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Introduction: Excessive fructose consumption is a significant driver of metabolic
disorders, including obesity, diabetes, non-alcoholic fatty liver disease and non-
alcoholic steatohepatitis primarily by promoting insulin resistance and fat
accumulation. Ketohexokinase C (KHK-C), a pivotal enzyme in fructose
metabolism, catalyzes the phosphorylation of fructose to fructose-1-
phosphate, initiating a cascade of downstream metabolic processes. In
contrast to glucose metabolism, KHK-C lacks negative feedback regulation,
allowing the continuous phosphorylation of fructose, which leads to
heightened levels of glucose, glycogen, and triglycerides in the bloodstream
and liver. While targeting KHK-C offers a promising therapeutic avenue, no drugs
have yet been approved for clinical use. Pfizer’s PF-06835919 has progressed to
phase II trials, demonstrating a reduction in liver fat and improved insulin
sensitivity, while Eli Lilly’s LY-3522348 also shows significant potential.
Nonetheless, there remains a critical need for the development of novel KHK-
C inhibitors that offer improved pharmacokinetics, enhanced efficacy, and
superior safety profiles.

Methods: In the present study, a comprehensive computational strategy was
employed to screen 460,000 compounds from the National Cancer Institute
library for potential KHK-C inhibitors. Initially, pharmacophore-based virtual
screening was used to identify potential hits, followed by multi-level
molecular docking, binding free energy estimation, pharmacokinetic analysis,
and molecular dynamics (MD) simulations to further evaluate the compounds.
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This multi-step approach aimed to identify compounds with strong binding affinity,
favorable pharmacokinetic profiles, and high potential for efficacy as KHK-C
inhibitors.

Results: Ten compounds exhibited docking scores ranging
from −7.79 to −9.10 kcal/mol, surpassing those of the compounds currently
undergoing clinical trials, PF-06835919 (−7.768 kcal/mol) and LY-3522348
(−6.54 kcal/mol). Their calculated binding free energies ranged
from −57.06 to −70.69 kcal/mol, further demonstrating their superiority over
PF-06835919 (−56.71 kcal/mol) and LY-3522348 (−45.15 kcal/mol). ADMET
profiling refined the selection to five compounds (1, 2, and 4–6), and molecular
dynamics simulations identified compound 2 as the most stable and promising
candidate compared to the clinical candidate PF-06835919.

Conclusion: These findings highlight compound 2 as a potent KHK-C inhibitor with
predicted pharmacokinetics and toxicity profiles supporting its potential for treating
fructose-driven metabolic disorders, warranting further validation.

KEYWORDS

fructose, diabetes, obesity, dyslipidemia, ketohexokinase

1 Introduction

The modern Westernized diet, which incorporates highly
refined sugars, has been linked to various metabolic disorders,
including obesity, non-insulin-dependent diabetes mellitus
(NIDDM), atherogenic dyslipidemia, non-alcoholic fatty liver

disease (NAFLD), and non-alcoholic steatohepatitis (NASH).
(Elliott et al., 2002; Basciano et al., 2005; Jung and Choi, 2014;
Kopp, 2019; Kazierad et al., 2021). Among these sugars, fructose is
widely used as a sweetening ingredient in various processed food
products consumed daily, such as soft drinks and desserts. (Chen
et al., 2017). Diets rich in fructose induce a wide range of metabolic

FIGURE 1
Metabolism of fructose and glucose in the liver: pathways and key enzymes involved.
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disturbances in both humans and animal models (Raben et al., 2002;
Maryanoff et al., 2011). Fructose is primarily metabolized in the
liver, where it bypasses the key regulatory checkpoint of
phosphofructokinase (PFK) in glycolysis, unlike glucose (Mayes,
1993; Swarbrick et al., 2008; Stanhope et al., 2009; Eberhart et al.,
2020; Zhu et al., 2023). When fructose enters the liver, it is converted
by ketohexokinase into fructose-1-phosphate (F1P) utilizing
adenosine triphosphate (ATP) as a cofactor (Figure 1). F1P is
then split by Aldolase B into two triose sugars: glyceraldehyde
and dihydroxyacetone phosphate (DHAP). These molecules are
subsequently converted into glyceraldehyde-3-phosphate (G3P),
which feeds into the glycolytic pathway, producing acetyl-CoA.
Acetyl-CoA plays a crucial role in fatty acid synthesis, leading to
the creation of triglycerides (Shepherd et al., 2021; Koene et al.,
2022). These triglycerides are packaged into VLDL particles and
transported into the bloodstream, increasing triglyceride levels
(Zhang et al., 2011). Unlike glucose, fructose metabolism lacks
regulation by high-energy signals like ATP or citrate, meaning
KHK-C continues to drive the pathway without inhibition. This
leads to continuous production of glycerol-3-phosphate and acetyl-
CoA, contributing to excess fat accumulation in the liver. This
unregulated pathway is a significant cause of non-alcoholic fatty
liver disease (NAFLD), elevated blood triglycerides
(hypertriglyceridemia), and increased risk of cardiovascular
diseases (Jensen et al., 2018; Elsaman and Mohamed, 2025).
Chronic high fructose consumption leads to insulin resistance
and metabolic syndrome, both of which increase the risk of
developing type 2 diabetes (Taskinen et al., 2019). Unlike
glucose, which is stored as glycogen, fructose is more readily
converted into fat, exacerbating metabolic issues. The
overconsumption of fructose, particularly from sugary foods,
underscores the importance of understanding its role in modern
health challenges (Ting, 2024).

Initially, fructose is phosphorylated by the enzyme KHK-C into
fructose-1-phosphate. Subsequently, it is cleaved by Aldolase B,
generating the trioses glyceraldehyde and dihydroxyacetone
phosphate. The resultant glyceraldehyde is then phosphorylated
to form glyceraldehyde-3-phosphate. The phosphorylated trioses
enter the glycolytic pathway at this step and are ultimately converted
into triglycerides and VLDL particles, promoting intrahepatic
lipogenesis. Glucose metabolism is regulated by the negative
feedback inhibition of phosphofructokinase by both ATP and
citrate. In contrast, KHK-C lacks negative feedback control,
allowing fructose to serve as an unregulated source of both
glycerol-3-phosphate and acyl-CoA, leading to elevated
triglyceride levels in both the blood and liver (Elliott et al., 2002).
Furthermore, a study in mice by Lanaspa and colleagues highlighted
the critical role of KHK-C in the pathogenesis of fructose-mediated
metabolic abnormalities, including dyslipidemia and hepatic
steatosis (Lanaspa et al., 2018). Similarly, Ishimoto et al.
demonstrated that KHK-null mice were protected from the
negative metabolic effects of a high-fructose diet, highlighting the
critical role of KHK in the development of fructose-induced
metabolic syndrome (Ishimoto et al., 2012). In light of these
nonclinical studies, KHK inhibition is emerging as a potential
therapeutic strategy for treating fructose-related metabolic
disorders (Huard et al., 2017; Liu et al., 2018; Gutierrez et al.,
2021; Kazierad et al., 2021; Shepherd et al., 2021). KHK plays a

crucial role in the initial stage of fructose metabolism and is
predominantly found in the liver, kidney, and brain, although it
is present in various other tissues. A deficiency in hepatic KHK leads
to essential fructosuria, a benign disorder, indicating that KHK may
be a potential target for therapeutic intervention. Inhibiting hepatic
KHK could prevent the metabolism of fructose (which constitutes
50% of dietary sucrose) and have a positive impact on various
metabolic processes (Herman and Birnbaum, 2021). KHK exists in
two isoforms, KHK-A and KHK-C, with KHK-C serving as the
predominant enzyme responsible for fructose metabolism in the
liver. This dominance is attributed to its significantly lower KM and
higher Vmax values compared to KHK-A, indicating greater catalytic
efficiency (Ishimoto et al., 2012; Gutierrez et al., 2021; Ferreira et al.,
2024). KHK-C is predominantly expressed in key organs involved in
fructose metabolism, such as the liver, kidney, and intestine, whereas
KHK-A is found at lower levels across various tissues (Diggle et al.,
2009). Both enzymes exhibit catalytic activity, and there is a high
degree of homology at the active site. While several pharmacological
treatments have been approved to manage excess glucose in the
body, no therapies specifically targeting fructose have been identified
(Durham et al., 2023). Previous efforts have focused on developing
potent small-molecule inhibitors of the KHK-C isoform, derived
from chemically distinct heterocycles, through synthetic
approaches, in silico studies, and natural product exploration, as
reported in the literature. Several of these molecules have
demonstrated potent inhibitory activity against the KHK-C
isoform (Maryanoff et al., 2011; Huard et al., 2017; Futatsugi
et al., 2020; Durham et al., 2023; Zhu et al., 2023). Among them,
compound I (Figure 2) has been identified as the most potent KHK
inhibitor to date. However, pharmacokinetic studies in rats revealed
low exposure levels, likely due to rapid metabolic clearance (Zhu
et al., 2023). Compound II (PF-06835919) (Figure 2), developed by
Pfizer through the optimization of lead compound III, has become a
top lead in Phase II clinical trials for the treatment of NAFLD
(Futatsugi et al., 2020; Zhu et al., 2023). Research indicates that this
compound induces a pharmacodynamic response in human
patients, leading to a reduction in liver fat and enhanced insulin
sensitivity (Gutierrez et al., 2021). Another notable clinical candidate
for KHK inhibition is compound IV (LY-3522348) (Figure 2),
introduced by Eli Lilly and Company in 2020, which
demonstrated strong efficacy (Durham, 2020; Durham et al.,
2023). Further, Heine et al. recently identified compound V (BI-
9787) (Figure 2), a potent zwitterionic KHK inhibitor known for its
high permeability and favorable oral pharmacokinetic
characteristics in rats (Heine et al., 2024). Similarly, authors from
TuoJie Biotech recently reported another structurally related KHK
inhibitor (compound VI), which shows potential for clinical
development (Zhu et al., 2023). Furthermore, exploration of
potential KHK-C inhibitors has extended beyond synthetic
compounds to include natural products, which have shown
promising activity in modulating this enzyme. Among the
purified phytochemicals (Figure 2), methoxy-isobavachalcone
(VII) from Psoralea corylifolia showed the strongest inhibition of
ketohexokinase isoform C, followed by osthole (VIII) from Angelica
archangelica, and cratoxyarborenone E (IX) from Cratoxylum
prunifolium, (Le et al., 2016). Additionally, computational studies
utilizing structure-based approaches were performed to identify
potent inhibitors. For example, Alturki applied an in silico
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method to discover potential KHK-C inhibitors from natural marine
organisms, with compound X identified as the top binders (Alturki,
2024). Furthermore, prenylated xanthone (XI), as demonstrated by
Elsaman et al., exhibited a high binding affinity towards KHK-C
(Figure 2) (Elsaman and Mohamed, 2025). Further, Tiwari et al.
recently identified the natural products saroglitazar and ferulic acid
as potential inhibit using in silico methods (Tiwari et al., 2025).
Despite these efforts, no drugs directly targeting the KHK-C isoform
have been clinically approved, and only PF-06835919 and LY-
3522348 have reached phase II clinical trials (Durham et al.,
2023; Zhu et al., 2023).

Characterizing the interactions between ketohexokinase-C
(KHK-C) and its inhibitors is crucial for advancing drug design
targeting fructose metabolism disorders. To investigate these
interactions, the binding modes of human KHK-C in complex
with three previously reported inhibitors PF-06835919 (PDB ID:
6W0Z), LY-3522348 (PDB ID: 8UG3), and an indazole derivative
(PDB ID: 3NC9) were examined (Figure 3) (Gibbs et al., 2010;
Futatsugi et al., 2020; Durham et al., 2023). This analysis helps
identify key binding features that can guide the development of
more effective KHK-C inhibitors. All three inhibitors PF-06835919,
LY-3522348, and the indazole derivative occupy the ATP-binding

pocket at the dimeric junction of chains A and B in the KHK-C
enzyme. The pyrazole ring of the indazole derivative (Figure 3A) and
the (S)-2-methylazetidine groups in PF-06835919 (Figure 3B) and
LY-3522348 (Figure 3C) occupy the ATP-ribose pocket, with their
methyl groups fitting into a small but essential sub-pocket defined by
Phe260, which typically accommodates the methylene of the ATP
ribose sidechain. Additionally, the N1 of the pyrimidine core in PF-
06835919 and LY-3522348 forms a hydrogen bond with a conserved
water molecule that interacts with the backbone NH of Phe245 and
the backbone CO of Cys282. However, these interactions are absent
in the indazole derivative, which instead forms a hydrogen bond and
a salt bridge between the positively charged nitrogen of its piperidine
ring and Asp27 from chain B. Similarly, LY-3522348 establishes
hydrogen bonds and a salt bridge between its positively charged
N4 of the piperazine ring and Asp194. In contrast, PF-06835919
engages in multiple polar interactions through its ionized
carboxylate group, forming hydrogen bonds with Gly255 and
Gly257, as well as a salt bridge with the positively charged center
of Arg108, facilitating polar interactions at the solvent-exposed area
of the ATP binding pocket. Further, the trifluoromethyl groups at
C6 in PF-06835919 and LY-3522348, along with the phenyl ring
attached to N1 of the pyrazole ring in the indazole derivative, are

FIGURE 2
Chemical structures of some of the reported potent KHK-C isoform inhibitors.
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positioned within a hydrophobic pocket formed by the proline loop
Pro246–Pro248. A similar interaction pattern has been reported for
BI-9787, a potent zwitterionic ketohexokinase inhibitor. However,
its crystal structure (PDB ID: 9FHD) has not yet been deposited in
the Protein Data Bank (PDB) (Heine et al., 2024).

Considering the urgent market need for effective treatments for
both NAFLD and NASH ((Elliott et al., 2002; Chen et al., 2017;
Romero et al., 2020; Skenderian et al., 2020; Zhu et al., 2023), the
discovery of potent inhibitors targeting the KHK-C isoform remains
imperative. Despite the availability of the 3D experimental structure
of KHK-C, a literature review revealed a very limited number of
studies utilizing combined computational methods to identify
potential KHK-C isoform inhibitors (Maryanoff et al., 2011;
Huard et al., 2017; Zhu et al., 2023). Furthermore, to the best of
our knowledge, no attempt has been made to screen large virtual
libraries for potential hits targeting the KHK-C isoform. Therefore,
this study aims to comprehensively apply multiple computational
approaches, including molecular docking, pharmacophore
modeling, molecular dynamics (MD) simulations, and MM-
GBSA calculations, to screen the NCI library of 460,000 small
molecules. The primary objective was to identify novel, high-

affinity KHK-C isoform inhibitors with favorable
pharmacokinetic and drug-likeness properties, which could serve
as potential leads for further experimental validation and drug
development efforts.

2 Materials and methods

The overall methodology for our research work has been
provided by the flow chart for identifying KHK-C isoform
inhibitors from the NCI library is illustrated in Figure 4, with
each step accompanied by its underlying rationale. All of our
research was conducted using the commercial Schrodinger Suite,
developed by Schrödinger, LLC (www.schrodinger.com). This suite
includes a variety of powerful programs such as Glide, Maestro,
Phase, Desmond, Prime, and QikProp, which were utilized for
molecular modeling, docking, pharmacophore generation,
molecular dynamics simulations, protein structure preparation,
and ADMET predictions. The suite consists of several advanced
tools, each with its specific functions. Glide is a molecular docking
software that predicts how small molecules bind to protein targets,

FIGURE 3
3D Interaction Diagram of Human KHK-C in Complex with PF-06835919, LY-3522348, and an Indazole Derivative. (A) Bindingmode of the indazole
derivative within the ATP-binding pocket of KHK-C. (B) Bindingmode of PF-06835919 within the ATP-binding pocket of KHK-C. (C) Bindingmode of LY-
3522348 within the ATP-binding pocket of KHK-C. Amino acid residues are labeled using three-letter codes. Hydrogen bonds are represented in green,
while salt bridges are depicted in pink.
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providing accurate docking results and scoring. Maestro acts as the
interface for Schrödinger’s computational chemistry tools, enabling
molecular modeling, visualization, and simulation tasks. Phase
specializes in pharmacophore modeling, identifying essential
molecular features that interact with biological targets, which is
crucial for drug discovery. Desmond is a molecular dynamics
simulation tool that analyzes the movement of atoms and
molecules over time, aiding in the study of protein-ligand
interactions and conformational changes. Prime is used to refine
and predict protein structures, improving the precision of 3D
models of proteins and peptides. Lastly, QikProp is designed to

predict ADMET (Absorption, Distribution, Metabolism, Excretion,
and Toxicity) properties, helping to evaluate the drug-likeness and
pharmacokinetics of compounds.

2.1 The target protein preparation

The` crystal structure of the human KHK-C protein,
complexed with the small molecule PF-06835919, was
obtained in PDB format from the freely accessible RCSB
Protein Data Bank (https://www.rcsb.org/) (accessed on

FIGURE 4
Virtual screening workflow for identification of KHK-C isoform inhibitors from a small molecules database.
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8 July 2023), PDB ID: 6W0Z, with a resolution of 2.30 Å
(Futatsugi et al., 2020). The structure consists of two chains,
A and B, from which chain B was selected for further analysis.
Subsequently, the protein structure was processed using the
Protein Preparation Wizard (Protein Preparation Workflow -
Schrödinger) module of Schrödinger Maestro software (2023-1,
http://www.schrodinger.com/) (Madhavi Sastry et al., 2013).
The Protein Preparation Wizard assists in detecting and
rectifying structural issues by adding hydrogen atoms,
completing missing side chains, and assigning proper bond
orders. The ionization and tautomeric states of amino acid
residues were adjusted by incorporating hydrogen atoms.
Epik was used to determine the protonation states of
heteroatoms, ensuring that hydrogen atoms were assigned as
they would occur at a physiological pH of 7.0 ± 2.0. Water
molecules located beyond 3.0 Å from the ligand were removed.
The downloaded protein underwent multiple steps, including
import and refinement, structural review and modifications,
and energy minimization. Missing residues and side chains were
reconstructed using the Prime tool, ensuring that key active
sites remain unaltered. Energy minimization was performed
with an RMSD cutoff of 0.30 Å using the OPLS4 (Optimized
Potential for Liquid Simulations) force field to achieve a stable,
low-energy conformation of the protein (Lu et al., 2021). The
optimized structures were saved in Maestro (.mae) format for
further predictive analysis.

2.2 Structure-based pharmacophore model
generation and pharmacophore-based
virtual screening

Pharmacophore model was generated using the Phase module
(Schrödinger Press, 2024) from Maestro (Dixon et al., 2006a; Dixon
et al., 2006b). The pharmacophore model was systematically
designed based on the critical interactions of the potent ATP-
competitive inhibitor PF-06835919 within the ATP-binding site
of KHK-C (Figure 5). To ensure the model accurately represents
the essential molecular interactions required for effective inhibition,
five key pharmacophoric features were identified. Two hydrophobic
(H) features were incorporated: one corresponding to the azetidine
ring, which interacts with the hydrophobic pocket formed by
Ala224, Trp225, and Ala226, and the other corresponding to the
trifluoromethyl group, which engages with the proline loop
composed of Pro246, Pro247, and Pro248. A ring-aromatic (R)
feature was assigned to the pyrimidine core to mimic the structural
positioning of the adenine moiety in ATP within the active site. A
hydrogen bond acceptor (HBA) feature was positioned at the
nitrogen of the pyrimidine ring, replicating the hydrogen
bonding interactions with Cys282 and Pro245 through water
bridges. Lastly, an anionic center (N) was included to represent
the carboxylate functional group, forming an essential salt bridge
with Arg108, a conserved residue involved in the catalytic
mechanism of KHK-C. In developing the pharmacophore model,

FIGURE 5
Pharmacophore Model Depicting Interaction Forces and Residues in the KHK-C Binding Site. Hydrophobic interactions (green color), Hydrogen
bond acceptors (HBA) (pink color), and ionic bond (red color).
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the importance of assigning feature requirements and
permissiveness was carefully considered to ensure the accurate
prediction of ligand-target interactions. Features such as the ring
and hydrophobic centers were assigned as required based on their
consistent presence in all active compounds, while the negative
center and hydrogen bond acceptor were assigned as permitted,
given their frequent occurrence in a significant proportion of the
active ligands. These features were generated from the minimized
crystal structure of KHK-C and then manually optimized. Exclusion
volume spheres were executed and all the rest parameters in the
program were kept as default. Pharmacophore-based virtual
screening was carried out using Phase screening protocol
impeded in Schrödinger software (http://www.schrodinger.com/).
Enrichment analysis was performed on a dataset of 45 ligands,
including 30 active compounds sourced from literature (Maryanoff
et al., 2011; Huard et al., 2017; Durham et al., 2023; Zhu et al., 2023;
Heine et al., 2024). The analysis utilized the Balanced Successive
Early Recognition Operating Characteristic (BEDROC), Receiver
Operating Characteristic (ROC), Area Under the Curve (AUC) and
Enrichment Factor (EF) metrics to assess early active recovery and
hit rates were calculated for the top N% of results. The generated
model represented the spatial arrangement of key features required
for KHK-C binding The Open National Cancer Institute (NCI)
database (https://cactus.nci.nih.gov/download/roadmap/(accessed
on 31 August 2023) was chosen for screening due to its extensive
collection of structurally diverse and bioactive compounds,
increasing the chances of identifying potential inhibitors. Its
publicly available and well-curated data ensures transparency and
reproducibility. Many compounds have known biological activity,
making them valuable for drug repurposing. The database facilitates
structure-activity relationship (SAR) studies, aiding in lead
optimization. Furthermore, Its relevance to drug discovery
further supports the identification of effective KHK-C inhibitors
(Voigt et al., 2001). For each molecule in the NCI library,
50 conformers were generated and the PhaseScreenScore (fitness
score) values (range from 0 to 1) were used to rank the molecules.
This score assesses the alignment of key vector features such as
acceptors, donors, and aromatic rings with the pharmacophore
model, as well as the overall structural overlap with the reference
ligand. A maximum of 0.5 Å RMSD (Root Mean Square Deviation)
from sphere centers was used as an input parameter for the prepared
library. Molecules displayed values less than 0.5 were rejected and
the top scored 9,000 molecules were submitted to multistage
molecular docking with Glide. All adjustable parameters were
maintained at their default settings. Based on the mapping of
pharmacophore features.

2.3 Multistage molecular docking and
MM-GBSA calculations

The virtual screening was performed using Glide (Schrödinger
Press, 2024) in the Schrödinger suite (Halgren et al., 2004; Friesner
et al., 2004; Friesner et al., 2006). The docking protocol was validated
by redocking PF-06835919 into the active site of KHK-C (PDB ID:
6W0Z). The docking prediction was considered successful when the
Root Mean Square Deviation deviation (RMSD) of the best-scored
conformation was less than 2.0 Å. Initially, the top-ranked

9,000 molecules obtained from the previous step were prepared
using Ligprep module of Schrödinger suite (LigPrep, 2023). The
original chirality of these molecules was retained and the potential
ionization forms were developed at pH 7.00 ± 2 units using Epik.
Subsequently these molecules were minimized using OPLS4 force
field (Lu et al., 2021) and a low energy conformer were generated for
each ligand. The grid box generated around the reference ligand was
used to dock the prepared molecules into the KHK-C binding site.
This grid box was specifically designed to encompass the entire
binding site, ensuring accurate molecular placement. We utilized the
receptor-based grid box generation tool in Schrödinger, with the
default settings applied. Next, the prepared ligands were submitted
to Virtual Screening Workflow (VSW) utility module within the
Schrödinger molecular modeling suite employing Glide software
(Halgren et al.; Friesner et al., 2004; Friesner et al., 2006). The VSW
protocol mainly involves three sequential docking methods, where
the outcome of each method is used as the input for the subsequent
one. In each docking step, we selected the top 10% of the molecules.
The 9,000 molecules were firstly filtered using Glide high-
throughput virtual screening (HTVS) mode. This was followed
by screening with standard precision (SP) mode. Lastly, Glide
extra precision (XP) docking algorithm was utilized for more
accurate docking calculations results. During the docking process,
the potential for the nonpolar regions of the target was softened by
adjusting the scaling factor of the van der Waals radii to 0.80, with a
cut-off value of 0.15, alongside the use of other default parameters.
One best pose was generated for each docked molecule and the Glide
XP docking score was used to select the best molecules. Further,
enrichment analysis was performed to validate the docking protocol
by distinguishing known KHK-C inactives, sourced from the
literature (Maryanoff et al., 2011; Le et al., 2016; Huard et al.,
2017; Zhu et al., 2023) with IC50 values greater than 1 μM, from
active compounds. With IC50 values greater than 1 μM, from active
compounds. The performance was assessed using a Receiver
Operating Characteristic (ROC) curve, which evaluated the
ability of the docking protocol to correctly rank actives over
inactives. To assess the consistency and robustness of the
docking results, cross-validation was further performed using
AutoDock 4.2, a freely available software program (http://
autodock.scripps.edu/). The docking procedure involved
preparing the ligand and protein structures, followed by grid
generation and optimization of the docking parameters. The
binding affinities of the identified hits were calculated based on
the docking scores. 3D and 2D molecular interactions modes were
generated using Maestro interface of Schrödinger suite. The
obtained best 10 molecules based on their docking score were
selected for further estimation of their binding free energies.
Prime module (Prime | Schrödinger) (Jacobson et al., 2002;
Jacobson et al., 2004) interfaced with Schrödinger suite was used
to calculate the molecular mechanics-generalized Born surface area
(MM-GBSA) free energy for each molecule. The Post docking
generated Pose Viewer File (PVF) for each of the top-ranked
10 molecules was employed as input file for energy computation.
The VSGB 2.0 solvation model and OPLS4 force field (Lu et al.,
2021) were utilized to calculate free energy parameters, based on a
previously reported protocol (Elsaman et al., 2024). Ligands were
ranked using the MMGBSA ΔG binding energy score. Compounds
that exhibited higher XP docking scores and binding energies
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compared to the co-crystal ligand were subjected to in silico
pharmacokinetics analysis. The 2D and 3D binding interactions,
essential for visualizing molecular structures, were generated using
the advanced tools and capabilities offered by the Schrödinger
Maestro interface.

2.4 ADMET profiling

The drug-likeness evaluation is an essential and fundamental
step in selecting potential compounds from a gathered chemical
dataset. The ADMET profiles and drug-likeness descriptors of the
top 10 hits, identified through their high MMGBSA ΔG binding
energy scores, were assessed using the computational tool QikProp
(Schrödinger Release 2023-1) (QikProp Schrödinger) (Laoui and
Polyakov, 2011). Each calculated descriptor was evaluated to ensure
compliance with the permissible ranges. The ligand structures were
prepared with LigPrep to optimize their 3D structures and assign
protonation states at a physiological pH of 7.4. The QikProp tool,
using its default settings, predicted various parameters such as LogP,
solubility (LogS), CNS permeability, human oral absorption, and
toxicological risks. All calculations were performed in standalone
mode within the Schrödinger software environment. QikProp
provides recommended ranges for molecular properties, based on
an analysis of 95% of known drugs. The results, including key
descriptors and ADME predictions, were exported into an MS Excel
file for further analysis.

2.5 Molecular dynamics (MD) simulations

After the selection of the top five docked complexes (molecules
1, 2, 4–6) based on Glide XP scores, binding energy evaluations, and
favorable ADMET and physicochemical properties, molecular
dynamics (MD) simulations were conducted to assess the
stability of the interactions between the selected compounds and
the KHK-C binding site. These simulations were compared to the
performance of the co-crystal ligand PF-06835919. To provide a
more comprehensive analysis, the study also included simulations
with the apoprotein, allowing for a better understanding of the
behavior and interactions of both the unbound protein and protein-
ligand complexes in physiological conditions. MD simulations,
which typically predict ligand binding rankings by solving
Newton’s classical equations of motion (Hildebrand et al., 2019).
The simulations were carried out using the Desmond package
(Desmond Schrödinger Life Science) from Schrödinger LLC
(Bowers et al., 2006). A 100 ns classical all-atom MD simulation
was conducted on a Linux (Ubuntu) desktop server equipped with
GPU-enabled Schrodinger Desmond software to investigate the
stability of the top-ranked complexes docked with KHK-C. The
complexes were placed in an orthorhombic box with 10 Å × 10 Å ×
10 Å dimensions and solvated with the Simple Point Charge (SPC)
water model. A Na + counterion was introduced to neutralize the
system, and additional 0.15 M NaCl was added to mimic the
physiological ionic strength. The default relaxation protocol was
applied, including energy minimization and pre-equilibration steps
to refine and optimize the energy of the complexes. This protocol
incorporated restrained minimization, followed by gradual

relaxation of the solvated system, employing OPLS4 force field
parameters (Lu et al., 2021) to eliminate steric clashes, weak
interactions, and distorted geometries. The system was
maintained under physiological conditions during the simulation
at 310 K and 1 bar using the NPT ensemble. Structures were
optimized for enhanced flexibility before the simulation, with
trajectories saved every 100 ps for subsequent analysis. Upon
completion, parameters such as Root Mean Square Deviation
(RMSD), Root Mean Square Fluctuation (RMSF), and protein-
ligand interactions were extracted from the MD trajectories and
analyzed using Desmond’s event analysis module. The stability of
the interactions, including hydrogen bonding, hydrophobic
contacts, and π-π stacking, was monitored throughout the
simulation. For visualization of the simulation events and
interactions, the Simulation Interaction Diagram (SID) tool in
Maestro was used.

3 Results

3.1 Structure-based pharmacophore model
generation and pharmacophore-based
virtual screening

Pharmacophore modeling is most commonly used in virtual
screening to identify compounds that demonstrate the desired
pharmacological action (Voet et al., 2014). In the present study,
the X-ray crystal structure of KHK-C (PDB: 6W0Z) in complex with
compound PF-06835919 (IC50 value 0.01 µM) was retrieved from
the Protein Data Bank. The protein crystal structure has a resolution
of 2.30 Å.

In this study, we performed hypothesis validation to evaluate the
generated hypothesis for identifying potential KHK-C inhibitors.
Key validation metrics demonstrated strong classification
performance between actives and decoys (Supplementary Figure
S1). The RIE (Ranking Information Entropy) was 1.50, indicating
that actives were ranked significantly higher than decoys. The AUC
value was 0.62, reflecting effective accumulation of actives over time.
BEDROC values for different alpha parameters (160.9, 20.0, and 8.0)
were 1.000, 1.000, and 0.977, respectively, supporting the model’s
capability to prioritize actives in the ranking list. In the screening
results (Supplementary Figure S1), 56.7% of the actives were ranked
within the top 20% of the decoys, showing significant enrichment.
The Enrichment Factor (EF) for different sample sizes, including
1%, 2%, and 5%, remained consistently high, with EF’ values
confirming favorable enrichment. The hit rate among the top
50 ligands was 52%, and the average number of outranking
decoys was 1. The EF value for recovering 50% of actives was
7.5, further confirming the model’s predictive strength. These results
indicate that the hypothesis is effective in identifying potential KHK-
C inhibitors.

The pharmacophore model identified key features essential for
ligand binding. The ring feature and two hydrophobic features were
present in all retrieved active compounds, leading to their
classification as required. The negative center was observed in
14 out of 26 retrieved actives (53.8%) and was assigned as
permitted. The hydrogen bond acceptor feature appeared in
13 out of 26 actives (50%) and was also assigned as permitted.
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The finalized pharmacophore model was used to screen the
prepared NCI library, yielding 9,000 selected molecules for
structure-based virtual screening. These compounds were ranked

based on phase fitness scores to evaluate their potential as active
inhibitors. The selected candidates were further analyzed for their
ability to interact with the target.

FIGURE 6
Chemical structures of the top 10 hits and the co-crystallized ligand (PF-06835919).
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3.2 Multistage molecular docking and
MM-GBSA calculations

Pharmacophore-based virtual screening retrieved over
9,000 compounds. High-throughput virtual screening (HTVS)
reduced this to 700 compounds, followed by standard precision
(SP) docking, which identified 37 compounds with better docking
scores than the reference ligand. Glide extra precision (XP) docking
further refined the selection to 10 hits with docking scores
between −7.79 and −9.10 kcal/mol, all outperforming the co-
crystallized ligand (−7.76 kcal/mol). Hit 6 had the highest
docking score (−9.10 kcal/mol). The chemical structures of the
top-ranked hits are shown in Figure 6.

The docking protocol was validated by re-docking the co-
crystallized ligand into the same binding pocket. The Root Mean

Square Deviation (RMSD) between the docked conformation and
the native ligand was low (0.245 Å) (Figure 7), confirming the
reliability of the docking protocol used in this study.

Enrichment analysis was performed using the top 10 hits as
actives and 18 inactives (IC50 > 1 µM) from the literature. The
chemical structures of the inactives are provided in Supplementary
Figure S2, along with the ROC curve and % screen figure for visual
reference. The screening workflow demonstrated high accuracy,
achieving a perfect ROC score of 1.0 (Supplementary Figure S3),
confirming flawless discrimination between actives and inactives.
BEDROC values of 1.0 highlighted optimal early recognition of
actives, while a relative initial enrichment (RIE) of 4.54 validated
strong separation between active and inactive compounds. The area
under the accumulation curve (0.89) demonstrated high ranking
efficiency. The enrichment factor (EF = 4.6) remained stable across

FIGURE 7
Interactions of the reference ligand PF-06835919 with the KHK-C binding site (PDB ID: 6W0Z). Panel (A) shows the crystal structure of the target
enzyme bound to PF-06835919. Panels (B, D) depict the 3D and 2D enzyme-ligand interactions, respectively. In Panels (B, D), the binding site residues
(Phe245, Pro246, Pro247, Pro248, Gly255, Gly257, ASH258, and Cys282) are indicated using their three-letter amino acid codes. H-Bonds are
represented by green dotted lines in Panel (B) and by magenta lines in Panel (D). Panel (C) illustrates the superimposition of the docked reference
ligand PF-06835919 (in blue) with the original ligand (in yellow), showing an RMSD value of 0.245 Å.
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all sample sizes, ensuring reliability. Notably, 100% of actives were
ranked within the top 20% (Supplementary Figure S3), with no
actives outranked by inactives. These results confirm the robustness
of the virtual screening workflow in accurately identifying potential
KHK-C inhibitors.

Cross-validation of the molecular docking results was conducted
using AutoDock 4.2. All identified hits exhibited more favorable
docking scores (−7.4 to −8.5 kcal/mol) compared to the reference
ligand PF-06835919 (−7.3 kcal/mol). Hit 4 showed a slightly lower
docking score of −7.0 kcal/mol, while the remaining hits consistently
outperformed the reference ligand. These results confirm the
reliability of the virtual screening protocol in identifying potential
KHK-C inhibitors. The interactions of the identified hits with the
enzyme binding site were analyzed, with the results presented in

Table 1 and Figures 8, 9. The reference ligand occupied the ATP site
of KHK-C, forming two hydrogen bonds with Gly255 and
Gly257 and a water bridge with ASH258 through its carboxylate
group at the solvent-exposed area of the ATP binding site. Additionally,
it formed two water bridges with a conserved water molecule,
establishing hydrogen bonds with the backbone NH of Phe245 and
the backbone CO of Cys282 (Figure 7) via the N3 of the pyrimidine
ring. The trifluoromethyl group at C-6 of the pyrimidine ring interacted
hydrophobically with the proline loop (Pro245, Pro246, and Pro247),
while the 2-methylazetidinyl ring system at C2 occupied theATP-ribose
pocket, interacting hydrophobically with Ala224, Trp225, Ala226, and
Phe260. Hits 1–10 exhibited a similar interaction pattern (Table 1;
Figure 9) to the reference ligand and previously reported potent KHK-C
inhibitors, engaging with key residues in the binding site.

TABLE 1 Glide XP docking scores, binding free energy, and molecular interactions of the top 10 ranked hits, the co-crystallized ligand, and the reference
inhibitors LY-3522348 and BI-9787 in the KHK-C enzyme binding site.

No PubChem
ID

Docking Score
kcal/mol

Binding Energy
kcal/mol

Interactions

H-Bonds Water Bridges Ionic

Co-crystallized ligand (PF-
06835919)

‒7.76 ± 0.24 ‒56.71 ± 0.30 Gly255 (1.79 Å)
Gly257 (2.10 Å)

Phe245 (1.85 and 1.92 Å)
ASH258 (1.84 and 2.76 Å)
Cys282 (1.85 and 1.91 Å)

-

LY-3522348 ‒6.96 ± 0.012 ‒45.15±0.86 - Phe245 (1.92 and 1.92 Å)
Cys282 (1.91 and 1.91 Å)

-

BI-9787 ‒6.540 ± 0 ‒28.98 ± 0 Glu227
(1.92 Å)

Glu227 (1.99 and 2.14 Å) Glu227
(4.75 Å)

1 6622312 ‒8.23 ± 0.51 ‒61.13 ± 0 Gly255 (2.38 Å)
Gly257 (1.97 Å)

ASH258 (1.87 and 2.76 Å)
(2.72 and 2.76 Å)
Cys282 (1.92 and 1.92 Å)

-

2 5341928 ‒9.07 ± 0.15 ‒59.61 ± 1.32 Gly255 (1.84 Å)
Gly257 (1.84 Å)

Phe245 (1.87 Å and 1.91 Å)
ASH258 (2.01 Å and 2.76 Å) and (1.68 Å
and 2.76 Å)
Cys282 (1.87 Å and 1.92 Å)

-

3 5344383 ‒8.26 ± 0.16 ‒61.04 ± 1.17 Gly257 (2.20 Å) Phe245 (2.09 Å and 1.91 Å)
Cys282 (2.09 Å and 1.91 Å)
ASH258 (1.86 Å and 2.76 Å)

-

4 2937484 ‒8.69 ± 0.55 ‒57.82 ± 1.01 Gly257 (2.16 Å) Cys282 (1.92 Å and 1.92 Å) -

5 3239510 ‒9.03 ± 0.02 ‒70.69 ± 0.82 Glu227 (2.40 Å)
Gly255 (2.46 Å)
Gly257 (2.40 Å)

Glu227 (2.02 Å and 2.38 Å)
Phe245 (1.99 Å and 1.91 Å)
ASH258 (1.67 Å and 2.76 Å)
Cys282 (2.25 Å and 1.92 Å)

-

6 3241840 ‒9.10 ± 0.31 ‒63.35 ± 0.04 Gly255 (1.99 Å)
Gly257 (2.30 Å)

Phe245 (1.91 Å and 1.72 Å)
ASH258 (2.49 Å and 2.76 Å)
Cys282 (1.92 Å and 1.72 Å)

-

7 1090138 ‒7.79 ± 0.25 ‒61.21 ± 0 Thr253 (1.91
Å)
Gly255 (2.70 Å)
Gly257 (2.36 Å)

Cys282 (1.92 Å and 1.76 Å) -

8 847629 ‒8.05 ± 0.47 ‒57.06 ± 1.6 Gly257 (2.25 Å) Phe245 (1.96 and 1.91 Å)
Cys282 (1.96 and 1.92 Å)

-

9 5307853 ‒8.08 ± 0.08 ‒60.52 ± 0.74 Gly255 (2.16 Å)
Gly257 (1.90 Å)

PHE245 (2.06 Å and 1.91 Å)
Cys282 (2.06 Å and 1.92 Å)

-

10 3239092 ‒8.67 ± 0.34 ‒64.39 ± 2.01 Arg108 (2.08
Å)
Gly255 (2.17 Å)
Gly257 (1.95 Å)

Phe245 (1.71 Å and 1.91 Å)
Cys282 (1.71 Å and 1.92 Å)

-

Frontiers in Pharmacology frontiersin.org12

Elsaman et al. 10.3389/fphar.2025.1531512

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1531512


FIGURE 8
2D Ligand-Protein Interaction Diagram displaying the interactions between two ligands, hit 1 and hit 2, and the KHK-C enzyme (PDB ID: 6W0Z).
Panel (A) illustrates the binding of hit 1, where hydrogen bonds (shown as magenta arrows) are formed with specific amino acid residues, identified by
their three-letter codes. Panel (B) depicts the interaction of hit 2 with the KHK-C enzyme, similarly, highlighting the hydrogen bonds in magenta arrows
and detailing the involved amino acid residues.
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As shown in Figure 6, hits 1–10 share structural similarities, all
containing a 1,2-dialkoxyphenyl group, which plays a crucial role in
interactions with the enzyme binding site. This group contributes to
four of the five essential pharmacophoric features. Through its
oxygen atoms, it forms water bridges with a conserved water
molecule, establishing hydrogen bonds with the backbone of
Phe245 and Cys282. Additionally, it engages in hydrophobic
interactions with the proline loop (PRO246–PRO248) via one of
its methyl groups, while the other group interacts similarly with the
ATP-ribose pocket, which comprises Ala224, Trp225, Ala226, and

Phe260. The identified hits feature C=O and NH functionalities at
the center of their structures, actively participating in hydrogen
bonding with Glu227, Gly255, Gly257, and Asn258 at the solvent-
exposed opening of the binding site. Additionally, these hits
incorporate diverse aromatic or heteroaromatic ring systems that
extend into the solvent-exposed region, forming interactions with
the key residue Arg108 (2.6–2.94 Å), which stabilizes the protein-
ligand complex. Superposition of the top-ranked hits within the
protein-reference ligand complex of the X-ray crystal structure
(Figure 9) reveals that these hits occupy the ATP-binding pocket

FIGURE 9
3D interaction pattern of the docked top-ranked hits and the co-crystallized Ligand in the KHK-C binding site (PDB ID: 6W0Z). This figure illustrates
the 3D interaction pattern of the docked top-ranked hits and the co-crystallized ligand in the human KHK-C binding site (PDB ID: 6W0Z). Key interacting
residues, including Arg108, Phe245, Pro246, Pro247, Pro248, Gly255, Gly257, and Cys282, are highlighted. The co-crystallized ligand is displayed in red,
while the superimposed top-ranked hits are shown in cyan, providing a clear comparison of their binding modes and interactions within the
active site.

FIGURE 10
General structural features of the identified hits 1-10.
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similarly to the reference ligand, establishing comparable interaction
forces. However, unlike the reference ligand, they extend beyond the
pocket into the solvent-exposed region, engaging favorably with
additional residues. As shown in Figure 10, the identified hits share
common structural features, providing insights for the future design
and development of novel KHK-C inhibitors for treating fructose-
related metabolic diseases.

The identified hits, characterized by planar aromatic residues,
effectively occupied the ATP-binding pocket, which is naturally flat
and well-suited for their accommodation. These hits formed
conserved water-mediated interactions with Phe245, resembling
the N1 interaction of the adenine moiety in ATP. Additionally,
the triphosphate group of ATP established multiple hydrogen bonds
with Gly255, Gly257, and Asp258, a pattern also observed with hits
1–10. Salt bridges with Arg108 further stabilized ATP within the
binding site, ensuring proper orientation for catalysis. Conversely,
D-fructose binds within a sterically constrained pocket, where it is
stabilized by a bidentate interaction between its HO-3′ and HO-4′
groups with Asp15, along with hydrogen bonds involving HO-1′
and Asn45, HO-4′ and HO-5′ with Gly41 and Asn42, and HO-6′
with Glu29B. These interactions play a crucial role in maintaining
fructose in an optimal position for phosphorylation. Among the key
catalytic residues, Asp258 functions as a conjugate base, extracting
the 1-OH proton from D-fructose to facilitate a 1-O-nucleophilic
attack on the γ-phosphate of ATP. Meanwhile, Arg108 serves a dual
function by stabilizing ATP’s negatively charged phosphate groups
and ensuring their correct alignment for efficient phosphate transfer.
Hits 1–10 exhibited strong interactions with these catalytic residues,
effectively obstructing the active site and inhibiting fructose
phosphorylation. By sterically hindering ATP binding and
disrupting the alignment of D-fructose, these hits interfered with
the enzyme’s function. Notably, the identified hits, with their
extended structures, interacted with both the ATP and fructose-
binding sites, forming hydrogen bonds and water bridges with
Gly41, Asn42, and Asn45, similar to the interactions observed

with fructose. This suggests a dual-inhibition mechanism. As
shown in Figures 8, 9, this dual-targeting approach could
enhance both potency and specificity, making these hits
promising candidates for drug development. By simultaneously
impairing substrate recognition and catalytic activity, these
inhibitors offer a novel therapeutic strategy for enzyme modulation.

Molecular docking simulation is an important computational
tool for identification of ligand’s binding pattern and orientation
within a specific macromolecular drug target. However, this tool is
not sufficient for ranking multiple ligands based on their
experimental affinities. In this regard, a successful structure-based
drug design approach should rely on accurate prediction of the
energetic basis of ligand-target interactions (El Khoury et al., 2019).
To that end, it has been reported that, calculating the ligand free
binding affinity to a specific target using molecular mechanics
integrated with the generalized Born Surface Area (MM-GBSA)
method can significantly improve the accuracy of this prediction
(Kaus et al., 2015; El Khoury et al., 2019). Accordingly, the free
binding affinity of the top-ranked hits 1–10 towards the KHK-C
binding site were computed and the results are provided in Table 2.

The best MM-GBSA energy value was represented by the most
negative score (Alameen et al., 2023). While the reference ligand
(PF-06835919) had an MM-GBSA energy value of −56.71 kcal/mol,
the MM-GBSA values of the top-ranked hits ranged
from −57.06 to −70.69 kcal/mol, indicating their relatively high
affinity for the KHK-C binding pocket. Among these, the
dihydroquinazoline derivative, hit 5, exhibited the highest
binding affinity with an MM-GBSA energy value of −70.69 kcal/
mol. To gain insights into the contributions of various interaction
forces to the total binding energy of each hit, their ΔG binding values
were decomposed into individual components. As shown in Table 2,
van der Waals energy (MM-GBSA dG Bind vdW), electrostatic
energy (MM-GBSA dG Bind Coulomb), non-polar solvation energy
(MM-GBSA dG Bind Lipo), and, to a lesser extent, hydrogen
bonding (MM-GBSA dG Hbond) were the major contributors to

TABLE 2 Binding free energy of the top-ranked hits and the contribution of individual energy terms to the total binding energy.

Compound
No

MMGBSA dG
Bind

Coulomb

MMGBSA
dG Bind
Hbond

MMGBSA
dG Bind
Lipo

MMGBSA
dG Bind
Packing

MMGBSA
dG

Bind vdW

MMGBSA dG
Bind

Covalent

MMGBSA
dG Bind
Solv GB

Co-crystallized
ligand

‒28.26 ‒4.22 ‒13.31 0.0 ‒52.59 1.57 40.09

1 ‒34.39 ‒3.56 ‒15.45 ‒0.56 ‒47.39 4.18 36.03

2 ‒49.68 ‒3.78 ‒14.02 0 ‒4.50 5.08 47.29

3 ‒36.19 ‒2.69 ‒17.54 ‒0.02 ‒51.58 3.41 43.57

4 ‒42.18 ‒3.89 ‒11.84 0.0 ‒36.36 3.34 33.11

5 ‒46.73 ‒4.56 ‒19.42 ‒0.25 ‒58.87 8.51 50.63

6 ‒44.41 ‒2.87 ‒19.36 ‒0.03 ‒59.40 8.15 54.58

7 ‒31.29 ‒3.19 ‒12.98 ‒1.35 ‒49.28 3.77 33.12

8 ‒34.41 ‒3.25 ‒14.43 ‒0.23 ‒38.55 0.46 33.36

9 ‒27.98 ‒2.99 ‒15.71 0.0 ‒54.91 7.25 33.83

10 ‒38.32 ‒3.71 ‒16.83 0.0 ‒49.07 4.77 38.78

The bold values represent the docking scores and binding free energy of the reported inhibitors.
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the strong binding of all hits as well as the reference ligand. In
contrast, covalent energy (MM-GBSA dG Bind Covalent) and
electrostatic solvation energy (MM-GBSA dG Bind Solv GB)
made unfavorable contributions. The results indicate that the
identified hits interacted with the KHK-C binding site through
forces similar to those of the reference ligand. Notably,
hydrophobic interactions, followed by electrostatic interactions,
played a key role in the enhanced binding of the top-ranked hits
1–10 and the reference ligand to the target binding pocket. Hits
incorporating diethoxy groups attached to the benzene ring hits 5, 6,
and 10 exhibited the highest binding affinities (−70.69, −63.35,
and −64.39 kcal/mol, respectively). These hits interacted with two
hydrophobic loops (Pro246, Pro247, and Pro248) as well as another
loop (Ala224, Trp225, Ala226, and Phe260), further supporting the
critical role of hydrophobic interactions in strong binding.

A comparative study of binding free energy was conducted to
assess the interaction of the identified hits 1–10 with the target
relative to reported inhibitors (Table 1). The identified hits exhibited
stronger binding energies compared to PF-06835919 (−56.71 kcal/
mol). Hits such as hit 1 (−61.13 kcal/mol), hit 3 (−61.04 kcal/mol),
and particularly hit 5 (−70.69 kcal/mol) showed more favorable
binding energies, indicating a stronger affinity for the target. Hit 5
stood out with the lowest binding energy, suggesting tighter binding
than PF-06835919. Hits 6 (−63.35 kcal/mol) and 9 (−60.52 kcal/
mol) also exhibited stronger binding than PF-06835919, implying
superior binding affinity with the target. The IC50 values for the
reported inhibitors (Figure 2) were 0.01 μM for PF-06835919,
0.02 μM for LY-3522348, and 0.012 μM for BI-9787. Although
the IC50 values for the identified hits 1–10 had not been
experimentally determined, their stronger binding energies
suggest they could demonstrate similar or enhanced potency
compared to the reported inhibitors. LY-3522348 (−45.15 kcal/
mol) and BI-9787 (−28.98 kcal/mol) exhibited weaker binding
affinities than the identified hits. These findings support the
potential of the identified hits as more effective inhibitors with
potentially higher potency and stronger target affinity than the
current reported inhibitors.

3.3 ADMET profiling

The top-ranked hits 1–10 exhibited acceptable ADME-
compliance scores (Supplementary Table S1), indicating that
their property descriptor values fell within the permissible range
for approved drugs. The calculated oral bioavailability of these hits
ranged from 80% to 100%, surpassing BI-9787’s bioavailability of
68% in rats and comparable to or better than LY-3522348 (87%) and
PF-06835919 (95% in rats). Hits 1, 3, 6, and 7 showed moderate
blood-brain barrier (BBB) penetration (QPlogBB values from −1 to
0), while the remaining hits exhibited low BBB penetration
(QPlogBB values <−1). This suggests that the identified hits are
more likely to be specific to their hepatic target, minimizing the risk
of neurological side effects.

The permeability profiles of hits 1–10 indicated superior
membrane permeability, with predicted MDCK cell permeability
values ranging from 113 nm/s to 2,242 nm/s, compared to LY-
3522348 (4.4%) and BI-9787 (low permeability). The hits exhibited a
higher permeability, suggesting enhanced intestinal absorption,

improved oral bioavailability, and potential for better
systemic uptake.

The hits 1–10 demonstrated weak binding to human serum
albumin, as indicated by their low QPlogKhsa values, suggesting a
higher free drug fraction. This can potentially enhance their
therapeutic efficacy by improving distribution and target
engagement. In contrast, BI-9787 has more than 99% plasma
protein binding, and LY-3522348 is 85% bound. Lower plasma
protein binding may allow for greater systemic exposure and a more
rapid onset of action, reducing the risk of off-target interactions
associated with high plasma protein binding.

The number of predicted metabolic reactions for hits 1–10
ranged from 4 to 7, indicating moderate metabolism in the liver.
This suggests that the compounds may reach their site of action in
their intact forms. However, their metabolic stability is slightly lower
than LY-3522348, which is predicted to undergo only 1 metabolic
reaction. The higher metabolic stability of LY-3522348 may need to
be considered for optimization in the identified hits.

For the assessment of cardiotoxicity, hits 1, 2, 4–6 exhibited
predicted IC50 values above −5 for hERG inhibition, suggesting a
lower likelihood of cardiotoxicity. In contrast, hits 3, 7–10 exhibited
higher IC50 values (>–5), indicating potential cardiotoxicity and
were excluded from further investigations. LY-3522348 also
exhibited a minimal risk of cardiac toxicity, with an IC50 value
of −4.6, further confirming its favorable safety profile. The identified
hits may require further optimization to reduce the risk of
cardiotoxicity.

Scaffold replacement was performed on the excluded hits 3,
7–10 to reduce cardiotoxicity while maintaining their
pharmacological potential. Ten replacements were conducted for
each excluded hit, focusing on reducing lipophilicity, decreasing
planarity, minimizing basicity, and enhancing hydrogen bonding.
Among these, three analogs (Figure 11) demonstrated significant
reduction in cardiotoxicity.

For hit 8, the replacement of the pyrazine ring with a bicyclo
[2.2.1]heptane structure resulted in hit 8a, which showed a docking
score of −8.01 kcal/mol and successfully reduced cardiotoxicity to
the specified limit. For hit 10, the first analog (hit 10a) involved
replacing piperazine with 1,2,3-triazole, yielding a docking score
of −7.8 kcal/mol, which was still higher than the co-crystal ligand.
This modification reduced the basicity and planarity, minimizing
hERG channel interactions. The second analog for hit 10 (hit 10b)
replaced piperazine with 2,5-diketopiperazine, achieving a docking
score of −8.4 kcal/mol. This modification reduced basicity and
increased polarity, leading to reduced lipophilicity and improved
solubility. The reduction in cardiotoxicity for these modifications
makes them promising candidates for further evaluation.

In general, the outcome of this analysis indicates that hits 1,2
and 4-6 displayed acceptable drug-likeness, pharmacokinetics
features, and safety profiles, thereby denoting their potential as
KHK-C inhibitors for future treatment of fructose
metabolic diseases.

3.4 MD simulations

Based on the predicted ADMET properties, hits 1, 2, and 4-6
were selected for 100 ns MD simulation. The stability of the best-
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docked conformations of the hits and the reference ligand (PF-
06835919) were monitored in an aqueous system using the
Desmond package. The RMSD values for the protein C-α atoms
relative to the initial structure were used to evaluate complex
stability. The reference ligand exhibited an average RMSD of
2.41 ± 0.43 Å, with unstable fluctuations throughout the
simulation (Table 3; Figure 12). For hits 1 and 2, the average
RMSD values were 2.47 ± 0.31 Å and 2.34 ± 0.27 Å, respectively,
with initial instability for the first 15 ns before stabilizing. The
RMSD of the hit 4 complex was 2.24 ± 0.34 Å, showing drift up to
40 ns, after which it stabilized. Hit 5 reached equilibrium quickly
(average RMSD = 2.19 ± 0.41 Å) but exhibited higher deviations
after 65 ns? Hit 6 showed an average RMSD of 2.36 ± 0.38 Å,
reaching a steady state around 23 ns? Overall, the structures of
KHK-C remained stable after complexation with hits 1, 2, and 4-6,
with RMSD profiles better than the reference ligand, indicating their
potential as KHK-C inhibitors. The RMSF analysis (Figure 13)
showed that the protein residues fluctuated mainly in two
regions (>3 Å): Lys22-Arg31 and Asn102-Asn107, which are not
critical for enzyme inhibition. Critical residues in the ATP binding

site (Phe245, Pro246, Pro247, Thr253, Gly255, Gly257, Phe260, and
Cys282) displayed limited mobility (RMSD <1.5 Å) during the
simulation. Hits 2, 5, and 6 enhanced the stability of
Arg108 compared to the reference ligand. Protein-ligand
interaction analysis was performed to examine intermolecular
forces. As shown in Supplementary Figures S4–S9, different types
of non-bonding interaction forces were involved in the
ligand–protein complex overall stability. The reference ligand
showed stable Water Bridge interactions with critical residues
Phe245 and Cys282, and moderate hydrophobic interactions with
Ala226 and Phe260 (Supplementary Figure S4). For hit 1
(Supplementary Figure S5), dimethoxy groups formed multiple
Water Bridges with Cys282 and Phe245, while the amide
carbonyl group interacted with Thr253, Gly255, Ala256, and
Gly257. These interactions were weaker than those of the
reference ligand, indicating lower KHK-C inhibitory potential for
hit 1. Hit 2 (Supplementary Figure S6) retained the non-bonding
interactions observed in molecular docking and formed new stable
Water Bridges with Phe245 and Cys282. It also formed H-Bonds
with key residues like Glu227, Gly255, Gly257, and ASH258. The
interaction fraction was greater than 1, suggesting stronger
interactions compared to the reference ligand. A new moderately
stable H-Bond was observed with Thr253, which persisted for 40%
of the simulation time. However, the interaction with Arg108 was
minimal compared to the reference ligand. To improve binding
affinity, an analog of hit 2 was designed by introducing a free
carboxylate group at the terminal side chain to form an ionic bond
with Arg108 (Figure 14). Glide XP docking of this analog resulted in
an improved docking score (−9.23 kcal/mol) and the formation of an
ionic bond with Arg108, alongside two H-Bonds.

Regarding hits 4–6 (Supplementary Figures 7–9), they
demonstrated relatively weak binding interactions during MD
simulations with the key residues Phe245 and Cys282 (hits 5 and
6), or Gly255 and Gly257 (hit 4), compared to the reference ligand,

FIGURE 11
Chemical structures of hit 10, scaffold-modified hit10a, scaffold-modified hit 10b, hit 8, and scaffold-modified hit8a, illustrating the structural
modifications made to reduce cardiotoxicity. The replaceable groups, highlighted in red, indicate the modifications.

TABLE 3 C-α RMSD values, including minimum, maximum, and average for
the top-ranked hits 1, 2 and 4-6 complexes with KHK-C (PDB ID: 6W0Z).
This also includes comparative data for the co-crystallized ligand complex.

Protein Maximum Minimum Average

6W0Z-Co-crystallized ligand 3.72 1.12 2.41

6W0Z-Hit 1 3.73 1.11 2.47

6W0Z-Hit 2 3.90 1.40 2.34

6W0Z-Hit 4 3.67 1.21 2.24

6W0Z-Hit 5 3.58 1.02 2.19

6W0Z-Hit 6 3.70 1.29 2.36
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suggesting their lower potential for KHK-C inhibition. Hit 2
interacted with the most critical residues in the enzyme binding
pocket and created intermolecular bonds that were stronger than
those made by the reference ligand. Moreover, hit 2 did not engage
in binding interactions with residues conserved in KHK-A (Asp15,
Asn42, Asn45, Arg141, and Lys174), indicating its potential
selectivity for targeting KHK-C. In terms of the number of
interactions, hit 2 formed similar numbers of H-Bonds with the
enzyme’s binding site residues like the reference ligand (averaging
1.15 and 1.52, respectively), but the number of Water Bridges
established by hit 2 were nearly twice those formed by the
reference ligand, averaging 5.5 and 2.9, respectively (Table 4;
Figures 15A, B). Additionally, hit 2 exhibited a higher number of
hydrophobic contacts compared to the reference ligand (averaging
1.47 and 0.64, respectively) (Table 4; Figure 15C). These results
indicate that hit 2 demonstrated more stable interactions compared
to the reference ligand, highlighting its potential as a potent KHK-C
inhibitor worthy of experimental validation.

The RMSF analysis of the co-crystal ligand and hit 2 (Figure 16)
shows fluctuations in key atoms, providing insights into their
stability and flexibility within the KHK-C binding pocket. For the
co-crystal ligand, the carboxylate oxygens showed high fluctuations
(~2.73 Å) (Figure 16A), indicating dynamic behavior despite
forming strong interactions with Gly255, Gly257, and Arg108.
The CF3 group fluorines exhibited fluctuations (~1.2–2.3 Å),
suggesting conformational shifts in the proline loop
(Pro246–Pro248). Hydrogen bond occupancy analysis revealed
intermittent interactions with Gly255, Gly257, and Arg108
(Supplementary Figure S4), with occupancy below 20%, and
weak water-bridge interactions with Asn58. In contrast, hit
2 showed lower RMSF values, indicating greater stability within
the binding pocket. Atoms 2 and 3 (oxygens) (Figure 16B) showed
limited fluctuations (below 1 Å) and participated in stable water-
bridge interactions with Cys282 and Phe245, with hydrogen bond
occupancy above 95% (Supplementary Figure S6). Methyl groups
24, 25, and 26 interacted with the hydrophobic pocket formed by

FIGURE 13
RMSF plot for the simulated docked complexes of the top-ranked hits 1,2, and 4-6 as well as the reference ligand during 100 ns MD simulations. The
X-axis displayed the number of the target’s residues, while the Y-axis showed the RMSF value of each simulated docked complex.

FIGURE 12
RMSD plot for the simulated docked complexes of the top-ranked hits 1,2, and 4-6 as well as the reference ligand during 100 nsMD simulations. The
X-axis represents the time in ns and the Y-axis represents the RMSD value of each complex in Å.
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Pro246–Pro248, showing minimal fluctuations (below 1.2 Å). Atom
5 (oxygen) showed a high RMSF of 2.6 Å, with intermittent
interactions with Thr253, while atom 8 (nitrogen) exhibited a
stable interaction with Glu227 (RMSF of 1.3 Å). The terminal
methoxy group (atoms 1 and 23) displayed the highest flexibility,
with fluctuations exceeding 4 Å. Overall, the water-bridge and
hydrophobic interactions of hit 2 contributed to a more stable
binding mode, with minimal fluctuations observed in key atoms,
resulting in a stronger and more stable binding within the KHK-C
binding site. These findings support hit 2’s potential as a promising
KHK-C inhibitor.

The radius of gyration (rGyr) analysis over a 100 ns simulation
(Figure 17) revealed key insights into the structural stability and
flexibility of the ligands within the KHK-C binding site. The
reference ligand maintained a compact conformation with an
average rGyr of 4 Å, indicating stable binding with minimal
fluctuations. In contrast, hit 2 exhibited a higher rGyr,

fluctuating between 5.5 and 6 Å, suggesting a more extended
conformation and greater flexibility within the binding pocket.
This flexibility likely allowed dynamic interactions with key
catalytic residues, enhancing its binding potential. Both ligands
showed overall structural stability, with no significant deviations
or drastic conformational changes observed during the simulation.
The differences in rGyr between the ligands indicated that hit 2’s
flexibility might enable the exploration of additional binding modes,
potentially optimizing its interactions with critical residues. This
flexibility, facilitated by multiple rotatable bonds, contrasts with the
reference ligand’s rigid multicyclic structure. The analysis supports
that hit 2 maintained its integrity within the KHK-C catalytic site,
suggesting its potential for further investigation as a
promising inhibitor.

In KHK-C, hit 2 demonstrated a significantly higher binding
affinity than PF-06835919, with a docking score of −9.07 and a
binding affinity of −59.61 kcal/mol, compared to PF-06835919s

TABLE 4 Maximum, minimum, and average counts of H-Bonds, Water Bridges and hydrophobic interactions formed during a 100 ns MD simulation of Hit
2 and the reference ligand complexes with KHK-C (PDB: 6W0Z).

Molecule Number of H-Bonds Number of Water Bridges Number of hydrophobic
interactions

Maximum Minimum Average Maximum Minimum Average Maximum Minimum Average

Reference ligand 4 1 1.52 8 1 2.9 3 1 0.64

Hit 2 4 1 1.15 11 1 5.5 5 1 1.47

FIGURE 14
3D interaction diagram of the designed hit 2 analog, showing the ionic interaction and two hydrogen bonds between the newly introduced
carboxylate group and Arg108.
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docking score of −7.76 and binding affinity of −56.71 kcal/mol. Hit
2 also exhibited dynamically stable behavior, forming a more stable
complex and establishing stronger interactions with critical residues,
both in type and intensity, compared to PF-06835919. For KHK-A,
docking studies using the crystal structure (PDB ID: 8OME) revealed
that hit 2 displayed a stronger binding affinity, with a binding free
energy of −56.8 kcal/mol and a docking score of −6.79, surpassing PF-
06835919, which had a binding affinity of −3.49 kcal/mol and a docking
score of −4.36. These results suggest that hit 2 exhibited superior

binding affinity and stability, interacting effectively with key residues
in both KHK-C and KHK-A, making it a promising candidate for dual
inhibition of both isoforms.

4 Discussion

Identification of new lead molecules using Computer Aided
Drug Design (CADD) is considered one of the major approaches of

FIGURE 15
Interaction forces established during the 100 ns MD Simulation of hit 2 and the reference ligand with the KHK-C Binding Site (PDB: 6W0Z). Panel (A)
H-Bonds: Displays the hydrogen bond interactions formed during the simulation between hit 2 (and the reference ligand) and the KHK-C binding site.
Panel (B)Water Bridges: illustrates the number of water bridges formed between the ligands and the binding site throughout the MD simulation. Panel (C)
Hydrophobic Interactions: Shows the hydrophobic interactions established during the simulation, indicating their contribution to ligand stability
within the binding site.
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contemporary pre-clinical drug discovery process (Prajisha et al.,
2022). CADD typically involves the use of various computational
techniques and software programs, often in combination, to search
for new drug candidates. Over the last 2 decades, CADD has had a
significant impact on pre-clinical drug development, and its use

continues to expand as virtual screening and molecular docking
technologies evolve. As a result, several clinically useful drugs have
been developed with the aid of CADD during this period (Sabe et al.,
2021). Accordingly, the present study employed multiple
computational methods, such as pharmacophore modeling,

FIGURE 16
RMSF analysis of ligand dynamics in the KHK-C binding pocket. (A) Co-crystallized ligand (B) Hit 2.

FIGURE 17
Variations in rGyr of hit 2 and the reference ligand, highlighting flexibility and structural rigidity within the KHK-C catalytic site.
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molecular docking, MM-GBSA, prediction, ADME-T profiling, and
MD simulation (as shown in Figure 3), to explore the NCI small
molecule library for novel KHK-C isoform inhibitors. These
inhibitors are expected to play a crucial role in the future
treatment of metabolic diseases associated with excessive fructose
intake, including NIDDM, atherogenic dyslipidemia, NAFLD,
NASH, and obesity. Particularly, obesity is considered a major
health problem due to its substantial contribution to increasing
the risk of several disorders, such as myocardial infarction, stroke,
and various types of cancer (Bluher, 2019). Thus far, the currently
available prevention and treatment strategies have not resulted in
significant improvement, and the global prevalence of this condition
continues to rise. Additionally, the limitations of effective obesity
treatments often necessitate bariatric surgery as a last resort.
However, it is evident that bariatric surgery cannot address the
global increase in obesity prevalence (Busebee et al., 2023) and it
may cause both early and late complications (Dahan et al., 2024).
The former includes infection, an elevated risk of blood clots,
anastomotic leaks, and bleeding at the surgical site, which may
necessitate blood transfusion (Vitiello et al., 2021; Golzarand et al.,
2022; Ab Majid et al., 2024). The latter includes the formation of
gallstones due to rapid weight loss, nutritional deficiencies from
reduced food intake and absorption, and weight regain owing to
various factors, such as stretching of the stomach, poor dietary
habits, hernias particularly at the site of the surgical incision and
ulcers that may develop at the connection sites in the gastrointestinal
tract (Valera et al., 2023; Ab Majid et al., 2024; Wang et al., 2024;
Yakout et al., 2024). Therefore, discovering new medications
targeting KHK-C may be more effective in reducing excess
weight for individuals with severe obesity than relying on
bariatric surgical intervention.

Pharmacophore modeling is most commonly used in virtual
screening to identify compounds that demonstrate the desired
pharmacological action (Voet et al., 2014). In the present study,
the X-ray crystal structure of KHK-C (PDB: 6W0Z) in complex with
compound PF-06835919 (IC50 value 0.01 µM) was retrieved from
the Protein Data Bank. The protein crystal structure has a resolution
of 2.30 Å. In this study, we performed hypothesis validation to
evaluate the generated hypothesis for identifying potential KHK-C
inhibitors. This validation was conducted using a dataset of
experimentally validated compounds, which were sourced from
literature (Maryanoff et al., 2011; Huard et al., 2017; Durham
et al., 2023; Zhu et al., 2023; Heine et al., 2024), as actives and
decoys. The dataset included 45 ligands, consisting of 30 actives and
15 decoys. The active compounds were carefully ranked according to
their binding affinities, and the overall validation process was
designed to rigorously assess the ability of the hypothesis to
predict active compounds. Key metrics of hypothesis validation
showed promising results. The ROC value was 0.81 (Supplementary
Figure S1), demonstrating good classification performance between
actives and decoys. Additionally, the RIE (Ranking Information
Entropy) was 1.50, indicating a well-ordered ranking where actives
were placed significantly higher than the decoys. The AUC stood at
0.62, a robust indication of the hypothesis’s ability to accumulate
actives effectively over time. The BEDROC values for different alpha
values (160.9, 20.0, and 8.0) were 1.000, 1.000, and 0.977,
respectively, further affirming the hypothesis’s strength in
identifying actives early in the ranking list. This high BEDROC

value reflects the model’s capability to capture the relevant active
compounds with high precision in the top-ranked positions. When
analyzing the results of the screening (Supplementary Figure S1),
56.7% of the actives were positioned in the top 20% of the ranked
decoys. This suggests a significant enrichment, supporting the idea
that the hypothesis is proficient in distinguishing between active and
inactive compounds. The EF for various sample sizes, such as 1%,
2%, and 5%, were consistently high, with EF values of 1.5 and EF and
EF’* values showing favorable outcomes, especially for higher
percentages of actives recovered. The hit rate at the top
50 ligands was 52%, demonstrating a high success rate for
recovering active compounds from the top ranks. Furthermore,
the validation reported an average number of outranking decoys
of 1, indicating a solid performance in ensuring that active
compounds were ranked above the majority of decoys. The
Enrichment Factor (EF’) for recovering 50% of actives was 7.5,
with EF values showing even higher enrichment as more actives
were considered, demonstrating strong prediction power in
identifying relevant compounds. Overall, the validation results
confirm that the hypothesis is highly effective for identifying
potential KHK-C inhibitors. The consistent and high enrichment
factors, robust ROC scores, and favorable BEDROC values,
combined with the high hit rate in the top-ranked compounds,
demonstrate the validity of the hypothesis as a reliable method for
discovering KHK-C inhibitors. These findings provide strong
support for advancing the hypothesis as a foundational tool for
further in silico studies and experimental validation in KHK-C
inhibitor research.

The accurate assignment of feature requirements and
permissiveness in a pharmacophore model is crucial for
optimizing the prediction of ligand-target interactions, ensuring
that the model can efficiently guide the design of novel compounds
with potent binding affinity and specificity. In this context, the ring
feature and the two hydrophobic features appeared in all the
retrieved active compounds, highlighting their crucial role in
ligand binding and interaction with the target. This consistent
presence across all active compounds strongly suggested that
these features were essential for achieving binding affinity and
specificity. As a result, these features were assigned as required in
the pharmacophore model, ensuring that any ligand that did not
meet these criteria would likely fail to interact effectively with the
target. On the other hand, the negative center appeared in 14 out of
the 26 retrieved actives, which corresponded to approximately
53.8% of the actives. While not as universally present as the
required features, its frequent occurrence in more than half of
the active compounds indicated its significant role in enhancing
binding and stability. Thus, this feature was assigned as permitted,
meaning that ligands could still be considered active even if they did
not include a negative center, but its presence provided an added
advantage in interactions. Similarly, the hydrogen bond acceptor
feature appeared in 13 out of the 26 retrieved actives, accounting for
50% of the actives. This showed that while the hydrogen bond
acceptor feature was not absolutely required, it was still an important
component for a substantial portion of the active ligands. Therefore,
it was also assigned as permitted, allowing flexibility in the
pharmacophore model, where the feature could be present in
some active compounds but was not mandatory for binding.
Overall, the ring and hydrophobic features were considered
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essential for ligand binding and assigned as required, while the
negative center and hydrogen bond acceptor features were observed
in a significant portion of the actives and were therefore assigned as
permitted. This allowed for a flexible pharmacophore model that
could accommodate slight variations in ligand structure while still
predicting potent binding interactions with the target.

The generated pharmacophore model was then employed to
screen the prepared NCI library. This selection process resulted in a
total of 9,000 molecules being chosen for structure-based virtual
screening. The compounds were ranked according to their phase
fitness scores, which were utilized to assess their potential as active
inhibitors. The selected molecules were then analyzed for their
ability to interact effectively with the target, aiming to identify
the most promising candidates for further investigation and
development.

Molecular docking has become a crucial component of the in
silico drug design process, as it predicts protein-ligand interactions
at the molecular level (Agu et al., 2023). In this study, the number of
molecules obtained from pharmacophore-based virtual screening
(over 9,000) was too large to be efficiently processed using Glide
extra precision (XP) docking. Therefore, high-throughput virtual
screening (HTVS) was initially employed, reducing the number of
compounds to 700. Subsequent docking using the standard
precision (SP) mode yielded 37 compounds with docking scores
better than that of the reference ligand. These 37 compounds were
then subjected to Glide XP docking, identifying 10 hits with docking
scores ranging from −7.79 to −9.10 kcal/mol, all of which
outperformed the co-crystallized ligand (−7.76 kcal/mol). Among
the top-ranked hits, hit 6 exhibited the highest docking score
(−9.10 kcal/mol). The chemical structures of the top-ranked hits
are provided in Figure 6. The docking protocol was validated by re-
docking the co-crystallized ligand into the same binding pocket. The
Root Mean Square Deviation deviation (RMSD) between the docked
conformation and the native ligand was low (0.245 Å) (Figure 7),
confirming the reliability of the docking protocol used in this study.

Further, to validate the virtual screening workflow, we
conducted a rigorous enrichment analysis using a dataset
consisting the top 10 hits identified in this study as actives and
18 inactives sourced from the literature (Maryanoff et al., 2011; Le
et al., 2016; Huard et al., 2017; Zhu et al., 2023). The chemical
structures of the inactives are provided in Supplementary Figure S2,
along with the ROC curve and % screen figure for visual reference.
The inactives were selected based on their reported IC50 values
(>1 µM against KHK-C), ensuring a robust dataset for evaluating the
screening model’s performance. Further, the enrichment analysis
demonstrated exceptional virtual screening performance, achieving
a perfect ROC score of 1.0, as depicted in the ROC curve in
Supplementary Figure S3. This indicates flawless discrimination
between actives and inactives. Additionally, BEDROC values of
1.0 confirmed optimal early recognition of actives, highlighting
the model’s ability to prioritize true hits at the top of the ranked
list. The relative initial enrichment (RIE) value of 4.54 further
validated the strong separation between actives and inactives,
underscoring the model’s precision. The area under the
accumulation curve (0.89) reflected high ranking efficiency,
demonstrating that the actives were consistently placed in the top
ranks. Enrichment factors (EF = 4.6) remained stable across all
sample sizes, indicating the model’s reliability and scalability.

Notably, 100% of the actives appeared within the top 20% of the
ranked results, as illustrated in the % screen figure in Supplementary
Figure S3, with no actives outranked by inactives. This precise
prioritization ensures that true hits are efficiently identified
without false positives. The actives were well-distributed within
the top positions, further reinforcing the model’s effectiveness.
The consistent performance across multiple metrics ROC,
BEDROC, RIE, and EF validates the robustness of the virtual
screening workflow. These results confirm the model’s ability to
accurately identify potential KHK-C inhibitors, making it a reliable
tool for drug discovery efforts.

The docking program AutoDock 4.2 was employed to perform
cross-validation of the molecular docking results. The outcomes
demonstrated that all identified hits exhibited more favorable
docking scores (−7.4 to −8.5 kcal/mol) compared to the reference
ligand PF-06835919, which showed a binding affinity of −7.3 kcal/
mol. Notably, hit 4 displayed a slightly lower docking score
of −7.0 kcal/mol, while the remaining hits consistently
outperformed the reference ligand. These findings further
reinforce the reliability of the virtual screening protocol and
validate the potential of the identified hits as promising KHK-C
inhibitors. Next, the interactions of these hits with the enzyme
binding site were analyzed and the results are indicated in Table 1 as
well as Figures 8, 9. It has been shown that the reference ligand
occupied the ATP site of KHK-C (Zhu et al., 2023). It displayed two
H-Bonds with Gly255 and Gly257 and one Water Bridge with
ASH258 by its carboxylate group at the solvent exposed area of
the ATP binding site. Moreover, it created additional two Water
Bridges with a conserved water molecule forming H-Bonds with the
backbone NH of Phe245, and the backbone CO of Cys282 (Figure 7),
by the N3 of the pyrimidine ring. Furthermore, the trifluromethyl
group attached to C-6 of the pyrimidine ring was within the range of
the hydrophobic interactions with the proline loop (Pro245,
Pro246 and Pro247). On the other hand, the 2-methylazetidinyl
ring system attached to C2 of the pyrimidine ring filled the ATP-
ribose pocket and exhibited hydrophobic interactions with Ala224,
Trp225, Ala226 and Phe260. Hits 1–10 demonstrated an interaction
pattern (Table 1; Figure 9) similar to that of the reference ligand and
the previously reported potent KHK-C inhibitors, interacting with
the critical residues of the binding site (Maryanoff et al., 2011; Huard
et al., 2017; Futatsugi et al., 2020; Zhu et al., 2023). As shown in
Figure 6, hits 1–10 share structural similarities, with all containing a
1,2-dialkoxyphenyl group that plays a crucial role in interactions
with the enzyme binding site. This group contributes to four out of
five essential pharmacophoric features. Through its oxygen atoms, it
forms water bridges with a conserved water molecule, establishing
hydrogen bonds with the backbone of Phe245 and Cys282.
Additionally, it engages in hydrophobic interactions with the
proline loop (PRO246–PRO248) via one of its methyl groups.
Meanwhile, the other group interacts similarly with the ATP-
ribose pocket, which comprises Ala224, Trp225, Ala226, and
Phe260. Notably, the identified hits feature C=O and NH
functionalities at the center of their structures, which actively
participate in hydrogen bonding with Glu227, Gly255, Gly257,
and Asn258 at the solvent-exposed opening of the binding site.
Moreover, these hits incorporate diverse aromatic or heteroaromatic
ring systems that extend into the solvent-exposed region, forming
interactions with the key residue Arg108 (2.6–2.94 Å), a stabilizing
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factor for the protein-ligand complex (Chan et al., 2010).
Superposition of the top-ranked hits within the protein-reference
ligand complex of the X-ray crystal structure (Figure 9) reveals that
these hits occupy the ATP-binding pocket similarly to the reference
ligand, establishing comparable interaction forces. However, unlike
the reference ligand, they extend beyond the pocket into the solvent-
exposed region, engaging favorably with additional residues. As
shown in Figure 10, the identified hits share common structural
features, offering valuable insights into the future design and
development of novel KHK-C inhibitors for treating fructose-
related metabolic diseases. The identified hits, characterized by
planar aromatic residues, effectively occupied the ATP-binding
pocket, which is naturally flat and well-suited for their
accommodation. These hits formed conserved water-mediated
interactions with Phe245, resembling the N1 interaction of the
adenine moiety in ATP. Additionally, the triphosphate group of
ATP established multiple hydrogen bonds with Gly255, Gly257, and
Asp258, a pattern also observed with Hits 1–10. Salt bridges with
Arg108 further stabilized ATP within the binding site, ensuring
proper orientation for catalysis. Conversely, D-fructose binds within
a sterically constrained pocket, where it is stabilized by a bidentate
interaction between its HO-3′ and HO-4′ groups with Asp15, along
with hydrogen bonds involving HO-1′ and Asn45, HO-4′ and HO-
5′ with Gly41 and Asn42, and HO-6′ with Glu29B. These
interactions play a crucial role in maintaining fructose in an
optimal position for phosphorylation. Among the key catalytic
residues, Asp258 functions as a conjugate base, extracting the 1-
OH proton from D-fructose to facilitate a 1-O-nucleophilic attack
on the γ-phosphate of ATP. Meanwhile, Arg108 serves a dual
function by stabilizing ATP’s negatively charged phosphate
groups and ensuring their correct alignment for efficient
phosphate transfer. Hits 1–10 exhibited strong interactions with
these catalytic residues, effectively obstructing the active site and
inhibiting fructose phosphorylation (Sigrell et al., 1998; Gibbs et al.,
2010). By sterically hindering ATP binding and disrupting the
alignment of D-fructose, these hits interfered with the enzyme’s
function. Notably, the identified hits with their extended structures,
interacted with both the ATP and fructose-binding sites, forming
hydrogen bonds/water bridges with Gly41, Asn42, and Asn45,
similar to the interactions observed with fructose. This suggests a
dual-inhibition mechanism. This dual-targeting approach could
enhance both potency and specificity, making these hits
promising candidates for drug development. By simultaneously
impairing substrate recognition and catalytic activity, these
inhibitors offer a novel therapeutic strategy for enzyme modulation.

Molecular docking simulation is an important computational
tool for identification of ligand’s binding pattern and orientation
within a specific macromolecular drug target. However, this tool is
not sufficient for ranking multiple ligands based on their
experimental affinities. In this regard, a successful structure-based
drug design approach should rely on accurate prediction of the
energetic basis of ligand-target interactions (El Khoury et al., 2019).
To that end, it has been reported that, calculating the ligand free
binding affinity to a specific target using molecular mechanics
integrated with the generalized Born Surface Area (MM-GBSA)
method can significantly improve the accuracy of this prediction
(Kaus et al., 2015; El Khoury et al., 2019). Accordingly, the free
binding affinity of the top-ranked hits 1-10 towards the KHK-C

binding site were computed and the results are provided in Table 2.
The best MM-GBSA energy value was represented by the most
negative score (Alameen et al., 2023). While the reference ligand
(PF-06835919) had an MM-GBSA energy value of −56.71 kcal/mol,
the MM-GBSA values of the top-ranked hits ranged
from −57.06 to −70.69 kcal/mol, suggesting their relatively high
affinity for the KHK-C binding pocket. The dihydroquinazoline
derivative, hit 5, exhibited the highest binding affinity, with an MM-
GBSA energy value of −70.69 kcal/mol. To gain insights into the
contributions of various interaction forces to the total binding
energy of each hit, their ΔG binding values were decomposed
into individual components. As shown in Table 2, van der Waals
energy (MM-GBSA dG Bind vdW), electrostatic energy (MM-GBSA
dG Bind Coulomb), non-polar solvation energy (MM-GBSA dG
Bind Lipo), and, to a lesser extent, hydrogen bonding (MM-GBSA
dG Hbond) were the major contributors to the strong binding of all
hits as well as the reference ligand. In contrast, covalent energy
(MM-GBSA dG Bind Covalent) and electrostatic solvation energy
(MM-GBSA dG Bind Solv GB) made unfavorable contributions.
The results of this analysis indicate that the identified hits interacted
with the KHK-C binding site through forces similar to those of the
reference ligand. Notably, hydrophobic interactions, followed by
electrostatic interactions, played a key role in the enhanced binding
of the top-ranked hits (1–10) and the reference ligand to the target
binding pocket. Interestingly, hits incorporating diethoxy groups
attached to the benzene ring—hits 5, 6, and 10—exhibited the
highest binding affinities (−70.69, −63.35, and −64.39 kcal/mol,
respectively). These hits interacted with two hydrophobic loops
(Pro246, Pro247, and Pro248) as well as another loop (Ala224,
Trp225, Ala226, and Phe260), further supporting the critical role of
hydrophobic interactions in strong binding.

To contextualize our findings, a comparative study of binding
free energy was conducted to assess the interaction of the identified
hits 1–10 with the target relative to reported inhibitors. The
identified hits exhibited promising potential, as their binding
energies (Table 1) suggested stronger interactions with the target
compared to PF-06835919 (−56.71 kcal/mol). Hits such as hit 1
(−61.13 kcal/mol), hit 3 (−61.04 kcal/mol), and particularly hit 5
(−70.69 kcal/mol) showed more favorable binding energies,
indicating a stronger affinity for the target. Hit 5 in particular
stood out with the lowest binding energy, suggesting a potentially
tighter binding than PF-06835919. Additionally, hit 6 (−63.35 kcal/
mol) and hit 9 (−60.52 kcal/mol) also exhibited stronger binding
than PF-06835919, implying that these compounds may have
superior binding affinity and interaction with the target. The IC50

values for the reported inhibitors were 0.01 μM for PF-06835919,
0.02 μM for LY-3522348, and 0.012 μM for BI-9787 (Figure 2).
Although the IC50 values for the identified hits 1–10 had not been
experimentally determined, their stronger binding energies suggest
they could demonstrate similar or even enhanced potency
compared to the reported inhibitors. Stronger binding often
correlates with lower IC50 values, and thus, the identified hits
might have offered better efficacy in inhibiting the target.
Furthermore, LY-3522348 (−45.15 kcal/mol) and BI-9787
(−28.98 kcal/mol) exhibited weaker binding affinities than the
identified hits, further supporting the potential of these new
compounds as more effective inhibitors. Overall, these results
suggest that the identified hits represented a promising new class
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of inhibitors with potentially higher potency and stronger target
affinity than the current reported inhibitors.

In the process of drug discovery and development, an
undesirable set of Absorption, Distribution, Metabolism,
Excretion, and Toxicity (ADMET) properties is the primary
reason for a drug candidate’s failure in the clinical phase, rather
than its biodynamic activity (Wu et al., 2020). Therefore, evaluating
these properties as early as possible can reduce the drug attrition rate
and minimize both time and cost (Cook et al., 2014; Yamashita and
Hashida, 2004). In this study, we used the QikProp module
embedded in the Schrödinger molecular modeling software to
evaluate the pharmacokinetics and drug-like properties of the
top-ranked hits 1–10. This module estimates the ADMET
properties of a drug candidate by generating physically relevant
descriptors (Ntie-Kang et al., 2013; Schrödinger Press. QikProp
3.4 user manual. New York). As shown in Supplementary Table
S1, the overall ADME-compliance scores (#stars) of the top-ranked
hits were within the acceptable limit (#stars = 0), suggesting that
their property descriptor values fell within the permissible range of
corresponding values for approved drugs. One critical aspect of
modern drug development is evaluating a drug candidate’s
bioavailability in the early stages of discovery, as this directly
influences its pharmacological efficacy (Stielow et al., 2024).
Efficient drug absorption depends on several parameters,
including lipid/water solubility, permeability, interactions with
specific transporters in the gut wall, and the metabolic processes
that occur before the drug is absorbed into systemic circulation
(Caldwell et al., 1995). The calculated descriptors employed for the
evaluation of oral bioavailability are the predicted aqueous solubility
(QPlogS), the predicted apparent Caco-2 cell permeability in nm/sec
(QPPCaco), the predicted human oral absorption (% scale) and
adherence to ‘Rule of Three’ (Jorgensen’s rule). Moreover, the
rigidity of a molecule defined by the number of rotatable bonds
(#rotor) can also affect its oral absorption (Veber et al., 2002). As
depicted in Supplementary Figure S1, the top-ranked hits displayed
calculated values for these parameters that fell within the specified
limits. Therefore, the identified hits are expected to demonstrate
high oral bioavailability (>80%), except for hit 4, which is expected
to show average oral bioavailability (<70%). However, this can easily
be improved using the prodrug approach by modifying the–NH2

group attached to the C2 position of the thiazole ring (Jornada et al.,
2015). Our identified hits exhibited excellent predicted oral
bioavailability, ranging from 80% to 100%. This surpasses the
experimentally determined bioavailability of BI-9787 (68% in
rats) and is comparable to or even better than the clinical
candidate LY-3522348 (87%) and PF-06835919 (95% in rats).
These findings underscore the strong potential of our hits as
promising orally available drug candidates (Futatsugi et al., 2020;
Durham et al., 2023; Heine et al., 2024). We then investigated the
potential of these hits to penetrate the blood-brain barrier (BBB)
using computational metrics, including the brain/blood partition
coefficient (QPlogBB) and the predicted apparent MDCK cell
permeability (QPPMDCK) as additional parameters. Hits 1, 3, 6,
and 7 exhibited moderate BBB penetration (QPlogBB values of −1 to
0), while the remaining hits were predicted to show a very low rate of
BBB penetration (QPlogBB values <−1). It was also observed that
the apparent MDCK cell permeability of hits 1, 3, 6, and 7
(Supplementary Figure S1) was greater than 500, suggesting their

potential to cross the BBB. Since the site of action of the identified
hits is the liver (Maryanoff et al., 2011), achieving therapeutic blood
levels in the CNS is not essential in this case. PF-06835919 and LY-
3522348, both clinical candidates, were evaluated for their potential
to cross the BBB, with QPlogBB values of −0.378 and 0.029,
respectively, indicating moderate to low BBB penetration and a
low risk of CNS-related off-target effects. In comparison, hits 1–10
exhibited even lower BBB permeability, with values ranging
from −0.52 to −1.81, significantly reducing the likelihood of CNS
involvement. This suggests that our hits are more likely to be specific
to their hepatic target, offering a potentially lower risk of
neurological side effects. Thus, our compounds are expected to
demonstrate a more focused pharmacological profile, enhancing
their therapeutic potential while minimizing unwanted CNS effects.
However, further optimization may be required to fine-tune their
properties and prevent any potential off-target effects, ensuring a
more selective and safer therapeutic profile. To get a meaningful
comparison with existing inhibitors, we conducted a comparison of
the permeability profiles of our hits. Our hits exhibited superior
membrane permeability, with predicted MDCK cell permeability
values ranging from 113 nm/s to 2,242 nm/s, indicating enhanced
intestinal absorption. In contrast, LY-3522348 showed a modest
transport percentage of 4.4% in MDCK cells. BI-9787, with a
PAMPA (Parallel Artificial Membrane Permeability Assay) of
4.0 × 10−6 cm/s at pH 7.4, demonstrated low passive
permeability. This suggests that BI-9787 may require transporter-
mediated uptake for effective absorption. The higher permeability of
our hits suggests they could offer improved oral bioavailability and
systemic uptake, highlighting their potential as promising
therapeutic candidates. The extent of drug binding to plasma
proteins in the bloodstream has a significant impact on its
pharmacological effects. The bioactive fraction is the unbound
fraction, which is capable of crossing biological membranes and
is therefore subject to biotransformation and excretion (Smith et al.,
2010). The extent to which hits 1–10 bind to plasma proteins was
estimated using the QPlogKhsa parameter (predicted binding to
human serum albumin). High levels of human serum albumin in the
blood impact the transportation and distribution of drugs and
endogenous substances. From the data provided in
Supplementary Table S1, it was noted that our identified hits
1–10 are expected to exhibit weak binding to human serum
albumin, as indicated by their low QPlogKhsa values. In contrast,
BI-9787 has more than 99% plasma protein binding, and LY-
3522348 is 85% bound. The lower plasma protein binding of our
hits suggests a higher free drug fraction, which could enhance their
effective therapeutic potential by improving distribution and target
engagement. This reduced protein binding may facilitate greater
systemic exposure, leading to improved bioavailability and more
efficient drug delivery to the target site. Additionally, a higher free
drug concentration in plasma can contribute to a more rapid onset
of action, potentially allowing for lower effective doses and reducing
the risk of off-target interactions associated with high plasma
protein binding. These findings highlight the potential
pharmacokinetic advantages of our identified hits over existing
inhibitors, warranting further investigation into their in vivo
behavior and therapeutic efficacy (Durham et al., 2023; Heine
et al., 2024). The estimated number of potential metabolic
reactions for each hit was also evaluated, as this will affect the
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rate at which a drug candidate reaches its site of action immediately
after entering the blood circulation. As depicted in Supplementary
Table S1, the number of likely metabolic reactions for hits 1–10
(#metab) were within the specified limit (1-8), demonstrating their
potential to reach their site of action in their intact forms. The
predicted number of metabolic reactions for hits 1–10 varies
between 4 and 7, indicating that these compounds are expected
to undergo a moderate degree of metabolism in the liver. This
suggests a relatively stable metabolic profile, which is generally
favorable for maintaining pharmacokinetic properties such as
bioavailability. However, when compared to LY-3522348, our hits
demonstrated slightly lower metabolic stability. LY-3522348, as
reported by Elsaman et al., is predicted to undergo only
1 metabolic reaction, which is notably lower than the metabolic
activity observed for our compounds. Moreover, LY-3522348 has
been reported to show 0 metabolic reactions following a 30-min
incubation in liver microsomes, further confirming its high
metabolic stability (Durham et al., 2023; Elsaman and Mohamed,
2025). Thus, our hits may require further optimization to improve
their metabolic stability and overall pharmacokinetic profiles. Next,
we computed the parameter related to the likelihood of hits 1–10 to
be cardiotoxic. It has been reported that blocking the hERG (human
Ether-à-go-go Related Gene) K+ channel by the drugs delays the
cardiac repolarization step resulting in fatal type of arrhythmia
called torsade de pointes (long QT syndrome) (Napolitano et al.,
1994). In this study, the estimated IC50 values for blockade of this
channel by hits 1-10 (QPlogHERG) are given in Supplementary
Table S1. Accordingly, we evaluated the hERG inhibition potential
of our hits in comparison to existing inhibitors, PF-06835919 and
LY-3522348. PF-06835919 shows a hERG IC50 > 30, considered safe
for cardiac toxicity, while our hits 1, 2, 4–6 exhibit predicted IC50

values above −5, suggesting a lower likelihood of hERG channel
inhibition. In contrast, hits 3, 7–10 were identified as potentially
cardiotoxic, as their IC50 values for blocking hERG K+ channels
exceeded the permissible range (>−5) and were excluded from
further investigations. The calculated hERG value for LY-3522348
by Elsaman et al. was −4.6, confirming its minimal cardiac toxicity
risk, with tissue distribution studies in rats showing no significant
cardiotoxicity, supporting its favorable safety profile. Thus, some of
our hits may require further optimization to reduce cardiotoxicity
risk (Durham et al., 2023; Zhu et al., 2023; Elsaman and
Mohamed, 2025).

In order to reduce the risk of cardiotoxicity associated with the
excluded hits 3, 7–10, scaffold replacement was performed for each
compound, considering key factors such as reducing lipophilicity,
decreasing planarity, minimizing basicity, and enhancing hydrogen
bonding capacity. These modifications were aimed at lowering the
compounds’ hERG channel binding affinity while maintaining their
pharmacological potential and ensuring favorable drug-like
properties. A total of ten replacements were performed for each
excluded hit, using various functional modifications carefully chosen
to optimize the balance between efficacy and safety. Among these,
some replacements successfully reduced cardiotoxicity while others
resulted in a decrease in binding affinity. Notably, only three analogs
(Figure 11) showed a significant reduction in cardiotoxicity. For hit
8, the replacement of the pyrazine ring with the bicyclo [2.2.1]
heptane structure successfully reduced the cardiotoxicity to the
specified limit and resulted in hit 8a, which showed a docking

score of −8.01 kcal/mol. The first analog for hit 10 (hit 10a) involved
replacing piperazine with 1,2,3-triazole, which resulted in a docking
score of −7.8 kcal/mol, still higher than the co-crystal ligand,
suggesting a strong binding affinity to the target despite the
modification. This change was made to reduce the basicity of the
molecule and disrupt its planarity, thereby minimizing interactions
with the hERG channel. The second analog for hit 10 (hit 10b)
featured the replacement of piperazine with 2,5-diketopiperazine,
which had a docking score of −8.4 kcal/mol. This modification
reduced basicity and increased polarity, which was expected to
decrease lipophilicity and improve the molecule’s solubility
profile. This replacement led to a noticeable reduction in
cardiotoxicity, making it a promising candidate for further
optimization. These scaffold modifications have shown the
potential to significantly mitigate cardiotoxicity while retaining
favorable docking scores, making them suitable candidates for
further in vitro and in vivo evaluation.

KHK-C inhibitors have the potential to induce mechanism-
linked toxicological consequences by disrupting fructose
metabolism, an important factor that should be carefully
considered (Koene et al., 2025). KHK-C inhibitors disrupt
fructose metabolism, potentially causing adverse effects such as
fructosuria, osmotic diuresis, and glycogen accumulation (Park
et al., 2024). Elevated urinary fructose may promote bacterial
growth, increasing the risk of recurrent Escherichia coli
infections. Additionally, excess fructose in the gastrointestinal
tract can contribute to dysbiosis, bacterial overgrowth, and
metabolic disturbances (Pinheiro et al., 2020; Jung et al., 2022).
Increased circulating fructose levels may lead to oxidative stress,
endothelial dysfunction, and systemic imbalances (Herman and
Birnbaum, 2021). KHK-C inhibition may also divert fructose
metabolism towards the sorbitol and xylulose pathways,
potentially leading to sorbitol accumulation and complications in
diabetic patients (Andres-Hernando et al., 2017). In general, the
outcome of this analysis indicates that hits 1,2 and 4-6 displayed
acceptable drug-likeness, pharmacokinetics features, and safety
profiles, thereby denoting their potential as KHK-C inhibitors for
future treatment of fructose metabolic diseases.

Based on the predicted ADMET properties discussed in the
previous section, hits 1, 2 and 4-6 which demonstrated positive
drug-likeness and pharmacokinetics properties, were chosen for
100 ns MD simulation. MD simulation is a powerful
computational tool frequently utilized to validate the stability of
protein-ligand complexes and the nature of the ligand’s key binding
interactions in a dynamic condition (AlRawashdeh and Barakat,
2024). In this context, the stability of the best docked conformations
of the investigated hits and the reference ligand (PF-06835919) were
monitored in aqueous system using Desmond package (Schrödinger
Release, 2023: Desmond Molecular Dynamics System). Root Mean
Square Deviation (RMSD) values of the protein C-α atoms relative
to the initial structure were used to evaluate the stability of the
studied complexes (De Vivo et al., 2016). As seen in Table 3 and
Figure 11, the C-α of the reference ligand complex backbone
exhibited an average RMSD of 2.41 ± 0.43 Å over time. Unstable
fluctuation behavior was observed throughout the simulated time,
indicating that the complex did not achieve a steady state profile. On
the other hand, the simulated system of hits 1, 2 displayed average
RMSD values of 2.47 ± 0.31 Å and 2.34 ± 0.27 Å, respectively. These
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systems were unstable during the initial frames up to 15 ns, then the
systems converged and they attained the equilibrium state, and
protein fluctuations were maintained in the range of 1.89–2.99 Å
throughout the simulation run. For the hit 4 complex, the average
C-α RMSD value was 2.24 ± 0.34 Å as a function of time and the
protein showed drifts up to 40 ns, and remained stable during the
remainder of the simulation time, maintained in the range of
1.63–3.04 Å. Conversely, hit 5 reached equilibrium quickly
(average RMSD = 2.19 ± 0.41 Å) and remained stable between
1.25 Å and 2.56 Å until 65 ns, after which relatively high deviations
were observed for the rest of the simulation. The average C-α RMSD
value of the hit 6 complex was 2.36 ± 0.38 Å over time. Minor
perturbations were noted for this complex during the 100 ns
simulation, reaching a steady state around 23 ns? The deviation
ranged from 1.644 Å to 3.26 Å. Overall, our findings indicated that
the structure of the KHK-C did not experience a significant shift and
remained stable following complexation with hits 1, 2, and 4–6. The
C-α RMSD profiles of these complexes were better that of the
reference ligand, suggesting their potential as KHK-C inhibitors.
Next, we performed Root Mean Squire Fluctuation (RMSF) analysis
for each ligand-bound KHK-C to assess the mobility of the target’s
individual residues during the trajectory run. RMSF defines the local
variability in the protein Cα-atoms, evaluating its flexibility and
stiffness from trajectories recorded during a 100 ns MD simulations
timescale (Khan et al., 2022). A higher RMSF values suggests
significant mobility, whereas a lower RMSF values indicates a
stable structure with limited fluctuations (Stofberg et al., 2024).
The RMSF for the simulated systems of the docked complexes of the
top-ranked hits 1,2, and 4-6, as well as the reference ligand for
comparison are graphically depicted in Figure 12. All of the
simulated systems fluctuate strongly mainly in two regions
(>3 Å), (i) amino acid residues Lys22-Arg31, and (ii) amino acid
residues Asn102-Asn107, fortunately, these residues are neither
critical for enzyme inhibition nor directly involved in protein-
ligand interactions (Maryanoff et al., 2011; Huard et al., 2017;
Futatsugi et al., 2020; Zhu et al., 2023). On the other side, the
crucial residues exist in the ATP binding site, (Phe245, Pro246,
Pro247, Thr253, Gly255, Gly257, Phe260 and Cys282), experienced
limited conformational mobility (RMSD <1.5 Å) in the studies
complexes across the simulation timescale. Interestingly, hits 2, 5,
and 6 enhanced the stability of Arg108, a residue previously reported
as critical for maintaining potency, compared to the reference ligand
(Huard et al., 2017; Zhu et al., 2023). In general, the RMSF profiles of
the investigated hits showed a degree of stability for those residues
comparable to or higher than that of the reference ligand, pointing to
their potentially strong KHK-C inhibitory properties. Consequently,
we conducted protein-ligand interaction analysis to gain insights
into the types and strengths of intermolecular interaction forces
during the simulation process. As shown in Supplementary Figures
S4–S9, different types of non-bonding interaction forces were
involved in the ligand–protein complex overall stability. These
forces comprised H-Bonds, hydrophobic contacts, electrostatic
interactions, and Water Bridges. In the case of the reference
ligand (Supplementary Figure S4), it retained the same
conformation shown in molecular docking study, indicating its
stability in the enzymes binding site. Moreover, it exhibited
stable Water Bridge interactions with the critical residues
Phe245 and Cys282, which persisted for >90% of the simulation

time. In addition, the carboxylate anion formed multiple
interactions with key residues including Gly255, Gly257 and
ASH258, which were stable for <30% of the simulation run.
Furthermore, new H-Bonds were seen between the carboxylate
anion and Arg108 as well as Thr253, which were stable for <15%
of the simulation time. Finally, moderate hydrophobic interactions
with Ala226 and Phe260 were also noticed during the simulation
timescale. These results are consistent with the previous report
describing the critical interactions during MD simulation for
potent KHK-C inhibitors (Zhu et al., 2023). In case of hit 1
(Supplementary Figure S5), the dimethoxy groups involved in
multiple Water Bridges formation with Cys282 and Phe245,
while the amide carbonyl group existed in the linker created
similar interactions with Thr253, Gly255, Ala256 and Gly257.
Importantly, the Water Bridges formed with the critical residue
Phe245 was not present in the docked conformer, pointing to the
fact that this hit underwent minor conformational changes during
MD simulations favoring these interactions. Generally, the hit 1
contacts with the KHK-C binding pocket were less strong
(interaction fraction <1) than the reference ligand, suggesting its
potential low KHK-C inhibitory activity. Regarding hit 2, as shown
in Supplementary Figure S6, it retained all of the non-bonding
interactions observed in molecular docking study (Figure 8).
Additionally, three new Water Bridges were detected with the
crucial residues Phe245 and Cys282, established by the oxygen
atoms of the 3, 4 dimethoxy groups attached to the phenyl
group. The Water Bridges formed by the 3-methoxy group
persisted for >95% of the simulation time, while those made by
the 4-methoxy group covered >65% of the simulation timeframe.
The interaction fractions of these bonds for hit 2 were >1.5,
indicating stronger interactions profile as compared to the
reference ligand and the previously reported KHK-C inhibitor
(<1) (Zhu et al., 2023). In addition to these bonds, hit 2 formed
H-Bonds and Water Bridges interactions with the key residues
Glu227, Gly255, Gly257 and ASH258 at the solvent exposed
opening of the enzyme binding pocket. These bonds were similar
in their strength to those of the reference ligand. Unlike the reference
ligand, a new moderately stable H-Bond was observed with the key
residue Thr253, which persisted for 40% of the simulation run,
higher than that for the previously reported potent KHK-C inhibitor
(Zhu et al., 2023). Furthermore, the methyl group of the 5-methoxy
group linked to the phenyl ring filled the sub pocket made by
Phe260 which was filled by the methyl group of the azetidine ring in
case of reference ligand. This filling established hydrophobic
interactions of similar strength in both complexes contributing to
their overall stability. On the other hand, the interaction of hit 2with
Arg108, a residue that considered critical for optimum potency
(Futatsugi et al., 2020), was minimal as compared to that of the
reference ligand. This could be justified by the fact that the reference
ligand incorporated an ionized carboxylate which seemed efficient in
forming interactions with the guanidinium ion of the Arg108.
Consequently, we designed a hit 2 analog, shown in Figure 13,
by introducing free carboxylate group at the terminal side chain to
create a new ionic bond with Arg108. Glide XP docking of the
designed analog into the KHK-C catalytic site resulted in an
improved docking score (−9.23 kcal/mol) and the formation of
an ionic bond (3.29 Å distance) alongside two H-Bonds (2.55 Å and
2.65 Å) between the terminal carboxylate group and the key residue

Frontiers in Pharmacology frontiersin.org27

Elsaman et al. 10.3389/fphar.2025.1531512

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1531512


Arg108. This modification could enhance the binding affinity of hit
2 and consequently improve its overall efficacy. Further MD
simulation studies are needed to confirm the stability of the
interaction map of the designed analog. Regarding hits 4–6
(Supplementary Figures 7–9), they demonstrated relatively weak
binding interactions during MD simulations with the key residues
Phe245 and Cys282 (hits 5 and 6), or Gly255 and Gly257 (hit 4),
compared to the reference ligand, suggesting their lower potential
for KHK-C inhibition. Generally speaking, hit 2 interacted with the
most critical residues in the enzyme binding pocket and created
intermolecular bonds that were stronger than those made by
reference ligand. Moreover, hit 2 did not engage in binding
interactions with residues conserved in KHK-A (Asp15, Asn42,
Asn45, Arg141, and Lys174) (Ferreira et al., 2024), indicating its
potential selectivity for targeting KHK-C. These facts indicate that
hit 2 could be a strong and selective KHK-C inhibitor. Following this
step, we turned to analyze the number of H-Bonds, Water Bridges
and hydrophobic interactions that stabilized the binding of the hit 2
to the KHK-C catalytic site throughout the simulation course,
compared to the reference ligand. As indicated in Table 4 and
Figure 15A, hit 2 formed similar number of H-Bonds with the
enzyme’s binding site residues like the reference ligand averaging
1.15 and 1.52, respectively. However, the number of Water Bridges
established by hit 2 (Table 4; Figure 15B) were nearly twice those
formed by the reference ligand averaging 5.5 and 2.9, respectively.
This could justify the greater stability and higher affinity of hit 2
compared to the co-crystalized ligand, as H-bonds are increasingly
considered as facilitators of protein-ligand complexation (Chen
et al., 2016). Likewise, hit 2 exhibited high number of
hydrophobic contacts (Table 4; Figure 15C) as compared to the
reference ligand averaging 1.47 and 0.64, respectively. While
Phe260 was the most frequently involved in hydrophobic
interaction with the reference ligand, multiple residues existed in
the active site were involved in this type of interactions with hit 2.
Collectively, the results suggested that hit 2 demonstrated more
stable interactions compared to the reference ligand, highlighting its
potential as a potent KHK-C inhibitor worthy of experimental
validation.

The RMSF analysis of the co-crystal ligand and hit 2 (Figure 16)
was performed to assess their movement and stability within the
binding pocket of KHK-C, providing insights into their flexibility,
conformational changes, and potential interactions with key
residues throughout the simulation. The analysis of key atom
fluctuations in the RMSF data of the co-crystallized ligand
focused on specific atoms and their interactions. The carboxylate
oxygens showed high fluctuations (~2.73 Å) (Figure 16A), despite
forming strong hydrogen bonds with Gly255 and Gly257, ionic
bonds with Arg108, and water-bridge interactions with Asn58. This
suggests dynamic behavior, potentially resulting from the increased
flexibility of the carboxylate group as it orients toward the solvent-
exposed region, allowing for greater mobility. In addition, the CF3
group fluorines exhibited increased fluctuations (~1.2–2.3 Å),
despite typically being restricted by hydrophobic interactions
with the Proline Loop (Pro246–Pro248). The fluctuations likely
indicate conformational shifts in the proline loop that affect ligand
positioning, with the elevated RMSF of the CF3 group suggesting
potential loop adaptation. To this end, hydrogen bond occupancy
analysis revealed that interactions with Gly255, Gly257, and

Arg108 were intermittent (Supplementary Figure S4), with
occupancy below 20%. This indicated that these hydrogen bonds
were transient and frequently disrupted, likely due to high
fluctuations of the carboxylate group, which affected its ability to
maintain stable interactions. Additionally, the water-bridge
interaction with Asn58 exhibited a short lifetime, suggesting
weak and dynamic water-mediated stabilization rather than a
persistent interaction. In contrast, the co-crystallized ligand
maintained stable water-bridge interactions with the critical
residues Cys282 and Phe245. These interactions, mediated by the
nitrogen (Atom 3) (Figure 15A) of the pyrimidine ring, were present
for most of the simulation time. The persistent nature of these water
bridges suggested a key stabilizing role in ligand binding, likely
compensating for the weaker direct hydrogen bonds with other
residues. This stability contributed to maintaining the co-
crystallized ligand’s position within the active site of KHK-C,
reinforcing its overall binding affinity. In hit 2, the interactions
of key atoms with the protein correlated with their RMSF values,
highlighting the dynamic behavior within the binding pocket.
Atoms 2 and 3 (oxygens) (Figure 16B) showed flexibility below
1 Å and participated in multiple water-bridge interactions with
Cys282 and Phe245. These interactions showed limited fluctuations,
suggesting dynamic but stabilizing water-mediated hydrogen bonds
that helped anchor the ligand. The enhanced stability of O24 and
O25, as indicated by the hydrogen bond occupancy analysis, led to
the formation of multiple stable water-bridge interactions with the
critical residues Cys282 and Phe245, with fluctuations below 1 Å and
persisting for more than 95% of the simulation run (Supplementary
Figure S6). This resulted in stronger interactions compared to the
co-crystallized ligand and contributed to a more stable binding
mode, improving the overall ligand stability within the binding
pocket. Methyl groups 24, 25, and 26 interacted with the
hydrophobic pocket formed by the proline loop
(Pro246–Pro248). The RMSF values of these atoms indicated
limited flexibility (below 1.2 Å), and methyl group 26 filled the
subpocket formed by Phe260, allowing for ligand accommodation
and stabilizing interactions. This was reflected in enhanced
hydrophobic interactions of Hit 2 compared to the reference
ligand, further contributing to its binding stability. Atom 5
(oxygen) formed a hydrogen bond with Thr253, showing a high
RMSF of 2.6 Å, indicating that the interaction is intermittent (below
50%) (Supplementary Figure S6). However, it remains better than
the interaction observed in the co-crystallized ligand, suggesting a
more dynamic yet still effective binding. Atom 8 (nitrogen),
interacting with Glu227, showed a low RMSF of 1.3 Å, indicating
a stable interaction crucial for maintaining ligand positioning. The
terminal methoxy group of the side chain (atoms 1 and 23) showed
the highest flexibility, with fluctuations exceeding 4 Å, as they
oriented towards the solvent-exposed area, allowing for greater
mobility and fluctuating interactions with the surrounding
environment. Overall, the interacting groups of hit 2 with the
enzyme KHK-C displayed minimal flexibility, particularly the
water-bridge and hydrophobic interactions, which contributed to
the stable binding of the ligand within the binding site. The limited
fluctuations observed in key atoms, along with the persistent water-
mediated interactions, helped anchor the ligand more firmly in the
pocket, resulting in a stable binding mode. This stability is crucial for
maintaining optimal interactions with critical residues and
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enhancing the overall affinity of the ligand for the enzyme, thereby
supporting its potential as a promising inhibitor. In order to further
investigate the stability and movement of Hit 2 within the KHK-C
binding site, we conducted a radius of gyration (rGyr) analysis over a
100 ns simulation to assess its structural compactness and flexibility,
including the reference ligand for comparison. The radius of
gyration (rGyr) analysis over the 100 ns simulation, as shown in
Figure 17, provides critical insights into the structural stability of
ligands within the KHK-C binding site. The reference ligand
maintained a compact conformation with an average rGyr of
4 Å, indicating stable binding within the active site with minimal
fluctuations. In contrast, Hit 2 exhibited a higher rGyr, fluctuating
between 5.5 and 6 Å, suggesting a more extended conformation.
These fluctuations, observed in Figure 16, implied greater flexibility
within the KHK-C binding pocket, which may have allowed
dynamic interactions with key catalytic residues. The reference
ligand’s lower rGyr suggested strong stabilization within the
enzyme’s active site, likely forming rigid and well-defined
interactions. Hit 2’s flexibility could have facilitated the
exploration of additional binding modes, potentially enhancing
interactions with crucial residues. Both ligands demonstrated
overall structural stability, as no significant deviations or drastic
conformational changes were observed throughout the simulation.
The variations in rGyr, illustrated in Figure 16, suggest potential
differences in ligand accommodation, which might have influenced
binding affinity and stability. The ability of hit 2 to adopt multiple
conformations within KHK-C could be relevant for optimizing its
binding efficiency. This flexibility is facilitated by the presence of
multiple rotatable bonds, which enhance its structural flexibility,
whereas the reference ligand contains a rigid multicyclic structure.
This analysis confirms that hit 2 maintained its integrity within the
KHK-C catalytic site, supporting further investigation into its
binding mechanisms and potential inhibitory effects.

To assess the potential of hit 2 in inhibiting the KHK-A isoform,
we first compared its performance with PF-06835919 in KHK-C. In
KHK-C, hit 2 demonstrated a significantly higher binding affinity
than PF-06835919, with a docking score of ‒9.07 and a binding
affinity of ‒59.61 kcal/mol, compared to PF-06835919s docking
score of ‒7.76 and binding affinity of ‒56.71 kcal/mol. Furthermore,
hit 2 exhibited dynamically stable behavior, forming a more stable
complex and establishing stronger interactions with critical residues,
both in type and intensity, compared to PF-06835919. Docking
studies for KHK-A were carried out using the crystal structure
(PDB ID: 8OME), following the same docking protocols used for
KHK-C. The results revealed that Hit 2 displayed a considerably
stronger binding affinity towards KHK-A, with a binding free energy
of ‒56.8 kcal/mol and a docking score of −6.79, surpassing PF-
06835919, which showed a binding affinity of 3.49 kcal/mol and a
docking score of ‒4.36. Notably, PF-06835919 exhibited
approximately six-fold higher inhibitory properties for KHK-C
compared to KHK-A, and the predicted binding affinities in the
present study align with this trend (Gutierrez et al., 2021). KHK-A
selective inhibition allows more fructose to be delivered to the liver,
leading to increased KHK-C activity and greater fructose
metabolism. However, dual inhibition of both KHK-A and KHK-C
may provide superior metabolic benefits. Studies have shown that KHK-
A/C knockout (KO) mice are protected from the metabolic effects of
fructose, highlighting the potential advantages of targeting both isoforms

(Ishimoto et al., 2012). Overall, these findings underscore hit 2’s superior
binding affinity, stability, and ability to interact with key residues in both
KHK-C and KHK-A, positioning it as a highly promising candidate for
further development as an inhibitor for both isoforms.

4.1 Study limitations and future perspectives

Despite the valuable insights gained from this study, several
limitations must be acknowledged. First, computational techniques
such as molecular docking and free energy calculations, while
powerful, have inherent constraints. These methods may not fully
account for the dynamic nature of protein-ligand interactions,
including protein flexibility, solvent effects, and entropic contributions.
Additionally, theMDsimulationswere limited to 100 ns, which, although
sufficient for capturing short-to mid-term stability, may not fully
represent long-term conformational shifts and rare binding events.
More extended simulations could provide a deeper understanding of
the ligand’s stability and binding mechanisms. Second, the findings are
based entirely on computational predictions without experimental
validation. Enzyme inhibition assays and cell based assays are
necessary to confirm the inhibitory activity of the identified
compounds against KHK-C, while in vivo studies are crucial for
assessing their pharmacokinetic properties, metabolic stability, and
overall therapeutic potential. Without these experimental
confirmations, the transition from computational discovery to drug
development remains uncertain. Third, some of the identified
compounds exhibited physicochemical properties that suggest
potential penetration of the BBB. This raises concerns about
unintended neurological effects, which could impact their safety
profile. Lastly, the potential cardiotoxicity of some identified hits
remains a concern. Certain compounds may interfere with the hERG
channel, increasing the risk of QT interval prolongation and associated
cardiac arrhythmias. To overcome these limitations, future studies should
include experimental validation, such as enzyme inhibition assays, in vivo
ADMET profiling, and toxicity assessments. Additionally, incorporating
extended molecular dynamics simulations will provide a more thorough
understanding of the long-term dynamics and binding stability of the
lead compounds. These comprehensive approaches will help refine the
identified hits and move the most promising candidates forward for
preclinical evaluation and potential therapeutic use.

5 Conclusion

This study aims to identify novel and potent KHK-C inhibitors for
treating fructose-related metabolic disorders, including obesity,
diabetes, NAFLD, and NASH. Despite the high prevalence of these
conditions, no clinically approved drugs specifically target KHK-C,
although PF-06835919 and LY-3522348 are currently in phase II
clinical trials. Virtual screening of the NCI library (460,000 small
molecules) using various computational tools identified ten potential
candidates with docking scores and binding energies surpassing those
of PF-06835919 and LY-3522348. Further filtration through ADMET
profiling and molecular dynamics simulations highlighted compound
2, (E)-N-(3-methoxypropyl)-3-oxo-3-(2-(3,4,5-trimethoxybenzyliden
e)hydrazineyl)propanamide, as the most promising candidate,
warranting further experimental validation.
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