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Background: Growing evidence suggesting a connection between the gut
microbiome, plasma metabolites, and the development of heart failure (HF).
However, the causality of this relationship remains to be fully elucidated.

Methods: Utilizing summary statistics from extensive genome-wide association
studies (GWAS), we investigated the interplay among the gut microbiome,
1,400 plasma metabolites and heart failure. We conducted bidirectional
Mendelian randomization (MR) analyses and MR mediation analysis to discern
the causality within these relationships. The inverse variance-weighted (IVW)
method served as our primary analytical approach, supported by various MR
methods and sensitivity analyses.

Results: We revealed casual relationships between nine microbial groups/
pathways and heart failure. Additionally, 15 metabolites exhibited casual links
with HF, with eight exerting protective effects. Through two-step MR analysis we
also identified themetabolite, Campesterol, mediated the increasing risk from gut
microbiota to HF and a metabolite ratio played the converse role.

Conclusion: This investigation has provided robust evidence supporting the
causal links between the gut microbiome, plasma metabolites, and heart
failure. The findings enhance our comprehension of the role of circulating
metabolites and offer significant insights for future etiological research and
therapeutic development in heart failure.
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Introduction

Heart failure (HF) is a complex syndrome with high rates of morbidity and mortality
that arises from defects in the structure or function of the heart at an advanced stage of
numerous cardiovascular diseases (Heidenreich et al., 2022). With a 5-year survival rate of
less than 50%, HF affects more than 64.3 million people worldwide (GBD 2017 Disease and
Injury Incidence and Prevalence Collaborators, 2018). Timely intervention is crucial for
mitigating the incidence and fatality rates associated with HF, exerting a profound impact
on the overall public health landscape (Zarconi, 2023). Thus, it is imperative to have a
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deeper comprehension of the interrelationships between various risk
factors, particularly at the molecular and microscopic levels (Shah
et al., 2021). Over the years, advances in technologies such as whole-
genome sequencing, proteomics, and metabolomics have shifted
attention towards the metabolic traits in HF (Bornstein et al., 2024;
Lopaschuk et al., 2021). As a result, several investigations are already
employingmetabolites to clarify the modifications in immunological
responses and energy metabolism that occur during HF (Cheng
et al., 2015; Hahn et al., 2023). Serum metabolites refer to
endogenous metabolic products in the blood, which are involved
in multiple biochemical pathways and metabolic processes of the
body, mainly including lipid metabolites, carbohydrate metabolites,
amino acid metabolites, bilirubin and bile acid metabolites,
hormone metabolites, microbiome-derived metabolites, and
exogenous metabolites (Peddinti et al., 2017; Wang et al., 2022).
Serum metabolomics research can help to identify metabolites
closely associated with diseases, providing targets and directions
for disease diagnosis and treatment. For example, in a cohort of
young individuals with pressure overload ventricles (poLV), it was
found that plasma kynurenine (Kyn), a major intermediate of
tryptophan metabolism (Song et al., 2017), is elevated, promoting
the expression of genes related to cardiac hypertrophy and fibrosis,
and is associated with multiple parameters of left ventricular
remodeling. However, after modulation of the microbiota with
probiotics, the levels of Kyn were reduced, and the expression of
downstream ventricular remodeling-related genes was also
decreased (Shi et al., 2023).

In recent years, emerging evidence has revealed that the gut
microbiota is involved in the pathophysiology and progression of
HF, with changes in its composition occurring even before the onset
of symptoms (Lupu et al., 2023). The gut microbiota can alter HF-
related metabolic pathways via a variety of methods, including
lipopolysaccharides and metabolic byproducts (Witkowski et al.,
2020). A cohort study encompassing 1,985 Europeans and 2,
155 North Americans found that imidazole propionate, a gut
microbiota metabolite, is significantly linked with reduced
ejection fraction and HF, as well as a strong independent
predictor of 5-year mortality15. Furthermore,
phenylacetylglutamine, a product of the gut microbiota, was
discovered in clinical trials to be dose-dependently associated to
the severity of HF, with animal study results similar with clinical
(Romano et al., 2023).

Given the current state of research on the microbiota,
metabolites, and HF, we conducted a Mendelian randomization
study to further clarify the causal relationship between the gut

microbiota and HF, as well as the mediating role of metabolites
in this setting.

Methods

Study design

Mendelian randomization (MR) mediation analysis is based on
the causal investigations of Mendelian analysis and how exposure
impacts the outcome. Mendelian analysis uses single nucleotide
polymorphisms (SNPs) as instrumental variables, which can
improve the biases in previous mediation analyses caused by
confounding and measurement errors among exposure, mediator,
and outcome. Mediation analysis can provide more precise
information for investigations into Mendelian causal effects
(Carter et al., 2021).

In this study, we utilized mediation MR as the research design.
Initially, the causal effects between 412 gut microbiota and HF were
assessed. Following that, the causal effects of 1,400 plasma
metabolites and metabolite ratios on HF were determined. On
this basis, mediation analysis was performed from the gut
microbiota to HF, with serum metabolites serving as the
mediating factors (Figure 1).

The three examine assumptions of MR are: (1) the genetic
instrument variables strongly correlate with the exposure
(relevance assumption); (2) the instrument variables should not
be associated with any confounding factors that link the exposure to
outcome (independence assumption); and (3) the genetic
instrument should only influence the outcome through the
exposure (exclusion restriction assumption). Horizontal
pleiotropy is the state in which this last presumption is violated
(Emdin et al., 2017; Bowden and Holmes, 2019).

Data sources

Exposure data

Summary data from the Genome-Wide Association Studies
(GWAS) were out on 7,738 people of European ancestry as part
of the Dutch Microbiome Project (DMP). In this project, the gut
microbiota was characterized using shotgun metagenomic
sequencing of fecal samples, which resulted in the identification
of 207 distinct taxonomic groups and 205 functional pathways,
providing a comprehensive representation of the microbial
community’s diversity and metabolic capabilities. This comprised
classifications for five phyla, 10 classes, 13 orders, 26 families,
48 genera, and 105 species (Lopera-Maya et al., 2022). The
GWAS statistics for this HF data may be accessed on the GWAS
Catalog with the number GCST90027446-GCST90027857.

Mediation factor

A database containing information on blood metabolites from
people with European ancestry makes up the exposure data. This
database includes independent GWAS data of 1,091 blood

Abbreviations: ADP, Adenosine Diphosphate; AF, Atrial Fibrillation; BMI, Body
Mass Index; CAD, Coronary Artery Disease; CI, Confidence Interval; DMP,
Dutch Microbiome Project; GWAS, Genome-Wide Association Studies;
HDAC, Histone Deacetylase; HF, Heart Failure; HERMES Consortium, The
Heart Failure Molecular Epidemiology for Therapeutic Targets Consortium;
IVs, Instrumental Variables; IVW, Inverse Variance-Weighted; KEGG, Kyoto
Encyclopedia of Genes and Genomes; Kyn, Kynurenine; LOO, Leave-one-
out; MR, Mendelian Randomization; MR-PRESSO, Mendelian Randomization
Pleiotropy Residual Sum and Outlier NAP: N-Acetylputrescine; OR, Odds
Ratio; PD, Parkinson’s disease; poLV, Pressure Overload Ventricles SCFAs:
Short-Chain Fatty Acids; SNPs, Single Nucleotide Polymorphisms; scRNA-seq,
single-cell sequencing; TMAO, Trimethylamine N-oxide

Frontiers in Pharmacology frontiersin.org02

Guan et al. 10.3389/fphar.2025.1531384

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1531384


metabolites and 309 metabolite ratios from 8,192 individuals in the
Canadian Longitudinal Study on Aging (CLSA) (Chen et al., 2023).
The summary-level GWAS statistics for these metabolites are
derived from the GWAS Catalog, with accession numbers
ranging from GCST90199621 to GCST90201020.

Outcome data

The outcome data comes from GWAS meta-analyses to date,
which have focused on individuals of European ancestry (Shah
et al., 2020). The Heart Failure Molecular Epidemiology for
Therapeutic Targets (HERMES) Consortium has contributed
26 papers to this database, of which 9 are case-control studies
and 17 are cohort studies. It included a total of 47,309 H F cases
compared to 930,014 control subjects. The identification of cases
of HF was based on hospitalization records, physician-confirmed
diagnoses, or mortality data. Individuals having a clinical
diagnosis of HF were categorized as cases, whereas people
without HF made up the control group. The GWAS statistics

for this HF data can be found on GWAS Catalog, with the
accession number GCST009541.

Selection of genetic instrumental
variables (IVs)

We selected the exposure data’s corresponding SNPs of gut
microbiota and plasma metabolites with a P-value below the locus-
wide significance level (1 × 10̂−5). Then, SNPs exhibiting linkage
disequilibrium were eliminated based on the requirements of (R̂2 <
0.001) and 10,000 base pairs (Kb = 10,000) for genetic distance. In
order to test for weak instrument bias, we computed the F-statistic
for the chosen SNPs in our instrumental variable study. The
following formulae were used to obtain the F-statistics: R2 =
(2β2 × EAF × (1 − EAF))/(2β2 × EAF × (1 − EAF)+ 2N ×
EAF × (1 − EAF) × SE2) and F = (R2 × (N − 2))/(1 − R2). The
effect magnitude and standard error of the SNP-metabolite
connection are denoted by beta and SE, respectively. N is the
sample size of the metabolite GWAS (Pierce and Burgess, 2013).

FIGURE 1
Workflow of the study. We conducted mediation analyses to estimate the risk factors mediating the effect of gut microbiota on heart failure using a
two-step MR approach. MR; Mendelian Randomization; IVW, inverse variance-weighted method; MR-PRESSO; Mendelian Randomization Pleiotropy
Residual Sum and Outlier; LOO, Leave-one-out.
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Statistical analysis methods

When conducting MR analysis, our primary strategy was the
IVW method. The principal analytic approach in situations when
there are many SNPs available for instrumental variable
construction is the IVW method. This is due to the fact that it
offers the strongest and most accurate estimates (Zuber et al., 2022).
The IVW method, which assumes no horizontal pleiotropy across
the SNPs in question, provides estimates by synthesizing the Wald
ratios from a thorough examination of all genetic variants involved
(Pierce and Burgess, 2013). As supplemental analyses, additional
MR techniques such as MR-Egger, Weighted Median, Simple Mode,
and Weighted Mode methods were also used in the MR analyses
(Lin et al., 2021; Burgess and Thompson, 2017; Verbanck
et al., 2018).

In this study, we employed a two-step MR for mediation
analyses. We first assessed the overall impact of gut microbiota
on HF, as well as the separate effects of gut microbiota on circulating
metabolites (β1) and metabolites on HF (β2). After calculating the
mediating effect (β1*β2), we determined the direct effect by
subtracting it from the total effect17. All the MR analysis was
performed in R software, version 4.4.1.

Sensitivity analysis

Multiple methods were used in the sensitivity analysis. First, the
Cochran Q test (p = 0.05) was used to evaluate the heterogeneity
between the SNPs (Li et al., 2023). Second, MR PRESSO and Egger
were adapted to ensure the horizon pleiotropy of the results, and a
causal association was indicated by P < 0.05 (Bowden et al., 2015;
Burgess et al., 2017). Third, to find out how each unique SNP
affected the research results, a leave-one-out analysis was carried
out. This allowed us to evaluate the impact of a particular genetic
variant on the overall estimations by first eliminating one SNP at a
time and then using the IVW approach on the remaining SNP (Liu
et al., 2024). Additionally, we used scatterplots to display
correlations between the exposure and result and funnel plots to
visually assess the pleiotropy of SNPs.

Single-cell data analysis

Single-cell analysis was performed using the Seurat package on a
cardiomyocytes single-cell sequencing (scRNA-seq) dataset
orignated from normal and failed hearts (Homo sapiens,
GSE145154) (Rao et al., 2021). We began the analysis with
quality control, assessing the library size and total gene count
distribution. Next, we identified highly variable genes in the log-
normalized data using the “vst” method within the
FindVariableFeatures function. Principal components (PCs) were
selected through downscaling analysis with the ScaleData function.
We then conducted unsupervised clustering of the filtered cells using
the FindNeighbors and FindClusters functions. Additionally, we
explored marker gene expression for each cluster in the single-cell
dataset to determine the cell type of each cluster. Finally, we
quantified the number of cells and differentially expressed genes
(DEGs) in both normal and CRS samples.

Single-cell combined MR analysis

Phenotype-related candidate genes were identified based on
single-cell eQTLs and SNPs associated with HF obtained from
forward MR analysis. We collected genes with remarkable
differences in expression across various cell types, and the
expression patterns of these candidate genes were analyzed.

Results

Genetic IVs

We obtained information on 1,400 metabolic products and
ratios from the CLSA study as well as 412 gut microbiota
settings from the DMP project. In use of quantitatively selecting
tools, we conducted association analyses on them. We removed
SNPs affected by linkage disequilibrium and the weak instrumental
variables. For the relationship between gut microbiota and genetic
instruments, 412 SNPs were selected with the biggest F-value as
61.1 and the smallest as 19.507.1,294 SNPs was discovered to be
linked to circulating metabolites; the biggest F-value was 2,297.7854,
and the smallest was 19.503.

Casual links between gut microbiota and HF

Following the identification of instrumental factors, we
performed MR analysis between gut microbiota and HF with
the IVW method. MR-Egger, Weighted Median, Simple Mode
and Weighted Mode were also conducted as supplementary
approaches (Supplementary Table S3). After pleiotropy
identification, heterogeneity selection and odds ratio (OR)
consistency screening, nine microbial groups and pathways
were finally discovered to be related with HF. The results
indicated that the genus Prevotella from the Bacteroidetes
phylum (OR = 1.101, 95% CI = 1.016–1.192), the species
Prevotella copri (OR = 1.065, 95% CI = 1.006–1.128),
Alistipes putredinis (OR = 1.161, 95% CI = 1.039–1.296) as
well as the genus Lachnospiraceae from the Firmicutes phylum
(OR = 1.152, 95% CI = 1.061–1.251) were associated with an
increased risk of HF. The metabolic pathways of lactose and
galactose degradation I (OR = 1.132, 95% CI = 1.024–1.251) and
ppGpp biosynthesis (OR = 1.064, 95% CI = 1.001–1.131) were
also found to increase the risk of HF. One microbial group and
two metabolic pathways were associated with a decreased risk of
H. These include the species Ruminococcus callidus from the
Firmicutes phylum (OR = 0.937, 95% CI = 0.882–0.996), the
ADP-L-glycero-beta-D-manno-heptose biosynthesis pathway
(OR = 0.930, 95% CI = 0.875–0.987), and the superpathway
of heme biosynthesis from glutamate (OR = 0.936, 95% CI =
0.888–0.986) (Figure 2). The stability of the results was verified
through funnel plots, scatter plots, and leave-one-out
sensitivity analysis.

In the reverse MR analysis, with HF as the exposure and the
microbial groups as the outcome, the OR p-values for the MR
analysis results of the microbiota were all greater than 0.05, thus
excluding the reverse causal relationship from HF to the gut
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microbiome selected before. (Supplementary Figure S1;
Supplementary Table S1).

Casual links between plasma metabolites
and HF

Using the IVW method for analysis and applying a filter for
horizontal pleiotropy with P > 0.05 and consistency in odds ratios, a
total of 15 plasma metabolites associated with HF were identified,
including 12 known and three unknown metabolites.

There are five known metabolites and ratios linked to an
increased risk of HF include 3-hydroxyisobutyrate (OR = 1.107,
95%CI = 1.038–1.181, P = 0.002), Campesterol (OR = 1.08, 95%CI =
1.035–1.128, P < 0.001),Phosphate to glucose ratio (OR = 1.076, 95%
CI = 1.018–1.138, P = 0.009), 1-arachidonoyl-gpc (20:4n6) levels
(OR = 1.044, 95%CI = 1.012–1.077, P = 0.007), N-acetylputrescine
(OR = 1.042, 95%CI = 1.013–1.071, P = 0.004). The above
metabolites encompass carbohydrate, lipid, amino acid, and
polyamine metabolism.

On the other hand, seven known metabolites or ratios that are
primarily related to the metabolism of amino acids and fats were
linked to a lower risk of HF. These included 11beta-
hydroxyetiocholanolone glucuronide (OR = 0.939, 95%CI =
0.896–0.984, P = 0.009), 1-linoleoyl-2-linolenoyl-GPC (18:2/18:3)

levels (OR = 0.935, 95% CI = 0.896–0.975, P = 0.002), Arachidate
(20:0) levels (OR = 0.921, 95%CI = 0.867–0.98, P = 0.009), Tyramine
O-sulfate (OR = 0.921, 95%CI = 0.871–0.974, P = 0.004), Serine to
alpha-tocopherol ratio (OR = 0.920, 95%CI = 0.882–0.96, P < 0.001),
Phosphate to sulfate ratio (OR = 0.903, 95%CI = 0.843–0.968, P =
0.004), O-sulfo-l-tyrosine (OR = 0.893, 95%CI = 0.831–0.958, P =
0.002). These metabolites and ratios provide insights into different
aspects of metabolism, including lipid, amino acid, and energy
metabolism, as well as antioxidant balance and post-translational
protein modifications (Table 1; Figure 3A).

For sensitivity analyses, MR-Egger regression, the Cochran Q
test, Leave-one-out test and Funnel plot were applied to test the
results. According to the MR-Egger regression intercept method,
horizontal pleiotropy did not bias the results (P > 0.05). There were
no discernible changes in the outcomes when a single SNP was
removed after using the Leave-one-out technique, which involves
gradually eliminating each SNP and determining the meta-effect of
the remaining SNPs (Supplementary Figure S3).

To elucidate the biological relevance of metabolites in the
context of HF, an enrichment analysis was performed utilizing
the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database. This analysis identified and enriched six metabolites
associated with two distinct disease signatures derived from
blood metabolite profiles—sitosterolemia and type 2 diabetes
mellitus (Figure 3B).

FIGURE 2
The classification of microbial taxa included in the current study with Phylum, class, order, family, genus and species (A). Causal effects between gut
microbiota on heart failure with IVW method (B). Scatter plots of nine gut microbiota linked with heart failure (C).
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Mediation effect analysis

In the Mendelian mediation analysis, we employed a two-step MR
approach to calculate the mediating effects. In step one, we used the gut
microbiota identified after reverse causality validation as the exposure
and the 15 metabolites associated with HF as the outcome, we
conducted MR analysis to compute the mediating effect β1. The

results revealed causal relationships between four types of gut
microbiota and five metabolites. For instance, the LACTOSECAT
pathway was positively correlated with Campesterol levels (P =
0.011) but negatively correlated with N-acetylputrescine levels (P =
0.006). The PPGPPMET pathway was positively associated with 1-
linoleoyl-2-linolenoyl-GPC (18:2/18:3) levels (P = 0.046) and negatively
associated with 1-arachidonoyl-gpc (20:4n6) levels (P = 0.031).

TABLE 1 MR results for metabolites significantly associated with heart failure in IVW method. IVW, inverse variance-weighted method; IVs, instrumental
variables; OR, Odds Ratio.

Exposure Method Number of IVs Beta SE P-val OR Pleiotropy Heterogeneity

Campesterol IVW 19 0.077 0.022 <0.001 1.080 0.951 0.004

1-Arachidonoyl-gpc (20:4n6) IVW 22 0.043 0.016 0.007 1.044 0.537 0.070

O-sulfo-l-tyrosine IVW 21 −0.114 0.036 0.002 0.893 0.416 0.000

Tyramine O-sulfate l IVW 17 −0.083 0.029 0.004 0.921 0.507 0.223

1-Linoleoyl-2-linolenoyl-GPC (18:2/18:3) IVW 18 −0.068 0.021 0.002 0.935 0.629 0.578

11beta-hydroxyetiocholanolone glucuronide IVW 18 −0.063 0.024 0.009 0.939 0.914 0.707

3-Hydroxyisobutyrate IVW 11 0.102 0.033 0.002 1.107 0.359 0.858

N-acetylputrescine IVW 22 0.041 0.014 0.004 1.042 0.813 0.722

FIGURE 3
MR results for the causal associations of plasma metabolites and heart failure (A), Enrichment analyses of metabolites (B).
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Additionally, Ruminococcus callidus was positively correlated
with Tyramine O-sulfate levels (P = 0.012), and the
PWY.5918 superpathway of heme biosynthesis from glutamate
was negatively correlated with the Serine to alpha-tocopherol
ratio (P = 0.044). In step two, using serum metabolites as the
exposure and HF as the outcome, while excluding the genetic IVs
used in the first step, the calculation of the β2 effect was carried out.

Our study unveiled the effects of gut microbiome-associated lipid
metabolism onHFmedicated bymetabolite campesterol and phosphate
to glucose ratio. The results demonstrated that an elevated campesterol
levels (β = 0.33, 95% CI = 0.076–0.5584, P = 0.011) was subsequently
correlated with a higher risk of heart failur. The mediated proportion of
this association was 20.6% (95%CI = 1.01–40.1%, P = 0.039).
Conversely, the functional pathway phosphate to glucose ratio
(β = −0.161, 95% CI = −0.276–0.048, P = 0.006) was associated
with a decreased risk of HF, with the mediated effect of −0.00662
(95% CI = −0.0131–0.000147, P = 0.045). These findings strongly
supporting the evidence that circulating metabolites could medicated
gut microbiome to have effects on HF (Figure 4).

Replication analysis with finngen dataset

To further validate the results of our study, we replicated the
analyses in the HF population from the FinnGen database (R12).
The results of the validation analyses were consistent with our
previous analyses. For example, causal relationships between the
Prevotella genus and HF. The validation results are attached with
this letter (Supplementary Table S2).

Single-cell combined MR analysis revealed
10 candidate genes with remarkable
differences in macrophage

We performed aMR analysis to explore the associations between
differentially expressed genes and HF. GO and KEGG enrichment
analyses were conducted to validate relevant biological processes.
The results indicate that biological processes such as autophagy and
endoplasmic reticulum protein processing, as well as protein
families like Bcl-2, were associated with HF (Supplementary
Table S3; Supplementary Figures S4, S5). The validation provided
further insights for the potential mechanism between
metabolites and HF.

Discussion

In this study, we employed bidirectional MR coupled with MR
mediation analysis to delineate the causal interplay between the gut
microbiota and HF Our findings support a strong causative link
between gut microbiota and the development of HF, with no
evidence of reverse causation. Furthermore, we found causal links
between microbial-related metabolic pathways mediated by plasma
metabolites and the risk of HF. These insights contribute to a deeper
understanding of the intricate links between gut microbiota and
cardiac dysfunction, offering potential avenues for novel therapeutic
targets and diagnostic biomarkers.

HF, a clinical syndrome primarily characterized by cardiac
dysfunction, is associated with various systemic diseases and

FIGURE 4
Forest plot of Medication analyses on gut microbiota, plasma metabolites and heart failure (A). Mediated effects of plasma metabolites on gut
microbiota and heart failure (B).
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complex etiologies. Coronary artery disease (CAD), obesity, renal
insufficiency, and hypertension can all exacerbate HF and may
coexist in patients with this condition (Wolff Sagy et al., 2024;
Chatur et al., 2024; Dinakis et al., 2024). Observational studies that
contribute to understanding the etiology are challenging, and the
analysis of actual case outcomes requires consideration of the
complex influence of multiple confounding factors. Therefore,
GWAS for HF can help further clarify the specific mechanisms
by which exposure factors affect HF.

The gut microbiota can break down ingested food through
various pathways and participate in the body’s energy metabolic
processes. Previous studies have found that Prevotella overgrows in
patients with HF (Gutiérrez-Calabrés et al., 2020). In research on
coronary heart disease, drugs have been found to inhibit the
development of coronary atherosclerosis by suppressing the
production of Trimethylamine N-oxide (TMAO) by Prevotella
(Author Anonymous, 2024). Alistipes putredinis has been
associated with cancer and liver fibrosis in previous studies (Jing
et al., 2024; Hao et al., 2024). In an observation study, a significant
decrease in the quantity of Alistipes were found among patients with
atrial fibrillation. The authors proposed the hypothesis that Alistipes
may have potential antagonistic effect with other bacteria that
drastically increased during AF, such as Streptococcus. In our
study, Prevotella copri and Alistipes putredinis, both belonging to
the Bacteroidetes phylum, were identified as being related to an
increased risk of HF, further enriching the evidence of the role of the
microbiota in HF.

Lachnospiraceae, which belong to the Firmicutes phylum, are
related to the digestion of dietary fiber and the production of short-
chain fatty acids. A reduction in Lachnospiraceae has been observed
in patients with HF, while in mice with disrupted gut microbiota by
antibiotics, the supplementation of butyrate, a product of
Lachnospiraceae, has been found to reduce HDAC activity and
improve adverse post-infarction repair (Modrego et al., 2023).
However, our study found it to be associated with an increasing
risk of HF. This may be attributable to various causes. Initially, HF is
a complex clinical syndrome, with myocardial infarction being just
one of the potential etiologies and more intricate pathophysiological
mechanisms could lead to divergent outcomes. Secondly, previous
studies have yielded inconsistent findings regarding the function of
Lachnospiraceae. For instance, in a study Lachnospiraceae was
found to be associated with liver steatosis, suggesting a
detrimental role (Zhang et al., 2024). Furthermore, given the
limited sample sizes of previous investigations and the differences
in ethnic populations (with the current study focusing on
individuals of European descent), larger clinical studies are
warranted to further explore the distributional shifts of the
microbiota in HF.

Ruminococcus callidus, a member of the Firmicutes phylum, is
associated with the production of short-chain fatty acids. In animal
studies, short-chain fatty acids have been shown to modulate
immune and metabolic functions of the heart, potentially
preventing the progression of HF (Marques et al., 2017; Wang
et al., 2023). In this study, we identified Ruminococcus callidus
associated with a decreased risk of HF and strengthen the
previous studies.

In the mediation analysis, we also found that Campesterol levels
and N-acetylputrescine levels respectively positively and negatively

mediated the effects of the lactose and galactose degradation
pathway on HF. Campesterol, which is related to cholesterol
metabolism, can be used to assess the lipid metabolic levels in
patients with hypercholesterolemia and coronary heart disease,
and to evaluate the efficacy of lipid-lowering drugs. In this paper,
we have demonstrated its causal relationship with HF, providing
new ideas for clinical treatment (Akiyama et al., 2023; Sittiwet
et al., 2020).

N-Acetylputrescine (NAP) is an endogenous metabolite
widely present in animals and plants. N-Acetylputrescine can
serve as a biomarker for hepatic cancer and Parkinson’s disease
(PD), and is used for disease diagnosis (Liu et al., 2013; Peng
et al., 2024). N-Acetylputrescine is also utilized in research
related to infectious diseases, where in severe disease, plasma
polyamines increase (Schirmer et al., 2024; Caceres Lessa et al.,
2024). This study found that N-Acetylputrescine is a protective
factor in the development of HF; currently, there is no related
research, and this finding can be further verified in animal or
clinical studies.

In the MR analysis between differentially expressed genes and
HF, BCL2, IFI44L, ISG15, and COLGALT2 were associated with an
increased risk of HF, whereas the remaining six genes, including
ENPP4, CLSTN3, IMPA2, CNTRL, DNAJC10, and GOLGA8B,
were associated with a protective effect against the occurrence of
HF. The results provided further insights for the potential
mechanism between metabolites and HF. For example, 1-
arachidonoyl-gpc (20:4n6) and the ketone body 3-
hydroxyisobutyrate, which were identified to have causal
associations with HF in our study, may exert their functions
through autophagy process and effect the development of HF
(Chen et al., 2020; Hu et al., 2024).

The strengths of our study are as follows. First, in order to
determine the causal relationship between gut microbiota and HF,
our study employed a 2-sample MR analysis with SNPs serving as
instrumental variables. This method has the advantage of being less
vulnerable to the influence of residual confounding factors due to
the random allocation of alleles during gametogenesis. Second, we
used a bidirectional MR analysis to exclude the impact of reverse
causation on the results, confirming previous research and
determining the individual causal relationships between gut
microbiota and HF as well as circulating metabolites and HF.
Third, we utilized MR mediation analyses to verify the role that
blood metabolites plays in the casual relationship between gut
microbiome and HF, promoting the understanding of the
possible pathogenesis of cardiac metabolic illnesses as well as
helps to capture potential biomarkers, assisting with the study of
related therapeutic targets.

Our study also has some limitations. Our study is mainly based
on Europeans, which reduces the generalizability to non-European
populations. Further studies are needed in different ethnic
populations to confirm our findings. Second, studying
metabolites in myocardial tissue would provide more insights
into the pathogenesis, as the aggregation of plasma levels and
tissue levels of many metabolites is not entirelyconsistent.
However, due to the lack of relevant resources, we cannot
conduct such studies. In addition, our findings also require
further validation through more animal models and population
cohort studies.
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Conclusion

In our study, we uncovered causal relationships between nine
microbial groups and pathways with HF. Furthermore, 15 specific
metabolites showed causal associations with HF, with eight
demonstrating protective effects against it. Utilizing a two-step
MR analysis, we identified that the metabolite Campesterol
mediates the increased risk from the gut microbiota to HF, while
a particular metabolite ratio played an opposing role, potentially
mitigating the risk.

Data availability statement

The original contributions made within this study are fully
detailed in the article/Supplementary Material. Further inquiries
can be directed to the corresponding author.

Ethics statement

Ethical approval was not required for the study involving
humans in accordance with the local legislation and institutional
requirements. Written informed consent to participate in this study
was not required from the participants or the participants’; legal
guardians/next of kin in accordance with the national legislation and
the institutional requirements.

Author contributions

XG: Data curation, Formal Analysis, Visualization,
Writing–original draft, Writing–review and editing. CS: Data
curation, Formal Analysis, Visualization, Writing–original draft,
Writing–review and editing. JS: Conceptualization, Methodology,
Supervision, Writing–original draft, Writing–review and editing.
ZS: Conceptualization, Methodology, Supervision, Writing–original
draft, Writing–review and editing. CC: Conceptualization,
Methodology, Supervision, Writing–original draft,
Writing–review and editing.

Funding

The author(s) declare that no financial support was received for
the research and/or publication of this article.

Acknowledgments

We express our gratitude to all the individuals who participated
in the GWAS, along.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The authors declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fphar.2025.1531384/
full#supplementary-material

References

Author Anonymous (2024). Puerarin alleviates atherosclerosis via the inhibition of
Prevotella copri and its trimethylamine production. Gut. 73(12):1934–1943. doi:10.
1136/gutjnl-2024-331880

Akiyama, Y., Katsuki, S., Matoba, T., Nakano, Y., Takase, S., Nakashiro, S., et al.
(2023). Association of serum oxysterols with cholesterol metabolism markers and
clinical factors in patients with coronary artery disease: a covariance structure analysis.
Nutrients 15, 2997. doi:10.3390/nu15132997

Bornstein, M. R., Tian, R., and Arany, Z. (2024). Human cardiac metabolism. Cell
Metab. 36, 1456–1481. doi:10.1016/j.cmet.2024.06.003

Bowden, J., Davey Smith, G., and Burgess, S. (2015). Mendelian randomization with
invalid instruments: effect estimation and bias detection through Egger regression. Int.
J. Epidemiol. 44, 512–525. doi:10.1093/ije/dyv080

Bowden, J., and Holmes, M. V. (2019). Meta-analysis and Mendelian randomization:
a review. Res. Synth. Methods 10, 486–496. doi:10.1002/jrsm.1346

Burgess, S., Bowden, J., Fall, T., Ingelsson, E., and Thompson, S. G. (2017). Sensitivity
analyses for robust causal inference from mendelian randomization analyses with
multiple genetic variants robust causal inference from mendelian randomization

analyses with multiple genetic variants. Epidemiology 28, 30–42. doi:10.1097/EDE.
0000000000000559

Burgess, S., and Thompson, S. G. (2017). Erratum to: interpreting findings from
Mendelian randomization using the MR-Egger method. Eur. J. Epidemiol. 32, 391–392.
doi:10.1007/s10654-017-0276-5

Caceres Lessa, A. Y., Edwinson, A., Sato, H., Yang, L., Berumen, A., Breen-Lyles, M.,
et al. (2024). Transcriptomic and metabolomic correlates of increased colonic
permeability in post-infection irritable bowel syndrome. Clin. Gastroenterol.
Hepatol. S1542-3565 (24), 00603–00607. doi:10.1016/j.cgh.2024.06.028

Carter, A. R., Sanderson, E., Hammerton, G., Richmond, R. C., Davey Smith, G.,
Heron, J., et al. (2021). Mendelian randomisation for mediation analysis: current
methods and challenges for implementation. Eur. J. Epidemiol. 36, 465–478. doi:10.
1007/s10654-021-00757-1

Chatur, S., Neuen, B. L., Claggett, B. L., Beldhuis, I. E., Mc Causland, F. R., Desai,
A. S., et al. (2024). Effects of sacubitril/valsartan across the spectrum of renal
impairment in patients with heart failure. J. Am. Coll. Cardiol. 83, 2148–2159.
doi:10.1016/j.jacc.2024.03.392

Frontiers in Pharmacology frontiersin.org09

Guan et al. 10.3389/fphar.2025.1531384

https://www.frontiersin.org/articles/10.3389/fphar.2025.1531384/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphar.2025.1531384/full#supplementary-material
https://doi.org/10.1136/gutjnl-2024-331880
https://doi.org/10.1136/gutjnl-2024-331880
https://doi.org/10.3390/nu15132997
https://doi.org/10.1016/j.cmet.2024.06.003
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1002/jrsm.1346
https://doi.org/10.1097/EDE.0000000000000559
https://doi.org/10.1097/EDE.0000000000000559
https://doi.org/10.1007/s10654-017-0276-5
https://doi.org/10.1016/j.cgh.2024.06.028
https://doi.org/10.1007/s10654-021-00757-1
https://doi.org/10.1007/s10654-021-00757-1
https://doi.org/10.1016/j.jacc.2024.03.392
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1531384


Chen, X. F., Chen, X., and Tang, X. (2020). Short-chain fatty acid, acylation and
cardiovascular diseases. Clin. Sci. (Lond). 134 (6), 657–676. doi:10.1042/CS20200128

Chen, Y., Lu, T., Pettersson-Kymmer, U., Stewart, I. D., Butler-Laporte, G., Nakanishi,
T., et al. (2023). Genomic atlas of the plasma metabolome prioritizes metabolites
implicated in human diseases. Nat. Genet. 55, 44–53. doi:10.1038/s41588-022-01270-1

Cheng, M.-L., Wang, C.-H., Shiao, M.-S., Liu, M.-H., Huang, Y.-Y., Huang, C.-Y.,
et al. (2015). Metabolic disturbances identified in plasma are associated with outcomes
in patients with heart failure: diagnostic and prognostic value of metabolomics. JAm
Coll. Cardiol. 65, 1509–1520. doi:10.1016/j.jacc.2015.02.018

Dinakis, E., O’Donnell, J. A., and Marques, F. Z. (2024). The gut-immune axis during
hypertension and cardiovascular diseases. Acta Physiol. (Oxf) 240, e14193. doi:10.1111/
apha.14193

Emdin, C. A., Khera, A. V., and Kathiresan, S. (2017). Mendelian randomization.
JAMA. 318, 1925–1926. doi:10.1001/jama.2017.17219

GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018). Global,
regional, and national incidence, prevalence, and years lived with disability for
354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic
analysis for the Global Burden of Disease Study 2017. Lancet. 392, 1789–1858. doi:10.
1016/S0140-6736(18)32279-7

Gutiérrez-Calabrés, E., Ortega-Hernández, A., Modrego, J., Gómez-Gordo, R., Caro-
Vadillo, A., Rodríguez-Bobada, C., et al. (2020). Gut microbiota profile identifies
transition from compensated cardiac hypertrophy to heart failure in hypertensive
rats. Hypertension 76, 1545–1554. doi:10.1161/HYPERTENSIONAHA.120.15123

Hahn, V. S., Petucci, C., Kim, M.-S., Bedi, K. C., Wang, H., Mishra, S., et al. (2023).
Myocardial metabolomics of human heart failure with preserved ejection fraction.
Circulation 147, 1147–1161. doi:10.1161/CIRCULATIONAHA.122.061846

Hao, Y., Hao, Z., Zeng, X., and Lin, Y. (2024). Gut microbiota and metabolites of
cirrhotic portal hypertension: a novel target on the therapeutic regulation.
J. Gastroenterol. 59, 788, 797. doi:10.1007/s00535-024-02134-7

Heidenreich, P. A., Bozkurt, B., Aguilar, D., Allen, L. A., Byun, J. J., Colvin, M. M.,
et al. (2022). 2022 AHA/ACC/HFSA guideline for the management of heart failure:
executive summary: a report of the American college of Cardiology/American heart
association joint committee on clinical practice guidelines. J. Am. Coll. Cardiol. 79,
1757–1780. doi:10.1016/j.jacc.2021.12.011

Hu, Y., Li, W., Cheng, X., Yang, H., She, Z. G., Cai, J., et al. (2024). Emerging roles and
therapeutic applications of arachidonic acid pathways in cardiometabolic diseases. Circ.
Res. 135 (1), 222–260. doi:10.1161/CIRCRESAHA.124.324383

Jing, Z, Zheng, W, Jianwen, S, Hong, S, Xiaojian, Y, Qiang, W, et al. (2024). Gut
microbes on the risk of advanced adenomas. BMC Microbiol 24 (1):264. doi:10.1186/
s12866-024-03416-z

Lin, Z., Deng, Y., and Pan, W. (2021). Combining the strengths of inverse-variance
weighting and Egger regression in Mendelian randomization using a mixture of
regressions model. PLoS Genet. 17, e1009922. doi:10.1371/journal.pgen.1009922

Liu, R., Li, Q., Ma, R., Lin, X., Xu, H., and Bi, K. (2013). Determination of polyamine
metabolome in plasma and urine by ultrahigh performance liquid chromatography-
tandemmass spectrometry method: application to identify potential markers for human
hepatic cancer. Anal. Chim. Acta. 791, 36–45. doi:10.1016/j.aca.2013.06.044

Liu, Y., Rao, J., Hu, W., Yu, Y., Wang, P., Chen, X., et al. (2024). Genetic causality between
type 1 diabetes and arrhythmia identified by a two-sample mendelian randomization study.
Diabetes Res. Clin. Pract. 213, 111725. doi:10.1016/j.diabres.2024.111725

Li, Y, Liu, H., Ye, S., Zhang, B., Li, X., and Yuan, J. (2023). The effects of coagulation
factors on the risk of endometriosis: a Mendelian randomization study. BMC Med 21
(1), 195. doi:10.1186/s12916-023-02881-z

Lopaschuk, G. D., Karwi, Q. G., Tian, R., Wende, A. R., and Abel, E. D. (2021).
Cardiac energy metabolism in heart failure. Circ. Res. 128, 1487–1513. doi:10.1161/
CIRCRESAHA.121.318241

Lopera-Maya, E. A., Kurilshikov, A., van der Graaf, A., Hu, S., Andreu-Sánchez, S.,
Chen, L., et al. (2022). Author Correction: effect of host genetics on the gut microbiome
in 7,738 participants of the Dutch Microbiome Project. Nat. Genet. 54, 1448. doi:10.
1038/s41588-022-01164-2

Lupu, V. V., Adam Raileanu, A., Mihai, C. M., Morariu, I. D., Lupu, A., Starcea, I. M.,
et al. (2023). The implication of the gut microbiome in heart failure. Cells 12, 1158.
doi:10.3390/cells12081158

Marques, F. Z., Nelson, E., Chu, P.-Y., Horlock, D., Fiedler, A., Ziemann, M., et al.
(2017). High-fiber diet and acetate supplementation change the gut microbiota and
prevent the development of hypertension and heart failure in hypertensive mice.
Circulation 135, 964–977. doi:10.1161/CIRCULATIONAHA.116.024545

Modrego, J., Ortega-Hernández, A., Goirigolzarri, J., Restrepo-Córdoba, M. A.,
Bäuerl, C., and Cortés-Macías, E. (2023). Gut microbiota derived short-chain fatty

acids are linked to evolution of heart failure patients. Int J Mol Sci 24 (18), 13892. doi:10.
3390/ijms241813892

Molinaro, A., Nemet, I., Bel Lassen, P., Chakaroun, R., Nielsen, T., Aron-Wisnewsky,
J., et al. (2023). Microbially produced imidazole propionate is associated with
Heart Failure and mortality. JACC Heart Fail 11, 810–821. doi:10.1016/j.jchf.2023.
03.008

Peddinti, G., Cobb, J., Yengo, L., Froguel, P., Kravić, J., Balkau, B., et al. (2017). Early
metabolic markers identify potential targets for the prevention of type 2 diabetes.
Diabetologia 60, 1740–1750. doi:10.1007/s00125-017-4325-0

Peng, K.-W., Klotz, A., Guven, A., Kapadnis, U., Ravipaty, S., Tolstikov, V., et al.
(2024). Identification and validation of N-acetylputrescine in combination with non-
canonical clinical features as a Parkinson’s disease biomarker panel. Sci. Rep. 14, 10036.
doi:10.1038/s41598-024-60872-3

Pierce, B. L., and Burgess, S. (2013). Efficient design for Mendelian randomization
studies: subsample and 2-sample instrumental variable estimators. Am. J. Epidemiol.
178, 1177–1184. doi:10.1093/aje/kwt084

Rao, M., Wang, X., Guo, G., Wang, L., Chen, S., Yin, P., et al. (2021). Resolving the
intertwining of inflammation and fibrosis in human heart failure at single-cell level.
Basic Res. Cardiol. 116 (1), 55. doi:10.1007/s00395-021-00897-1

Romano, K. A., Nemet, I., Prasad Saha, P., Haghikia, A., Li, X. S., Mohan, M. L., et al.
(2023). Gut microbiota-generated phenylacetylglutamine and heart failure. Circ. Heart
Fail 16, e009972. doi:10.1161/CIRCHEARTFAILURE.122.009972

Schirmer, M., Stražar, M., Avila-Pacheco, J., Rojas-Tapias, D. F., Brown, E. M.,
Temple, E., et al. (2024). Linking microbial genes to plasma and stool metabolites
uncovers host-microbial interactions underlying ulcerative colitis disease course. Cell
Host Microbe 32, 209–226.e7. doi:10.1016/j.chom.2023.12.013

Shah, A. K., Bhullar, S. K., Elimban, V., and Dhalla, N. S. (2021). Oxidative stress as A
mechanism for functional alterations in cardiac hypertrophy and heart failure.
Antioxidants (Basel) 10, 931. doi:10.3390/antiox10060931

Shah, S., Henry, A., Roselli, C., Lin, H., Sveinbjörnsson, G., Fatemifar, G., et al. (2020).
Genome-wide association and Mendelian randomisation analysis provide insights into
the pathogenesis of heart failure. Nat. Commun. 11, 163. doi:10.1038/s41467-019-
13690-5

Shi, B., Zhang, X., Song, Z., Dai, Z., Luo, K., Chen, B., et al. (2023). Targeting gut
microbiota-derived kynurenine to predict and protect the remodeling of the pressure-
overloaded young heart. Sci. Adv. 9, eadg7417. doi:10.1126/sciadv.adg7417

Sittiwet, C., Simonen, P., Gylling, H., and Strandberg, T. E. (2020). Mortality and
cholesterol metabolism in subjects aged 75 Years and older: the Helsinki businessmen
study. JAm Geriatr. Soc. 68, 281–287. doi:10.1111/jgs.16305

Song, P., Ramprasath, T., Wang, H., and Zou, M.-H. (2017). Abnormal kynurenine
pathway of tryptophan catabolism in cardiovascular diseases tryptophan catabolism in
cardiovascular diseases. Cell Mol. Life Sci. 74, 2899–2916. doi:10.1007/s00018-017-
2504-2

Verbanck, M., Chen, C.-Y., Neale, B., and Do, R. (2018). Detection of widespread
horizontal pleiotropy in causal relationships inferred from Mendelian randomization
between complex traits and diseases. Nat. Genet. 50, 693–698. doi:10.1038/s41588-018-
0099-7

Wang, A., Li, Z., Sun, Z., Zhang, D., and Ma, X. (2023). Gut-derived short-chain fatty
acids bridge cardiac and systemic metabolism and immunity in heart failure. JNutr
Biochem. 120, 109370. doi:10.1016/j.jnutbio.2023.109370

Wang, H., Wang, Y., Li, X., Deng, X., Kong, Y., Wang, W., et al. (2022). Machine
learning of plasma metabolome identifies biomarker panels for metabolic syndrome:
findings from the China Suboptimal Health Cohort. Cardiovasc Diabetol. 21, 288.
doi:10.1186/s12933-022-01716-0

Witkowski, M., Weeks, T. L., and Hazen, S. L. (2020). Gut microbiota and
cardiovascular disease. Circ. Res. 127, 553–570. doi:10.1161/CIRCRESAHA.120.316242

Wolff Sagy, Y., Lavie, G., Ramot, N., Battat, E., Arbel, R., Reges, O., et al. (2024).
Effectiveness of bariatric metabolic surgery versus glucagon-like peptide-1 receptor
agonists for prevention of congestive heart failure. Nat. Med. 30, 2337, 2342. doi:10.
1038/s41591-024-03052-0

Zarconi, J. (2023). Heart failure. Ann. Intern Med. 176, 728–729. doi:10.7326/M23-
0349

Zhang, Y., Zhang, L., Li, Z., Liu, X., He, P., Gu, Y., et al. (2024). Gualou-Xiebai-Banxia-
Tang regulates liver-gut axis to ameliorate Metabolic Syndrome in HFD-fed mice.
Phytomedicine 132, 155320. doi:10.1016/j.phymed.2023.155320

Zuber, V., Grinberg, N. F., Gill, D., Manipur, I., Slob, E. A. W., Patel, A., et al. (2022).
Combining evidence from Mendelian randomization and colocalization: review and
comparison of approaches. Am. J. Hum. Genet. 109, 767–782. doi:10.1016/j.ajhg.2022.
04.001

Frontiers in Pharmacology frontiersin.org10

Guan et al. 10.3389/fphar.2025.1531384

https://doi.org/10.1042/CS20200128
https://doi.org/10.1038/s41588-022-01270-1
https://doi.org/10.1016/j.jacc.2015.02.018
https://doi.org/10.1111/apha.14193
https://doi.org/10.1111/apha.14193
https://doi.org/10.1001/jama.2017.17219
https://doi.org/10.1016/S0140-6736(18)32279-7
https://doi.org/10.1016/S0140-6736(18)32279-7
https://doi.org/10.1161/HYPERTENSIONAHA.120.15123
https://doi.org/10.1161/CIRCULATIONAHA.122.061846
https://doi.org/10.1007/s00535-024-02134-7
https://doi.org/10.1016/j.jacc.2021.12.011
https://doi.org/10.1161/CIRCRESAHA.124.324383
https://doi.org/10.1186/s12866-024-03416-z
https://doi.org/10.1186/s12866-024-03416-z
https://doi.org/10.1371/journal.pgen.1009922
https://doi.org/10.1016/j.aca.2013.06.044
https://doi.org/10.1016/j.diabres.2024.111725
https://doi.org/10.1186/s12916-023-02881-z
https://doi.org/10.1161/CIRCRESAHA.121.318241
https://doi.org/10.1161/CIRCRESAHA.121.318241
https://doi.org/10.1038/s41588-022-01164-2
https://doi.org/10.1038/s41588-022-01164-2
https://doi.org/10.3390/cells12081158
https://doi.org/10.1161/CIRCULATIONAHA.116.024545
https://doi.org/10.3390/ijms241813892
https://doi.org/10.3390/ijms241813892
https://doi.org/10.1016/j.jchf.2023.03.008
https://doi.org/10.1016/j.jchf.2023.03.008
https://doi.org/10.1007/s00125-017-4325-0
https://doi.org/10.1038/s41598-024-60872-3
https://doi.org/10.1093/aje/kwt084
https://doi.org/10.1007/s00395-021-00897-1
https://doi.org/10.1161/CIRCHEARTFAILURE.122.009972
https://doi.org/10.1016/j.chom.2023.12.013
https://doi.org/10.3390/antiox10060931
https://doi.org/10.1038/s41467-019-13690-5
https://doi.org/10.1038/s41467-019-13690-5
https://doi.org/10.1126/sciadv.adg7417
https://doi.org/10.1111/jgs.16305
https://doi.org/10.1007/s00018-017-2504-2
https://doi.org/10.1007/s00018-017-2504-2
https://doi.org/10.1038/s41588-018-0099-7
https://doi.org/10.1038/s41588-018-0099-7
https://doi.org/10.1016/j.jnutbio.2023.109370
https://doi.org/10.1186/s12933-022-01716-0
https://doi.org/10.1161/CIRCRESAHA.120.316242
https://doi.org/10.1038/s41591-024-03052-0
https://doi.org/10.1038/s41591-024-03052-0
https://doi.org/10.7326/M23-0349
https://doi.org/10.7326/M23-0349
https://doi.org/10.1016/j.phymed.2023.155320
https://doi.org/10.1016/j.ajhg.2022.04.001
https://doi.org/10.1016/j.ajhg.2022.04.001
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1531384

	Deciphering the causality of gut microbiota, circulating metabolites and heart failure: a mediation mendelian
	Introduction
	Methods
	Study design

	Data sources
	Exposure data
	Mediation factor
	Outcome data

	Selection of genetic instrumental variables (IVs)
	Statistical analysis methods
	Sensitivity analysis
	Single-cell data analysis
	Single-cell combined MR analysis
	Results
	Genetic IVs
	Casual links between gut microbiota and HF
	Casual links between plasma metabolites and HF
	Mediation effect analysis
	Replication analysis with finngen dataset
	Single-cell combined MR analysis revealed 10 candidate genes with remarkable differences in macrophage

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References


