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Alzheimer’s disease (AD) is a common neurodegenerative disorder characterized by
memory decline, cognitive impairment, and behavioral abnormalities.
Pathologically, AD is marked by neurofibrillary tangles caused by excessive
phosphorylation of Tau protein and abnormal deposition of β-amyloid (Aβ) in the
brain. The PI3K/AKT signaling pathway plays a crucial role in the development,
survival, and metabolic regulation of the central nervous system, particularly in
neuronal growth, differentiation, and apoptosis. However, this pathway is often
inhibited in AD patients.In recent years, studies have shown that herbal formulations
and extracts derived from Traditional Chinese Medicine (TCM) can regulate the
PI3K/AKT signaling pathway, thereby improving AD pathological models. This study
reviews fundamental research on both active metabolites and compound
formulations from TCM for the treatment of AD, targeting the PI3K/AKT signaling
pathway.Keywords include “Alzheimer’s disease” “AD” “dementia” “PI3K” “AKT”
“Traditional Chinese Medicine” “Chinese herbology” “Chinese medicine” and
“TCM”.The study is based on relevant literature published over the past 15 years,
primarily sourced from electronic databases such as Web of Science, PubMed,
CNKI, Wanfang, and VIP databases.The findings indicate that herbal formulations
and extracts derived from TCM can mitigate AD pathology by regulating the PI3K/
AKT signaling pathway, reducing Tau protein phosphorylation and Aβ deposition,
inhibiting inflammatory responses and oxidative stress, and alleviating neuronal
apoptosis. This study enhances our understanding of the anti-AD mechanisms of
TCM through the PI3K/AKT pathway and offers new insights for the future.
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1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder characterized by an insidious
onset and progressive cognitive impairment. With the aging population in China, even in
the world, the incidence of AD continues to rise. Currently, there are 15.07million dementia
patients aged 60 and above in China, of which 9.83 million suffer from AD (R et al., 2022).
AD has become a major medical and social issue. The neuropathological hallmarks of AD
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include extracellular deposits of amyloid-β (Aβ) plaques and
intracellular neurofibrillary tangles (NFT) composed of
aggregated and hyperphosphorylated Tau protein
(AuthorAnonymous, 2023). The pathogenesis of Alzheimer’s
disease is shown in Figure 1. Various signaling pathways are
involved in the pathological processes of AD, with the
phosphoinositide 3-kinase/protein kinase B (PI3K/AKT) signaling
pathway playing a critical role in the central nervous system,
including functions such as cell survival, autophagy,
neurogenesis, neuronal proliferation and differentiation, and
synaptic plasticity. It is especially closely related to AD
pathological processes like Tau protein phosphorylation and
apoptosis, making it a key pathway in AD treatment (Manish
Kumar and Bansal, 2022). Multiple studies have shown that
activation of the PI3K/AKT signaling pathway has a positive
effect on AD treatment.

The activation of the PI3K/AKT pathway begins with the
binding of insulin to the insulin receptor (IR). Its numerous
downstream targets, including AKT, glycogen synthase kinase-3β
(GSK-3β), endothelial nitric oxide synthase (eNOS), mammalian
target of rapamycin (mTOR), and Bad, play roles in promoting cell
survival, proliferation, growth, andmetabolic pathway changes. This
pathway serves as a critical drug target for various AD-related
pathogenic factors, including aging, abnormal glucose
metabolism, Aβ deposition, synaptic dysfunction, and neuronal
apoptosis (Seidler and Barrow, 2022; Zhang et al., 2021).
Activation of this pathway can help alleviate oxidative stress and

inflammatory responses, reduce Aβ aggregation and NFT
formation, and block the pathogenesis of AD. A growing number
of natural products, as well as synthetic and semi-synthetic
molecules, have been found to mitigate AD pathology by
modulating the PI3K/AKT pathway (Kumar and Bansal, 2022;
Huang et al., 2018).

In recent years, an increasing number of studies have suggested
that certain herbal formulations and extracts derived from
Traditional Chinese Medicine (TCM) may influence the
pathological processes of Alzheimer’s disease (AD) by
modulating the PI3K/AKT signaling pathway. These studies have
reported that some bioactive compounds exhibit potential anti-
inflammatory and antioxidant effects, inhibit apoptosis, and
alleviate oxidative stress. However, the precise molecular
mechanisms underlying these effects require further
investigation.A deeper exploration of how TCM-derived active
compounds or extracts regulate AD-related pathological changes
through the PI3K/AKT pathway could contribute to a better
understanding of their potential mechanisms and provide new
research directions for AD treatment. This review encompasses
experimental research on TCM-related formulations and extracts
in regulating AD via the PI3K/AKT pathway. It explores the
proposed mechanisms, assesses available evidence on their
efficacy, and discusses future research directions.”

This review used the Web of Science, PubMed, CNKI, Wanfang,
and VIP databases as data sources. The keywords included
“Alzheimer’s disease” “AD” “dementia” “PI3K” “AKT”

GRAPHICAL ABSTRACT
The diagram illustrates how herbal formulations and extracts derived from TCM exert potential effects on AD through modulation of the PI3K/AKT
signaling pathway. Various bioactive compounds present in these formulations and extracts have been reported to influence multiple pathological
mechanisms associated with AD, including cell apoptosis, Tau protein phosphorylation, oxidative stress, inflammatory responses, and Aβ
deposition.While these findings suggest a mechanistic basis for the potential effects of TCM-derived formulations and extracts in AD, further well-
designed pharmacological and clinical studies are required to confirm their efficacy and elucidate their precise molecular targets.
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“Traditional Chinese Medicine” “Chinese herbology” “Chinese
medicine” and “TCM” The search period was from January
2010 to January 2025.

2 Alleviation of apoptosis

Apoptosis is a cell death mechanism that regulates neuronal
development, characterized by DNA fragmentation and the loss of
mitochondrial membrane integrity (Gupta et al., 2023; Fleisher,
1997). It has been reported that neuronal loss in AD exhibits
characteristics of apoptosis, pyroptosis (programmed necrosis), or
necroptosis. Extensive neuronal loss, attributed to apoptosis, is
closely related to the progression of AD (Sharma et al., 2021).
The degree of neuronal loss worsens with the severity and
duration of the disease. The extrinsic and intrinsic pathways are
the main executors of apoptosis in mammalian cells, with caspases
being the primary enzymes involved. The PI3K/AKT signaling
pathway regulates apoptosis by modulating caspase-3 activity
(VK et al., 2021). Activation of the PI3K/AKT pathway can
counteract neuronal apoptosis (Khezri et al., 2023). Activated
AKT promotes the phosphorylation of Bad at the serine 136 site.
When Bad is poorly phosphorylated, it translocates to the
mitochondrial outer membrane, inactivating anti-apoptotic Bcl-2
family proteins like Bcl-2 and Bcl-XL, thereby triggering
mitochondrial-dependent apoptosis (Zhang et al., 2021; Cheng
et al., 2020). Glycogen synthase kinase-3β (GSK-3β) is also
involved in activating caspase-2 and caspase-8, which can induce
the cleavage of Bid (Bcl-2 homology three interacting domain death
agonist) and the release of cytochrome C, leading to mitochondrial

dysfunction and apoptosis (Lin et al., 2016; Kumari et al., 2023).
Furthermore, GSK-3β can promote the mitochondrial apoptotic
pathway by increasing the Bax/Bcl-2 ratio, contributing to
neurodegenerative diseases (Toral-Rios et al., 2020).

Studies have reported that Shenqi Pill may help mitigate learning
and memory impairments, pathological damage, and cell apoptosis in
Alzheimer’s disease (AD) rat models. This effects are associated with
increased expression of Bcl-2, PI3K, PDK1, P-AKT, and GSK-3β,
along with decreased phosphorylation levels of Bax and Caspase-3
(Huang JHJ. et al., 2022). Similarly, Dabu Yuanjian has been observed
to enhance cognitive function in AD rat models, potentially by
upregulating Bcl-2, P-AKT, and P-GSK-3β, while decreasing
Caspase-3 expression. Transmission electron microscopy findings
suggest treatment with Dabu Yuanjian may alleviate myelin-like
changes and mitochondrial swelling in the hippocampus of AD rat
models (Xi et al., 2022). Modulated Shuyu Pill-containing serum has
been found to a reduction in the levels of the phosphorylated α-
subunit of eukaryotic translation initiation factor 2 (p-eIF2α/eIF2α) in
the apoptosis-related pathway in primary neurons of APP/PS1 mice,
effectively increased the expression of P-AKT/AKT and Nrf2, and
mitigating endoplasmic reticulum stress-induced neuronal apoptosis
(Jing et al., 2019).Metabolites Danshen, composed of Danshen, Panax
notoginseng, and Borneol, has been reported to inhibit Bad expression
and increase P-AKT expression, providing protective effects for
hippocampal neurons in AD mouse models (Liang et al.,
2018).Polygala saponins, active metabolites of Polygala, have also
been investigated. Junping Wang and colleagues found that Polygala
saponins combined with β-asarone enhanced cell viability in AD cell
model, increased AKT expression, inhibited GSK-3β activation, and
reduced apoptosis rates (Junping et al., 2018). Forsythoside A, a
phenylethanoid glycoside isolated from the dried fruit of Forsythia
(Qu et al., 2012), was shown by Chunyue Wang and colleagues to
improve cell viability in AD models, reduce apoptosis rates, and
downregulate caspase-3, -8, and -9 levels (Wang H. C. et al.,
2020).Aconitine, a key active component of Aconitum, has
pharmacological effects such as cardiotonic, analgesic, antitumor,
and immune-modulatory properties (Xiu et al., 2019). Weizhi
Quan and colleagues observed that aconitine could reduce
apoptosis rates and GSK-3β expression in AD cell models (Zhi-
quan et al., 2021). Hydroxy-α-sanshool, the main active
component of Sichuan pepper, is the most abundant amide
metabolite in the plant and has been shown to improve learning
andmemory (Khoshsirat et al., 2019). Ruolan Li and colleagues found
that hydroxy-α-sanshool increased the expression of P-AKT, P-PI3K,
AKT, and Bcl-2 in AD cell models, while reducing the expression of
caspase-3 and Bax, thus alleviating apoptosis (Lan, 2021).Lastly,
crocetin has been observed to significantly increase the expression
levels of PI3K, Akt, and Bcl-2 proteins and mRNA in hippocampal
neuron models of AD induced by Aβ25-35, while decreasing the
expression of Bax protein and mRNA, thereby inhibiting apoptosis
and protecting hippocampal neurons (Yan Y. et al., 2020).

3 Inhibition of tau protein
phosphorylation

Tau protein is a microtubule-associated protein widely
expressed in the nervous system. Under pathological conditions,

FIGURE 1
The pathogenesis of Alzheimer’s disease. The diagram illustrates
the multifactorial pathogenic mechanisms of Alzheimer’s disease,
including neuronal apoptosis, neurofibrillary tangle formation due to
excessive tau protein phosphorylation, Aβ deposition, synaptic
loss, neuroinflammation, and mitophagy.
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TABLE 1 Traditional Chinese botanical drugs for Treating Alzheimer’s Disease by Intervening in the PI3K/AKT Pathway.

Botanical
drug

Metabolites Experiments Animal or
cell

Doserange PosC NegC Duration Model Molecular mechanisms
and outcomes

Kaixin San (1:1:50:25)

(Yan et al., 2020b)

Ginseng, Polygala Poria,

Acorus

Alcl3(90 mg/kg) i.g. +D-

gal(180 mg/kg) i.p

KM mice 48, 24、12 g/kg — 0.9%Nacl 4 weeks In vivo ↑PI3K, P-AKT, P-GSK-3β

Dihuang Yinzi (3:3:3:3:

3:3:3:3:3:3:3:3:3:2:1)

(Tao et al., 2014)

Rehmannia, Cornus,

Cistanche, Morinda, Aconite,

Cinnamon, Ophiopogon,

Dendrobium, Schisandra,

Poria, Acorus, Polygala,

Mint, Ginger, Jujube

— APPsw/

PS1ΔE9 mice

5, 2. 5, 1. 25 g/kg Donepezil 0.9%Nacl 150 days In vivo ↑SOD, GSH-PX, P-AKT, P-GSK-3β,
Bcl-2/Bax

↓MDA

Suan Zao Ren

Decoction (10:2:2:3:1)

(Qinghua et al., 2020)

Sour Jujube Seed, Poria,

Chuanxiong, Anemarrhena,

Honey-Fried Licorice

— APP/PS1 mice 12.96, 25.92 g/kg Donepezil Water 30 days In vivo ↑PSD-95, SYN, P-PI3K(Tyr607),
P-AKT(Ser473), P-GSK-3β(Ser9)
↓P-Tau(Ser205), P-Tau(Ser396),
P-Tau(Ser404)

Yizhi Zhi Dai Fang (15:

15:15:15:10:10:10:10:

10:6) (ZHAO et al.,

2020)

Rehmannia, Astragalus,

Cardamom Seed, Deer Antler

Glue, Acorus, Polygala,

Curcuma, Angelica Sinensis,

Chuanxion, Wine-Processed

Rhubarb

Aβ1-42(5uL)H.I. SD rats 1488 mg/kg Donepezil 0.9%Nacl 28 days In vivo ↑P-AKT/AKT,P-GSK-3β/GSK-3β
↓BAX

Shenqi Yizhi Granules

(Lixia et al., 2018)

Astragalus, Scutellaria,

Ginseng,et al

Aβ1-42 H.I. SD rats 9.8, 4.9, 2.45 g/kg Donepezil Water 60 days In vivo ↑PI3K, AKT

Bushen Jianpi Kaixin

Formula (Rong, 2018)

Rehmannia, Chinese Yam,

Cornus, Ginseng, Poria,

Polygala, Acorus, et al

D-Gal(300 mg/kg) i.p.+

Aβ1-42 H.I.

Wistar rats 20.8,10.4, 5.2 g/kg Donepezil Water 28 days In vivo ↑SOD, Ngb, PI3K, AKT
↓NOS

Yifei Wenyang

Huazhuo Decoction

(15:15:15:15:15:15:15:

15:15:10:6) (Jinping

et al., 2019)

Processed Aconite,

Epimedium, Raw Sun-Dried

Ginseng, Dried Ginger,

Morinda, Cinnamon Twig,

Pinellia, Acorus,

Notoginseng, Platycodon,

Rhubarb

Aβ1-40(1uL) H.I. SD rats 1.25, 2.5, 5 g/kg Naofukang

Capsules

0.9%Nacl 4 weeks In vivo ↑mTOR

↓PI3K, AKT, Beclin1, LC3

Yuan Zhi San (4:6:5:3:

4) (Peijun et al., 2020)

Polygala, Acorus, White

Poria, Ginseng, Coptis

Aβ1-40(5uL) H.I. SD rats 3, 6, 12 g/kg Donepezil Water — In vivo ↑P-AKT/AKT, P-GSK-3β/GSK-3β
↓P-Tau(Ser199)/Tau5,
P-Tau(Thr231)/Tau5

Jiajian Shuyu Wan (15:

12:12:10:9:9:10:10:5:6:

6:7:9:5) (Jing et al.,

2019)

Chinese Yam, Fo-ti,

Rehmannia, Codonopsis,

Atractylodes, Poria, White

Peony, Angelica Sinensis,

Chuanxiong, Eucommia,

Polygala, Acorus, Goji Berry,

Schisandra

—

—

APP/PS1 mice

Primary

Neurons from

APP/PS1 mice

14 g/kg

5%, drug-

containing serum

—

—

0.9%Nacl

10%drug-free

serum

28 days

12 h

In vivo

In vitro

↑P-AKT/AKT, Nrf2
↓GSK-3β

Liu Wei Di Huang

Decoction (8:4:4:3:3:3)

(Kunpeng et al., 2016)

Rehmannia, Dried Chinese

Yam, Cornus, Alisma, Poria,

Paeonia

D-gal(500 mg/kg) s.c KM mice 2, 1, 0.5 g/kg VitE Water 8 weeks In vivo ↑Wnt3a

↓GSK-3β

Xiao Yao San (10:10:

10:10:5:1:1) (Wei-Xian

et al., 2014)

Bupleurum, Angelica

Sinensis, White Peony, Poria,

Honey-Fried Licorice, Fresh

Ginger, Peppermint

Aβ1-42(2uL)H.I. +D-

gal(100 mg/kg) i.p

SD rats 10 g/kg Oxiracetam 0.9%Nacl 28 days In vivo ↓GSK-3β

Wen Pi Tong Luo Kai

Qiao Decoction (3:1:1:

1:1:1) (Jinping et al.,

2013)

Astragalus, Euryale Seed,

Notoginseng, Acorus, Fo-ti,

Gynostemma

OA(1.5uL) H.I. SD rats 4.15, 8.3, 16.9 g/kg Huperzine-

A

Water 21 days In vivo ↓GSK-3β

Gardenia (Meng, 2018) —

—

—

—

3×Tg mice

3×Tg mice

Hippocampal

neurons

100 mg/kg

10uM

\

\

Water culture

medium

8 weeks

24 h

In vivo

In vitro

↑Bcl-2, PP2A
↓Aβ1-42, P-Tau(Ser396),GSK-3β, APP,
Bax, BACE1, TNF-α, IL-1β

Da Bu Yuan Jian (2:3:1:

1:3:2:2:3) (Xi et al.,

2022)

Ginseng, Eucommia, Chinese

Yam, Cornus, Honey-Fried

Licorice, Rehmannia,

Angelica Sinensis, Goji Berry

Aβ25-35(4uL)H.I. SD rats 5.31 g/kg — Water 28 days In vivo ↑Bcl-2, P-AKT, P-GSK-3β
↓caspase-3

Wuhe Xuduan (Jie,

2023)

— WT + GFX(5uL) H.I. SD rats 0.07, 0.14,

0.28 g/kg

— Water 2 and 4 weeks In vivo ↑PI3K,P-AKT, P-GSK-3β (Ser9)

↓GSK-3β, P-Tau(Ser396),
P-Tau(Ser262)

Acorus (Juan, 2022) — D-gal(0.43.74 mg) s.c C57BL/cnc

mice

1, 2, 4 g/kg Donepezil 0.9%Nacl 13 weeks In vivo ↑P-PI3K, P DGFR-β, LRP-1
↓BACE1

Shen Hui Decoction

(20:7:4:10:10:6:6:1:4)

(Lexuan, 2022)

Rehmannia, Cornus,

Polygala, Ziziphus Seed,

Biota Seed, Poria Spirit,

Ginseng, Acorus, White

Mustard Seed

AlCl3(100ug/L) soak Zebrafish 0.6 mg/mL Donepezil Water 14 days In vivo ↑PI3K, AKT, P-AKT, mTOR

↓APP, Aβ1-42

Zi Shen Xing Nao

Decoction (24:24:12:9:

15:12:20:10:20:20:10:

Rehmannia Root, Raw,

Rehmannia Root, Prepared,

Cornelian Cherry Fruit,

Aβ25-35(1uL) H.I. SD rats 16.74 g/kg Donepezil Water 4 weeks In vivo ↑BDNF, TrkB, PI3K, AKT

(Continued on following page)
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TABLE 1 (Continued) Traditional Chinese botanical drugs for Treating Alzheimer’s Disease by Intervening in the PI3K/AKT Pathway.

Botanical
drug

Metabolites Experiments Animal or
cell

Doserange PosC NegC Duration Model Molecular mechanisms
and outcomes

10) (Wang et al.,

2022b)

Processed Pinellia Rhizome,

Acorus Tatarinowii

Rhizome, Szechuan Lovage

Rhizome, Salvia Miltiorrhiza

Root, Angelica Sinensis Root,

Poria, Rhodiola Root,

Bamboo Sap, Earthworm

Zhi Nao Jiao Nang (15:

15:15:12:10:8:10:8)

(Na, 2022)

Codonopsis Root, Cistanche,

Astragalus Root,

Polygonatum Rhizome,

Curcuma Root, Acorus

Tatarinowii Rhizome,

Szechuan Lovage Rhizome,

Earthworm

— APP/PS1 mice 3.5, 7, 14 g/kg Donepezil 0.9%Nacl 28 days In vivo ↑PI3K, P-AKT
↓P-GSK-3β

Liu Wei Di Huang

Wan (8:4:4:3:3:3)

(Xinyun, 2022)

Rehmannia Root, Prepared,

Chinese Yam, Cornelian

Cherry Fruit, Moutan

Cortex, Poria, Alisma

Rhizome

— SAMP8 2.70, 1.350 g/kg Donepezil 0.9%Nacl 2 months In vivo ↑IR-β, P-IRS-1, P-PI3K, P-AKT
↓GSK-3β

Gui Ling Ji (Fengrui,

2022)

Ginseng, Deer Antler, Sea

Horse, Sparrow Brain,

Prepared Rehmannia Root,

Goji Berry, Achyranthes

Root, Licorice Root, Isatis

Leaf

— APP/PS1 mice 0.75, 1.5, 3 mg/d — Water 8 months In vivo ↑PI3K
↓GFAP

Shen Zhi Ling oral

liquid (Gaofeng, 2021)

Codonopsis Root, Cinnamon

Twig, White Peony Root,

Honey-Fried Licorice Root,

Poria, Dried Ginger,

Processed Polygala Root,

Acorus Tatarinowii

Rhizome, Dragon Bone,

Oyster Shell

STZ(3 mg/kg) H.I. C57/BL6J mice 50, 25, 12.5 g/kg Donepezil 0.5%CMC 3 months In vivo ↑IRS2, PI3K, P-PI3K, AKT, P-GSK-
3β, GLUT3, P-AKT, GLUT1
↓GSK-3β

Schisandra-Prepared

Rehmannia (Yubao,

2018)

— Aβ1-42(5uL)H.I +

D-gal(150 mg/kg) s.c

SD rats 0.8, 1.6, 3.2 g/kg Huperzine

A

0.9%Nacl 28 days In vivo ↑BDNF, TrkB, CREB, SYP, PSD-95,
AKT

↓Aβ1-42, Aβ1-40, GSK-3β, Tau, APP

Gai Liang San Jia San

(2:2:1:1:2:2) (Miao,

2018)

Honey-fried Tortoise Shell,

Honey-fried Turtle Shell,

Honey-fried Ground Beetle,

Honey-fried Earthworm,

Acorus Tatarinowii

Rhizome, Prepared

Polygonum Multiflora

LPS(5ug/mL) BV2 cells

PC12 cells

5% drug-

containing CSF

Huperzine

A

Drug-

free CSF

24 h In vitro ↑P62, P-mTOR, IL-4, IL-10

↓LC3, Beclinl, PI3K, P-AKT, IL-1β,
IL-6, TNF-α

Shen Rong He Ji

(Yabin, 2018)

Ginseng, Poria, Cistanche,

Processed Fo-ti, Alpinia

Oxyphylla, Anemarrhena

Rhizome, Acorus

Tatarinowii Rhizome,

Polygala Root, Szechuan

Lovage Rhizome, Red Peony

Root, Achyranthes Root

Aβ25-35(3uL) H.I. KM mice 26, 13, 6.5 g/kg Donepezil Water 21 days In vivo ↑P-PI3K, P-GSK-3β, P-AKT
↓P-
Tau(Ser404,Thr181,Thr231,Ser396)

Jin Si Wei (GAPT) (Li,

2017)

Cistanche, Ginseng, Acorus

Tatarinowii Rhizome,

Curcuma Root, et al

— APP/PS1 20, 10, 5 g/kg Donepezil 0.5%CMC 3 months in vivo ↑GLUT1, GLUT3, PI3K, AKT,
P-GSK-3β
↓P-mTOR

Jin Si Wei (GAPT)

(Zhuo, 2022)

Cistanche, Ginseng, Acorus

Tatarinowii Rhizome,

Curcuma Root, et al

— APP/PS1 20, 10, 5 g/kg Donepezil 0.5%CMC 8 months in vivo ↑BDNF, PI3K, P-AKT, P-AKT/AKT,
P-mTOR, P-mTOR/mTOR

↓P-Tau, AKT, mTOR

Bu Yuan Qing Nao

Granules (5:5:4:5:4)

(Yihong, 2015)

Acorus Tatarinowii

Rhizome, Polygala Root,

Ginseng, Poria, Prepared

Rehmannia Root, et al

Aβ25-35(10ug) H.I. Wistar rats 20, 10, 5 g/kg Donepezil 0.9%Nacl 4 weeks in vivo ↑PI3K, AKT, Bcl-2
↓APP, Bax

Er Zhi Wan (3:2) (Xie

et al., 2021)

Ligustrum Fruit, Eclipta ovariectomy +

D-gal(100 mg/kg) i.p

+Aβ1-40(10ug) H.I.

SD rats 1.5, 0.75 g/kg Estradiol

valerate

0.9%Nacl 35 days In vivo ↑AKT, PI3K, Bcl-xl, Bcl-2
↓GSK-3β, Bad

Alpinia Oxyphylla (Li

et al., 2022)

— H2O2(90uM) PC12 cells 10, 20, 40, 60, 80,

100 μg/mL

— 1640 culture

medium

2 h In vitro ↑Bcl-2, P-PI3K, P-AKT
↓Bax, caspase 3

Shen Qi Wan (8:4:4:3:

3:3:1:1) (Huang et al.,

2022a)

Rehmannia Root, Chinese

Yam, Cornelian Cherry Fruit,

Alisma Rhizome, Poria, Tree

Peony Bark, Cinnamon

Twig, Aconite Root

STZ(5uL) H.I. SD rats 1.5, 3, 6 g/kg — 0.9%Nacl 28 days In vivo ↑Bcl-2, PI3K, PDK1, P-AKT, GSK-3β
↓Bax, caspase-3

Alpinia Oxyphylla-

Schisandra Berry (Qi

et al., 2020)

— Aβ1-42(20uM) PC12 cells 50, 100uM — Serum-free

medium

20 h In vitro ↑P-PI3K/PI3K, P-AKT/AKT, AKT,
P-CREB/CREB

↓P-Tau

(Continued on following page)
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TABLE 1 (Continued) Traditional Chinese botanical drugs for Treating Alzheimer’s Disease by Intervening in the PI3K/AKT Pathway.

Botanical
drug

Metabolites Experiments Animal or
cell

Doserange PosC NegC Duration Model Molecular mechanisms
and outcomes

Lychee Seed (Sun et al.,

2020)

— Aβ25-35(10ug)H.I. SD rats 120, 240,

480 mg/kg

Donepezil 0.9%Nacl 28 days In vivo ↑AKT
↓P-Tau, GSK-3β

Silver Bupleurum

(Long et al., 2023)

— — C. elegans

strains

25, 50, 100, 200,

500ug/mL

— 0.5 M NaOH

+1% NaClO

36 h In vitro ↑P-PI3K/PI3K, P-AKT/AKT

Xing Nao Jing (Liu

et al., 2020)

Natural Musk, Borneol,

Gardenia Flower, Turmeric

Aβ1-42(4 mg) H.I. C57BL/6 (B6)

mice

2, 5 mL/kg MEM 0.9%Nacl 31 days In vivo ↑P-AKT, P-mTOR

Yuan-Zhi Decoction

(1:2:2:2:2:2:4:4) (Wu

et al., 2022)

Polygala Root, Ginseng,

Acorus Tatarinowii

Rhizome, Notopterygium

Root, Wild Ginger, Ephedra,

Red Peony Root,

Atractylodes Macrocephala

— APP/PS1 mice 0.11, 0.32,

0.96 g/kg

Donepezil Water 3 months In vivo ↑PI3K, P-AKT/AKT
↓P-GSK-3β/GSK-3β

Asafetida (Huang et al.,

2022b)

— Scopolamine(3 mg/kg)

i.g

H2O2(175 μmol/mL)

C57BL/6 mice

PC12 cells

150, 75,

37.5 mg/kg

0.1, 1, 10 mg/mL

—

—

Water

Culture

medium

14 days

24 h

In vivo

In vitro

↑Bcl-2, PI3K, P-AKT, P-GSK-3β
↓Bax

Andrographis (Gu

et al., 2020)

— OKA(90 nM) PC12 cells 0.625, 1.25 mg/mL — Culture

medium

— In vitro ↑P-GSK-3β
↓BACE, NF-κB, PTGS2

Fu Fang Dan Shen

(Liang et al., 2018)

Salvia Miltiorrhiza Root,

Notoginseng, Borneol

Aβ1-42(4uM)

D-Gal(60 mg/kg)

i.p. +Alcl3(10 mg/kg) i.p

SH-SY5Y cells

balb/c mice

4, 20ug/mL

0.05, 4.20 mg/kg

—

—

Serum-free

medium

0.9%Nacl

1 h

14 days

In vitro

In vivo

↑P-AKT
↓Bad

Qing Xin Kai Qiao

Fang (2:2:2:2:2:2:2:1.5:

1.5:1) (Lin et al., 2020)

Raw Rehmannia Root, White

Peony Root, Ophiopogon

Root, Tree Peony Bark, Poria,

Dendrobium, Acorus

Tatarinowii Rhizome,

Anemarrhena Rhizome,

Sophora Root, Dried

Tangerine Peel

— APP/PS1 19, 9.5, 4.75 mg/kg Donepezil 0.9%Nacl 3 months In vivo ↑P-PI3K, P-AKT
↓GSK-3α, A β

Galangal (Huang et al.,

2019)

— H2O2(200uM) PC12 cells 20, 40, 80uM — Culture

medium

24 h In vitro ↑P-AKT,P-mTOR

↓P-Tau

Paper Mulberry Fruit

(Li et al., 2020)

— — APP/PS1 MICE 0.02, 0.03,

0.06 g/kg

RAPA Water 2 months In vivo ↑AKT, β-catenin

Yi Zhi Fang Dai

Decoction (Liu W.

et al., 2016)

Ginkgo Leaf, Ginseng,

Cistanche, Acorus

Tatarinowii Rhizome

Aβ1-42(10uM) SY5Y cells 50, 100ug/mL — Culture

medium

2 h In vitro ↑AKT, P-AKT
↓caspase 12, caspase 3

Jinsiwei(GAPT) (Lan

et al., 2024)

Cistanche, Ginseng, Acorus

Tatarinowii Rhizome,

Curcuma Root, et al

Aβ25-35(20uM) SY5Y cells 10% drug-contain

serum

— Culture

medium

24 h In vitro ↑PI3K
↓GSK-3β, P-Tau

Banxia Xiexin

Decoction(3:2:1:2:2:2:

3) (Gao et al., 2024)

Pinellia ternata, Radix

scutellariae, Rhizoma

coptidis, Rhizoma

zingiberis, Radix ginseng,

Radix Glycyrrhizae

Preparata, Fructus jujubae

— APP/PS1 mice 6 g/kg liraglutide 0.5%CMC 3 months In vivo ↑GLP-1R, AKT, PI3K, P- PI3K

Jiedu Yizhi formula(1:

2:1:1:1:1:1) (Cui et al.,

2024)

Coptidis Rhizoma, Alpiniae

Oxyphyllae Fructus,

Chuanxiong Rhizoma,

Pheretima, Carapax et

Plastrum Testudinis Colla,

Corni Fructus, and Rhei

Radix et Rhizoma

— APP/PS1 mice 10, 20 g/kg Donepezil 0.9%Nacl 8 weeks In vivo ↑Bcl-2
↓Bax, caspase-3

Tiaobu Xinshen

Prescription(15:15:15:

10:15:9:6:15:12:6:9)

(Zhiying et al., 2024)

Processed Fo-ti Root,

Polygonatum, Astragalus

Root, Angelica Sinensis,

Wolfberry, Schisandra Berry,

Thinleaf Milkwort, Cornus

Officinalis, Codonopsis Root,

Acorus Tatarinowii, Paeonia

Rubra

— 5×FAD mice 4.18 g/kg Donepezil 0.9%Nacl 60 days In vivo ↑Synaptophsin, PSD-95,
P-NMDAR1/NMDAR1, P-CaMKⅡa/
CaMKⅡa, PI3K, P-AKTAKT

Sijunzi Decoction

(Yanjun et al., 2024)

Ginseng, White Atractylodes

Rhizome, Poria, Licorice

Root

— APP/PS1 mice 2.5, 10 g/kg — Water 4 months In vivo ↑SOD
↓AChE, MDA

Jiaotaiwan(10:1) (Yan

et al., 2024)

CinnamomumCassia, Coptis

Chinensis

— APP/PS1 mice 2.1, 4.2 8.4 g/kg Donepezil 0.5%CMC 4 weeks In vivo ↑PI3K, AKT, InR, GLUT1, GLUT3,
GLUT4

↓Aβ42, GSK-3β

Liuwei Dihuang

medicine(8 : 4: 4 : 3: 3 :

3) (Yuan et al., 2023)

Radix rehmannia, Fructus

corni, Rhizoma dioscoreae,

Rhizoma alismatis,

Cortex moutan, and Poria

cocos

— APP/PS1 mice 10 mL/kg Donepezil 0.9%Nacl 60 days In vivo ↑PI3K, P-AKT/AKT
↓Aβ1-42, IL-10, IL-1β

(Continued on following page)
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abnormal post-translational modifications of Tau, primarily
hyperphosphorylation, reduce its ability to bind to microtubules.
This leads to a conformational change in Tau from its natural
unfolded state to paired helical filaments and neurofibrillary tangles
(NFTs) (Ossenkoppele et al., 2022; Chu et al., 2024). NFTs are a
hallmark and definitive evidence of Alzheimer’s disease (AD)
pathology, and their presence is positively correlated with
cognitive impairment (Ashton et al., 2021; Naseri et al., 2019).
Dysregulation of the PI3K/AKT signaling pathway is a major
factor in Tau hyperphosphorylation. Overexpression of AKT can
significantly reverse Aβ-induced Tau phosphorylation, while
excessive activation of GSK-3β is also closely related to Tau
hyperphosphorylation (Shi et al., 2019; Wang et al., 2013).
Dysregulation of PI3K/AKT signaling leads to increased GSK-3β
activity and decreased PP2A activity, which contributes to tau
hyperphosphorylation and the formation of NFTs (Yang et al.,
2014).GSK-3β can phosphorylate Tau at multiple residue sites.
Studies have shown that after transfecting GSK-3β into rat
brains, increased GSK-3β expression and abnormal Tau
phosphorylation were detected, with Tau hyperphosphorylation
co-localizing with GSK-3β, suggesting that GSK-3β-induced Tau
hyperphosphorylation is involved in the mechanism of
neurodegenerative diseases (Wang et al., 2013). Autopsies of AD
patients revealed reduced PI3K/AKT signaling activity in the frontal
cortex, along with elevated levels of phosphorylated GSK-3β and
abnormally hyperphosphorylated Tau (Ochiai et al., 2021).

Studies have demonstrated that the TCM formula
Jinsiwei(GAPT) exhibited the ability to improve learning and
memory abilities in APP/PS1 Alzheimer’s disease (AD) mouse
models by reducing the expression of phosphorylated Tau
(P-Tau) and increasing the expression of P-AKT and P-AKT/
AKT (Li, 2017; Zhuo, 2022). Yuanzhi Powder has been shown to
decrease the expression of P-Tau (Ser199)/Tau5 and P-Tau
(Thr231)/Tau5 in the hippocampus of AD rat models, while
increasing the expression of P-AKT/AKT and P-GSK-3β/GSK-3β
(Peijun et al., 2020). Xiaoyao Powder decreases GSK-3β expression
in AD mouse models, thereby inhibiting Tau hyperphosphorylation
(Wei-Xian et al., 2014).Litchi seed polyphenols, derived from
litchi seeds, have been reported by Rui Xiong et al. to inhibit
the expression of P-IRS-1 (Ser612) in AD cell models, restore
the expression of P-PI3K (Tyr199/Tyr458), P-AKT (Thr308),
and P-GSK-3β (Ser9), and ultimately suppress Tau
hyperphosphorylation (Xiong et al., 2020). Curcuma aromatica

volatile oil, an active component from the dried roots of
Curcuma aromatica, significantly reduces the phosphorylation
levels of Tau protein (Thr231, Ser404) in AD mouse models,
while increasing the expression of P-PI3K/PI3K and P-AKT/
AKT, as shown by Qi Yue et al. (Yue et al., 2017).Paeoniflorin,
the main bioactive component of Paeonia and a monoterpene
glycoside, has beneficial effects on neurodegenerative diseases
(Chao-fang et al., 2023). Research by Xiao-Hui Ma showed that
paeoniflorin improves morphological changes in AD cell models,
such as reducing cell swelling and synaptic shrinkage, this is
achieved by lowering Tau phosphorylation levels, increasing AKT
and GSK-3β phosphorylation levels, and stabilizing microtubule
structures (Ma et al., 2018). In APP/PS1 AD mouse models,
Forsythoside A has been reported to enhance memory and
cognitive abilities, reduces Aβ plaque deposition in the brain, and
inhibits Tau protein phosphorylation (Wang C. et al., 2020).Osthole,
a coumarin metabolites extracted from Cnidium monnieri, was
found by Ni Yingnan and colleagues to reduce the expression of
P-Tau (Ser202), effectively enhances PI3K, P-AKT/AKT, and
P-GSK-3β/GSK-3β expression, and alleviate cognitive dysfunction
in AD mouse models (Ying-nan et al., 2019).

4 Regulation of
inflammatory responses

Neuroinflammation refers to the complex immune response of
the central nervous system (CNS) to various endogenous or
exogenous stimuli, such as misfolded proteins, toxins, and
pathogens. This process leads to the infiltration of inflammatory
cells, gliosis, and neuronal loss in brain tissue (Stephenson et al.,
2018). Aging-induced neuroinflammatory responses play a crucial
role in the onset and progression of AD (Calsolaro and Edison, 2016;
Leclerc et al., 2023). Persistent neuroinflammation in the CNS
causes chronic microglial activation, which releases inflammatory
mediators and initiates an inflammatory response. This chronic
inflammation eventually results in neuronal death and cognitive
dysfunction (Wang Y. et al., 2024). Microglial activation and the
inflammatory cascade mediated by pro-inflammatory factors are
fundamental mechanisms in AD pathogenesis (Wang et al., 2022a).
Pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-
α), interleukin-1β (IL-1β), and interleukin-6 (IL-6), play a central
role in AD. Studies have shown that the levels of TNF-α are

TABLE 1 (Continued) Traditional Chinese botanical drugs for Treating Alzheimer’s Disease by Intervening in the PI3K/AKT Pathway.

Botanical
drug

Metabolites Experiments Animal or
cell

Doserange PosC NegC Duration Model Molecular mechanisms
and outcomes

Ginkgo biloba leaf

(Zhu et al., 2024)

— — APP/PS1 mice 1.5, 3, 6 mL/kg — 0.9%Nacl 4 weeks In vivo ↑P-AKT, P-PI3K
↓P-NF-κB, IL-1β, TNF-α, IL-6

Guben-Jiannao Ye(15:

12:15:12:15) (Mao

et al., 2024)

Codonopsis pilosula

(Franch.) Nannf., Wolfiporia

cocos (Schw.)

Ryv.&Gibn. Lycium

barbarum L., Crataegus

pinnatifida

Bunge. Ziziphus jujuba Mill

— APP/PS1 mice 8.97 g/kg — water 3 months In vivo ↑PSD95, SYN1, GAP43, P-AKT
P-PI3K,P-mTOR

Lancao decoction (Wu

et al., 2025)

Peilan — APP/PS1 mice 2.5 g/kg Donepezil 0.9%Nacl 14 days In vivo ↑P-PI3K, P-AKT, P-ERK

Note: “↑” indicates that the traditional Chinese medicine upregulates the expression of this protein, while “↓” indicates that the traditional Chinese medicine downregulates the expression of this

protein.i.p.,intraperitoneally administered; i.g.,intragastrically administered; s.c.,subcutaneously injected; H.I., Hippocampal injection.Pos C,positive control; Neg C,negative control.
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TABLE 2 Active metabolites of traditional Chinese medicine that intervene in the PI3K/AKT pathway for the treatment of AD.

metabolites botanical drug
source

Experiments Animal or
cell

Dose range Pos C Neg C Duration Model Molecular
mechanisms and
outcomes

Saururus Chinensis Extract
(Ying-nan et al., 2019)

Angelica Dahurica (root) — APP/PS1 mice 20 mg/kg — 0.5%CMC 6 weeks In vivo ↑PI3K, P-AKT/AKT, P-GSK-
3β/GSK-3β
↓P-Tau(Ser202)

Danshenone II A (Yi et al., 2021) Salvia Miltiorrhiza(root
and rhizome)

LPS(0.5 g/L)H.I. ICR mice 1, 5, 10 mg/kg — 0.9%Nacl 7 weeks In vivo ↑BDNF, AchE, P-PI3K/PI3K,
P-AKT/AKT
↓AchE, IL-6, TNF-α, IBA-1,
GFAP, P-NF-κB/NF-κB, TLR4

Essential Oil of Warm Curcuma
(Yue et al., 2017)

Curcuma (rhizome) Aβ25-35(3uL) H.I. KM mice 6, 18 mg/kg Donepezil water 15 days In vivo ↑PI3K, AKT
↓P-Tau(Thr231)/P-Tau
(Ser404)

Crocinonthe (Yan et al., 2020a) Saffron (stigma) Aβ25-35(10uM) rat hippocampal
neuron cells

1,3, 10uM — DMSO 24 h In vitro ↑PI3K, AKT, Bcl-2, P-CREB
↓Bax

Hydroxy-α-Sanshool (Lan, 2021) Sichuan Pepper (pericarp) H2O2(90uM) PC12 cells 60, 30, 15uM — RPMI
1640 medium

2 h In vitro ↑P-AKT, P-PI3K, AKT, Bcl-2
↓caspase 3, Bax

Isoliquiritin (Wang C. et al.,
2020)

Forsythia (fruit) L-Glu(25uM)
—

HT22 cells
APP/PS1 mice

20uM
2.5, 5, 10, 20 mg/kg

—

—

Culture
medium
0.9%Nacl

3 h
42 days

In vitro
In vivo APP/
PS1 AD mice

↑Bcl-2, Bcl-xL, P-PI3K, P-AKT
↓Bad, Bax, Bid, AIF

Panax notoginseng saponins
(Xin, 2016)

Notoginseng (root and
rhizome)

— SAMP8 mice 100, 200 mg/kg Huperzine
A

0.9%Nacl 8 weeks In vivo ↑PI3K, AKT, P-AKT

Deer Antler Peptide (Xin, 2021) Deer Antler (immature
antler)

Aβ42(10uM) BV2 cells 2, 5, 10uM — Culture
medium

24 h In vitro ↑SOD, GSH-PX, PI3K, AKT
↓MDA, Bad, Bax, caspase 3

Curcumin (Chen, 2013) Turmeric (rhizome) — APP/PS1 mice 1000, 160 mg/kg — water 6 months In vivo ↑MAP-2, LC3Ⅰ/Ⅱ
↓PI3K, AKT, mTOR

Icariin (Taolin et al., 2016) Epimedium (leaves) Aβ25-35(20uM) PC12 cells 20uM — Culture
medium

1 h In vitro ↑P-AKT, P-GSK-3β

Puerarin (Zheng-rong et al.,
2016)

Pueraria (root) — APP/PS1 mice 40, 80 mg/kg Huperzine
A

0.9%CMC 3 months In vivo ↑P-GSK3β(Ser9)
↓Aβ1-40, Aβ1-42, P-Tau(T231)

Aconitine (Zhi-quan et al., 2021) Aconite (root or tuberous
root)

Aβ1-40(20uM) SY5Y cells 5 nM — Culture
medium

12 h In vitro ↓GSK-3β(Tyr216)

Polygala Saponin + β-Asarone
(Junping et al., 2018)

Polygala (root),Asarum
(whole herb or root)

Aβ25-35(1uM) HT22 cells 5, 10, 20uM — Culture
medium

30min In vitro ↑AKT, GSK-3β
↓ROS

Ginsenoside CK (Jia-nan et al.,
2021)

Ginseng (root) Aβ42(10uM) BV2 cells 2, 5, 10uM — Culture
medium

24 h In vitro ↑PI3K, AKT, P-AKT, mTOR

Acorus Volatile Oil + Total
Ginsenosides (Zhen, 2016)

Acorus Tatarinowii
(rhizome),Ginseng (root)

D-gal(150 mg/kg) i.g.
+Alcl3(5 mg/kg) i.p

KM mice 10 g/kg, 30, 150 mg/kg Donepezil Water 40 days In vitro

(Continued on following page)
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TABLE 2 (Continued) Active metabolites of traditional Chinese medicine that intervene in the PI3K/AKT pathway for the treatment of AD.

metabolites botanical drug
source

Experiments Animal or
cell

Dose range Pos C Neg C Duration Model Molecular
mechanisms and
outcomes

↑ChAT, P-AKT, P-mTOR,
APP, Beclin-1
↓Aβ1-42, AChE

Lychee Seed Polyphenols (Xiong
et al., 2020)

Lychee (fruit) DXM(0.03125-2 uM) HepG2 and
HT22 cells

10ug/mL — Culture
medium

48 h In vitro ↑P-PI3K(Tyr199/Tyr458),
P-AKT(Thr308), P-GSK-
3β(Ser9)
↓P-Tau(Ser404)

Derivatives of Evodia Alkaloids
(Pang et al., 2023)

Evodia (ripe) APP/PS1 mice, 3 × Tg
mice
SH-SY5Y, HepG2 cells

20,200ug/kg
1,0.1, 0.01ug/mL

—

—

Water
Culture
medium

4 weeks
24 h

In vivo
In vitro

↑P-PI3K, P-AKT, P-GSK-
3β(Ser9)
↓P-Tau(Thr181)

Schisandrin + Norcoclaurine (Qi
et al., 2020)

Schisandra (fruit), Alpinia
Oxyphylla (ripe fruit)

Aβ1-42(20uM) PC12 cells 0.31, 0.62, 1.25, 2.5,5, 10,
20uM/1.56, 3,12, 6.25,
12.5, 25, 50, 100uM

— Culture
medium

4 h In vitro ↑P-PI3K/PI3K, P-AKT/AKT,
P-GSK-3β/GSK-3β, P-mTOR/
mTOR, Bcl-2
↓IL-1β, IL-6,TNF-α, caspase 3

Schisandrin (Zhao et al., 2019) Schisandra (fruit) Aβ1-42(10uM) SY5Y cells 10uM — Culture
medium

24 h In vitro ↑P-AKT, P-GSK-3β
↓P-Tau

Flavonoids from the Stems and
Leaves of Scutellaria baicalensis
(Liu et al., 2022)

Scutellaria baicalensis
(root)

Aβ25-
35+AlCl3+RHTGF-β1

SD rats 35, 70, 140 mg/kg — Water 43 days In vivo ↑P-AKT/AKT, PI3K

Astragaloside (Yang et al., 2023) Astragalus (root) Aβ25-35(20uM)
—

HT22 cells
APP/PS1 mice

0.625, 1.25, 2.5, 5, 10, 20,
40, 80uM
10, 20,40 mg/kg

—

—

Culture
medium
0.09%Nacl

4 h
1 months

In vitro
In vivo

↑P-PI3K/PI3K, P-AKT/AKT,
P-mTOR/mTOR

Paeoniflorin (Ma et al., 2018) Peony (root) OA(40 nM) SH-SY5Y cells 50, 100, 200uM — Culture
medium

8 h In vitro ↑P-GSK-3β(Ser9),
P-AKT(Ser473)
↓P-Tau(Ser404)

Rg1 (Fang et al., 2025) Ginsenoside(root) Aβ1-42(10uM) BV2 cells 10uM — Culture
medium

24 h In vitro ↑LC3B II/I, Bcl-2, P-PI3K/
PI3K, P-AKT/AKT

Crocin (Wang S. et al., 2024) Saffron(stigmas) Aβ25-35(2uL)H.I. ICR mice 40 mg/kg — 0.9%Nacl 14 days In vivo ↑P-PI3K, P-AKT

Lycium Barbarum
Polysaccharides (Yang et al.,
2024)

Lycium barbarum(fruits) STZ(3 mg/kg)H.I. C57BL/6J mice 50, 100. 200 mg/kg Donepezil 0.9%Nacl 28 days In vivo ↑P-GSK-3β, P-IRS1/IRS1,
P-PI3K/PI3K
↓P-Tau(Thr205, Ser396,
Thr205

Curcumin (Yang et al., 2024) Curcuma longa(rhizomes) Aβ1-42(2uL)H.I. C57BL/6J mice 100 mg/kg — 0.9%Nacl 14 days In vivo ↑β-catenin, BDNF, P-AKT,
P-GSK-3β,P-CREB

Hyperoside (Wang et al., 2023) Acanthopanax senticosus
Hypericum(leaves or
flowers)

Aβ42(2.5uM) PC12 cells 10, 20, 30uM — Culture
medium

24 h In vitro ↑P-PI3K, P-AKT, Nrf2, HO-1

(Continued on following page)
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significantly elevated in the plasma and cerebrospinal fluid of AD
patients (Decourt et al., 2016).In animal models of brain diseases,
including AD, upregulation of the PI3K/AKT signaling pathway can
inhibit downstream targets such as nuclear factor kappa-B (NF-κB)
(Yang et al., 2020), which leads to a reduction in the gene expression
and activity of pro-inflammatory cytokines like TNF-α (Bathina
et al., 2020). Conversely, the crosstalk between GSK-3β and NF-κB
can increase the expression of pro-inflammatory chemokines and
apoptotic factors, ultimately causing severe neurodegeneration. This
interplay between inflammatory pathways and PI3K/AKT signaling
highlights the critical role of neuroinflammation in AD pathology
and provides a therapeutic target for modulating inflammation in
AD treatment (Shih et al., 2015).

Schisandrin and nootkatone, active metabolites of Schisandra
chinensis and Alpinia oxyphylla, respectively, have been shown to
significantly increase the expression of P-PI3K/PI3K, P-AKT/AKT,
and P-GSK-3β/GSK-3β in Aβ1-42-induced AD cell models. These
metabolites also reduce the expression of inflammation-related
proteins, such as NF-κB, inhibitor of kappa B kinase (IKK), IL-
1β, IL-6, and TNF-α (Qi et al., 2020). Tanshinone, a primary active
metabolite in Salvia miltiorrhiza (derived from Danshen), has been
found to lower the levels of IL-6, TNF-α, and P-NF-κB/NF-κB in the
brain tissue of AD mouse model, while increasing the expression of
BDNF, P-PI3K/PI3K, and P-AKT/AKT, thereby improving
cognitive function (Yi et al., 2021). Gardenia has been shown to
effectively lower the expression of pro-inflammatory factors TNF-α
and IL-1β in the 3×Tg-AD mouse model (Meng, 2018).
Additionally, the modified formula San Jia San is capable of
alleviating neuroinflammation in AD cell models by
downregulating PI3K, P-AKT, IL-1β, IL-6, and TNF-α, while
upregulating anti-inflammatory cytokines IL-4 and IL-10
(Miao, 2018).

5 Relieve of oxidative stress

Oxidative stress is the result of an imbalance between pro-
oxidants and antioxidants in the body, leading to mitochondrial
damage and dysfunction. Mitochondrial dysfunction, in turn,
causes the accumulation of reactive oxygen species (ROS) and
exacerbates oxidative stress, ultimately resulting in age-related
neurodegenerative diseases (Bai et al., 2022). The oxidants and
oxidative products generated under oxidative stress can increase
the expression of amyloid precursor protein (APP), leading to the
aggregation of Aβ (Tamagno et al., 2012). Aβ itself can promote
the increase of ROS and induce the occurrence of oxidative stress
(Ill-Raga et al., 2010). The inhibition of the PI3K/AKT signaling
pathway can trigger insulin resistance, leading to mitochondrial
dysfunction and the subsequent surge of various types of free
radicals. Conversely, the activation of the PI3K/AKT pathway
can inhibit oxidative stress by enhancing the expression of
superoxide dismutase (SOD) (Jiang et al., 2015). Research has
shown that the PI3K/AKT signaling pathway enhances the
antioxidant pathway of nuclear factor erythroid 2-related
factor 2 (Nrf2) (Zhang et al., 2019), which is the main
regulatory factor for antioxidants (Bahn and DG, 2019). Due
to the impairment of the PI3K/AKT pathway, the unregulated
activity of GSK-3β accelerates the biosynthesis of free radicalsT
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(Kanninen et al., 2011). The activity of GSK-3β enhances
oxidative stress (Koundouros and Poulogiannis, 2018). By
upregulating the expression and activity of eNOS in the PI3K/
AKT pathway in the brains of rats, levels of malondialdehyde
(MDA) decreased, while reduced glutathione (GSH) levels and
SOD activity increased, significantly improving the memory of
the rats (Xu et al., 2015).

Research conducted by Ma Tao and colleagues found that
administering a decoction of Rehmannia to APPsw/PS1ΔE9 AD
mouse models, the latency to enter a dark room was prolonged, the
number of errors decreased, and the expression levels of SOD, GSH-
PX, P-AKT, and P-GSK-3β effectively increased (Tao et al., 2014).
Research by Qiu Jing and colleagues reported that the intervention
of Jiajian Shuyu Pills improved the learning and memory abilities of
APP/PS1 AD mouse models improved significantly, with a notable
increase in the expression levels of Nrf2 in the hippocampus (Jing
et al., 2019). Deer antler peptides, one of the main active metabolites
of deer antlers, are composed of various amino acids and have a
significant role in promoting neuronal regeneration. Studies have
shown that deer antler peptides have the potential to enhance the
expression levels of SOD, GSH-PX, PI3K, and AKT in AD cell
models while reducing the expression levels of MDA (Xin, 2021).
The Bushen Jianpi Kai Xin Decoction has also been demonstrated to
significantly increase the expression of SOD in D-galactose + Aβ1-42
induced AD rat models, reduce the expression of NOS, and improve
oxidative stress levels (Rong, 2018). These processes are inherently
connected to the PI3K/AKT signaling cascade.

6 Reduction the accumulation of Aβ
Accumulation of Aβ is a key early pathophysiological event in

AD, leading to neurodegeneration and cognitive impairment by
inducing abnormal accumulation of tau protein (Walsh and DJ,
2007; Selkoe and J, 2016). Excessive accumulation of Aβ in the brain
can trigger various pathological changes, including neuronal
degeneration and apoptosis caused by the inactivation of AKT
(Zeng et al., 2016). Aggregated Aβ induces tau
hyperphosphorylation by enhancing the activity of GSK-3β and
cyclin-dependent kinases (CDK-5) (Terwel et al., 2008). Multiple
studies have shown that Aβ plaques downregulate several
neurotrophic factors, such as brain-derived neurotrophic factor
(BDNF), negatively regulating the PI3K/AKT pathway, resulting
in significant cognitive impairment (Chen et al., 2009; Garabadu and
J, 2019). The activation of the PI3K/AKT/GSK-3β pathway can
trigger protective factors against Aβ neurotoxicity (Yin et al., 2011).
The PI3K/AKT signaling pathway is involved in autophagy induced
by Aβ25-35 and is highly correlated with Aβ clearance mediated by
autophagy. Activation of PI3K/AKT can offset the neuronal effects
induced by Aβ by influencing Aβ production/clearance and cell
death (Sofola et al., 2012; Sánchez-Alegría et al., 2018; Sotolongo
et al., 2020). GSK-3β plays an important role in the mechanism of
amyloidosis in AD. GSK-3 alters Aβ levels by regulating APP
processing (Phiel et al., 2003; Rockenstein et al., 2007). In the
familial AD (FAD) 5 × FAD mouse model, increased expression
of GSK-3 (α/β) isoforms hinders Aβ clearance in the brain, leading
to increased Aβ plaque deposition and memory deficits (Avrahami
et al., 2013).

Research has indicated that the Yifei Wenyang Huazhuo
Decoction tends to reduce Aβ levels in the neurons of AD rat
models, lowering the expression levels of PI3K and AKT (Jinping
et al., 2019). Puerarin, a bioactive isoflavone glycoside extracted
from Pueraria, has been observed to exert neuroprotective effects in
AD through various mechanisms (Haixia et al., 2023). Mei
Zhengrong and colleagues found that puerarin exhibits the ability
to improve learning and memory deficits in APP/PS1 AD mouse
models by reducing Aβ production and increasing P-GSK-3β
expression (Zheng-rong et al., 2016). Cui-Zhu Yang and
colleagues found that Astragaloside enhances cognitive function
in APP/PS1 AD mouse models by activating the PI3K/AKT
pathway, reducing hippocampal neuronal damage, and alleviating
Aβ pathology (Yang et al., 2023). Curcumin, a lipophilic phenolic
pigment extracted from the rhizome of turmeric, is the main active
component of turmeric (Wei-wei et al., 2024). Wang Chen’s
research found that curcumin treatment improved cognitive
dysfunction in AD mouse models, reducing the number of Aβ-
positive cells in the hippocampus as well as the expression of PI3K,
AKT, and mTOR (Chen, 2013). The essential oil of Acorus
tatarinowii, obtained from the dried rhizome of the plant,
combined with total ginsenosides from ginseng, has been
demonstrated to increase the expression of P-AKT in AD mouse
models while decreasing the expression of Aβ1-42 (Zhen, 2016).
Ginsenosides are one of the main active metabolites of ginseng and
have protective effects on the central nervous system (Jing et al.,
2023). Ginsenoside CK has shown potential in reducing the
extracellular Aβ levels in AD cell models while increasing the
expression of PI3K, AKT, and P-AKT (Jia-nan et al., 2021).
Research findings have shown that upregulation of the PI3K/
AKT pathway eliminates Aβ plaque formation in transgenic
Drosophila models of AD (Zhang et al., 2016).

7 Discussions and perspective

TCM has a long-standing history in China, known for its
therapeutic efficacy and minimal adverse reactions. In contrast to
single-component drugs, herbal formulations and extracts derived
from TCM offers the advantage of multi-component, multi-
pathway, and multi-target approaches, which makes it a
promising candidate for treating complex chronic diseases such
as AD. Studies have identified the PI3K/AKT signaling pathway as a
key regulator of neuronal cell growth and survival. Several
traditional Chinese herbal formulations, including Kaixin San,
Dihuang Yinzi, and Liuwei Dihuang Wan (Table 1), as well as
potent TCM metabolites like Cnidii Monnieri, ginsenosides, and
paeoniflorin (Table 2), have demonstrated beneficial effects in AD
models. Table 3 shown the classifications, botanical drug and family
of anti-AD active ingredients of Chinese botanical drug. These
findings suggest that herbal formulations and extracts derived
from TCM can potentially alleviate Aβ accumulation, inhibit tau
hyperphosphorylation, reduce neuronal apoptosis, counteract
neuroinflammation and oxidative stress, and enhance synaptic
function by regulating the PI3K/AKT pathway, thus improving
memory and cognitive function in AD. These results provide
strong evidence supporting the effectiveness of herbal
formulations and extracts derived from TCM in AD treatment
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and

TABLE 3 Anti-AD active ingredients of Chinese botanical drug.

Classifications Type of extract Botanical drug Family

Carotenoids Crocin Extracted from the stigmas of Crocus sativus (Saffron) [Iridaceae; Saffron Stigma] Iridaceae

Polypeptides Deer Antler Peptide Extracted from the immature antlers of Cervus elaphus or Cervus nippon [Cervidae;
Cervi Cornu Pantotrichum]

Cervidae

Polyphenols Curcumin Extracted from the rhizomes of Curcuma longa (Turmeric) [Zingiberaceae;
Curcumae Longae Rhizoma]

Zingiberaceae

Flavonoids Curcumin Extracted from the rhizomes of Curcuma longa [Zingiberaceae; Curcumae Rhizoma] Zingiberaceae

Flavonoids Icariin Extracted from the leaves of Epimedium brevicornu Maxim. [Berberidaceae;
Epimedii Folium]

Berberidaceae

Flavonoids Puerarin Extracted from the roots of Pueraria lobata (Willd.) Ohwi [Fabaceae; Puerariae
Radix]

Fabaceae

Flavonoids Flavonoids from the Stems and Leaves of Scutellaria baicalensis Extracted from the dried stems and leaves of Scutellaria baicalensis Georgi
[Lamiaceae; Scutellariae Radix]

Lamiaceae

Flavonoids Isoliquiritin Extracted from the roots of Glycyrrhiza uralensis Fisch. [Fabaceae; Glycyrrhizae
Radix]

Fabaceae

Flavonoids Crocinonthe Extracted from the dried stigmas of Crocus sativus L. [Iridaceae; Croci Stigma] Iridaceae

Flavonoids Hyperoside Extracted from the leaves or flowers of plants such as Crataegus pinnatifida
(Hawthorn) [Rosaceae]

Rosaceae

Flavonoids Icariside II Extracted from the aerial parts of Epimedium species (commonly Epimedium
brevicornum) [Berberidaceae]

Berberidaceae

Alkaloids Aconitine Extracted from the processed lateral roots of Aconitum carmichaelii Debeaux
[Ranunculaceae; Aconiti Lateralis Radix Praeparata]

Ranunculaceae

Alkaloids Dendrobium nobile Lindl. alkaloid Extracted from the stems of Dendrobium nobile Lindl. (Noble Dendrobium)
[Orchidaceae; Dendrobii Caulis]

Orchidaceae

Saponins Polygala Saponin Extracted from the roots of Polygala tenuifolia Willd. [Polygalaceae; Polygalae
Radix]

Polygalaceae

Saponins Panax notoginseng saponins Extracted from the roots of Panax notoginseng (Burk.) F.H.Chen [Araliaceae;
Notoginseng Radix et Rhizoma]

Araliaceae

Essential Oils Acorus Volatile Oil Extracted from the rhizomes of Acorus calamus L. [Acoraceae; Acori Tatarinowii
Rhizoma]

Acoraceae

Essential Oils Essential Oil of Warm Curcuma Extracted from the rhizomes of Curcuma longa L. [Zingiberaceae; Curcumae
Rhizoma]

Zingiberaceae

Phenols Lychee Seed Polyphenols Extracted from the seeds of Litchi chinensis Sonn. [Sapindaceae; Litchi Semen] Sapindaceae

(Continued on following page)
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TABLE 3 (Continued) Anti-AD active ingredients of Chinese botanical drug.

Classifications Type of extract Botanical drug Family

Alkaloids Derivatives of Evodia Alkaloids Extracted from the fruits of Evodia rutaecarpa (Juss.) Benth. [Rutaceae; Evodiae
Fructus]

Rutaceae

Alkaloids Norcoclaurine Extracted from the rhizomes of Coptis chinensis Franch. [Ranunculaceae; Coptidis
Rhizoma]

Ranunculaceae

Lignans Schisandrin Extracted from the dried fruits of Schisandra chinensis (Turcz.) Baill.
[Schisandraceae; Schisandrae Chinensis Fructus]

Schisandraceae

Quinones Danshenone II A Extracted from the roots of Salvia miltiorrhiza Bunge [Lamiaceae; Salviae
Miltiorrhizae Radix et Rhizoma]

Lamiaceae

Saponins Total Ginsenosides Extracted from the roots of Panax ginseng C.A.Mey. [Araliaceae; Ginseng Radix et
Rhizoma]

Araliaceae

Saponins Ginsenoside CK Extracted from the roots of Panax ginseng C.A.Mey. [Araliaceae; Ginseng Radix et
Rhizoma]

Araliaceae

Saponins Ginsenoside 1 Extracted from the roots of Panax ginseng C.A.Mey. [Araliaceae; Ginseng Radix et
Rhizoma]

Araliaceae

Saponins Astragaloside Extracted from the roots of Astragalus membranaceus (Fisch.) Bunge [Fabaceae;
Astragali Radix]

Fabaceae

Polysaccharides Lycium Barbarum Polysaccharides Extracted from the fruits of Lycium barbarum (Goji Berry) [Solanaceae; Lycii
Fructus]

Solanaceae

Other Active Components Paeoniflorin Extracted from the roots of Paeonia lactiflora Pall. [Paeoniaceae; Paeoniae Radix
Alba]

Paeoniaceae

Other Active Components Hydroxy-α-Sanshool Extracted from the dried pericarps of Zanthoxylum bungeanum Maxim. [Rutaceae;
Zanthoxyli Pericarpium]

Rutaceae

Other Active Components β-Asarone Extracted from the rhizomes of Acorus calamus L. [Acoraceae; Acori Tatarinowii
Rhizoma]

Acoraceae

Other Active Components Saururus Chinensis Extract Extracted from the whole dried plant of Saururus chinensis (Lour.) Baill.
[Saururaceae; Saururi Herba]

Saururaceae
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emphasize the importance of targeting the PI3K/AKT pathway.
Although significant progress has beenmade in the basic research on
TCM for the treatment of AD, the complexity of its components and
the unknown, intricate changes that occur in the body make the
current research results speculative. Further in-depth investigation
is needed to clarify the specific components and molecular
mechanisms through which TCM intervenes in AD, in order to
better understand its therapeutic effects and guide clinical
applications. The following are some limitations in the research
design of TCM for the treatment of AD, existing issues, and future
research needs.

Although herbal formulations and extracts derived from TCM
have demonstrated great potential in regulating the PI3K/AKT
pathway for treating AD, corresponding clinical studies are still
lacking, particularly those on individual Chinese herbal compounds.
Additionally, in related experimental studies, some lack positive
control drugs, some have undefined compositions or ratios of herbal
formulas (with their components not yet disclosed), and others rely
solely on in vitro experiments. More comprehensive in vivo studies
are needed to simulate the complex environment within organisms,
explore their mechanisms of action, and assess the efficacy and safety
of long-term use of TCM components. The study of herbal formulas
faces numerous challenges, such as the complexity of TCM
components making it difficult to elucidate their mechanisms, as
well as variability in sourcing, species, processing methods, and
formulations that can affect reproducibility. In the future,
standardization of formula preparation and use will need further
development. Employing analytical approaches such as
metabolomics and network pharmacology could facilitate higher-
quality, more in-depth research.

Specific components of TCM regulate the PI3K/AKT signaling
pathway through multiple levels and targets, either directly or
indirectly. This regulation involves activating upstream receptors,
modulating key enzymes, and influencing downstream effector
proteins (Kumar and Bansal, 2022). For example, icariin can
enhance the expression of IGF and BDNF, thereby activating
the PI3K/AKT pathway, inhibiting Aβ production and tau
protein phosphorylation, and alleviating symptoms in AD
animal models (Wang et al., 2012). Curcumin improves adult
neurogenesis in AD mice by increasing BDNF expression and
activating the PI3K/AKT pathway (Lou et al., 2024). The herbal
formula Jin Siwei(GAPT) boosts glucose uptake in specific brain
regions of AD mice, increases glucose transport, and repairs
damaged PI3K/AKT signaling pathways (Li, 2017). Ginsenoside
CK upregulates PI3K, AKT, and phosphorylated AKT in AD
model cells (Jia-nan et al., 2021). Herbal formulation Erzhi Pill
enhances the expression of Akt and PI3K, participating in the
regulation of key enzymes within the PI3K/AKT pathway (Xie
et al., 2021). Herbal formulation Xingnaojing lowers GSK-3β
expression and raises mTOR expression, exerting regulatory
effects through downstream effector proteins of the PI3K/AKT
pathway (Liu et al., 2020). Although existing studies have
uncovered how certain TCM components influence the PI3K/
AKT pathway, the direct targets and specific regulatory
mechanisms of some components remain unclear. Further
investigation is warranted in future research.

In addition to the PI3K/AKT pathway, research has shown that
herbal formulations and extracts derived from TCM can improve AD

pathology through multiple targets by modulating pathways such
as NF-κB, Nrf2, JAK/STAT, ubiquitin-proteasome, PPARα,
AMPK/mTOR, and SIRT1 (Ding et al., 2022). For instance,
Naoxintong capsule has been found to improve cognitive
function in APP/PS1 mice by downregulating the expression of
IL-1β, IL-6, TNF-α, NF-κB, Aβ, and phosphorylated Tau (p-Tau)
(Wang et al., 2021). Qin et al. demonstrated that astragalus
polysaccharide increases nuclear Nrf2 expression as well as
SOD and GSH-Px activity, reduces MDA accumulation,
alleviates oxidative stress damage, and enhances spatial learning
and memory in APP/PS1 mice (Qin et al., 2020). Long et al.
reported that Suanzaoren decoction alleviated cognitive deficits in
an AD mouse model, reduced Aβ plaque deposition and neuronal
loss, downregulated the expression of p-JAK2-Tyr1007 and
p-STAT3-Tyr705 proteins, and modulated the JAK2/
STAT3 pathway (Long et al., 2021). Another study found that
protopine, a component of Corydalis, exhibited neuroprotective
effects in P301S Tau and 3xTg-AD mouse models by inhibiting
histone deacetylase 6 activity while enhancing the expression of
molecular chaperones such as HSP70, HSP90, HSC70, and
acetylated HSP90, thereby influencing the ubiquitin-proteasome
pathway in AD (Sreenivasmurthy et al., 2022).

At present, most basic studies on the intervention of AD with
TCM are conducted using animal or cell models. Animal models can
realistically simulate the pathological features of AD in living
organisms, while cell models allow researchers to investigate the
disease mechanisms at a microscopic level. However, existing AD
models have certain limitations. Different cell models can only
represent certain aspects of AD pathogenesis and fail to replicate
its full complexity. The criteria for establishing cell models are not
yet standardized; using changes in cell viability or the expression of
certain factors as evaluation metrics cannot fully reflect the
pathological features of AD. Moreover, the effects of various
metabolic intermediates, ions, serum components, and substrates
on cell growth and differentiation during cell culture require further
exploration (Ting et al., 2020). Similarly, animal models can only
partially mimic the pathological characteristics and clinical
symptoms of AD and cannot comprehensively represent all the
pathological, biochemical, and neurobehavioral changes. Therefore,
screening drugs with one or two AD cell or animal models, or using a
combined modeling approach, may be more convincing than relying
on a single model (Lei and Xiaoli, 2020).

Currently, drugs directly targeting the PI3K/AKT pathway in
AD treatment remain in the research stage. Exploring herbal
formulations and extracts derived from TCM modulates the
PI3K/AKT pathway in treating AD could provide valuable
insights for developing synthetic drugs targeting this pathway.
TCM contains numerous active compounds that can exert
synergistic effects, intervening at multiple targets and regulating
both upstream and downstream molecules of the PI3K/AKT
pathway. In the future, the development of multi-target drugs
may be necessary to address the complex pathological
mechanisms of AD.

Many herbal formulations and extracts derived from TCM
extracts have demonstrated promising therapeutic effects against
AD. It is worth considering whether derivatives based on these
extracts could be designed to offer greater potency, stability, and
selectivity as PI3K/AKT-targeting agents. For example, curcumin is
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quickly eliminated in the body due to its hydrophobicity and low
bioavailability (Mirzael et al., 2017). Structural modifications of
curcumin, synthesis of a series of derivatives, or the use of
nanoemulsions to improve oral bioavailability might address these
issues (Ghasemi et al., 2020; Liu L. et al., 2016). As our understanding
of the role of herbal formulations and extracts derived from TCM in
modulating this pathway and its involvement in AD pathogenesis
deepens, new therapeutic strategies may emerge.

Currently, treatment for AD primarily includes cholinesterase
inhibitors, NMDA receptor antagonists, and monoclonal antibody-
based drugs. These therapies mainly target short-term cognitive
improvements and slow disease progression, but they are associated
with varying degrees of adverse effects and have limited efficacy for
moderate to severe AD patients. In contrast, numerous herbal
formulations and extracts derived from TCM have shown
promising therapeutic effects in basic experimental studies. Some
TCM formulations have also been tested in clinical research with
encouraging results. A multicenter, randomized, observer-blind
controlled trial confirmed that modified Guipi Decoction
significantly improved BPSD in AD patients (Nogami et al.,
2023). Wang HC et al. found that Jiannao Yizhi Formula was as
effective and safe as donepezil for treating mild to moderate AD
(WangH. C. et al., 2020). Shenmai or Shenfu Injection andHuannao
Yicong Formula have been demonstrated to be effective and safe for
treating mild to moderate AD (Chen et al., 2015; Zhang et al., 2015).
Liu P et al. reported that treatment with Reinforcing Kidney Essence
improved cognitive function and daily living in AD patients (Liu
et al., 2013). Yu L et al. discovered that syndrome-differentiation-
based TCM treatment effectively enhanced cognitive function in
mild to moderate AD patients and improved brain connectivity
between the posterior cingulate cortex and specific brain regions (Yu
et al., 2012).

Clinical studies suggest that herbal formulations and extracts
derived from TCM offer substantial potential for treating AD, with
advantages such as fewer side effects, convenient administration,
and lower treatment costs. However, clinical evaluations of TCM
efficacy often rely on subjective symptom improvement rather than
objective biomarker validation. Furthermore, TCM treatments lack
standardized dosing and protocols, and some medications may have
potential toxicity with long-term use. Therefore, high-quality, large-
scale, multicenter clinical trials are still needed to verify the safety
and efficacy of TCM in AD treatment.
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Glossary
AD Alzheimer’s disease

mTOR Mammalian target of rapamycin

APP Amyloid precursor protein

mTORC2 Mammalian target rapamycin complex 2

AKT Protein kinase B

MDA Malondialdehyde

Aβ Amyloid-β

Nrf2 Nuclear factor erythroid 2-related factor 2

Bcl-XL B cell lymphoma-extra large

NFT Neurofibrillary tangles

Bcl-2 B-cell lymphoma-2

NF-κB Nuclear factor kappa-b

Bax Bcl-2-associated x protein

NS-PTEN KO Neuron subgroup-specific pten knockout

BDNF Brain-derived neurotrophic factor

PIP3 Phosphatidylinositol-3,4,5-bisphosphate

caspases Cysteine-aspartate proteases

PIP2 Phosphatidylinositol-4,5-bisphosphate

CDK-5 Cyclin-dependent kinases

PI3K Phosphoinositide 3-kinase

CNS Central nervous system

PI3K/AKT Phosphoinositide 3-kinase/protein kinase b

eNOS Endothelial nitric oxide synthase

P-AKT Phosphorylated akt

GSH Glutathione

PH Pleckstrin homology

GSK-3β Glycogen synthase kinase-3β

PDK1 3-phosphoinositide-dependent protein kinase-1

IR Insulin receptor

ROS Reactive oxygen species

IL-6 Interleukin-6

SOD Superoxide dismutase

IRS Insulin receptor substrates

TCM Traditional chinese medicine

IKK Inhibitor of kappa b kinase

TNF-α Tumor necrosis factor-α

IL-1β Interleukin-1β

ULK1 Unc-51-like kinase 1
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