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Background: Clear cell renal cell carcinoma (ccRCC) has the highest morbidity
among renal cell carcinoma (RCC) subtypes. While existing clinical
pharmacological intervention strategies have achieved certain efficacy,
challenges including inevitable drug resistance and intricate immune
heterogeneity of ccRCC continue to hinder their biomedical application.
Therefore, developing novel immunotherapeutic agents and identifying
patients who can gain the greatest benefits from these therapies are
urgent issues.

Methods: To address these challenges, mRNA expression profile and clinical data
of ccRCC were obtained from The Cancer Genome Atlas (TCGA) and Gene
Expression Omnibus (GEO) databases. These data were integrated and randomly
allocated into training and test sets. Immune-related differentially expressed
genes (IRDEGs) were used to construct an immune-related gene prognostic
index (IRGPI). Both prognostic performance metrics and immune phenotyping
were employed to evaluate the effectiveness of the model. Furthermore, model
IRDEGs (mIRDEGs) in two risk subgroups were leveraged to select potential
therapeutic compounds. Afterwards, network pharmacology and molecular
docking techniques were used to elucidate the anti-cancer mechanisms of
Zebularine (Zeb). Finally, the anti-cancer efficacy of Zeb was validated through
in vivo and in vitro experiments.

Results: Our constructed IRGPI exhibited superior prognostic performance. The
drug screening revealed Zeb potentially targets the PI3K-Akt signaling pathway to
exert its anti-cancer effects. Subsequent experimental validation corroborated
these theoretical findings.

Conclusion: This study presents a prognostic model to evaluate immune cell
infiltration and predict the prognosis of ccRCC patients. The identified small
molecule compound provides a novel therapeutic avenue for treating ccRCC
patients.
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1 Introduction

Clear cell renal cell carcinoma (ccRCC) constitutes
approximately 70%–80% of renal cell carcinoma (RCC) and has
the highest morbidity among kidney malignant neoplasms. It has a
poor prognosis in advanced stages and is insensitive to conventional
radiotherapy and chemotherapy (Li M. et al., 2023; Choueiri et al.,
2020; Li T. et al., 2023). Although recent advancements in targeted
therapies and innovative immunotherapies have significantly
transformed the treatment paradigm for advanced ccRCC
patients, many patients are unresponsive to therapies (Li et al.,
2022; Choueiri et al., 2017), underscoring the necessity for further
investigation into the biological characteristics and potential
therapeutic biomarkers for ccRCC.

Existing studies have increasingly suggested that ccRCC is a
heterogeneous disease, and its prognosis is not only influenced by
clinical and pathological factors, but also closely related to immune
status within tumor microenvironment (TME) (Lee et al., 2019; Bi
et al., 2021). The activation and suppression states of the immune
system directly impact patients’ response to immunotherapy
(Kumari and Choi, 2022). As a result, developing an immune
model that can accurately predict patient prognosis and
identifying effective small molecule compounds are vital for
formulating precise and individualized treatment strategies for
ccRCC patients.

The development of prognostic models relies on
comprehensively understanding patient biological features and
identifying genes associated with tumor progression (Gogas et al.,
2009). The prognosis of malignant tumors is intricately linked to
immune responses, which encompass processes such as antigen
presentation, phagocytosis, and lymphocyte activation (Phillips
et al., 2019). To date, several immune-related prognostic models
for ccRCC have been established. For instance, one study reveals
novel features derived from macrophage marker genes through
single-cell transcriptome data analysis, and identifies IFI30,
FUCA1, TIMP1, NAT8, and SMIM24 as the potential
prognostic biomarkers (Chen et al., 2024). Moreover,
investigations into lactate-related genes demonstrate that
models constructed based on these genes significantly
contribute to evaluating the prognosis and immune response
in ccRCC (Sun et al., 2022). These multifactorial prognostic
models, which incorporate various risk-related genes, can
accurately predict the patient overall survival (OS) and
progression-free survival (PFS).

Screening small molecule compounds can offer promising
avenues for the treatment of ccRCC. Small molecule inhibitors
targeting immune checkpoints (ICIs), such as LAG-3 inhibitors
(specifically SA-15-P), identified through focused screening and
the “SAR by catalog” approach, can block LAG-3/MHCII and
LAG-3/FGL1 interactions. This mechanism assists T cells in
regaining cytotoxicity while diminishing the immunosuppressive
effect of regulatory T cells (Tregs), thereby highlighting their
potential for clinical translation in immunotherapy for multi-
organ solid tumors (Abdel-Rahman et al., 2023). Comparable
investigations also encompass STING agonists identified via
high-throughput screening, including Benzothiazine-6-
carboxamide (Sali et al., 2015), which holds promising prospects
for immunotherapeutic applications.

Network pharmacology integrates systems biology, network
science and bioinformatics analysis to analyze drug-target
molecular interactions at a systemic level. This approach
systematically elucidates the drug action mechanisms, identifies
novel drug targets, and optimizes drug design (Liu et al., 2021).
Molecular docking technology is the pivotal tool used in computer-
aided drug design (CADD), which is critical for forecasting
interaction patterns and affinities between drug molecules and
their targets (Bell and Zhang, 2019). Collectively, these
methodologies establish the fundamental framework for applying
small molecule compounds in anti-cancer therapy.

Therefore, based on this rationale, in this study, we used ccRCC
data from The Cancer Genome Atlas (TCGA) and Gene Expression
Omnibus (GEO) datasets to construct an 8-gene immune prognostic
model for assessing ccRCC prognosis. Additionally, Connectivity
map (CMap) database-based drug screening was conducted in
conjunction with network pharmacology as well as in vivo and
in vitro experimental validation to elucidate the anti-cancer efficacy
of a novel small molecule compound. Figure 1 illustrates the key
aspects and workflow of this study.

2 Methods

2.1 Raw datasets acquisition

The gene expression profiles and clinical data of ccRCC were
downloaded from the TCGA database (https://portal.gdc.cancer.
gov/, July 2024) (Stephen et al., 2014), which consist of
72 normal samples and 542 tumor samples. After excluding
duplicate samples, we adopted a total of 537 ccRCC samples.
Among them, 70% were randomized as the model training set,
while the remaining 30% were combined with the GSE29609 dataset
(consisting of 39 tumor samples with recorded survival times) from
the GEO database (https://www.ncbi.nlm.nih.gov/geo/, July 2024)
(Edgar and Barrett, 2006) as the test set to validate the model
predictive ability. Following quality control, all datasets were
standardized to ensure that the expression values were converted
to comparable levels for further analysis. The detailed baseline
clinical pathological data of patients with ccRCC are summarized
in Table 1. Totally 3179 immune-related genes (IRGs) were
obtained, including 1793 in ImmPort (https://www.immport.org/)
(Bhattacharya et al., 2018) and 1698 in InnateDB (https://www.
innateDB.com/) (Lynn et al., 2008) databases.

2.2 Immune-related core module genes
identification

For identifying differentially expressed genes (DEGs) in ccRCC
tumor versus non-carcinoma samples, “limma” package of R
software 4.4.1 was employed for screening DEGs from a training
set comprising 376 ccRCC samples and 72 non-carcinoma samples
upon the thresholds of P < 0.05 and |log2FC| > 1. Subsequently,
these DEGs were intersected with IRGs downloaded to obtain
immune-related differentially expressed genes (IRDEGs).
Thereafter, key module genes were extracted from the IRDEGs
by weighted gene co-expression network analysis (WGCNA) (Xu
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et al., 2022). Specifically, through Pearson test, sample cluster
analysis was conducted according to the correlation coefficients
between two genes. Later, an unsigned co-expression network was
constructed in line with optimum soft-thresholding power β. The
co-expression similarity was calculated, later, the similarity matrix
was transformed to the weighted adjacency matrix. Afterwards, this
adjacency matrix was further transformed to the Topological
Overlap Matrix (TOM) for detecting network gene connectivity.
Furthermore, genes with a distance of 1-TOM were clustered to
construct different visual gene modules, and finally, genes from the
significantly correlatedmodules were chosen in subsequent analyses.

2.3 Development and verification of the
immune-related gene prognostic
index (IRGPI)

To identify the OS-related independent and significant
prognostic genes, univariate Cox (uni-COX) regression was
performed. To mitigate model complexity and multicollinearity,
Least Absolute Shrinkage and Selection Operator (LASSO)
regression (McEligot et al., 2020) was carried out with R package
“glmnet” and multivariate Cox (multi-Cox) regression for
constructing an optimal immune-related prognostic differential
genes (IRPDGs) model. Afterwards, risk score (RS) was
determined through linearly combining gene expression and
corresponding weighted regression coefficients obtained from
multi-Cox regression. To be specific, the RS was computed below:

RS � ∑
8

n�1
Expression genen( ) × coefficient genen( )

All samples were classified as high- or low-risk group according
to median RS. At last, Kaplan-Meier survival and risk assessment

FIGURE 1
Flowchart of data collection and study design.

TABLE 1 Clinicopathological Characteristics of ccRCC Patients Examined in
This Study.

Variables Training set Test set

Age (years)

≤65 254 119

>65 122 81

Gender

Male 242 107

Female 134 54

Unknow 39

Tissue

Normal 72

Tumor 376 200

Grade

1 9 6

2 158 86

3 159 59

4 47 44

unknow 3 5

Stage

I 190 91

II 39 21

III 89 46

IV 55 42

unknow 3
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were conducted on both training and test sets. Additionally, receiver
operating characteristic (ROC) curves were plotted with “timeROC”
package, with area under the curve (AUC) values being calculated to
comprehensively assess and validate the predictive capability of
IRGPI (Bilar et al., 2021).

In the training set, Chi-square test was employed for examining
the relationship of prognosis with clinicopathological parameters
(including age, gender, tumor stage, and grade). Additionally, RS
and clinicopathological parameters were used for nomogram
construction using “regplot” and “rms” packages. Thereafter, uni-
Cox and multi-Cox regression were completed for assessing the
independent predictive capability of IRGPI.

2.4 Analysis of mutant gene landscapes and
immune characteristics

Mutation data were downloaded from the TCGA database and
divided as high- or low-risk subgroup. The “maftools” package was
employed for analyzing somatic mutations of each sample. Tumor
mutation burden (TMB), survival analysis, and waterfall plots were
utilized for evaluating somatic mutation difference between the two
risk subgroups (Jardim et al., 2021). Thereafter, the “org.Hs.eg.db”
and “clusterProfiler” packages were employed based on the reference
gene set (c2.cp.kegg.v7.4.symbols.gmt) for gene set enrichment
analysis (GSEA) of both risk subgroups (Zohair et al., 2023).

To explore the difference in immune characteristics, we
implemented CIBERSORT analysis (https://CIBERSORT.stanford)
for assessing relative proportions of 22 immune-related cells in the
two risk subgroups. In addition, “survival” and “survminer”
packages were adopted for survival analysis associated with
immune cells, while “GSVA” package was utilized for single
sample GSEA (ssGSEA) for 29 immune-related functional
indicator levels. Furthermore, immune subtype datasets
downloaded from TCGA database were utilized to match
samples in the risk subgroups, thus assessing different immune
subtypes in both risk subgroups, while TME-related scores were
derived using the “estimate” package (Li H. et al., 2023). At last, the
prognostic relevance of risk subgroups to immunotherapy and
immune evasion was investigated by examining the difference in
microsatellite instability (MSI), tumor immune dysfunction and
exclusion (TIDE) score (https://tide.dfci.harvard.edu/), T-cell
exclusion effects, and T-cell dysfunction (Qin et al., 2023).

2.5 Drug sensitivity analysis and small
molecule drugs screening

For analyzing the ccRCC sensitivity to the common anti-cancer
drugs, we utilized “pRRophetic” package for exploring sensitivity
difference in both risk groups (Shi et al., 2023). Next, based on
IRGPI subgroup classification, “limma” package was adopted for
identifying model IRDEGs (mIRDEGs) from 188 high-risk and
188 low-risk samples (P < 0.05, |log2FC| > 0.5). Subsequently,
101 downregulated and 80 upregulated genes were uploaded to
CMap database (https://clue.io) to identify potential therapeutic
compounds (Subramanian et al., 2017). The screening results
included negative changes in gene expression profiles of multiple

cell lines, which were caused by 31,128 small molecule compounds,
and the compound with the lowest negative score was selected as the
candidate drug for high-risk ccRCC patients.

2.6 Acquisition of drug and disease targets

Briefly, the unique predicted targets for Zebularine (Zeb) were
obtained from The Comparative Toxicogenomics Database (CTD,
http://ctdbase.org/), STITCH 5.0 (http://stitch.embl.de/), DrugBank
6.0 (https://go.drugbank.com/), PharmMapper (http://www.lilab-
ecust.cn/pharmmapper/), and SwissTargetPrediction (http://www.
swisstargetprediction.ch/) databases (Davis et al., 2023; Szklarczyk
et al., 2016; Knox et al., 2024; Wang et al., 2017; Daina et al., 2019).
Besides, the DrugBank (https://go.drugbank.com/), GeneCards
(https://www.genecards.org/), OMIM (https://www.OMIM.org/),
and PharmGkb (https://www.pharmgkb.org/) databases (Shalar
et al., 2005; Filatova et al., 2023; Altman, 2007) were searched
with the keyword “clear cell renal cell carcinoma” to identify
disease-related targets. Then, UniProt ID was transformed into
Gene Symbol using UniProt database (https://www.uniprot.org/
uploadlists/) (Apeweiler et al., 2004), the drug and disease targets
were intersected after duplicates were removed, and the Venn
diagrams were visualized utilizing the “venn” package.

2.7 Construction of the protein-protein
interaction (PPI) network for core hub genes
and pathway enrichment analysis

To identify overlapping targets, The intersection of DEGs (P <
0.05, |log2FC| > 1)from the TCGA-KIRC cohort with the established
drug targets and disease genes were determined, and the results were
visualized with a Venn diagram. Then, these target genes were
imported into the Search Tool for the Retrieval of Interacting Genes/
Proteins (STRING) database (https://cn.string-db.org/), whereas
Cytoscape 3.10.2 software (https://www.cytoscape.org/) was
applied in constructing the PPI network diagram (Szklarczyk
et al., 2023). By using the CytoNCA plugin, the betweenness
centrality (BC), closeness centrality (CC), degree centrality (DC),
eigenvector centrality (EC), local average connectivity (LAC), and
network centrality (NC) were calculated. Only genes with scores
exceeding the median value across each metric column through two
iterations of this process were retained as the core hub genes.
Ultimately, Gene Ontology (GO) as well as Kyoto Encyclopedia
of Genes and Genomes (KEGG) analysis was carried out for
visualizing corresponding results of the core hub genes.

2.8 Vina molecular docking

For assessing binding energies of Zeb to its core hub targets and
elucidate its interaction profile, two-dimensional (2D) Zeb structure
was retrieved based on PubChem database (https://pubchem.ncbi.
nlm.nih.gov/) before optimization with Chem3D (https://www.
3dchem.com/) to obtain a three-dimensional (3D) conformation.
In addition, the receptor crystal structure was sourced based on
RCSB Protein Data Bank (PDB, https://www.rcsb.org/), while
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PyMOL 3.0 software (https://www.pymol.org/) was utilized to
remove water molecules and extraneous ligands out of this
structure. Molecular docking studies were then conducted
utilizing AutoDock Tools 1.5.6 (http://autodock.scripps.edu/) and
AutoDock Vina 1.1.2 (https://vina.scripps.edu/), and docking
energy results were visualized. Furthermore, the key ligand-
receptor interactions, including hydrogen bonds, hydrophobic
interactions, and π-π stacking, were characterized using Protein-
ligand Interaction Profiler (PLIP) database (http://plip-tool.biotec.
tu-dresden.de/plip-web/plip/index/), followed by visualization with
PyMOL (Ruan et al., 2023).

2.9 Comprehensive multi-faceted validation
of the IRPDGs

We conducted an analysis on the expression difference of
IRPDGs between tumor tissues and adjacent non-tumor tissues,
utilizing the mRNA expression profile and clinically relevant data
from TCGA-KIRC, employing the ’limma’ package in R software.
Additionally, we generated box plots using the “ggplot2” and
“ggpubr” packages. The correlation between IRPDGs and clinical
pathological factors was assessed through the “limma” package in R
software. Subsequently, we retrieved immunohistochemistry (IHC)
results for IRPDGs in normal versus tumor tissues from the Human
Protein Atlas (HPA, https://www.proteinatlas.org/). Finally, we
investigated the expression of IRPDGs across various cell clusters
within single-cell datasets GSE111360, GSE139555, GSE121636,
GSE159115 and GSE171306 sourced from the TISCH database
(https://tisch.comp-genomics.org/).

2.10 Cell culture

The ccRCC cell lines 786-O, OS-RC-2, A498, 769-P and the
human normal renal tubular epithelial cell line HK2 were
maintained in the complete medium (90% RPMI-1640, 10% fetal
bovine serum (FBS), and 1% penicillin-streptomycin), and
inoculated into culture dishes or flasks for incubation under 37°C
with 5% CO₂, with medium change at 2–3-day intervals. After
reaching around 80%–90% of confluency, cells were digested
using 0.25% trypsin and passaged or harvested for further
experiments as per the experimental requirements.

2.11 RNA extraction and real-time
quantitative polymerase chain reaction
(RT-qPCR)

Total RNA was extracted from ccRCC cell lines 786-O, OS-RC-
2, A498, 769-P, and the normal cell line HK2 using TRIzol reagent
(Takara, Shiga, Japan). Complementary DNA (cDNA) synthesis was
performed with the ABScript Neo Master Mix for qPCR with gDNA
Remover (Abclone, Wuhan, China). Following the manufacturer’s
instructions, RT-qPCR was conducted utilizing the 2X Universal
SYBR Green Fast qPCR Mix kit (Abclone) along with specific
primers designed for model genes. The relative expression of
RNA was analyzed using the LightCycler®480 real-time

fluorescence quantitative PCR system (Roche, Basel, Switzerland).
All primer sequences were obtained from Tsingke Biotechnology
Co., Ltd. (Beijing, China), with GAPDH being an internal reference
gene. Primer sequences are provided in Supplementary Table.

2.12 3-(4, 5-dimethyl-2-thizolyl)-2,
5 diphenyltetrazolium bromide (MTT)
toxicity assay

In brief, 786-O and OS-RC-2 cells (3000/well) were uniformly
inoculated into 96-well plates. For evaluating in vitro effects of Zeb
(MedChemExpress, NJ, United States) on the viability of ccRCC cell
lines, Zeb at varying concentrations (0, 2.5, 5, 10, 20, 40, 80, and 160 μM)
was used to treat both cell lines for 24, 48, and 72 h. Afterwards, every
well was introduced 10 μL MTT reagent (Beyotime, Shanghai, China),
followed by plate incubation for additional 4 h to facilitate formation of
deep purple Formazan crystals. Subsequently, to dissolve the deep purple
crystals completely, every well was introduced 100 μL Formazan
solubilization solution (Beyotime, Shanghai, China). After complete
crystal dissolution, absorbance was measured with the microplate
reader at 570 nm. Then, cell viability curves and half maximal
inhibitory concentration (IC50) were analyzed to illustrate the impact
of the drug on cell viability.

2.13 Colony formation assay

The 786-O and OS-RC-2 cells (1000/well) were inoculated into 6-
well plates and exposed to Zeb treatment at varying concentrations (20,
50, and 100 μM) for 2 weeks, with medium change every 3 days.
Thereafter, phosphate-buffered saline (PBS) was added to wash the
colonies before 20min of fixation using 4%paraformaldehyde (v/v) and
additional 30 min of crystal violet (0.1%, w/v, Beyotime, Shanghai,
China) staining. Photographs was taken and colony number (>50 cells/
colony) was counted with ImageJ software (Wayne Rasband, Bethesda,
MD, United States).

2.14 Cell apoptosis assay

To assess whether Zeb induced apoptosis of ccRCC cells, 786-O
and OS-RC-2 cells (5 × 105/well) were inoculated into 6-well plates
for overnight incubation. Subsequently, Zeb at varying
concentrations (20, 50, and 100 μM) was added for 24 h of cell
treatment, followed by trypsin digestion to prepare single-cell
suspensions. After washing twice with cold PBS, the cells were
stained using Annexin V-FITC and propidium iodide (PI). Cell
apoptosis was analyzed through Cytoflex flow cytometry (Beckman
Coulter, Brea, CA, United States).

2.15 Scratch assay

On reverse side of each well in the 12-well plate, three horizontal
lines were delineated as reference markers. Later, the logarithmic-
phase 786-O and OS-RC-2 cells were cultivated within the 12-well
plate until the cell confluency grew to approximately 80%–90%.
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Subsequently, three parallel scratches perpendicular to the reference
markers weremade with the 200 μL pipette tip. Cells were exposed to
24 h of Zeb treatment at 20, 50 and 100 μM. The inverted
microscope (Nikon, Tokyo, Japan) was employed to capture
images of the scratched areas at 0 h (baseline) and 24 h (post-
treatment), and relative migration rates were analyzed utilizing
ImageJ software (Wayne Rasband).

2.16 Transwell assays

To perform the Transwell assays, we inoculated 786-O and OS-
RC-2 cells (5 × 104/well, 200 μL) in the upper chambers (pore size:
8 μm; Biofil, Guangzhou, China) pre-coated or uncoated with
Matrigel (Beyotime, Shanghai, China), using serum-free RPMI-
1640 medium. To facilitate chemotaxis, 10% FBS was added into
the lower chambers as a chemical attractant to draw cells through
the membrane. At 24 h post-incubation, a wet cotton swab was used
to gently remove non-invading cells on the upper surface. While
invading cells on the bottom side were subjected to 20 min of 4%
paraformaldehyde fixation and 30 min of crystal violet solution
(0.1%, w/v) staining. Upright microscopic examination (Olympus,
Tokyo, Japan) was then conducted to capture images, while ImageJ
software (Wayne Rasband) was employed for quantifying invading
cell number within every field.

2.17 Western blot

Phenylmethylsulfonyl fluoride (PMSF, Servicebio, Wuhan,
China) was added to RIPA lysis buffer (Servicebio) at a ratio of
1:100 for the lysis of both cells and tumor tissues. Protein
concentrations were determined using a standard quantification
method. Subsequently, proteins were separated by sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and
transferred onto polyvinylidene fluoride (PVDF) membranes
(Servicebio). Membranes were blocked with 5% non-fat milk in
Tris-buffered saline with Tween 20 (TBST) for 1 h at room
temperature. Primary antibodies against Akt (1:1000; Abmart,
T55561S, Shanghai, China), phosphorylated-Akt (p-Akt; 1:1000;
Abmart, TA0016S, Shanghai, China), PI3K (1:1000; Affinity,
AF6242, Changzhou, China), phosphorylated-PI3K (p-PI3K; 1:
1000; UpingBio, YP-Ab-17845, Hangzhou, China) and β-actin (1:
5000; Protaintech, 81115-1-RR, Wuhan, China) were incubated
overnight at 4°C according to the manufacturer’s instructions.
Following this, membranes were incubated with horseradish
peroxidase (HRP)-conjugated secondary antibodies (1:5000;
Servicebio, GB23303) for 30 min at room temperature. Protein
bands were visualized using a ChemiScope S6 chemiluminescence
imager (Clinx, Shanghai, China). The intensity of the relevant bands
was quantified using ImageJ software (Wayne Rasband).

2.18 Xenograft models

The six-week-old female BALB/c nude mice were obtained from
Changzhou Cavensis Experimental Animal Co., Ltd. (Changzhou,
Jiangsu, China). All procedures involving animals were approved by

the Institutional Animal Care and Use Committee of Chongqing
Medical University (IACUC-CQMU), and approval number is
IACUC-CQMU-2024-0664. The OS-RC-2 cell line xenograft
model was employed to assess the efficacy of Zeb in inhibiting
ccRCC growth. Briefly, OS-RC-2 cells were subcutaneously injected
into the right dorsal flank of BALB/c nude mice at a concentration of
2.5 × 106 cells per 100 μL PBS. Once tumor volumes reached
50 mm³, the mice were stratified into three groups, each
consisting of six animals. Mice in the experimental groups
received oral administration of Zeb at doses of 250 mg/kg and
500 mg/kg every other day, while those in the control group were
treated with PBS. Upon reaching predetermined tumor sizes, mice
were euthanized; tumors were excised, photographed, measured,
weighed, and recorded. The tumor volume (V) was calculated using
the following formula: V (mm3) = 0.5 × length × width × width. The
heart, liver, lung, spleen, kidney tissues along with tumors were fixed
in 4% paraformaldehyde and subsequently embedded in paraffin for
further analysis including hematoxylin-eosin (H&E) staining
(ZSGB-BIO, Beijing, China), Ki67 immunohistochemistry
(HUABIO, Hangzhou, China) and TUNEL fluorescence assay
(Beyotime, Shanghai, China). Finally, we conducted a toxicity
evaluation of Zeb in relation to commonly used first-line agents
for metastatic ccRCC utilizing the ProTox database (https://tox.
charite.de/).

2.19 Statistical analysis

This study completed statistical analysis with GraphPad Prism
10.3 (Inc., CA, United States). Data were represented as mean ±
standard deviation (SD). Among-group differences were compared
by one-way or two-way analysis of variance (ANOVA). P <
0.05 stood for statistical significance.

3 Results

3.1 Core immune-related gene identification

DEGs related to ccRCC were extracted from the training set and
intersected with IRGs identified by ImmPort and InnateDB, as a
result, altogether 1,065 IRDEGs were identified (Supplementary
Figure S1A). Upon GO annotation, the circular diagram is
presented in Figures 2A, 10 most significantly enriched pathways
in biological processes (BP), cellular components (CC), and
molecular functions (MF) are delineated in Figure 2B (P <
0.001). Meanwhile, the gene-pathway interaction network
(Figure 2C) and 30 most significantly enriched pathways were
acquired from KEGG analysis (P < 0.001; Figure 2D).
Subsequently, WGCNA was employed to cluster the IRGEGs
based on sample data. By using a scale-free topology model, an
optimal soft threshold of 3 was determined for this study,
corresponding to a correlation coefficient of 0.9 (Figure 2E).
Genes were later clustered according to their distance matrix,
allowing for dynamic identification of neighboring genes and
module formation. Modules with high similarity were merged,
therefore, IRDEGs were assigned into nine distinct modules, as
shown in Figures 2F, G. Ultimately, the yellowmodule that exhibited
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FIGURE 2
Pathway enrichment analysis and WGCNA of IRDEGs. (A) A circle diagram of GO annotation. (B) Top 10 terms in BP, CC, and MF categories of GO
annotation of IRDEGs in training set. (C) A gene-pathway interaction network diagram based on KEGG analysis. (D) Top 30 pathways identified by KEGG
analysis of IRDEGs in training set. (E) Scale independence and mean connectivity metrics for IRDEGs in training set. (F) A dendrogram illustrating gene
clustering for IRDEGs in training set. (G) Merged modules and correlation analyses obtained from WGCNA for IRDEGs in training set.
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FIGURE 3
Development and validation of IRGPI. (A) Forest plot illustrating the uni-Cox regression analysis of 49 IRDEGs based onOS. (B) A profile plot showing
the coefficients for the logarithmic (λ) sequence. (C) LASSO coefficient profiles for candidate genes among IRDEGs. (D) A chromosomal localization map
of the eight IRPDGs. (E) PCA distribution plot in the normal and tumor groups. (F)Comparative analysis of survival curves between two patient subgroups
in training set. (G, H) RS and survival status distribution in all samples of training set based on IRGPI. (I)Heatmap showing 8 IRPDGs expression among
all samples in training set according to IRGPI. (J) ROC curves representing 1-, 3-, and 5-year OS in training set. (K–O)Model accuracy validated in the test
set using methods analogous to those described in (F–J).
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FIGURE 4
Clinical relevance analysis of subgroups. (A, B) Uni-Cox and multi-Cox regression exploring relationship of clinicopathological factors and RS with
OS. (C, D)Heatmap and tabulated representation of the distribution of clinicopathological factors across subgroups. (E)Nomograms for predicting 1-, 3-,
and 5-year survival according to clinicopathological factors and RS. (F) Calibration curves comparing the observed OS with predicted survivals at 1, 3,
and 5 years.
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the most significant association with tumor status was identified
based on P-value (P = 4e−93), and altogether 142 core immune-
related genes were obtained for further investigation.

3.2 Development and validation of the IRGPI
and analysis of its clinical relevance

Through uni-Cox regression analysis, 49 IRGs significantly
related to ccRCC prognosis were obtained and illustrated using a
forest plot (P < 0.05; Figure 3A). Subsequently, LASSO regression
(Figures 3B, C) combined with multi-Cox regression confirmed
8 IRPDGs (CLDN4, VAV3, CHGA, GREM1, TEK, USP2, WNT9B,
and CTSH) as the core genes of the IRGPI (P < 0.05). The survival
analyses of each core gene within the model are presented in
Supplementary Figure S1B (P < 0.001), while those for the
remaining 41 prognosis-related genes are illustrated in
Supplementary Figure S2 (P < 0.01). Figure 3D illustrates the
chromosome circle maps of the eight IRPDGs, The Principal
Component Analysis (PCA) distribution plot demonstrates that
the eight-gene model effectively distinguishes the normal and
tumor groups (Figure 3E).The RS was calculated as follows:
CLDN4 expression × (−0.204339644182801) + VAV3
expression × (−0.208148784601721) + CHGA expression ×
(0.293414690410473) + GREM1 expression × (0.27431516170263)
+ TEK expression × (−0.268132296798697) + USP2 expression ×
(−0.12985305134718) + WNT9B expression × (−0.3531340919342)
+ CTSH expression × (−0.202002927826549). Samples were
stratified as high- or low-risk subgroup according to the median
RS, The low-risk subgroup showed significantly superior prognosis
to high-risk subgroup (P < 0.01; Figures 3F–I). Moreover, as
indicated by ROC curves, 1-, 3- and 5-year AUCs were 0.782,
0.736, and 0.750, separately (Figure 3J), demonstrating that the
constructed IRGPI model exhibited strong predictive performance.
Furthermore, the results from the test set used for validation were
consistent with those obtained from the training set (Figures 3K–O).

To further validate the significant role of IRGPI in ccRCC, Cox
regression was carried out for exploring the relationships of
prognosis with clinicopathological parameters. Uni-Cox
regression identified age, grade, stage, and RS as the high-risk
factors for ccRCC prognosis (P < 0.01; Figure 4A). Additionally,
multi-Cox regression analysis demonstrated that, compared with
other variables, these parameters functioned as the independent
prognostic factors (P < 0.01; Figure 4B). From Chi-square tests for
clinical correlation analysis, there were significant difference in
gender, grade, and stage (including T and M stages) between the
two subgroups (P < 0.01; Figures 4C, D). By integrating all
parameters, a nomogram that exhibited excellent concordance
with the observed OS was developed (Figures 4E, F).

3.3 GSEA and TMB

To investigate the pathways in the two risk groups, GSEA was
carried out. It was found that fatty acid metabolism, PPAR signaling
pathway, proximal tubule bicarbonate reclamation, renin
angiotensin system, and the degradation of specific amino acids
were significantly enriched in the low-risk group (P < 0.001;

Figure 5A). On the contrary, pathways associated with
complement and coagulation cascades, cytokine receptor
interactions, P53 signaling pathway, systemic lupus
erythematosus, and vibrio cholerae infection were markedly
enriched in the high-risk group (P < 0.05; Figure 5B).

Subsequently, “maftools” package was utilized to analyze the
distribution patterns of those 20 most frequent somatic mutation
genes between the two subgroups, which revealed distinct landscape
variations (Figures 5C, D). Notably, VHL, PBRM1, TTN, SETD2,
and BAP1 emerged as the most frequently mutated genes. TMB,
defined as the number of mutated bases per million bases in tumor
tissue samples, has surfaced as the candidate prognostic biomarker
(Singal et al., 2019). As illustrated in Figure 5E, the TMB level
elevated in high-risk subgroup relative to low-risk subgroup, with no
significant difference (P = 0.26). However, TMB level was
significantly and positively related to RS (r = 0.14; P < 0.05;
Figure 5F). To delve deeper into the synergistic prognostic
implications of TMB and RS, it was found that the lower TMB
level was related to the higher survival probability (P < 0.05;
Figure 5G). Moreover, the combination of TMB level and RS
demonstrated superior stratified prognosis prediction capability
for ccRCC patients (P < 0.001; Figure 5H).

3.4 Immunological profiling

The 22 immune cell proportions were quantified across all
samples using CIBERSORT (Figure 6A). It was found that
resting CD4 memory T cells, monocytes, M1 macrophages,
resting mast cells, and resting dendritic cells were significantly
infiltrated in the low-risk group. Conversely, follicular helper
T cells, activated CD4 memory T cells, M0 macrophages and
regulatory T cells were significantly infiltrated in the high-risk
group (P < 0.05), suggesting that ccRCC progression was closely
related to these cell types. Furthermore, nearly all factors of
significant immune-related functions were markedly expressed in
the high-risk group, such as antigen-presenting cell (APC) co-
stimulation, activated dendritic cells (aDCs), checkpoint
pathways, cytolytic activity, chemokine receptor signaling (CCR),
inflammation promotion mechanisms, macrophage activity, para-
inflammation processes, T cell co-stimulation dynamics as well as
follicular helper T cells, T helper cell 1 (TH1), and T helper cell 2
(TH2) responses alongside tumor-infiltrating lymphocytes (TIL)
(P < 0.05; Figure 6B). Survival analysis pertaining to 10 immune
cell types is illustrated in Supplementary Figure S3 (P < 0.05).
Figure 6C; Supplementary Figure S4 illustrate the relative
distribution of various immune cell types with RS across different
algorithms (P < 0.05).

Subsequently, the “estimate” package was employed to calculate
stromal/immune/estimate scores within TME of both subgroups. As
illustrated in Figure 6D, individuals in the high-risk group showed
markedly higher immune scores and estimate scores (P < 0.01),
revealing a reduced proportion of tumor cells, and the increased
immune cell and immune-related molecule diversity. Previous
studies have identified 6 kinds of distinct infiltrating immune cell
subtypes in cancer patients that may either promote or inhibit tumor
cell proliferation (Tamborero et al., 2018). In this investigation, the
C3 subtype (Inflammatory) was predominant in the low-risk group,
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FIGURE 5
Molecular characterization of subgroups. (A, B) GSEA of two subgroups. (C, D)Mutation landscape plots depicting 20most highly mutated genes in
two subgroups. (E) Comparative analysis of difference in TMB of both subgroups. (F) Correlation distribution between RS and TMB. (G) Survival curves
comparing the high- and low-TMB groups. (H) Stratified survival curves for the combinations of RS and TMB.

Frontiers in Pharmacology frontiersin.org11

Xu et al. 10.3389/fphar.2025.1531056

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1531056


FIGURE 6
Comprehensive immune cell profiling of different subgroups. (A) Distribution of 22 immune cell types between the two subgroups. (B) Variations in
the distribution of 29 immune-related functions between the two subgroups. (C) Correlation distribution between RS and various immune cell types as
calculated by different algorithms. (D) Comparative analysis of TME-related indicator scores between the two subgroups. (E) Tabulated distribution of
immune subtypes (C2, C3, C4, and C6) in the subgroups. (F) Difference in T-cell dysfunction, exclusion, MSI, and TIDE scores between the two
subgroups. (G) Difference in the sensitivity to primary first-line therapies for ccRCC and Metformin between the two subgroups (*p < 0.05, **p < 0.01,
***p < 0.001).
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whereas C2 (IFN-γ dominant), C4 (lymphocyte depleted), and C6
(TGF-β dominant) subtypes were predominantly observed in the
high-risk group (P < 0.001; Figure 6E). Moreover, it was observed
that the C3 subtype was correlated with favorable prognosis, while
C4 and C6 subtypes were linked to poor outcomes (Vesteinn et al.,
2018), underscoring the validity of immune subtyping based on
the IRGPI.

Finally, the TIDE score was adopted to assess the potential for
immune escape. As illustrated in Figure 6F, the high-risk group
showed elevated TIDE and Dysfunction scores, signifying the
greater propensity for immune evasion and reduced sensitivity to
ICIs (P < 0.001). For the low-risk group, MSI and T cell exclusion
were the predominant factors (P < 0.05).

3.5 Comparison of drug sensitivity and
identifying small molecule compounds

To evaluate the efficacy of targeted therapies in the two risk
subgroups and to identify new therapeutic agents for ccRCC, the
sensitivity of first-line therapies for metastatic ccRCC was
analyzed between the two subgroups utilizing the
“pRRophetic” package. As illustrated in Figure 6G, Sorafenib
(P = 4.6e−11) and Pazopanib (P = 2e−5) demonstrated superior
treatment sensitivity in the low-risk subgroup, whereas Sunitinib
exhibited a contrasting effect (P = 2.3e−5). Notably, the
hypoglycemic agent Metformin seemed to show an enhanced
efficacy in low-risk patients compared with Sorafinib and
Pazopanib (P = 2.22e−16). The potential small molecule
compounds that might be beneficial for high-risk individuals
were screened by analyzing mIRDEGs (P < 0.05; |log2FC| > 0.5;
Supplementary Figures S5A, B) using the CMap platform. The
top 10 therapeutic agents are summarized in Table 2. Zeb, with
the lowest score among the evaluated therapeutic agents was
identified. Zeb is a DNA methyltransferase inhibitor that can
induce cell cycle arrest and apoptosis through intrinsic apoptotic
pathway by activating BAX and BAK (Ruiz-Magana et al., 2012).
There are currently no reports addressing whether Zeb influences
the progression of ccRCC. Therefore, the role of Zeb was
investigated in the following experiments.

3.6 Prediction of core targets of Zeb in
ccRCC and establishment of PPI network

Zeb’s targets were obtained from the CTD, STITCH 5.0,
DrugBank, PharmMapper, and SwissTargetPrediction databases.
Thereafter, these targets were converted from UniProt identifiers
to standardized gene names and duplicates were removed, resulting
in a total of 335 unique targets (Figure 7A). Additionally,
12,069 ccRCC-related targets were also identified based on
DrugBank, GeneCards, OMIM, and PharmGkb databases
(Figure 7B). By intersecting 12,788 DEGs derived from TCGA
database of 537 tumor samples and 72 adjacent samples with
both the 355 targets of Zeb and the 12,069 targets of ccRCC, a
set of 90 common targets was obtained (Figure 7C).

These 90 shared targets were imported into STRING online
platform (with Homo sapiens being the organism, medium
confidence >0.4). After concealing the free-floating nodes (genes),
the PPI network including 83 nodes and 706 edges (interactions)
was acquired (Figure 7D), suggesting that Zeb might exert its
influence on ccRCC through these genes. This PPI network file
was uploaded in Cytoscape 3.10.2, where CytoNCA plugin was used
to calculate BC, CC, DC, EC, LAC, and NC scores. High-score nodes
were identified according to their scores exceeding the median value
for each metric through two rounds of iterations, ultimately yielding
9 core targets, namely, ALB (albumin), CASP1 (caspase-1), CCL5
(C-C motif chemokine ligand 5), CCND1 (cyclin D1), EGFR
(epidermal growth Factor Receptor), IL2 (interleukin-2), LGAL3
(galectin-3), MMP9 (matrix metalloprotease-9), and PLAU
(plasminogen activator, urokinase) (Figures 7E, F).

3.7 GO and KEGG analysis for the
core targets

Those 9 core genes identified were subjected to GO and KEGG
analysis, leading to 497 GO terms and 51 KEGG pathways. Among
them, the core targets mainly participated in the regulation of
inflammatory response, response to UV−A, lymphocyte apoptotic
process, regulation of lymphocyte apoptotic process, and regulation
of leukocyte apoptotic process in BP. Regarding CC, these core

TABLE 2 CMap platform small molecule compound screening.

Rank Name Raw connectivity score Normalized connectivity score FDR q nlog10

1 Zebularine −0.7194 −1.836 15.6536

2 Thiotepa −0.7179 −1.8321 15.6536

3 Guanethidine −0.7064 −1.8028 15.6536

4 BRD-K87426959 −0.7022 −1.792 15.6536

5 BRD-K51971121 −0.7007 −1.7882 15.6536

6 BRD-K98824517 −0.7 −1.7864 15.6536

7 Danegaptide −0.6999 −1.7863 15.6536

8 Formestane −0.6964 −1.7772 15.6536

9 BRD-K95349679 −0.6935 −1.77 15.6536

10 Erythromycin-ethylsuccinate −0.6913 −1.7644 15.6536
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FIGURE 7
An integrative network pharmacology analysis of Zeb targeting ccRCC (A) The Venn diagram illustrating Zeb’s target based on different databases. (B) A
Venn diagram depicting targets of ccRCC-related genes frommultiple databases. (C) A Venn diagram illustrating the intersections between Zeb and ccRCC-
related targets, aswell as DEGs fromTCGA-KIRC. (D) A PPI network generated by the STRINGplatform for the intersected targets of Zeb and ccRCC,with the
mediumconfidence being set to>0.4 and freenodes being hidden. (E) The PPI network establishedbased onCytoscape software and interaction file for
the intersected targets obtained from STRING platform. (F) A PPI network of core hub genes obtained after CytoNCA screening. (G) A circle diagram of GO
annotation for core hub genes. (H)Top 10 terms in BP, CC, andMFcategories fromGOannotation of core hub genes. (I)A gene-pathway interaction network
diagram of core hub genes from KEGG analysis. (J) A total of 51 distinct pathways obtained by KEGG enrichment of core hub genes.
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FIGURE 8
Results of molecular docking between receptors and ligands. (A) Visualization of Zeb’s 2D and 3D structures based on the PhbChem database. (B–J)
Molecular docking results of Zeb targeting the core hub genes: (B) ALB, (C) CASP1, (D) CCL5, (E) CCND1, (F) EGFR, (G) IL-2, (H) LGALS3, (I)MMP9, and (J)
PLAU. (Yellow, gray and green dashed lines indicate hydrogen bonds, hydrophobic interactions, and π-π stacking separately).
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targets were mainly related to tertiary granule and peptidase
inhibitor complex. The MF terms enriched by these core targets
included kinase regulator activity, kinase activator activity, protein
kinase regulator activity, protein kinase activator activity, and
endopeptidase activity (P < 0.01; Figures 7G, H).

The gene-pathway interaction network (Figure 7I) and
51 significant pathways were visualized through KEGG analysis
(P < 0.01; Figure 7J). Within the 4 categories of KEGG, Organismal
Systems encompassed pathways such as Virion-Hepatitis viruses,
NOD-like receptor signaling pathway, Oxytocin signaling pathway.
Human Diseases comprised MicroRNAs in cancer, proteoglycans in
cancer, prostate cancer, bladder cancer, endocrine resistance, lipid
and atherosclerosis, and more. PI3K-Akt signaling pathway, JAK-
STAT signaling pathway, cytokine-cytokine receptor interaction,
FoxO signaling pathway, TNF signaling pathway, viral protein
interaction with cytokine and cytokine receptor, and hedgehog
signaling pathway were classified under Environmental
Information Processing, while Focal adhesion was categorized
within Cellular Processes. Notably, PI3K−Akt, JAK−STAT, and
TNF signaling pathways are important for ccRCC occurrence
and development (Miao et al., 2018), (Liu et al., 2022). The
corresponding schematic representations of the three pathways
are illustrated in Supplementary Figure S5C.

3.8 Molecular docking

To evaluate the binding affinity of Zeb to its core targets, we
conducted molecular docking studies. First, Figure 8A illustrated
both the 2D and 3D structures of Zeb. Thereafter, the PDB IDs for
the major receptors were retrieved from PDB database. AutoDock
Tools was employed to define the active site pockets and grid
dimensions. Subsequently, molecular docking simulations were
performed using AutoDock Vina, with the resulting 3D
interaction diagrams presented in Figures 8B–J. Detailed binding
parameters are summarized in Table 3. The binding energies of all
Zeb-receptor complexes were consistently below −5 kcal/mol, with
an average binding energy of −6.5 kcal/mol across the nine receptor
systems. These results indicate that Zeb exhibits robust and stable
binding interactions with its core targets, highlighting the potential
for downstream signaling pathway activation.

Figure 8B illustrates the interaction of Zeb with ALB through
various intermolecular forces, including hydrogen bonds with
residue GLY-207, hydrophobic interactions with LYS-199, and π-
π stacking with TRP214. In the binding of CASP1 and CCL5, Zeb
primarily interacts with the corresponding residues via hydrogen
bonds (Figures 8C, D). Figure 8E highlights a single-residue
multi-site binding pattern, particularly the interaction of Zeb
with the ARG-61 residue of CCND1. The binding mode of Zeb-
EGFR exemplifies single-residue and multiple-site, multi-residue
and single-site, and diverse intermolecular forces (Figure 8F).
Figure 8G demonstrates multiple intermolecular interactions on
the same residue, notably the binding with ASN-88. Hydrogen
bonds and hydrophobic interactions dominate the Zeb-LGALS3
complex (Figure 8H), while hydrogen bonds and π-π stacking are
predominant in the Zeb-MMP9 interaction (Figure 8I). The
binding of Zeb to PLAU is relatively simple, with GLY-219,
SER-214, and SER-195 forming hydrogen bonds with
Zeb (Figure 8J).

3.9 Characteristics and RT-qPCR analysis
of IRPDGs

To investigate the differential expression of the eight model
genes, we analyzed their expression profiles between tumor tissues
and normal tissues using data from the TCGA-KIRC cohort. As
illustrated in Figure 9A, all eight model genes exhibited
downregulation in tumor tissues (P < 0.001). Subsequent RT-
qPCR assays demonstrated that VAV3, CHGA, GREM1, USP2,
WNT9B, and CTSH exhibited significantly lower expression levels
in the four tumor cell lines than those in the HK2 cell line (P < 0.05;
Figure 9B), corroborating the findings presented in Figure 9A. For
CLDN4, significant downregulation was observed in both 786-O and
A498 cell lines (P < 0.01); however, no significant difference were
noted when compared OS-RC-2 and 769-P with HK2. In contrast,
TEK showed upregulation across all tumor cell lines but only
displayed statistical significance in the 786-O cell line (P < 0.01;
Figure 9B). Although all model genes were markedly downregulated
in tumor tissues, this does not necessarily imply a favorable patient
prognosis as indicated by Figure 9C; Supplementary Figure S6.
Notably, CLDN4, VAV3, TEK, USP2, WNT9B, and CTSH appear

TABLE 3 Detailed binding information of Zeb with core hub targets.

Target gene PDB ID Active pocket coordinates Grid dimensions Binding energy (kcal/mol)

ALB 1GNI X = 25.756, Y = 9.449, Z = 9.866 X = 40, Y = 40, Z = 40 −6.6

CASP1 8WRA X = 14.119, Y = −1.773, Z = −4.46 X = 40, Y = 40, Z = 40 −8.4

CCL5 2VXW X = 6.515, Y = −13.943, Z = −14.448 X = 40, Y = 40, Z = 40 −6.0

CCND1 2W96 X = 5.936, Y = 3.653, Z = 59.281 X = 40, Y = 40, Z = 40 −5.9

EGFR 8A2D X = −15.9, Y = −7.27, Z = 16.34 X = 40, Y = 40, Z = 40 −6.7

IL-2 1M48 X = 11.81, Y = 1.491, Z = 13.909 X = 40, Y = 40, Z = 40 −5.9

LGALS3 3ZSJ X = −10.421, Y = 0.34, Z = 5.536 X = 40, Y = 40, Z = 40 −6.1

MMP9 1GKC X = 54.587, Y = 21.248, Z = 129.553 X = 40, Y = 40, Z = 40 −6.7

PLAU 5YC6 X = −28.328, Y = −17.453, Z = 0.419 X = 40, Y = 40, Z = 40 −6.6
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FIGURE 9
Bioinformatics and RT-qPCR analysis of IRPDGs. (A) Differential expression of eight model genes between the normal and tumor groups in the
TCGA-KIRC cohort. (B) Relative expression levels of eight model genes assessed by RT-qPCR in 4 ccRCC cell lines and one normal cell line. (C) The
association between eight model genes and clinical staging. (*p < 0.05, **p < 0.01, ***p < 0.001 versus Control; n = 3).
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to correlate with the improved patient outcomes while CHGA and
GREM1 exhibit an inverse relationship, consistent with results
shown in Supplementary Figure S1B. This finding suggests that
not all genes significantly downregulated within tumor tissues are
associated with positive prognosis for patients. Given that mRNA
expression is pulsatile by nature, the expression of a gene is
frequently regulated by multiple factors, and the entire process
should be regarded as “dynamic” rather than “static”.

Based on the IHC results, the expression levels of the 8 IRPDGs
were found to be lower in tumor tissues compared to normal tissues
(Figure 10A), which is consistent with the findings presented in
Figure 9A. To explore the recognition of IRPDGs by various
immune cell subtypes, we selected multiple single-cell datasets from
the TISCH database pertaining to ccRCC. As illustrated in Figure 10B,
with the exception of missing data regarding CHGA within the
database, the expression profiles of the remaining seven model genes

FIGURE 10
IHC and single-cell data results pertaining to IRPDGs. (A) Immunohistochemical (IHC) results for IRPDGs in ccRCC and normal tissues sourced from
the HPA database. “N” denotes normal tissues, while “T” indicates tumor tissues. (B) Distribution of IRPDG expression across five single-cell datasets
related to ccRCC from the TISCH database.
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FIGURE 11
In vitro anti-cancer effects of Zeb. (A, B) MTT assays demonstrating that Zeb suppressed 786-O and OS-RC-2 cell viability time- and dose-
dependently. (C) IC50 values of Zeb for 786-O and OS-RC-2 cell viability at 24, 48, and 72 h. (D) Colony formation assays for assessing the impact of Zeb
on the proliferation of both cell lines. (E) Flow cytometry evaluating whether Zeb affected 786-O and OS-RC-2 cell apoptosis dose-dependently. (F, G)
Scratch assays analyzing whether Zeb affected migration of both cell lines dose-dependently. (H) Transwell assays confirming the effects of Zeb on
migration. (I) Transwell assays exploring the impact of Zeb on the invasion of both cell lines. (J)Western blot detecting the expression of Akt, p-Akt, PI3K
and p-PI3K in cell lines. (**p < 0.01 versus Control; n = 3).
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appeared to correlate with different immune cell subtypes, indicating
their potential for diverse immunological effects.

3.10 In vitro anti-cancer effect and
preliminary mechanistic investigation of Zeb

Considering that Zeb may influence signaling pathways
associated with the progression of ccRCC, its anti-cancer activity
in vitro was assessed using the MTT assay. Zeb exhibited significant
inhibition against 786-O and OS-RC-2 cells at 24, 48 and 72 h in a
dose- and time-dependent manner (P < 0.01; Figures 11A, B). The
IC50 values are presented in Figure 11C. Treatment with 20 μMZeb
substantially decreased cell viability at 24 h (P < 0.01), therefore, Zeb
at 20, 50 and 100 μM was chosen for later analyses. In the colony
formation assay, the relative numbers of colonies formed by cells in
different dose groups dramatically decreased relative to control
group after 24 h of treatment with Zeb dose-dependently (P <
0.01; Figure 11D). Flow cytometry-based apoptosis assay revealed
comparable results (P < 0.01; Figure 11E), indicating the dose-
dependent pro-apoptotic effect of Zeb.

Tumor metastasis is a primary factor contributing to the
elevated mortality rate and is closely associated with a
fundamental cellular behavior known as cell motility (Li et al.,
2016). Scratch and Transwell assays were performed to analyze
how Zeb affected cell migration and invasion. The relative area of the
intercellular gap on both sides of the Zeb-treated cells apparently
decreased relative to control group (P < 0.01; Figures 11F, G),
suggesting that Zeb effectively inhibited the migratory capacity of
ccRCC cells. This finding was further validated by Transwell
migration assays (P < 0.01; Figure 11H). Additionally, after
treatment with Zeb for 24 h, the relative number of 786-O and
OS-RC-2 cells invading lower chamber through extracellular matrix
gel significantly decreased (P < 0.01, Figure 11I). These results
indicate that Zeb efficiently suppressed both the migratory and
invasive abilities of ccRCC cells dose-dependently.

To preliminarily investigate the molecular mechanisms by
which Zeb influences the progression of ccRCC, we focused on
the PI3K-Akt signaling pathway and validated our findings using
Western blot analysis. As shown in Figure 11J, Zeb treatment
significantly reduced the phosphorylation levels of PI3K and Akt
in a dose-dependent manner (P < 0.01). These results demonstrate
that Zeb has the potential to inhibit the PI3K-Akt signaling pathway
through specific docking of core hub targets.

3.11 Inhibition of ccRCC solid tumor growth
by Zeb and assessment of its toxicity

To assess the therapeutic efficacy of Zeb against ccRCC, an
subcutaneous heterologous ccRCC model was established
(Figure 12A). Zeb was administered orally at doses of 250 mg/kg
or 500 mg/kg every other day. Tumor size was recorded every 3 days
once the tumor volume reached 50 mm³. As illustrated in Figures
12A, B, treatment with 250 mg/kg of Zeb significantly inhibited the
growth of ccRCC tumors, while the higher dose at 500 mg/kg
demonstrated greater effectiveness compared to the relative lower
dose (P < 0.01). Comparable results were observed for final tumor

weight (P < 0.01; Figure 12C). Notably, throughout the observation
period, the body weight of the mice exhibited a consistent increase
(Figure 12D), indicating that Zeb has favorable biocompatibility.
Additionally, Zeb intervention also suppressed the activation of the
PI3K-Akt signaling pathway in tumor tissues in a dose-dependent
manner (Figures 12E, F).

Subsequently, tumor tissues were sectioned for analysis. H&E
staining revealed the presence of necrotic cancer cells in ccRCC
tumors following Zeb treatment (Figure 12G). The anti-proliferative
activity of Zeb was evaluated using Ki67 immunohistochemistry and
apoptotic characteristics of the tumor tissue was assessed through
TUNEL detection. As illustrated in Figure 12G, a negative
correlation was observed between the number of Ki67-positive
tumor cells and TUNEL staining results, indicating that high-
dose Zeb possesses anti-ccRCC growth capacity.

Next, we sectioned the heart, liver, lung, spleen, and kidney
tissues from mice and conducted H&E staining. The results
indicated that no significant damage was observed in these major
organs (Figure 12H), further corroborating the superior
biocompatibility of Zeb. Additionally, we utilized the ProTox
database to predict the biological toxicity of Zeb alongside key
first-line drugs for metastatic ccRCC (Figure 12I). The findings
revealed that Zeb may impair seven human functions, whereas
Sunitinib, Sorafenib, Cabozantinib, and Axitinib were associated
with impairment of eight human functions. Notably, Pezopanib
exhibited less toxicity than Zeb by affecting six functions.
Furthermore, while Zeb was classified as Toxicity Class 6, the
other drugs were categorized as Class 4. These findings suggest
that Zeb has enhanced biocompatibility compared to other
targeted therapies.

4 Discussion

The treatment landscape for ccRCC has undergone a
revolutionary transformation, and immunotherapy has emerged
as one of the most significant breakthroughs (4, 5).
Immunotherapy is demonstrated as the efficient treatment for
advanced, recurrent, and metastatic cancer patients. However, the
response rate to conventional ICIs monotherapies that target PD-1/
PD-L1 and CTLA-4 remains low, and primary or secondary drug
resistance might develop during treatment (Ballesteros et al., 2021).
While some patients may benefit from novel ICIs monotherapies,
such as LAG-3 (13), Interleukin-1 (IL-1) (Kadomoto et al., 2021),
Angiopoietin-2 (Ang2) (Bessho et al., 2015), T-cell immunoglobulin
and mucin-domain containing-3 (TIM-3) (Kato et al., 2021), T-cell
immunoreceptor with immunoglobulin and tyrosine-based
inhibitory motif domain (TIGIT) (Noel et al., 2023), as well as
pathways such as C-C motif chemokine ligand 2/C-C chemokine
receptor type 2 (CCL2/CCR2) (Kadomoto et al., 2021), the overall
response rates vary considerably among individuals. This variability
may be attributed to the individual variability among patients and
the inherent complexity of the immune system. Although
combinations of ICIs with bispecific antibodies, oncolytic viruses,
vaccines, and chimeric antigen receptor (CAR) T cell therapy have
presented promising avenues for improving patient outcomes,
ongoing research is warranted to expand and optimize
immunotherapeutic strategies for ccRCC (Meng et al., 2024).
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FIGURE 12
In VivoEvaluationof theAntitumorEfficacy and Safety Profile of Zeb. (A)Tumor images fromvarious treatmentgroups and the control groupat theconclusion
of the experiment. (B)Variations in the tumor growth curve throughout the entire Zeb treatment duration. (C) The distribution of tumorweights among each group
at the conclusion of the experiment. (D) The body weight variation curves of the three groups of mice throughout the entire Zeb treatment period. (E, F)Western
blot detecting theexpressionofAkt, p-Akt, PI3Kandp-PI3K in tumor tissues. (G)Histological analyses, includingH&Estaining, Ki67 immunohistochemistry, and
TUNEL fluorescence staining, were conducted on tumor sections from both the treatment and control groups. (H) Following the completion of Zeb treatment,
histological sections of the primary organs from both the experimental and control groups of mice were prepared and subjected to H&E staining. (I) The ProTox
database predicting the toxicity distribution of Zeb in relation to five major therapeutic drugs for the treatment of metastatic ccRCC. (**p < 0.01).
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Currently, there is no universally recognized biomarker for
predicting responses to immunotherapy in ccRCC patients (Hua
et al., 2022), in this regard, identifying a robust set of biomarkers is
critical for developing novel therapeutic agents.

Precise prognosis prediction and formulation of personalized
clinical treatment strategies constitute the cornerstone of precision
medicine (Arnedos et al., 2014). This study comprehensively
integrated two independent datasets from distinct platforms.
Given the relatively small sample size of GSE29069, potential
biases and statistical errors might arise, and this dataset was not
utilized as an independent test set. Therefore, 70% of TCGA dataset
was randomized as the training set, whereas the rest 30% was
merged with GSE29069 to create the test set. By incorporating
clinical data from the training set, eight genes that were
remarkably related to OS of ccRCC patients were obtained. These
genes were used to construct the 8-gene model, which demonstrated
robust and stable prognostic performance, and was validated in the
test set. This 8-gene model provided a creditable approach to predict
ccRCC prognosis. The robust association between the 8-gene model
and clinicopathological parameters, including T and M stages,
further substantiated the relation between high RS and ccRCC
metastasis as well as progression.

Of those eight genes detected, Claudin-4 (CLDN4) is a crucial
structural protein located within tight junctions (TJ) of epithelial
cells. CLDN4 exerts an important effect on epithelial development
and maintenance of polarity (Song et al., 2017). Furthermore, as an
integral component of TJ, it regulates cell-to-cell adhesion, thereby
contributing to cancer progression and potentially influencing
tumor invasiveness and metastasis. Dysregulation of CLDN4 has
been recognized as a common characteristic across different cancer
types, like lung, gastric, breast, ovarian, and colorectal cancers
(Hashimoto et al., 2019). VAV guanine nucleotide exchange
factor 3 (VAV3), a member of VAV gene family, can activate
Rho family GTPases. VAV3 accelerates cell proliferation of breast
cancer, gastric cancer, endometrial cancer, osteosarcoma, and acute
lymphoblastic leukemia, and accelerates cell migration and invasion
of breast cancer, pancreatic cancer, gastric cancer, and osteosarcoma
(Miao et al., 2023). Conversely, it has decreased expression in renal
cancer, which may promote the infiltration of anti-cancer immune
cells, highlighting its specific role in different cancer types (Chang
et al., 2024). Chromogranin A (CHGA), also known as parathyroid
hormone-related protein 1 (PTHrP1), is a neuroendocrine secretory
protein of the granule family and is localized within the secretory
vesicles of neurons and endocrine cells (Helman et al., 1988).
GREMLIN1 (GREM1) belongs to the structurally and functionally
related secretory cysteine knot protein family, and functions to
isolate and inhibit the activity of multifunctional bone
morphogenetic proteins (BMPs), thereby promoting the
activation of cancer-associated fibroblasts and cancer stem cells
(Gao et al., 2023). CHGA and GREM1 are the only two high-risk
genes within the model, suggesting that they are associated with
poor prognosis of ccRCC. The tyrosine kinase receptor (TEK),
initially characterized as a receptor specific to endothelial cells,
functions in conjunction with its ligand, vascular endothelial
growth factor (VEGF), as the co-regulator for vascular
maturation and angiogenesis (Bessho et al., 2015; Teichert et al.,
2017). Its depletion results in significant alterations in vascular
development and remodeling. Besides, changes in TEK expression

have been observed in tumor tissues including breast cancer, gastric
cancer, thyroid cancer, and ccRCC (Ha et al., 2019). Ubiquitin-
specific protease 2 (USP2) represents the cysteine protease of the
USP family. It reverses the ubiquitin-mediated protein degradation
and exerts an important effect on tumorigenesis by contributing to
abnormal proliferation, migration, invasion, apoptosis, and drug
resistance (Nadolny et al., 2021). WNT9B is closely associated with
tumors. The abnormal expression and dysregulation of various
WNT signaling pathways mediated by WNT ligands is important
for the initiation and development of most human malignant
tumors, like tumors affecting nervous, digestive, respiratory,
urogenital, and musculoskeletal systems (Nusse et al., 1984).
Dysregulation of these WNT pathways is undoubtedly related to
ccRCC development. The last model gene, cathepsin H (CTSH), is a
lysosomal cysteine protease with universal expression, which
participates in specific cell processes and overall protein turnover,
including cell apoptosis, hormone progenitor processing, and
antigen presentation. Its high expression predicts good prognosis
of tumors (Floyel et al., 2014). Overall, each IRPDG makes different
contributions to ccRCC prognosis, ensuring that every IRPDG in the
model maximizes its contribution.

The Von Hippel-Lindau (VHL) gene deletion or mutation is
frequently a critical initial event for ccRCC occurrence (Jonasch
et al., 2021). The 4 highly mutated genes associated with VHL
include PBRM1, SETD2, BAP1, and KDM5C (Cotta et al., 2023).
Their mutation frequency varies among studies, with VHL
accounting for 49%–82%, PBRM1 occupying 29%–41%, SETD2
taking up 8%–30%, BAP1 accounting for 6%–19%, and KDM5C
holding 4%–15% of mutations (Mano et al., 2021; Kapur et al., 2013;
Hakimi et al., 2013). It is traditionally believed that somatic
mutations in PBRM1, BAP1, SETD2, and KDM5C, the genes
known to influence chromatin remodeling and histone
modification, lead to increased chromosomal instability and
alterations in gene expression regulation that are associated with
higher-grade tumors (Joosten et al., 2018). Notably, low-risk group
in this study showed increased VHL and PBRM1 mutation rates
compared with high-risk group, demonstrating that higher rates of
these mutations might be more favorable for the prognosis of
ccRCC. Research has indicated that key genes implicated in
ccRCC carcinogenesis (VHL, PBRM1, BAP1, and SETD2) are not
strongly correlated with survival assessment (Petitprez et al., 2021).
Hakimi et al. (Hakimi et al., 2013) demonstrated that PBRM1
mutations did not significantly affect survival outcomes of ccRCC
patients in both the MSKCC and TCGA cohorts. Similarly, SETD2
mutations were lowly related to survival of ccRCC patients in TCGA
cohort, while no significant association was observed in the MSKCC
cohort. Additionally, activation of the hypoxia inducible factor
(HIF) signaling pathway is contingent upon VHL mutations.
However, certain VHL mutant ccRCC patients are resistant to
inhibitors targeting the HIF2α signaling pathway, suggesting that
VHL deficiency may influence the unidentified HIF2α-independent
signaling pathways (Patel et al., 2022). Consequently, while VHL
mutations are commonly observed in ccRCC, they do not
necessarily dictate tumor progression or prognosis and may be
associated with other intricate molecular mechanisms.
Furthermore, after the silencing of all these 5 prevalent
mutations in ccRCC-related genes (VHL, PBRM1, BAP1, SETD2,
and KDM5C) from primary tumors in metastatic ccRCC patients
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who underwent palliative nephrectomy, various associations
between mutation status and survival rates were observed. To be
specific, SETD2 and KDM5C mutations were correlated with
improved OS, whereas BAP1 mutations were linked to reduced
OS, and PBRM1 mutations showed no significant association with
OS (Tennenbaum et al., 2017). Therefore, due to the inherent
heterogeneity in the ccRCC genome, a comprehensive
characterization of its drivers may be compromised. Thus far,
tissue data remain essential for fully elucidating the genetic
features of any specific tumor. As such, targeted therapies that
aim to reduce the driving factors for the heterogeneity of the
disease itself may be the future direction of treatment for ccRCC.

Thorsson et al. performed a cluster analysis of 30 non-
hematological cancer types based on 160 immune-related feature
scores, and identified 6 “immune subtypes” (C1-C6) (Vesteinn et al.,
2018). The C4 and C6 subtypes were characterized by a predominance
of M2 macrophages and the low lymphocyte infiltration rate, which
were correlated with poor TME-related immune prognosis. In contrast,
the C2 subtype exhibited the greatest M1/M2 macrophage polarization
ratio and robust CD8 signaling. Additionally, the higher tumor
proliferation rates contributed to an evolving IFN-γ-type immune
response. C3 was defined as Th17 and Th1 gene upregulation with
low-to-moderate tumor cell growth, and both subtypes were predictive
of superior tumor prognoses. Based on our findings, high-risk group
possessed greater proportions of C4 and C6 subtypes while a lower
proportion of C3 than low-risk group, validating the accuracy of IRGPI.
Notably, C2 subtype appeared to be less prevalent in low-risk
group. Such discrepancy may arise from the fact that C2 tumors
exhibit greater aggressiveness than C3 tumors in specific cases,
accompanied by an ongoing IFN-γ immune response that is
insufficient to control the rapid proliferation of C2 tumors.
Additionally, it is possible that tumors classified as C2 have been
reshaped by existing IFN-γ-type immune cell infiltration and have
evaded the immune recognition. This phenomenon also elucidates why
genes related to antigen processing and presentation are frequently lost
in immuno-edited tumors, thereby impacting the prognosis of patients
with C2-subtype tumors. Nevertheless, definitive conclusions should be
validated with larger sample sizes.

Considering the intricate relationship between models and
immunity, immune cell infiltration between the two subgroups were
analyzed with CIBERSORT and ESTIMATE algorithms. As a result, the
high-risk group showed increased immune cell infiltration levels, such
as activated CD4 memory T cells, CD8 T cells, Tregs, follicular helper
T cells, and M0 macrophages, particularly Tregs, suggesting a state of
functional impairment in tumor-infiltrating T cells (Díaz-Montero
et al., 2020). Conversely, the low-risk group displayed increased
proportions of monocytes, activated CD4 memory T cells, resting
dendritic cells, M1 macrophages, and resting mast cells, indicating
that the TME changed to a more tumor-suppressive phenotype. ccRCC
mediates immune dysfunction through inducing Tregs while
simultaneously up-regulating checkpoints to inhibit effector T cell
activity and antigen-presenting cell function (Díaz-Montero et al.,
2020). Furthermore, the high-risk group demonstrated remarkably
higher immune/estimate scores, reflecting the greater complexity
within TME. In this study, the TIDE score was used as a predictive
indicator for response to checkpoint blockade therapy and the
associated survival benefits (Qin et al., 2023). The elevated level of
T cell dysfunction and TIDE score observed in the high-risk group

indicated that TME was characterized by a pronounced state of
immune evasion. This phenomenon elucidates why alterations and
remodeling of the TME are responsive to the increasing immune cell
infiltration, ultimately facilitating immune escape, even though the
high-risk group is classified into themore favorable C2 immune subtype
(Joosten et al., 2018). Additionally, MSI serves as a marker of genetic
instability and is increasingly adopted for identifying patients probably
benefiting from targeted therapies, immunotherapy, and advanced
systemic treatments (Qin et al., 2023; Joshi and Badgwell, 2021).
Our findings indicated that the low-risk group exhibited an elevated
MSI score, suggesting that ICIs could confer advantages for this cohort,
consistent with the observed lower level of dysfunction and TIDE score
indicative of the diminished potential for immune evasion. Nonetheless,
it is important to note that the prognostic performance of ourmodel for
ICIs treatment remains limited, and further analysis is warranted to
clarify its precise functionalities and broader applicability.

Additionally, difference in the sensitivity to first-line therapies
(Huang et al., 2019; Roulin et al., 2011) for metastatic ccRCC between
the two subgroups were analyzed using the “pRRophetic” package. As a
result, high-risk group showed higher sensitivity to Sunitinib than to
Sorafenib and Pazopanib. This discrepancy may be attributed to the
distinct mechanisms of action associated with different targeted agents.
Notably, the hypoglycemic agent Metformin also demonstrated
enhanced sensitivity in the low-risk group, and there were more
pronounced difference in sensitivity between the two subgroups than
those observed for Sorafenib and Pazopanib. These results offer a novel
framework for future clinical studies that incorporate low-risk patients,
particularly those with both ccRCC and type 2 diabetes.

Finally, Zeb was identified as the drug with the lowest negative
score based on the differential expression profiles between the two
subgroups. Zeb is a DNA methyltransferase inhibitor that induces
cell cycle arrest and apoptosis through intrinsic apoptotic pathway
through activating BAX and BAK (Ruiz-Magana et al., 2012). It has
been demonstrated with anti-cancer effects in various malignancies,
including gastric cancer, breast cancer, glioma, and leukemia (Ruiz-
Magana et al., 2012; Chen et al., 2012; Lai et al., 2021). To elucidate
the mechanisms by which Zeb influences the progression of ccRCC,
we employed network pharmacology and molecular docking
approaches to investigate a range of potential molecular
pathways. Additionally, we experimentally validated Zeb’s
anticancer activity and its primary targeting of the PI3K-Akt
signaling pathway. Nevertheless, the anti-cancer activity of Zeb
against ccRCC was suboptimal, with IC50 values for 786-O cells
being 117, 54.67, and 20.28 μM after 24, 48, and 72 h, respectively.
Similarly, high IC50 values were observed for OS-RC-2 cells at 128,
57.34, and 27.48 μM, which were significantly higher than those of
Sunitinib, Sorafenib, and Pazopanib (Huang et al., 2019; Roulin
et al., 2011). Furthermore, in vivo studies indicated that achieving
satisfactory anti-tumor effects required substantially higher doses of
Zeb compared with the commonly accepted dosages of Sunitinib
and Sorafenib. This discrepancy may be attributed to the fact that
subgroups in our model were delineated based on OS data from
TCGA patients, which were independent of variations among cell
lines, and the model features were constructed from a
comprehensive perspective. In contrast, Zeb specifically targeted
the high-risk IRGPI populations, whereas Sunitinib, Sorafenib, and
Pazopanib were directed towards the general ccRCC population.
Extensive research is required to elucidate whether Zeb exerts a
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significant influence on the progression of high-risk ccRCC via
specific mechanisms.

5 Conclusion

In summary, the IRGPI developed for ccRCC in this study
demonstrates superior prognostic performance for ccRCC, and is
externally validated in an independent cohort. Beyond its prognostic
performance, IRGPI also provides insights into the molecular
characteristics and tumor immunity. Additionally, a small
molecule compound that target high-risk ccRCC is identified, its
potential mechanisms of action are investigated through network
pharmacology and molecular docking, and its antitumor effect and
preliminary molecular mechanism are confirmed in vitro and in
vivo. Our future research will concentrate on evaluating the
prognostic efficacy of IRGPI in prospective cohorts and
conducting clinical studies involving Zeb.
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