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Background: Pancreatic ductal adenocarcinoma (PDAC) is highly malignant with
a poor prognosis, posing significant clinical challenges. SUMOylation, a reversible
post-translational modification, plays a critical role in tumor progression, yet its
prognostic significance in PDAC remains unclear.

Methods: We assessed SUMOylation expression patterns and function in PDAC
using Western blot and the SUMOylation inhibitor TAK-981. Differentially
expressed SUMOylation substrate encoding genes (DE-SSEGs) were identified
from The Cancer Genome Atlas (TCGA) and the Genotype-Tissue Expression
Project (GTEx) datasets. A SUMOylation-based prognostic model, Sscore, was
constructed using LASSO and Cox regression. Additional analyses included
somatic mutation, immune infiltration, TIDE, drug sensitivity, and single-cell
RNA sequencing. The role of SAFB2 in PDAC was validated in vitro.

Results: PDAC cells showed elevated SUMOylation, and its inhibition reduced cell
proliferation. The Sscore model, based on DE-SSEGs (CDK1, AHNAK2, SAFB2),
predicted overall survival and correlated with genome variation, immune
infiltration, and drug sensitivity. Single-cell analysis further confirmed a link
between high Sscore and malignancy. SAFB2, identified as a pivotal gene
within the Sscore model, was significantly downregulated in PDAC tissues and
cell lines; its overexpression was shown to inhibit PDAC cell proliferation,
migration, and invasion by suppressing the Wnt/β-Catenin signaling pathway.

Conclusion: This study underscores the role of SUMOylation in PDAC and
introduces the Sscore as a prognostic tool. SAFB2 is identified as a potential
tumor suppressor, offering new therapeutic targets for PDAC.
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the most malignant solid tumors
globally, with high mortality and poor prognosis, having a dismal 5-year survival rate of just
13%, and its incidence is rising annually (Conroy et al., 2023; Kumar et al., 2022; Siegel et al.,
2023; Huang et al., 2021; Siegel et al., 2024). PDAC often remains asymptomatic in its early
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stages, progresses rapidly, and is frequently diagnosed in advanced
stages, with 30%–35% of patients presenting with locally advanced
disease and 50%–55% with metastasis (Conroy et al., 2023; Peng
et al., 2019; Vincent et al., 2011). Surgical resection rates at diagnosis
range from 10% to 20%, but the recurrence and metastasis rates
post-surgery are as high as 80% (Siegel et al., 2024). As a result,
neoadjuvant therapy such as chemotherapy plays a vital role in
PDAC treatment, given that surgery alone does not significantly
improve long-term survival (Siegel et al., 2024; Vincent et al., 2011).
The latest National Comprehensive Cancer Network (NCCN)
Guidelines Version 3.2024 recommend NALIRIFOX
(Nanoliposomal Irinotecan, Leucovorin, Fluorouracil, and
Oxaliplatin) as a first-line therapy for advanced PDAC patients
(Conroy et al., 2023; Ma et al., 2024). Studies have shown that
adjuvant systemic chemotherapy with gemcitabine can double the
long-term survival rate (>5 years) for PDAC patients, with an
associated 20% increase in cure rate (Sinn et al., 2017). However,
advanced-stage PDAC remains a challenge, as the survival benefit
from this treatment is limited. Furthermore, targeted therapies and
immunotherapies that have proven effective in other malignancies
show limited efficacy in PDAC. For instance, ipilimumab, a therapy
approved for melanoma and renal cell carcinoma, has almost no
effect on advanced PDAC, and CAR-T cell therapy, which has
shown promise in lymphoma and leukemia, is also largely ineffective
in PDAC (Li et al., 2018; Yoon et al., 2021). Therefore, improving
early diagnosis rates and identifying novel therapeutic targets is
crucial for better clinical outcomes in PDAC.

Small ubiquitin-related modifier (SUMOylation) is a type of
protein translational modification mediated by SUMO proteins,
which regulate the expression, localization, and activity of
substrate proteins in numerous biological processes, including
cell cycle regulation, metabolism, gene transcription, and DNA
damage repair (Gu et al., 2023; Hendriks and Vertegaal, 2016).
The SUMO protein family comprises SUMO1, SUMO2, and
SUMO3, with SUMO2/3 showing up to 95% sequence and
functional homology (Hendriks and Vertegaal, 2016). Similar to
ubiquitination, SUMOylation is carried out through a three-step
enzymatic cascade involving SUMO-activating enzyme E1 (SAE1/
SAE2), SUMO-conjugating enzyme E2 (UBC9), and SUMO-ligating
enzyme E3 (Gu et al., 2023; Hendriks and Vertegaal, 2016; Vertegaal,
2022; Han et al., 2018). Additionally, deSUMOylation enzymes, such
as those from the SENP family (SENP1, 2, 3, 5, 6, and 7), play a
crucial role in regulating SUMOylation levels (Wu and Huang,
2023). Recent studies have shown that SUMOylation is
upregulated in several solid tumors, including breast, colorectal,
prostate, lung, and pancreatic cancers, and its overexpression
correlates with poor patient prognosis (Seeler and Dejean, 2017;
Li et al., 2022). Given the diversity of SUMO-modified substrate
proteins, SUMOylation can regulate tumorigenesis and progression
by influencing cell cycle regulation, DNA damage response, genomic
instability, tumor metabolism, and immune evasion (Vertegaal,
2022; Sun et al., 2023). Understanding the role of SUMOylation
in PDAC and investigating its potential as a target for therapy is
therefore critical.

Scaffold attachment factor-B2 (SAFB2) is a nuclear matrix-
associated protein belonging to the SAFB family, which is widely
expressed across human tissues (Renz and Fackelmayer, 1996; Hong
et al., 2012). The family includes three members: SAFB1, SAFB2, and

SAF-like transcription modulator (SLTM) (Hong et al., 2012).
SAFB2 plays roles in processes such as RNA post-transcriptional
processing, cell proliferation, stress response, and apoptosis (Hutter
et al., 2020). In hormone-dependent cancers, including breast and
prostate cancers, SAFB2 expression is downregulated and delays
tumor progression by inhibiting the transcriptional activities of
androgen receptors (AR) and estrogen receptors α (ERα) (Zhen
et al., 2023). While the expression and function of SAFB2 in PDAC
remain understudied, its established tumor-suppressive role
suggests that it may be critical in PDAC progression. Further
exploration of the specific function of SAFB2 in PDAC could
enhance our understanding of its biology and offer novel
therapeutic strategies.

In this study, we found that SUMOylation levels were
significantly elevated in PDAC cells and tissues, and inhibiting
SUMOylation reduced PDAC cell proliferation, confirming the
critical role of SUMOylation in PDAC progression. Using
SUMOylation proteomics data compiled by Ivo A et al., we
integrated transcriptomic data from tumor and normal tissues in
The Cancer Genome Atlas (TCGA) and the Genotype-Tissue
Expression Project (GTEx) to develop a SUMOylation substrate
encoding gene prognostic model for PDAC (Hendriks and
Vertegaal, 2016). This model showed robust predictive accuracy
in assessing patient prognosis, immune cell infiltration in the tumor
microenvironment, genomic variation, and drug sensitivity.
Additionally, SAFB2, a key SUMOylation substrate encoding gene
in this model, was significantly downregulated in PDAC tissues and
cell lines. Further in vitro studies revealed that overexpression of
SAFB2 significantly inhibited the proliferation, invasion, and
migration of PDAC cells by suppressing the Wnt/β-Catenin
signaling pathway, indicating its potential role as a tumor
suppressor in PDAC. Overall, our study establishes a novel three-
gene SUMOylation substrate prognostic model and highlights the
important tumor-suppressive function of SAFB2 in PDAC.

2 Materials and methods

2.1 Patients and specimens

This study included samples from patients diagnosed with
primary PDAC at Shanghai Sixth People’s Hospital between
6 January 2025, and 14 March 2025. A total of five patients were
enrolled, and matched adjacent normal tissues were collected for
comparative analysis. Informed consent was obtained from all
participants, and the study was approved by the Ethics
Committee of Shanghai Sixth People’s Hospital.

2.2 Data extraction and patient information
preprocessing

Transcriptome data and corresponding clinical features were
obtained from the TCGA-PAAD cohort (n = 181) within the TCGA
database (https://portal.gdc.cancer.gov) for analysis. Transcriptomic
data from normal pancreatic tissue (n = 168) in the GTEx database
(https://www.gtexportal.org/) served as controls. To minimize batch
effects, the “limma” package was employed for normalization. To
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further validate the stability of the results, gene expression matrix
files, along with clinical and survival data, were downloaded the
GSE62452 (doi: 10.1158/0008-5472; n = 65), GSE183795 (doi: 10.
1093/carcin/bgac092; n = 134) datasets from the GEO database
(https://www.ncbi.nlm.nih.gov/geo/) (Yang et al., 2016; Yang S.
et al., 2022).

2.3 Selection and annotation of
SUMOylation substrate encoding genes

Based on the SUMO target protein list provided by Hendriks
and Vertegaal, (2016), 334 proteins with mass spectrometry
scores ≥15 were selected as SUMOylation substrate encoding
genes (SSEGs) (Hendriks and Vertegaal, 2016). Differential gene
expression analysis between PDAC samples from the TCGA
database and normal control samples from the GTEx database
was conducted using the “limma” package, identifying
5,871 differentially expressed genes (DEGs) with |log2 Fold
change (FC)| > 1 and adjusted p value <0.05. By intersecting the
SSEGs and DEGs lists, 134 differentially expressed SUMOylation
substrate encoding genes (DE-SSEGs) between normal and tumor
samples were identified. Volcano plots and heatmaps were generated
based on FC and adjusted p values to visualize these DEGs. All DE-
SSEGs were then uploaded to the Search Tool for Retrieval of
Interacting Genes database (STRING, https://string-db.org/) for
protein-protein interaction (PPI) analysis, and Cytoscape
software was used for network visualization. The CytoHubba
plugin was applied to rank the DE-SSEGs based on their PPI,
with the top 30 hub genes being selected. Functional annotation
analysis, including Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment, was conducted
using the “ClusterProfiler” package to determine the potential
functions of these genes, with the significance threshold set at
p < 0.05.

2.4 Immunohistochemistry of prognostic
hub genes

We verified the protein expression of key prognostic genes in
tumor and normal tissues using Immunohistochemistry (IHC) data
from the Human Protein Atlas (HPA) database (https://www.
proteinatlas.org/).

2.5 Construction and validation of
prognostic biomarkers based on
SUMOylation substrate encoding genes

Univariate Cox regression analysis was performed to identify
DE-SSEGs significantly associated with overall survival (OS).
Subsequently, a prognostic model was developed in the training
cohort based on DE-SSEGs using the least absolute shrinkage and
selection operator (LASSO) Cox regression and stepwise
multivariate Cox proportional hazards regression analysis.
Patients were categorized into High- and Low-Sscore groups
based on the median score. The performance of model was

evaluated through receiver operating characteristic (ROC) curves,
Kaplan-Meier (K-M) survival curves, and risk score
distribution plots.

2.6 Calibration curve and nomogram
construction

The “Root Mean Square (RMS)” package was utilized to
construct a nomogram integrating risk scores and other
clinicopathological features to estimate the individual survival
probability. The cumulative score was used to estimate each
patient’s survival prognosis (Xiang et al., 2020). Calibration
curves were plotted to assess the consistency between predicted
and observed survival outcomes, and ROC analysis was used to
evaluate the predictive performance of the nomogram.

2.7 Immune infiltration analysis and
immunotherapy response prediction

The Estimation of STromal and Immune cells in MAlignant
Tumours using Expression data (ESTIMATE) algorithmwas used to
calculate immune scores, stromal scores, ESTIMATE scores, and
tumor purity for the samples (Xiang et al., 2020; Yoshihara et al.,
2013). Additionally, the relative abundance of various immune cell
types was estimated using the cell-type identification by estimating
relative subsets of RNA transcripts (CIBERSORT) and single sample
gene set enrichment analysis (ssGSEA) methods, implemented
through the “CIBERSORT” and “Gene Set Variation Analysis
(GSVA)” packages, respectively. The tumor immune dysfunction
and exclusion (TIDE) algorithm was applied to predict the potential
response of PDAC patients to immune checkpoint inhibitors (ICIs)
(Jiang et al., 2018).

2.8 Somatic mutation and copy number
variation analysis

Somatic mutation data were obtained from the TCGA database,
with the tumor mutation burden (TMB) defined as the total number
of somatic coding errors, base substitutions, and indel mutations per
megabase. Commonly mutated genes in PDAC samples were
visualized using the “Maftools” package, and waterfall plots were
generated to illustrate the mutation landscape of individual patients
(Mayakonda et al., 2018). The GRCh38 reference genome was used
for annotating genes in copy number variation (CNV) regions.

2.9 Prediction of chemotherapeutic drug
sensitivity

Drug sensitivity for each sample was predicted using the
“OncoPredict” package, with the half-maximal inhibitory
concentration (IC50) values calculated for common targeted and
chemotherapeutic drugs (Maeser et al., 2021). IC50 data were
sourced from the Cancer Therapeutics Response Portal (CTRP,
https://portals.broadinstitute.org/ctrp/).
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2.10 Single-cell RNA sequencing (scRNA-
seq) quality control and analysis

We analyzed normalized scRNA-seq data from six PDAC tissues
and three adjacent noncancerous pancreatic tissues
(GSE212966,GSE194247) (Satija et al., 2015; Chen et al., 2023).
scRNA-seq data were processed using the “Seurat” (v5.0.1) package,
with low-quality cells (gene count per cell <500, mitochondrial gene
percentage >15%, and cell count per gene 500 < n < 5000) filtered out
(Hao et al., 2021). Normalization was performed using the
“NormalizeData” function (LogNormalize). Two thousand highly
variable genes were selected for principal component analysis (PCA)
to achieve dimensionality reduction, followed by uniform manifold
approximation and projection (UMAP) for visualization. Doublets
were identified using the “DoubletFinder” (v2.0.3) package, assuming
a doublet rate of 5% for the droplet channel of each sample (McGinnis
et al., 2019). Additionally, gene integration from different samples was
performed using the “Harmony” package (Korsunsky et al., 2019). Cell
clusters were identified by matching cluster-specific genes with known
cell type markers reported in the literature and the CellMarker database
(http://xteam.xbio.top/CellMarker/) (Hao et al., 2021).

2.11 Single-cell CNV inference

The “inferCNV” (v1.6.0) package was used to infer large-scale
somatic CNVs (Patel et al., 2014). In brief, the gene expression
matrix, annotation data, and gene/chromosome location information
of ductal cells were analyzed. All other cells were treated as reference cells
without CNVs. CNV scores for each cell cluster were computed by
calculating the second-order sum of CNV regions.

2.12 Construction of single-cell trajectories
in PDAC

Single-cell trajectory analysis was performed using the
“Monocle2” (v2.28.0) package to reveal the dynamic changes in
cell states (Trapnell et al., 2014). The abnormal gene expression
profile of ductal cells was set as the root_state parameter to execute
cell ordering, determining the pseudotime starting point.
Dimensionality reduction was carried out using the “DDRTree”
algorithm, and a minimum spanning tree was visualized using the
“plot_cell_trajectory” function.

2.13 GSVA analysis in scRNA-seq

GSVA was conducted using the “ClusterProfiler” package to
compare pathway activation differences between groups (Wu et al.,
2021). All pathway data were obtained from the Molecular
Signatures Database (MSigDB).

2.14 Cell lines

Human PDAC cell lines, including CAPAN-1, CFPAC1, MIA-
PaCa2, PANC-1, and AsPC-1, as well as normal pancreatic duct

epithelial cell line HPNE and human embryonic kidney cell line
HEK293T, were obtained from the American Type Culture
Collection (ATCC, Manassas, VA). Cells were cultured in media
supplemented with 10% fetal bovine serum and 1% penicillin/
streptomycin. HPNE, MIA-PaCa2, and PANC-1 cells were
cultured in DMEM/F12 (GIBCO); BxPC-3 and AsPC-1 cells in
RPMI 1640 (GIBCO); and CAPAN-1 and CFPAC1 cells in IMDM
(GIBCO). All cell lines were routinely tested for mycoplasma
contamination.

2.15 RNA extraction and gene/protein
expression analysis

Total RNA from pancreatic cells and tissues was extracted using
Trizol reagent (Invitrogen™) according to the manufacturer’s
instructions. ABScript III RT Master Mix (ABclonal, RK20428)
and Universal SYBR Green Fast qPCR Mix (ABclonal, RK21203)
were used for subsequent analyses. The primer sequences for 18S
were: forward, 5′-TTCGAACGTCTGCCCTATCAA-3′; reverse, 5′-
ATGGTAGGCACGGCGACTA-3′. The primer sequences for
CDK1 were: forward, 5′-TACAGGTCAAGTGGTAGCCATGAA-
3′; reverse, 5′-GCATAAGCACATCCTGAAGACTGA-3′. The
primer sequences for AHNAK2 were: forward, 5′-TTCAGAGCC
GTACAAGGTTCAGT-3′; reverse, 5′-CAGCAACATCCGTGT
CCTCCT-3′. The primer sequences for AHNAK2 were: forward,
5′- GAAGCCACCAGCAAGAAGTCAG-3′; reverse, 5′-TCGTCT
AGCACACTCATGTCCAT-3′.

Protein expression levels were assessed by Western blot
analysis. Proteins from collected cell samples were first
separated by 10% SDS-polyacrylamide gel electrophoresis
(SDS-PAGE) and subsequently transferred to a polyvinylidene
fluoride (PVDF) membrane (IPVH00010, Sigma). To block
nonspecific binding, the membrane was incubated at room
temperature for 2 h in 5% non-fat milk. Afterward, the
membrane was incubated with the primary antibody overnight.
Following washing, the membrane was further incubated for 1 h
with horseradish peroxidase (HRP) - conjugated goat anti-rabbit
and anti-mouse IgG secondary antibodies (1:25,000, E030110-01,
E030120-01, EARTHOX). Finally, protein signals were detected
and visualized using chemiluminescence. Antibody against
SUMO1 (SinoBiological, 13095-RP02, dilution 1:1,000),
SUMO2/3 (Cell Signaling Technology, 4971S, dilution 1:1,000),
and SAFB2 (Proteintech, 11642-1-AP, dilution 1:1,000), β-
catenin (Abmart, M24002F, dilution 1:1,000), c-MYC
(Abamart, T55150F, dilution 1:1,000), and CCND1 (MCE,
HY-P80633, dilution 1:1,000).

2.16 Lentivirus production and transduction

For the construction of stable SAFB2-overexpressing cell lines,
lentiviral vectors carrying the SAFB2 gene sequence in the pLV3-
CMV-3×FLAG-SAFB2(human)-Puro construct were co-transfected
with packaging plasmids (psPAX2 and pMD2.G) into 293T cells.
The viral supernatants were collected, concentrated, and used to
infect PDAC cell lines Capan-1 and AsPC-1. Infected cells were
selected using puromycin for 1 week to generate stable cell lines.
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2.17 Cell function assays

For the proliferation assay, cells (2,000 per well) were seeded into a
96-well plate containing 100 μL of complete medium and incubated at
37°C. At 0, 24, 48, 72, and 96 h, 10 μL of CCK-8 (C0038, Beyotime)
reagent was added to each well. After a 2-h incubation, absorbance was
measured at 450 nm. For the colony formation assay, cells were cultured
in complete medium for 14 days, fixed with 4% paraformaldehyde for
15 min, and stained with 0.1% crystal violet for 10 min. In the drug
sensitivity assay, cells were seeded under the same conditions into a 96-
well plate (2,000 cells per well) and continuously treated with TAK-981
(paraformaldehyde) at specified concentrations, with 0.1% DMSO used
as the control (Kumar et al., 2022). Proliferation and colony formation
assays were then conducted. In the Transwell migration assay, 5 ×
10̂4 cells were seeded in the upper chamber of a Transwell system and
incubated for 24 h. For the invasion assay, cells were suspended in serum-
free medium and seeded intoMatrigel-coated Transwell chambers. After
48 h, cells that had migrated to the lower chamber were fixed with 4%
paraformaldehyde and stained with 0.1% crystal violet for 10 min.

2.18 Cell cycle analysis

Cell cycle analysis was conducted using the Cell Cycle and
Apoptosis Analysis Kit (C1052, Beyotime, China) following the
manufacturer’s protocol. Red fluorescence signals were measured
by flow cytometry with an excitation wavelength of 488 nm, and at
least 10,000 events were collected per sample.

2.19 Statistical analysis

Statistical analyses were conducted using R software (version
4.3.1) and GraphPad Prism software (version 9). Survival analysis
used the Kaplan–Meier method and Cox proportional hazards
model. For normally distributed data, Student’s t-test and one-
way ANOVA were applied for two-group and multiple-group
comparisons, respectively. Non-normally distributed data were
analyzed with the Mann–Whitney U test for two groups, and the
Kruskal–Wallis for multiple groups. Categorical variables were
assessed using the chi-squared or Fisher’s exact test as
appropriate. All p-values were two-sided, with p <
0.05 considered statistically significant.

3 Results

3.1 Elevated SUMOylation level in tumor and
reduction of proliferation by SUMOylation
inhibition

We investigated the overall levels and potential functions of
SUMOylation in PDAC. Western blot analysis showed that,
compared to normal pancreatic ductal epithelial cells (hTERT-
HPNE), the levels of pan-SUMOylation (SUMO1 and SUMO2/3)
were markedly elevated in PDAC cell lines (Capan-1, AsPC-1, MIA-
PaCa2, PANC-1, BxPC-3) (Figure 1A). IHC data from HPA further
confirmed that pan-SUMOylation levels in PDAC tissues were

significantly higher than those in normal pancreatic tissues
(Figures 1B–D). To explore the effects of reducing SUMOylation,
we treated PDAC cell lines with the small-molecule SUMOylation
inhibitor TAK-981 (Kumar et al., 2022). As TAK-981 concentration
increased, the proliferation of PDAC cells was significantly inhibited
(Figure 1E). Furthermore, PDAC cell lines all showed a significant
increase in the proportion of cells in the G2/M phase at both 24 and
48 h, indicating G2/M phase arrest (Figure 1F). These findings
indicate that SUMOylation levels are highly elevated in PDAC cells,
and inhibition via TAK-981 can effectively suppress their
proliferation in vitro.

3.2 Development and evaluation of
prognostic models based on DE-SSEGs

To further explore the potential roles of SUMOylation in PDAC,
we used SSEGs as prognostic markers for stratifying PDAC patients.
First, we performed differential expression analysis using
transcriptomic data from PDAC tissues and normal pancreatic
tissues/adjacent normal tissues from the TCGA and GTEx
databases, identifying 5,871 DEGs. These DEGs were then
intersected with highly enriched SUMOylation proteomics data
compiled by Ivo A. et al. (enrichment score ≥15), ultimately
identifying 134 DE-SSEGs in PDAC and normal tissues (Figures
2A, B; Supplementary Figure S1A; Hendriks and Vertegaal, 2016).
We further used the STRING interaction gene database to conduct
PPI network analysis on DE-SSEGs, selecting the top 30 key genes
for analysis. The PPI analysis suggested that key genes such as
TP53BP1, HNRNPA1, PARP1, and NPM1 are central to processes
like DNA damage repair, cell cycle regulation, and post-
transcriptional modification (Supplementary Figure S1B).
Additionally, GO and KEGG enrichment analyses revealed that
these genes are significantly enriched in processes related to
chromatin remodeling, RNA splicing, and nucleocytoplasmic
transport, highlighting their critical role in gene expression
regulation, maintenance of genomic stability, and cellular stress
response (Figures 2C, D).

After identifying the functional significance of DE-SSEGs in
PDAC, we developed a prognostic model to pinpoint key genes
closely related to patient survival, offering insights valuable for
clinical decision-making. Initially, we performed univariate Cox
regression and LASSO regression on 134 DE-SSEGs, identifying
eight genes significantly correlated with OS (Supplementary Figures
S1C, D; Figure 2E). To enhance the interpretability of model,
multivariate Cox regression was conducted, narrowing down
three key prognostic genes: CDK1, AHNAK2, and SAFB2 (p <
0.05) (Figure 2F). Next, using data from the HPA, we validated
the expression levels of CDK1, AHNAK2, and SAFB2 in PDAC and
normal tissues. IHC results demonstrated significant upregulation of
CDK1 and AHNAK2 in PDAC tissues, while SAFB2 was notably
downregulated (Figure 2G), confirming their relevance in PDAC
prognosis. Based on these genes, we constructed a risk score
model (Sscore).

Sscore � 1.3987 p exp −0.0340( ) p SAFB2 + 0.0338( ) pCDK1[
+ 0.0085( ) pAHNAK2]
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FIGURE 1
Elevated SUMOylation in PDAC and its inhibition impairs proliferation. (A)Western blot analysis shows SUMO1、SUMO2/3 protein levels in PDAC cell
lines (Capan-1, AsPC-1, MIA-PaCa2, PANC-1, BxPC-3) and normal pancreatic duct epithelial cells. (B–D) Representative IHC images display SUMO1 (B),
SUMO2 (C) and SUMO3 (D) expression in normal pancreatic tissue and PDAC tissue from theHPA dataset. The violin plots represent relative quantification
of SUMO protein expression in tissues, p-values were derived from Student’s t-tests. (E) Proliferation curves of PDAC cell lines treated with graded
concentrations of TAK-981, error bars represent standard deviation (SD) based on three independent experiments. (F) PDAC cells lines (Capan-1, AsPC-1,
MIA-PaCa2, PANC-1, BxPC-3) were treated with either 0.5 μM TAK-981 or 0.05% DMSO for 24 and 48 h, followed by cell cycle analysis. The bar graph
represents the percentage of cells in each phase of the cell cycle (G1, S, and G2/M) based on three independent biological replicates (n = 3). Error bars
represent SD, and p-values were derived from Student’s t-tests. nsp > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.
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FIGURE 2
Screening, Functional Enrichment, and Prognostic Analysis of DE-SSEGs in PDAC. (A) Venn diagram showing the overlap between DEGs from tumor
and normal tissues (n = 5871) and the SSEGs set (n = 334). (B) Volcano plot illustrating 134DE-SSEGs based on adjusted p-values and FC. Red dots indicate
upregulated genes, while blue dots indicate downregulated genes (|log2(FC)| >1, p < 0.05). (C, D) GO enrichment analysis (C) and KEGG pathway
enrichment analysis (D) of DE-SSEGs. (E, F) Forest plots from univariate (E) and multivariate (F) Cox regression analyses of DE-SSEGs. (G)
Representative IHC images showing CDK1, AHNAK2, and SAFB2 expression in normal pancreatic and PDAC tissues. The violin plots represent relative
quantification of protein relative expression in tissues, p-values were derived from Student’s t-tests. ***p < 0.001.
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FIGURE 3
Stability and Predictive Performance of the Sscore Model. (A–C) K-M analysis illustrating OS curves for high- and low-Sscore patients in the TCGA-
PAAD training set (A) and in the GSE183795 (B) and GSE62452 (C) validation sets. (D–F) ROC curves assessing the OS prediction in the TCGA-PAAD
training set (D) and in GSE183795 (E) and GSE62452 (F) validation sets for SUMOylation substrate encoding gene features. (G–I) Scatter plots showing risk
scores (top), survival time and status (middle), and heatmap of CDK1, AHNAK2 and SAFB2 expression (bottom) for PDAC patients in the TCGA-PAAD
training set (G), GSE183795 (H), and GSE62452 (I) validation sets.
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FIGURE 4
Prognostic Nomogram for OS in PDAC Patients from the TCGA Cohort. (A, B) Univariate (A) and multivariate (B) Cox regression analysis
demonstrating the influence of Sscore and clinical characteristics (age, gender, grade, and stage) on OS in PDAC. (C) A nomogram incorporating Sscore
and clinical factors (age, gender, grade, and stage) to predict 1-, 3-, and 5-year OS in PDAC. (D–F) Calibration curves illustrating the agreement between
predicted and actual OS for 1 year (D), 3 years (E), and 5 years (F). The gray line represents the ideal prediction, while the blue line shows the observed
outcomes, with closer alignment indicating bettermodel performance. (G) ROC curves assessing the predictive accuracy of the nomogram for 1-, 3-, and
5-year OS.
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We first calculated the risk scores for PDAC patients from the
training cohort (TCGA-PAAD, n = 178) and two validation cohorts
(GSE183795, n = 134; GSE62452, n = 65) (Yang et al., 2016; Yang S.
et al., 2022). Using the median score as a cutoff, patients were
categorized into High- and Low-Sscore groups. K-M analysis
showed that patients in the Low-Sscore group had significantly
better OS in the training cohort (p = 0.0020, Figure 3A) and both
validation cohorts (p = 0.0003 and p = 0.0061, Figures 3B, C).
Similarly, time-dependent ROC analyses for 1-, 3-, and 5-year OS in
the training (Figure 3D) and validation cohorts (Figures 3E, F)
reinforced the prognostic power of the Sscore model in PDAC.
Figures 3G–I depict the relationships between Sscore, survival times,
and patient status, along with the transcriptional profiles of CDK1,
AHNAK2, and SAFB2 across the High- and Low-Sscore groups.

To evaluate the prognostic efficacy of the Sscore in other
gastrointestinal malignancies, we first observed that global
SUMOylation levels were significantly elevated in LIHC and
COAD compared to normal tissues (Supplementary Figures S2A,
B). K-M survival analysis and ROC curve assessment demonstrated
that the Sscore was only effective in predicting overall survival in
LIHC patients (P = 0.002), although its prognostic performance was
substantially inferior to that observed in PDAC (Supplementary
Figures S2C–F). These findings further establish the significance of
the Sscore in PDAC prognosis.

3.3 Construction and validation of a
prognostic nomogram based on sscore
for PDAC

To identify significant clinical prognostic factors for PDAC
patients, we performed both univariate and multivariate Cox
regression analyses. Our results indicated that age (p = 0.017)
and Sscore (p < 0.001) were independent predictors of OS
(Figures 4A, B). Using the Sscore along with other clinical
parameters such as age, gender, tumor grade, and stage, we
constructed a nomogram—a predictive tool used to estimate
patient outcomes. This nomogram was designed to predict the 1-,
3-, and 5-year OS of PDAC patients (Figure 4C). The calibration
curves demonstrated a strong agreement between predicted and actual
survival rates (Figures 4D-F). Additionally, ROC curve analysis
revealed high predictive accuracy, with areas under the curve
(AUC) values of 0.668, 0.777, and 0.770 for 1-, 3-, and 5-year
survival, respectively (Figure 4G). Overall, the multivariate Cox
regression and nomogram analyses identified key prognostic
indicators for PDAC and validated the utility of Sscore, providing
a valuable reference for personalized treatment planning and clinical
decision-making.

3.4 Increased genome variation in high-
Sscore patients

After confirming the significance of the Sscore in PDAC, we
investigated the potential mechanisms underlying the prognostic
differences observed in High and Low-Sscore patients. Since DE-
SSEGs are involved in chromatin remodeling and DNA damage
repair, we analyzed genome variation between these two groups.

Somatic mutation analysis revealed that missense mutations,
primarily in the form of single nucleotide polymorphisms
(SNPs), were the predominant mutation type in both groups,
with similar SNP distribution patterns (Figures 5A, C). However,
High-Sscore patients exhibited significantly higher mutation
frequencies in well-known PDAC-associated genes, including
KRAS (75% vs. 45%), TP53 (40% vs. 23%), CDKN2A (23% vs.
21%), and SMAD4 (21% vs. 12%), compared to Low-Sscore patients
(Figures 5B, D). Moreover, High-Sscore patients displayed a
markedly higher total number of somatic mutations (35.5 vs. 23)
and increased TMB, with significant differences in the mutation
rates of key genes (p < 0.001; Figure 5E). Of particular note, CNV
analysis of the three key prognostic genes in the Sscore model
revealed that the deletion frequency of SAFB2 was substantially
higher in High-Sscore patients, suggesting that loss of SAFB2 may
contribute to tumor progression (Figures 5F, G). In conclusion, our
findings demonstrate a strong association between the Sscore and
genome variation in PDAC patients, highlighting SAFB2 as a critical
target for further investigation in tumor progression.

3.5 Lower immune infiltration and
diminished immunotherapy response in
high-Sscore patients

It has been previously established that SUMOylation plays a
pivotal role in regulating the tumor microenvironment (TME),
immune checkpoints, and immune cell activity, which in turn
affects tumor immune evasion (Gu et al., 2023; Xie et al., 2024).
TMB is another well-recognized biomarker for predicting the
response to immunotherapy (Jardim et al., 2021). Based on these
findings, we hypothesized that the Sscore might modulate PDAC
prognosis by influencing TME characteristics. To investigate this, we
applied three algorithms (“ESTIMATE”, “CIBERSORT”, and
“ssGSEA”) to compare the composition and immune profiles of
TME in High and Low-Sscore patients. Our results showed that
Low-Sscore patients had lower tumor purity but higher immune and
ESTIMATE scores, indicating a more complex immune
microenvironment (Figures 6A–C). Specifically, Low-Sscore
patients displayed higher levels of immune regulatory cells, such
as plasmacytoid dendritic cells and follicular helper T cells, along
with immune effector cells, including TH1 cells, activated CD8+

T cells, and activated B cells. In contrast, High-Sscore patients had
greater infiltration of macrophages and TH2 cells (Figures 6D, E).
Furthermore, the TIDE algorithm revealed that High-Sscore
patients had significantly higher TIDE and exclusion scores,
suggesting a greater risk of immune escape and markedly
reduced infiltration of cytotoxic T lymphocytes (CTLs) (Figures
6F–H). These findings imply that High-Sscore patients exhibit
stronger immunosuppressive characteristics and may have a
reduced likelihood of benefitting from immunotherapy.

3.6 Increased drug resistance in High-
Sscore patients

It is well-established that genome variation and complexity of
the TME both play critical roles in the development of drug
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resistance in tumors. Genome variation can influence not only the
biological characteristics of tumor cells but also their response to
treatment by modifying the composition and function of TME. In
addition, some mutations may directly cause acquired resistance by

promoting the expression of resistance-related genes or enhancing
the tumor cells’ ability to adapt to therapies. Given this, we explored
the relationship between the Sscore and drug sensitivity in PDAC,
particularly with conventional chemotherapies and targeted

FIGURE 5
Increased Genome variation in High Sscore Patients. (A–D) Genomic mutation characteristics in low and high Sscore patients. (A) shows the low
Sscore group, and (C) shows the high Sscore group. The upper left bar chart illustrates the distribution of SNPs, insertions (INS), and deletions (DEL). The
SNV class denotes the relative proportions of base changes, with C>T transitions being the most frequent. The lower left panel depicts the number of
variants per sample, while the box plot below shows the distribution of mutation types. (B, D) are waterfall plots showingmutations in low Sscore (B)
and high Sscore (D) patients. The top bar charts indicate TMB, while the numbers on the right representmutation frequencies for each gene. (E) Total TMB
in high and low Sscore patients. p-values were derived fromMann-Whitney U test. (F, G) CNV frequencies ofCDK1, AHNAK2, and SAFB2 in low Sscore (F)
and high Sscore (G) patients. ***p < 0.001.
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FIGURE 6
Lower Immune Infiltration and Diminished Immunotherapy Response in High Sscore Patients. (A–C) Immune score (A) and ESTIMATE score (B) are
notably higher in low Sscore patients, while tumor purity (C) is lower. (D, E) ssGSEA (D) and CIBERSORT (E) algorithms illustrate the distribution and
infiltration patterns of different immune cell types in high and low Sscore patients. (F–H) TIDE analysis, including exclusion score (F), TIDE score (G), and
CTL infiltration status (H). Red indicates presence (True), blue indicates absence (False) in bar graph. Statistical analyses includeMann-Whitney U test
(A–G), Chi-square test (H), *p < 0.05, **p < 0.01, ***p < 0.001.

Frontiers in Pharmacology frontiersin.org12

Wang et al. 10.3389/fphar.2025.1532658

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1532658


FIGURE 7
Decreased Drug Sensitivity in High Sscore Patients. (A–L) Box plots illustrate the estimated IC50 values of five standard chemotherapy drugs
(gemcitabine (A), oxaliplatin (B), fluorouracil (C), irinotecan (D), and carboplatin (E)), a NOTCH pathway inhibitor (MK-0752 (F)), four tyrosine kinase
inhibitors (sorafenib (G), sunitinib (H), cabozantinib (I), and masitinib (J)), and two mTOR pathway inhibitors (rapamycin (K) and sirolimus (L)). Drug
sensitivity analysis for targeted therapies was performed using the Cancer Therapeutics Response Portal (CTRP). p-values were derived fromMann-
Whitney U test, **p < 0.01, ***p < 0.001.
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FIGURE 8
scRNA-seq Reveals the Distribution of Sscore and its Biological Relevance in PDAC. (A) UMAP plot illustrates the distribution of 14 major cell types
within the dataset (GSE212966). (B) A dot plot visualizes the expression levels of characteristic marker genes in each cell type. (C) The expression patterns
and overall scores of the three key genes in the Sscore model (CDK1, AHNAK2, SAFB2) across various cell types. (D) UMAP plot shows the clustering of
ductal cells into three distinct subpopulations following dimensionality reduction. (E) A dot plot displays the characteristic marker gene expression
levels in each of the three cell subpopulations. (F) The expression distribution of the three Sscore model genes (CDK1, AHNAK2, SAFB2), SUMOylation
substrate encoding genes (SUMO1, SUMO2, SUMO3) and Sscore across the three cell subpopulations. (G) Pseudotime trajectory analysis of the three
ductal cell subpopulations. (H) GSVA analysis reveals the pathway enrichment between high and low Sscore cell subpopulations.
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therapies. Based on the 2023 ESMO Pancreatic Cancer Clinical
Treatment Guidelines (Conroy et al., 2023), we analyzed the IC50 of
five common chemotherapy drugs (gemcitabine, oxaliplatin,
fluorouracil, irinotecan, and carboplatin), a NOTCH pathway
inhibitor (MK-0752), two mTOR inhibitors (rapamycin and
sirolimus), and four tyrosine kinase inhibitors (sorafenib,
sunitinib, cabozantinib, and masitinib). Our findings
demonstrated that, except for MK-0752, patients with high
Sscore displayed significantly higher resistance to all of the drugs
tested (Figures 7A–L). This suggests that activation of the NOTCH
pathway might be a contributing factor to the increased drug
resistance observed in these patients. Therefore, the Sscore is
closely linked to drug resistance in PDAC, providing valuable
insights for guiding clinical treatment strategies.

3.7 scRNA-seq reveals strong correlation
between high Sscore and malignant
characteristics of PDAC cells

Due to the complex TME of PDAC, we utilized scRNA-seq data
from GSE212966, which includes six PDAC and three adjacent
normal tissue samples (Supplementary Figure S3A; Chen et al.,
2023). After quality control and removal of doublets, 39,786 cells
were obtained. Using cell cluster-specific markers, we identified
14 subgroups: ductal cells (type 1 and type 2), T cells, endothelial
cells, stellate cells, fibroblasts, B cells, plasma cells, macrophages,
neutrophils, mast cells, acinar cells, endocrine cells, and Schwann
cells (Figures 8A, B; Supplementary Figure S3B). Notably, we
identified two ductal cell types in PDAC. Type 2 ductal cells
exhibited elevated expression of malignant markers (MUC1,
FXYD3, KRT19), while type 1 ductal cells expressed normal
pancreatic markers (CFTR, AMBP, SLC4A4) (Figure 8B).
Moreover, type 1 ductal cells and acinar cells were primarily
from normal tissues, while type 2 ductal cells were mainly from
tumor samples (Supplementary Figure S3A), suggesting type 2 cells
as a malignant population. Chromosomal CNV analysis showed
significantly higher CNV levels in type 2 than type 1 ductal cells
(Supplementary Figure S3C), further supporting their role as the
major tumor population in PDAC.

Next, we explored the distribution of three key genes in the
Sscore model (CDK1, AHNAK2, SAFB2) across cell types. Heatmap
analysis revealed that type 2 ductal cells had the highest Sscore, with
elevated CDK1 and AHNAK2, while SAFB2 was primarily expressed
in T cells and mast cells, and significantly lower in type 2 than type
1 ductal cells (Figure 8C). Consistent results were obtained from
another single-cell dataset (GSE194247) (Supplementary
Figures S4A–D).

Subsequently, we further divided the ductal cells into three
subgroups, demonstrating distinct marker expression patterns
and Sscore (Figures 8D–F). Subgroup 2 was predominantly
composed of type 1 ductal cells, whereas type 2 ductal cells
were distributed into subgroups 1 and 3. Notably, subgroup
3 exhibited a higher Sscore, along with elevated expression of
SUMOylation modifier factors (SUMO1/2/3) and key cell cycle
regulators (MKI67, CDK1, CENPF), indicating enhanced
proliferative capacity. Given the critical role of SUMOylation
in stabilizing cell cycle proteins and promoting mitotic

progression, these findings imply that increased SUMOylation
activity may contribute to the heightened proliferation observed
in this subgroup. Moreover, the elevated expression of SUMO1/
2/3 in malignant ductal cells compared to normal ductal cells
further underscores the potential role of SUMOylation in
promoting tumor progression (Supplementary Figure S4D).
In contrast, subgroup 1 had high oncogene expression
(AHNAK2, FXYD3, LMC2), reflecting changes in cytoskeletal
regulation and extracellular matrix remodeling. Pseudotime
analysis showed ductal cells progressing from subgroup 2 to
subgroups 1 and 3, with subgroup 3 likely evolving from
subgroup 2 (Figure 8G). Finally, GSVA analysis revealed
significant metabolic pathway enrichment differences between
high and low Sscore subgroups (glycolysis, oxidative
phosphorylation, and fatty acid metabolism). High Sscore
subgroup exhibited enhanced angiogenic potential and a
greater propensity for epithelial mesenchymal transition
(EMT), whereas low Sscore subgroup was enriched in the
PI3K/AKT/mTOR signaling pathway and demonstrated
stronger interferon α and γ responsiveness (Figure 8H).
Together, these findings suggest that subgroup 3 harbors
greater malignancy and immunosuppressive properties,
aligning with observed immune infiltration patterns and drug
sensitivity profiles in High-Sscore patients.

3.8 SAFB2 suppresses PDAC cell
proliferation, invasion, and migration

To investigate the impact of key Sscore genes on PDAC, we
evaluated the expression of CDK1, AHNAK2, and SAFB2 in PDAC
cells. RT-qPCR and Western blot results demonstrated that
SAFB2 expression was notably reduced in PDAC cell lines
compared to normal pancreatic ductal epithelial cells (Figures
9A, B). Consistently, comparative analyses of five paired adjacent
normal and PDAC tissues corroborated these findings (Figure 9C).
Among the genes comprising the Sscore, SAFB2 stands out as the
feature gene with the highest weight, exhibiting significant
upregulation in PDAC cells and tissues. Furthermore, given its
significant downregulation and the clear CNV deletions observed
in High-Sscore patients, we prioritized SAFB2 as a key target for
further investigation. To assess its functional role, we constructed
SAFB2 overexpression models in PANC-1 and AsPC-1 cell lines
(Figure 9D). Functional assays, including CCK8, colony formation
assays and EdU demonstrated that SAFB2 overexpression
significantly inhibited PDAC cell proliferation (Figures 9E, F).
Transwell assays further confirmed that SAFB2 overexpression
significantly reduced the migration and invasion abilities of
PDAC cells (Figure 9G). These findings suggest that SAFB2 may
play a critical role in suppressing the malignant properties of
PDAC cells.

Given that SAFB2 has been reported to inhibit breast cancer
progression through the Wnt/β-Catenin pathway, we further
explored its role in PDAC. Western blot analysis revealed that
SAFB2 overexpression significantly reduced β-Catenin expression
and transcriptional activity (Figure 9H), indicating that SAFB2
suppresses PDAC progression, at least in part, by inhibiting the
Wnt/β-Catenin pathway.
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FIGURE 9
SAFB2 Inhibits PDAC Cell Proliferation, Invasion, and Migration. (A) RT-qPCR analysis of CDK1, AHNAK2, and SAFB2 expression levels in PDAC cell
lines and normal pancreatic ductal epithelial cells. (B) Western blot analysis of SAFB2 protein levels in PDAC cell lines and normal pancreatic ductal
epithelial cells. (C) The expression of SAFB2 in five pairs of PDAC tissues and their corresponding adjacent normal tissues (D) Western blot validation of
successful construction of SAFB2 overexpression models in the PANC-1 and AsPC-1 cell line. (E) Proliferation curves and colony formation assay of
SAFB2-overexpressing PANC-1 and AsPC-1 cells, with empty vector-transfected PANC-1 and AsPC-1 cells as controls. (F) EdU assay assessing the
proliferation of SAFB2 overexpression clones, with empty vector-transfected PANC-1 and AsPC-1 cells as controls. Scar bar: 30 μm. (G) Transwell assay
showing the invasion and migration abilities of SAFB2 overexpression clones, with empty vector-transfected PANC-1 and AsPC-1 cells as controls. Scar
bar: 30 μm. (H) Western blot analyzed the protein levels of Wnt/β-catenin signaling-associated factors of SAFB2 overexpression clones, with empty
vector-transfected PANC-1 and AsPC-1 cells as controls. Scar bar: 30 μm. Statistical analyses were derived from Student’s t-tests, error bars represent SD
based on three independent experiments. nsp > 0.05, *p < 0.05, **p < 0.01, ***p < 0.001.
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4 Discussion

PDAC remains one of the most challenging cancers to treat due
to its poor prognosis, difficulty in early detection, low surgical
resection rates, poor responsiveness to treatment, and high
recurrence and metastasis rates (Conroy et al., 2023; Peng et al.,
2019). Early diagnosis and targeted therapies are thus critical but
unmet needs in PDAC management. Our study identified
significantly elevated levels of SUMOylation in PDAC cells, with
SUMOylation inhibition effectively reducing PDAC cell
proliferation. The Sscore model developed based on SSEGs not
only demonstrated robust predictive capabilities but also provided
insights into PDAC patients’ genome variation, immune
microenvironment composition, and drug sensitivities. Moreover,
the downregulation of SAFB2 in PDAC cells suggests that it may
exert tumor-suppressive effects by inhibiting the Wnt/β-Catenin
pathway, pointing to potential novel therapeutic avenues for PDAC.

4.1 Advances in prognostic prediction of
PDAC using SSEGs

IHC analysis and in vitro experiments showed amarked increase
in SUMOylation levels in PDAC tissues. The SUMOylation
inhibitor TAK-981 suppresses PDAC progression by disrupting
cell cycle dynamics. Specifically, TAK-981 selectively targets the
SUMO pathway by forming a covalent complex with SUMO,
effectively inhibiting SUMO E1 activity while preserving
ubiquitin E1 function (Langston et al., 2021). Treatment with
TAK-981 led to a dose-dependent reduction in PDAC cell
proliferation (Kumar et al., 2022). Furthermore, PDAC cell lines
exposed to TAK-981 displayed an accumulation of cells in the G2/M
phase, indicating mitotic arrest and impaired cell cycle progression.
This confirms the validity of predicting PDAC prognosis using
SSEGs. Several studies have highlighted the pivotal role of
SUMOylation in PDAC progression. For instance,
SENP3 suppresses PDAC metastasis by deSUMOylating DKC1,
while SUMOylation of XRCC4 at K115 enhances nuclear
localization on chromatin, contributing to oxaliplatin resistance.
Furthermore, inhibiting SUMOylation in PDAC activates interferon
pathways, boosting antitumor immunity (Kumar et al., 2022; Wu
et al., 2023; Zheng et al., 2023). Based on 134 DE-SSEGs, we
developed a prognostic model, the Sscore, which demonstrated
superior predictive performance compared to models using DNA
methylation driver genes and anoikis-related genes. Overall, the
Sscore effectively assesses PDAC prognosis and highlights the
potential of targeting SUMOylation for therapeutic interventions.

4.2 Mechanisms underlying SUMOylation-
mediated PDAC risk

Given the importance of SUMOylation in DNA repair and cell
cycle regulation, we hypothesize that dysregulation of SSEGs in high
Sscore patients could lead to the accumulation of somatic mutations,
activating oncogenes and inactivating tumor suppressor genes,
thereby promoting tumor progression. Genome variation are also
linked to immune evasion, drug resistance, and prognosis. Our study

found that high Sscore patients exhibited higher frequencies of
somatic mutations, with significantly elevated TMB and mutation
rates in key genes compared to low Sscore patients. Notably,
mutations in KRAS, TP53, CDKN2A, and SMAD4 were more
prevalent in high Sscore patients, suggesting a more aggressive
tumor phenotype. CNV analysis further revealed a higher
frequency of SAFB2 deletions in high Sscore patients, implicating
SAFB2 as a potential tumor suppressor in PDAC. In conclusion,
aberrant SUMOylation likely exacerbates genomic instability in
PDAC, and the Sscore model effectively stratifies patients based
on their levels of genome variation.

It is now well-established that tumor progression is the result of
continuous interactions between tumor cells and the surrounding
TME. Immune cells, as a crucial component of the TME, can either
facilitate or inhibit tumor growth (Mao et al., 2021; Lei et al., 2020;
Hinshaw and Shevde, 2019). Studies have demonstrated that
SUMOylation directly regulates immune cells (such as dendritic
cells, CD8+ T cells, Treg cells, and macrophages), impacting their
immune functions (Sun et al., 2023; Yu et al., 2018; Xiao et al., 2022;
Hu et al., 2021; Wu et al., 2022; Lightcap et al., 2021). Our research
revealed that PDAC patients with lower Sscore exhibited reduced
tumor purity, higher immune and ESTIMATE scores, and greater
infiltration of immune-related cells in the TME compared to high
Sscore patients. Similarly, TIDE analysis suggested that high Sscore
patients had a diminished response to immunotherapy, with a lower
likelihood of benefiting from such treatment. Paradoxically, high
Sscore patients showed increased TMB levels, a marker typically
associated with improved immunotherapy outcomes (Gu et al.,
2022). This contradiction could be explained by the
immunosuppressive TME in PDAC, the presence of immune
evasion mechanisms in tumor cells, or the insufficient
immunogenicity of certain tumor mutations (Jiang et al., 2016;
Wang-Gillam et al., 2022; Cao et al., 2021; Piersma et al., 2020).
Thus, despite elevated TMB, high Sscore patients may not respond
favorably to immunotherapy.

Additionally, SUMOylation has been implicated in directly
mediating drug resistance in tumor cells (Gu et al., 2024).
Genome variation and TME modifications, both closely linked to
SUMOylation, also contribute to acquired resistance in tumors (Gu
et al., 2023; Wu et al., 2022; Xia et al., 2022). Our analysis of drug
sensitivity demonstrated that the Sscore reliably predicts the
response of PDAC patients to various treatments. High Sscore
patients exhibited significant resistance to commonly used
chemotherapeutic agents, mTOR inhibitors, and tyrosine kinase
inhibitors but showed increased sensitivity to NOTCH pathway
inhibitors, suggesting potential NOTCH pathway activation. This
aligns with previous findings, where SUMOylation of N1ICD was
shown to enhance downstreamNOTCH signaling (Zhu et al., 2017).

The TME of PDAC is highly complex, and traditional
transcriptomic methods struggle to fully capture the intercellular
diversity. Through single-cell transcriptomics, we identified that
malignant ductal cells exhibited significantly higher Sscore values
than normal ductal cells. Specifically, type 2 ductal cells with a high
Sscore exhibited elevated expression of SUMOylation modifier
factors (SUMO1/2/3) alongside increased expression of cell cycle-
related genes, highlighting the crucial role of SUMOylation in cell
cycle progression and proliferation. Subcluster analysis combined
with GSVA revealed that these cells were at the terminal end of the
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ductal cell differentiation trajectory and possessed more pronounced
malignant characteristics. High Sscore subgroups were significantly
enriched in pro-tumor pathways such as angiogenesis, epithelial-
mesenchymal transition (EMT), and the NOTCH and Hedgehog
pathways. Conversely, low Sscore subgroups showed enrichment in
the p53 and PI3K/AKT/mTOR signaling pathways and exhibited
strong interleukin α and γ responses, retaining partial pancreatic
normal cell functions. scRNA-seq highlighted a strong link between
the Sscore and PDAC cell malignancy, suggesting that high Sscore
subgroups harbor more aggressive tumor biology and
immunosuppressive environments, aligning with previous
findings of immune evasion and drug resistance in high
Sscore patients.

Previous studies have demonstrated that dysregulation of the
SUMOylation pathway induces drug resistance and immune evasion
in tumor cells (Seeler and Dejean, 2017). By modulating the stability
and activity of proteins involved in key signaling pathways such as
NOTCH, p53, NF-κB, and Wnt/β-Catenin, SUMOylation
contributes to chemoresistance and immune escape, making it a
promising therapeutic target (Seeler and Dejean, 2017; Zhu et al.,
2017; Boulanger et al., 2019; Kukkula et al., 2021). Therefore,
integrating SUMOylation inhibition with existing treatment
strategies may enhance antitumor efficacy and help overcome
resistance mechanisms. Currently, TAK-981 is the only
SUMOylation inhibitor that has advanced to phase I/II clinical
trials, with studies targeting both hematologic malignancies and
advanced or metastatic solid tumors (Boulanger et al., 2019).
Ongoing trials are evaluating its efficacy in combination with
immune checkpoint inhibitors (NCT04381650) and monoclonal
antibodies targeting CD38 and CD20 (NCT04776018,
NCT04074330) for hematologic cancers. Additionally, TAK-981
is being investigated in combination with immunotherapy
(avelumab) and anti-EGFR antibodies for solid tumors
(NCT04065555), with a particular focus on its role in modulating
the tumor microenvironment. These trials provide preliminary
clinical validation of SUMOylation inhibition as a therapeutic
approach; however, further research is required to elucidate its
precise mechanisms and identify potential synergistic treatment
strategies.

4.3 The role of key genes in sscore and their
association with PDAC

The Sscore model is based on three critical genes: CDK1,
AHNAK2, and SAFB2. Cyclin-dependent kinases (CDKs) are
crucial proteins that, when forming complexes with cyclins, drive
the progression of the cell cycle (Santamaría et al., 2007). CDK1, a
central member of this kinase family, plays a pivotal role in cell cycle
regulation, checkpoint activation, and DNA damage repair (Wang
et al., 2023). Numerous studies have demonstrated the upregulation
of CDK1 in various cancers, where its dysregulation is closely linked
to tumor development and progression (Wang et al., 2023).
Currently, CDK1 inhibitors, such as Rigosertib and Zotiraciclib,
are in Phase III clinical trials and have shown potential in treating
PDAC and gliomas (O’Neil et al., 2015; Le Rhun et al., 2024).
AHNAK, part of the large nucleoprotein family, is involved in
multiple physiological and pathological activities, including lipid

metabolism, membrane repair, and tumor migration (Davis et al.,
2014). Recent research has underscored AHNAK2 as a prognostic
marker for cancers such as thyroid cancer, melanoma, PDAC, and
bladder cancer (Zhang et al., 2023). In PDAC, elevated AHNAK2
levels promote tumor progression by preventing c-MET
degradation, thereby sustaining HGF/c-MET pathway activation
(Chen et al., 2024). Knockdown of AHNAK2 has been shown to
impede tumor progression through inhibition of the NF-κB/MMP-
9 signaling pathway (Tang et al., 2024).

SAFB2, identified as a key SSEG in this study, plays a critical role
in PDAC development. As mentioned earlier, SAFB2 is part of the
SAFB family of nuclear proteins, which participate in essential
biological processes, including RNA processing, cell proliferation,
stress responses, and apoptosis. SAFB2 acts as a transcriptional
repressor by binding to chromatin and interacting with regulatory
proteins such as transcription factors and chromatin remodeling
complexes. SUMOylation enhances the transcriptional repression
ability of SAFB2, particularly immune-related genes like MHC-I,
enabling tumor cells to evade immune detection by reducing antigen
presentation, thus promoting immune escape (Garee et al., 2011;
Demel et al., 2022). Interestingly, research by Liu et al. shows that
SUMOylated SAFB can promote ribosomal gene transcription by
recruiting RNA polymerase II, which aids in pre-mRNA splicing
(Liu et al., 2015). This divergence in function may be due to different
cellular environments or external conditions that influence how
SUMOylated SAFB operates. Despite the high sequence similarity
between SAFB1 and SAFB2, they differ notably in their gene
regulatory roles. Unlike SAFB1, which is strictly nuclear,
SAFB2 can also localize in the cytoplasm and interact with
proteins like Vinexin-β, suggesting a role in signaling pathways
and cytoskeletal organization (Hutter et al., 2020). Additionally,
beyond repressing AR and ERα activity, SAFB2 has been shown to
suppress breast cancer progression by inhibiting the Wnt/β-catenin
pathway via NFAT5 (Zhen et al., 2023).

Nevertheless, the role of SAFB2 in PDAC remains inadequately
characterized. Our study revealed significant downregulation of
SAFB2 in PDAC cells. Overexpression of SAFB2 inhibited cell
proliferation, invasion, and migration, and was associated with
reduced Wnt/β-Catenin signaling activity. The Wnt/β-Catenin
signaling pathway plays a pivotal role in PDAC progression by
driving cell cycle regulation and epithelial-mesenchymal transition
(Aguilera and Dawson, 2021; Cui et al., 2012; Yang P. et al., 2022). Its
aberrant activation not only facilitates tumor initiation but also
contributes to therapy resistance, underscoring its significance in
PDAC pathophysiology (Cui et al., 2012). These findings suggest a
potential link between SAFB2 and Wnt/β-Catenin signaling in
tumor suppression, though the underlying mechanism warrants
further investigation.

Therefore, future therapeutic strategies could focus on restoring
SAFB2 function or targeting its associated pathways to enhance
treatment efficacy. Combining Wnt pathway inhibitors (e.g., PRI-
724, LGK974) with SAFB2 overexpression strategies may provide
synergistic tumor suppression (Yang P. et al., 2022). Additionally,
gene therapy approaches, such as viral vector-mediated
SAFB2 delivery or CRISPR activation, could restore
SAFB2 function, while epigenetic modulators (e.g., DNA
methyltransferase or HDAC inhibitors) may help reactivate its
expression. Furthermore, SAFB2 modulation could enhance
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chemotherapy sensitivity by counteracting Wnt/β-Catenin-driven
resistance, potentially improving the efficacy of standard PDAC
treatments such as gemcitabine, FOLFIRINOX, or nab-paclitaxel.
Future studies should validate these strategies to determine their
clinical relevance and therapeutic potential in overcoming PDAC
progression and treatment resistance.

4.4 Study limitations and future directions

This study employed a retrospective design. Although we validated
the Sscore model across several datasets, future prospective studies are
essential to confirm its clinical utility. While our findings suggest that
SAFB2 has tumor-suppressive potential in PDAC, its precise role and
underlying regulatory mechanisms, particularly in relation to the
inhibition of Wnt/β-Catenin signaling and suppression of tumor
progression, remain to be fully elucidated. Further research is
required to explore the molecular functions of SAFB2, particularly
regarding its involvement in PDAC progression and its potential as a
therapeutic target. In summary, our study presents a novel SUMOylation

substrate encoding gene model for predicting PDAC prognosis and
unveils SAFB2 as a promising tumor suppressor. Future investigations
should further explore the impact of SUMOylation or SAFB2modulation
in PDAC, paving the way for personalized and targeted therapy
innovations.

5 Conclusion

This study underscores the pivotal role of SUMOylation in the
progression of PDAC (Figure 10). We developed the Sscore
prognostic model based on essential SUMOylation substrate
encoding genes, showing robust predictive accuracy for survival
and associations with genome variation, immune infiltration, and
drug sensitivity. Single-cell analysis further linked high Sscore to
increased tumor malignancy. The observed downregulation of
SAFB2 highlights its potential tumor-suppressive function, with
in vitro experiments demonstrating its inhibitory effects on
PDAC cell proliferation, migration and invasion, possibly
through suppression of the Wnt/β-Catenin pathway. Taken

FIGURE 10
SUMOylation and SAFB2 in PDAC Progression. This schematic illustrates the role of SUMOylation in promoting PDAC progression and the
therapeutic potential of its inhibition via TAK-981, which significantly reduces tumor cell proliferation. High Sscore cells exhibit genome variation,
reduced immune infiltration, drug resistance, and activation of pathways such as EMT and angiogenesis. SAFB2, downregulated in PDAC, inhibits the
progression of PDAC by suppressing the Wnt/β-Catenin signaling pathway, highlighting its tumor-suppressive function.
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together, these findings offer promising directions for advancing
personalized and targeted therapies for PDAC.
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SUPPLEMENTARY FIGURE S1
Heatmap, PPI Network Analysis, and Prognostic Model Optimization for DE-
SSEGs. (A) Heatmap depicting DE-SSEG expression in normal pancreatic
tissues (GTEx, blue) and PDAC tissues (TCGA-PAAD, red). (B) PPI network of
the top 30 DE-SSEGs. (C) LASSO regression showing the optimal λ value
selected via tenfold cross-validation. (D) LASSO-Cox analysis results for the
eight strongest prognostic DE-SSEGs.

SUPPLEMENTARY FIGURE S2
Expression Patterns of SUMOylation Substrate Encoding Genes and
Prognostic Efficiency of the Sscore in LIHC and COAD. (A, B) Representative
IHC images display SUMO1, SUMO2, and SUMO3 expression in normal liver
(A) and colon (B) tissues, as well as in LIHC (A) and COAD (B) tissues from the
HPA dataset. The violin plots represent relative quantification of SUMO
protein expression in these tissues, with p-values derived from Student’s
t-tests. (C, D) K-M analysis illustrating OS curves and ROC curves assessing
the OS prediction for high- and low-Sscore patients in the TCGA-LIHC (C)
and in the TCGA-COAD (D) dataset. (E, F) Scatter plots showing risk scores
(top), survival time and status (middle), and heatmap of CDK1, AHNAK2 and
SAFB2 expression (bottom) for LIHC and COAD patients in the TCGA-LIHC
dataset (E), TCGA-COAD dataset (F). nsp > 0.05, **p < 0.01, ***p < 0.001.

SUPPLEMENTARY FIGURE S3
Dimensionality Reduction Clustering and CNV Analysis across the Cells in
GSE212966. (A, B) UMAP plots demonstrate the distribution of cells from
different sample origins (A) and the clustering of all cells through
dimensionality reduction (B). (C) The CNV differences between the two types
of ductal epithelial cells were inferred by comparing them to other cell types
as a reference.

SUPPLEMENTARY FIGURE S4
Dimensionality Reduction Clustering and Expression Patterns of
SUMOylation Substrate Encoding Genes across the Cells in GSE194247. (A)
UMAP plot illustrates the distribution of major cell types within the dataset
(GSE194247). (B) UMAP plots demonstrate the clustering of all cells through
dimensionality reduction. (C) A dot plot visualizes the expression levels of
characteristic marker genes in each cell type. (D) The expression
distribution of the three Sscore model genes (CDK1, AHNAK2, SAFB2),
SUMOylation substrate encoding genes (SUMO1/2/3) and Sscore across
various cell types.
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Glossary
PDAC pancreatic ductal adenocarcinoma

NALIRIFOX nanoliposomal irinotecan, leucovorin, fluorouracil, and oxaliplatin

SUMOylation small ubiquitin-related modifier

SAFB2 scaffold attachment factor-B2

SLTM SAF-like transcription modulator

AR androgen receptors

ERα estrogen receptors α

TCGA The Cancer Genome Atlas

GTEx Genotype-Tissue Expression Project

SSEGs SUMOylation substrate encoding genes

DEGs differentially expressed genes

FC fold change

DE-SSEGs differentially expressed SUMOylation substrate encoding genes

STRING Search Tool for Retrieval of Interacting Genes database

PPI protein-protein interaction

GO Gene Ontology

KEGG Kyoto Encyclopedia of Genes and Genomes

HPA Human Protein Atlas

IHC immunohistochemistry

OS overall survival

LASSO least absolute shrinkage and selection operator

ROC receiver operating characteristic

ESTIMATE Estimation of Stromal and Immune cells in Malignant tumors using
Expression data

CIBERSORT cell-type identification by estimating relative subsets of RNA
transcripts

ssGSEA single sample gene set enrichment analysis

GSVA Gene Set Variation Analysis

TIDE tumor immune dysfunction and exclusion

TMB tumor mutational burden

CNV copy number variation

IC50 half-maximal inhibitory concentration

CTRP Cancer Therapeutics Response Portal

PCA principal component analysis

UMAP uniform manifold approximation and projection

MSigDB Molecular Signatures Database

ATCC American Type Culture Collection

SDS-PAGE SDS-polyacrylamide gel electrophoresis

PVDF polyvinylidene fluoride

HRP horseradish peroxidase

K-M Kaplan-Meier analysis

AUC areas under the curve

SNPs single nucleotide polymorphisms

TME tumor microenvironment

CTLs cytotoxic T lymphocytes

EMT epithelial-mesenchymal transition

CDKs cyclin-dependent kinases

LIHC Liver hepatocellular carcinoma

COAD Colon adenocarcinoma
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