a refractory malignant tumor that accounts for a large
proportion of human cancers, HCC has been attracting much
attention. Although the presence of abnormal lipid metabolism

in HCC has been confirmed by numerous studies, there are still
some contradictions in the results of HCC-related lipid levels, which
make it difficult to further elucidate the relationship between HCC
and lipid metabolism. The contradictions in the results may be
related with the differences in testing sites, test method, evaluation
and inclusion criteria, et al. In the future, more rigorous and
standardized experimental design as well as testing and analysis
techniques in the research need to be used. TCM formulae and active
components has shown unique value on the journey against HCC.
Some TCM formulae and active components have been proven in
clinical and experimental studies to restore abnormal lipid
metabolism in HCC, inhibit HCC progression and improve the
life quality of the patients. However, research on the regulation of
abnormal lipid metabolism in HCC by TCM formulae and active
components is still in its nascent stages, with many aspects requiring
in-depth exploration. Firstly, the majority of the current studies
remain at the fundamental research stage, and the clinical evidence
is obviously insufficient. More multicenter clinical trials are
necessary to validate the efficacy and advantages of TCM
formulae and their active components in restoring abnormal lipid
metabolism in HCC. Secondly, current research on the regulation of
HCC lipid metabolism by TCM formulae and active components is
mostly limited to the formulae and active components themselves. It
is also worth exploring whether their combination with existing
drugs or biological agents can help better restore abnormal lipid
metabolism in HCC. Recently, research in this field began to appear.
For example, compound sophora injection is a formula approved by
National Medical Products Administration in China, it could
alleviate TAM-mediated immunosuppression with TNFR1 and
sensitize HCC to sorafenib (Yang et al., 2020). Thirdly, whether
the effect of a formula is accidental or not has become a question and
needs to be proved by more research evidence. The quality
standards, formulations, and usage methods of TCM formulae
and active components also need to be further standardized to
ensure the accuracy and reproducibility of experimental results.
Fourthly, it is still unclear which specific substances in TCM
formulae and active components play pivotal roles in regulating
abnormal lipid metabolism in HCC, and their specific targets and
pathways of action are also unknown. Emerging technologies such
as multi-omics integration, high-throughput screening and
computational modeling will help overcome this challenge.
Besides, recent studies have reported the changes of lipid
composition in exosomes from HCC patients, which will become
the candidate biomarkers for early detection and treatment of HCC.
Nevertheless, whether TCM formulae and active components can
regulate the lipid composition in exosomes of HCC is still unknown,
which will become a novel research field in the future. Overall, TCM
formulae and active components have great promise in the
treatment of HCC. In-depth research on the specific mechanism
of them in the regulation of abnormal lipid metabolism in HCC will
be helpful for the development of more effective therapeutic
strategies for HCC.
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Glossary
AA Arachidonic acid

ACC ATP citrate lyase

ACLY Acetyl-CoA carboxylase

AMPK AMP-activated protein kinase

ApoA-1 Apolipoprotein A1

ArBu Arenobufagin

BAs Bile acids

CM Chylomicrons

CPT Carnitine palmitoyltransferase

CUR Curcumin

CYP8B1 Cytochrome P450 family 8 subfamily B member 1

DMY Dihydromyricetin

EMT Epithelial-mesenchymal transition

FAs Fatty acids

FXR Farnesoid X receptor

FZXZP Fuzheng Xiaozheng prescription

FZYLD Fuzheng Yiliu Decoction

GFL Ganfule capsules

HBV Hepatitis B virus

HCC Hepatocellular carcinoma

HCV Hepatitis C virus

HDL High-density lipoproteins

HDLBP High-density lipoprotein-binding protein

HMG-CoA 3-hydroxy-3-methyl-glutaryl-coenzyme A

IDL Intermediate-density lipoprotein

LDL Low-density lipoproteins

LDL-C Low-density lipoprotein cholesterol

Lp (a) Lipoprotein (a)

MASH Metabolic dysfunction-associated steatohepatitis

MASLD Metabolic dysfunction-associated steatotic liver disease

MUFAs Monounsaturated fatty acids

NKT Natural killer T

PPAR Peroxisome proliferator-activated receptor

PUFAs Polyunsaturated fatty acids

PZH Pien Tze Huang

ROS Reactive oxygen species

RXRB Retinoid X receptor β

SCD Stearyl-CoA desaturase

SFAs Saturated fatty acids

SHHZF Shuihonghuazi Formula

SNKAF Sinikangai fang

SREBP1 Sterol regulatory element-binding protein 1

TAMs Tumor-associated macrophages

TCM Traditional Chinese medicine

TG Triglycerides

TME Tumor microenvironment

UFAs Unsaturated fatty acids

VLC Very long chain

VLDL Very-low-density lipoproteins
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