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Vasoactive agents, traditionally recognized for their roles in cardiovascular
regulation, have garnered increasing attention for their non-cardiovascular
effects across various physiological systems. This review explores the
multifaceted roles of vasoactive agents such as catecholamines, vasopressin,
and angiotensin II beyond their cardiovascular implications. We examine the
mechanisms of action, focusing on receptor interactions and the implications for
various physiological systems. Key areas of impact include the central nervous
system, where vasoactive agents influence mood, cognition, and neurological
function, alongside potential neurotoxicity. Additionally, we discuss
gastrointestinal effects, including motility and secretion, as well as renal
implications related to blood flow and acute kidney injury risk. The endocrine
effects are also addressed, particularly regarding insulin and glucagon secretion.
Furthermore, we analyze hematological effects on coagulation and endothelial
function, emphasizing the risk factors for thromboembolic events. The clinical
implications of this review underscore the importance of monitoring non-
cardiovascular effects in patient management and developing strategies to
mitigate associated risks. Future research should focus on unraveling the
detailed mechanisms of vasoactive agent-receptor interactions and their
resulting organ responses, to minimize complications arising from clinical use.
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1 Introduction

Vasoactive drugs, including vasopressors and inotropes, are critical components in the
management of various acute medical conditions, particularly those involving
cardiovascular instability (Overgaard and Dzavík, 2008; Annane et al., 2018). These
agents function primarily to enhance cardiac output (CO) or increase vascular tone,
thereby improving tissue perfusion and oxygen delivery (Boerma and Ince, 2010).
Commonly used vasoactive drugs include catecholamines like norepinephrine (NE) and
epinephrine (EPI), as well as non-catecholamine agents such as vasopressin and
phosphodiesterase (PDE) inhibitors.

Catecholamines, such as NE and EPI, primarily function by inducing vasoconstriction
through α-adrenergic receptor activation, which increases systemic vascular resistance
(SVR) and mean arterial pressure (MAP). NE is particularly effective in raising blood
pressure while maintaining CO due to its mixed α1 and β1 activity (Hernández et al., 2019).
Conversely, EPI exhibits a broader spectrum of action, affecting both α and β receptors to
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enhance heart rate and cardiac contractility while also promoting
vasodilation at lower doses through β2 receptor activation (Johnson
and Moskowitz, 2024). This dual action allows for nuanced
management of hemodynamic status in critically ill patients.
Inotropes like dobutamine and milrinone focus on enhancing
cardiac contractility. Dobutamine predominantly stimulates
β1 receptors, leading to increased CO with minimal impact on
SVR (Franco et al., 2021). Milrinone, a PDE inhibitor, increases
intracellular cyclic adenosine monophosphate (cAMP) levels,
resulting in improved myocardial contractility and peripheral
vasodilation (Gist et al., 2021). These agents are particularly
valuable in patients with heart failure or low CO states.

The complexity of vasoactive agents arises from their
multifaceted mechanisms of action (Figure 1). They interact with
various receptors, including adrenergic, dopaminergic, and
vasopressin receptors, leading to diverse physiological responses
(Shankar et al., 2022). For instance, while NE predominantly
increases SVR and blood pressure through α1 receptor activation,
it may also induce significant renal vasoconstriction, potentially
compromising renal function. Vasopressin not only raises blood
pressure but also influences renal function by promoting water

reabsorption and can affect coagulation pathways through its action
on V receptors (Demiselle et al., 2020). Similarly, dopamine exhibits
dose-dependent effects that can lead to both renal vasodilation at
low doses and vasoconstriction at higher doses, illustrating the
delicate balance between therapeutic benefits and risks (Armando
et al., 2011).

The importance of exploring the non-cardiovascular effects of
vasoactive agents lies in their potential implications for patient
management. Adverse effects such as digital ischemia from
excessive vasoconstriction or altered microcirculation can impact
organ perfusion and function (Woolsey and Coopersmith, 2006).
Moreover, the interplay between vasoactive agents and other
medications can further complicate clinical scenarios,
necessitating a comprehensive understanding of these interactions
(Gordon et al., 2014).

Thus, a thorough investigation into the non-cardiovascular
effects of vasoactive agents is crucial for healthcare professionals
involved in critical care settings. This review aims to elucidate these
effects, providing insights that will enhance our understanding of
how these medications can be used safely and effectively across
various clinical contexts.

FIGURE 1
Overview of the effects of commonly used vasoactive agents on non-cardiovascular systems.
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2 Mechanisms of action

2.1 Overview of vasoactive drug classes

Catecholamines, including NE, EPI, and dopamine, are pivotal
in the management of various clinical conditions, particularly in
acute settings such as shock and heart failure (Table 1). These agents
exert their effects primarily through adrenergic receptors, which are
G protein-coupled receptors that mediate a range of physiological
responses (Xu et al., 2023). The mechanisms by which
catecholamines exert their effects involve complex signaling
pathways. Upon binding to their respective receptors,
catecholamines activate adenylate cyclase via G proteins,
increasing cAMP levels within the cell (Motiejunaite et al., 2021).
This cascade leads to enhanced calcium influx through voltage-gated
calcium channels and increased intracellular calcium
concentrations, which are crucial for muscle contraction in
cardiac and vascular tissues (Motiejunaite et al., 2021; Riccardi
et al., 2024).

NE is commonly used as a first-line vasopressor in septic shock
(Evans et al., 2021), cardiogenic shock (Hu and Mathew, 2022) and
acute hypotensive states. It primarily acts on α1 adrenergic
receptors, leading to vasoconstriction and increased SVR, which
enhances blood pressure (Motiejunaite et al., 2021; Perez, 2021).
Additionally, NE stimulates β1 adrenergic receptors in the heart,
resulting in increased myocardial contractility and heart rate
(Motiejunaite et al., 2021). However, its effects on β2 adrenergic
receptors are minimal, making it less effective for inducing
vasodilation compared to other catecholamines like EPI. EPI
exhibits dose-dependent effects mediated through its interaction
with adrenergic receptors. It strongly activates β1 adrenergic
receptors and moderately stimulates β2 and α1 adrenergic
receptors (Evans et al., 2021). At lower doses, β1 receptor effects
predominate, leading to heightened CO and reduced SVR, while
MAP may fluctuate. In contrast, higher doses enhance α1 and

β2 receptor activity, resulting in elevated SVR and further
increases in CO (Evans et al., 2021). Adverse effects, such as
cardiac arrhythmias and compromised splanchnic blood flow, are
potential risks. Additionally, EPI stimulates β2 receptors in skeletal
muscle, boosting aerobic lactate production (Evans et al., 2021). This
effect complicates the interpretation of serum lactate levels as a
marker for guiding resuscitation efforts. Dopamine also exerts dose-
dependent effects by targeting dopamine-1 (D1), α1, and
β1 adrenergic receptors. s (Elkayam et al., 2008; Armando et al.,
2011). At lower doses, dopamine primarily activates D1 receptors,
promoting vasodilation in vascular beds such as the renal
circulations, though confer no significant protection from renal
dysfunction. As doses escalate, α-adrenergic effects become
dominant, inducing vasoconstriction and elevated SVR.
Concurrent β1 adrenergic receptor stimulation at higher doses
enhances cardiac activity but also raises the risk of dose-limiting
arrhythmias. This dose-dependent nature allows for tailored
therapeutic approaches depending on the clinical scenario (Dorn,
2010; Huang et al., 2016).

While catecholamines are vital in acute care settings for
managing cardiovascular instability, their non-specific actions can
lead to significant side effects. For instance, prolonged use of NE can
cause peripheral ischemia due to excessive vasoconstriction
(Daroca-Pérez and Carrascosa, 2017). Similarly, EPI’s broad
effects can result in metabolic disturbances and increased
myocardial oxygen consumption (Ducrocq et al., 2012).
Therefore, careful titration and monitoring are essential when
using these agents to balance therapeutic benefits with
potential risks.

Non-catecholamine vasoactive agents, particularly vasopressin
and PDE inhibitors, play crucial roles in the management of various
clinical conditions, especially in the context of shock and heart
failure. Vasopressin, also known as antidiuretic hormone, is
synthesized in the hypothalamus and released from the posterior
pituitary gland in response to increased plasma osmolality or

TABLE 1 Overview of vasoactive agents in clinical use.

Agent Mechanism of
action

Physiological effects Clinical use Cooperation

EPI α1/β1/β2 agonist ↑HR, ↑CO, ↑BP, ↑SVR Cardiac arrest,
anaphylaxis

EPI potentiates NE in shock states. Cooperates with
dobutamine to increase CO.

NE α1 agonist (predominantly) ↑BP, ↑SVR Septic shock Cooperates with dopamine to increase renal perfusion at
lower doses. Potentiates the effects of EPI in shock

Dopamine Dose-dependent
(Dopaminergic/α/β agonist)

↑HR, ↑CO, ↑BP, ↑SVR (high doses),
renal vasodilation (low dose)

Heart failure,
shock

Cooperates with NE to improve CO. EPI potentiates the
effects in shock

Dobutamine β1 agonist ↑CO, ↓SVR, ↑HR Heart failure Cooperates with vasopressors to improve CO

Phenylephrine Pure α1 agonist ↑BP, ↑SVR, ↓HR, ↓CO Hypotension Cooperates with NE to raise SVR without affecting heart rate.
Helps in reducing the need for catecholamines in cases of low
vascular tone

Vasopressin V1 receptor agonist ↑BP, ↑SVR Vasodilatory
shock

Cooperates with NE to improve MAP in shock, especially in
septic shock

Milrinone PDE inhibitor ↑CO, ↓BP, ↓SVR Heart failure Cooperates with vasopressors (like EPI) to improve CO

Angiotensin II Angiotensin receptor agonist ↑BP, ↑SVR Vasodilatory
shock

Cooperates with NE and vasopressin in shock states to
improve blood pressure and organ perfusion. AT1 and
AT2 mediate opposing effects

PDE, phosphodiesterase; HR, heart rate; CO, cardiac output; SVR, systemic vascular resistance; NE, norepinephrine; EPI, epinephrine; BP, blood pressure.
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decreased blood volume (Holmes et al., 2004). It primarily acts
through three receptor subtypes: V1a, V1b, and V2 receptors.
Activation of V1a receptors leads to vasoconstriction, thereby
increasing SVR and blood pressure. This effect is particularly
beneficial in states of hypotension, such as septic shock.
Vasopressin can increase MAP without significantly affecting CO,
making it a valuable adjunctive therapy in critically ill patients.
However, its non-selective receptor activation can lead to side effects
such as hyponatremia and potential procoagulant effects due to
increased platelet aggregation (Demiselle et al., 2020).

PDE inhibitors are another class of non-catecholamine
vasoactive agents that enhance CO and improve hemodynamics
through different mechanisms. PDE inhibitors work by preventing
the breakdown of cAMP and cyclic guanosine monophosphate
(cGMP), which are critical second messengers involved in
various physiological processes including heart contractions,
smooth muscle relaxation in blood vessels and neuronal signaling
(Newton et al., 2016). By increasing cAMP levels, these agents
enhance myocardial contractility (positive inotropic effect) and
promote vasodilation. Milrinone is particularly known for its
ability to improve cardiac function in patients with heart failure
by increasing contractility while also causing peripheral vasodilation
(Mathew et al., 2021). The use of PDE inhibitors can be beneficial in
patients with acute decompensated heart failure or cardiogenic
shock. They can improve CO and reduce pulmonary congestion
without significantly increasing heart rate or myocardial oxygen
demand (Chi et al., 2013; Rieg et al., 2014). However, caution is
warranted due to potential side effects such as hypotension and
arrhythmias (Chong et al., 2018).

2.2 Receptor interactions

Adrenergic receptors, classified into α and β subtypes, are pivotal
in mediating the physiological responses to catecholamines. These G
protein-coupled receptors play critical roles in the sympathetic
nervous system, orchestrating various bodily functions in
response to stressors.

2.2.1 α adrenergic receptors
There are two main types of α receptors: α1 and α2. α1 receptors

are predominantly located on vascular smooth muscle. Activation of
α1 receptors in the cardiovascular system by NE and EPI leads to
vasoconstriction, increasing SVR and blood pressure. This
mechanism is particularly important during the “fight or flight”
response, where increased blood flow to essential organs including
heart, brain, and skeletal muscles is necessary for survival (Borkar
and Fadok, 2024). However, activation of α1 receptor in the bladder
and gastrointestinal (GI) tract causes contraction of smooth
muscles, inhibiting non-essential functions during stress (Michel
and Vrydag, 2006). In contrast, α2 receptors primarily function as
inhibitory autoreceptors located on presynaptic nerve terminals
(Zhang et al., 2009). When activated, they decrease the release of
NE, providing a negative feedback mechanism that modulates
sympathetic activity. This action can lead to a reduction in blood
pressure and heart rate when drugs like clonidine or
dexmedetomidine are used, which selectively activate central
α2 receptors to treat hypertension and manage anxiety (Pichot

et al., 2012). Moreover, α2 receptor activation in the central
nervous system (CNS) can produce sedation and analgesia,
contributing to their role in pain modulation (Giovannitti
et al., 2015).

2.2.2 β adrenergic receptors
β adrenergic receptors are further subdivided into three types:

β1, β2, and β3. β1 receptors are primarily found in the heart,
mediating increases in heart rate (chronotropy) and myocardial
contractility (inotropy) upon stimulation by catecholamines. This
response enhances CO during stressful situations. Furthermore,
β1 receptor activation in the kidneys stimulates renin release,
leading to increased blood volume and pressure through the
renin-angiotensin-aldosterone system (Sandilands and
O’Shaughnessy, 2019). β2 receptors are predominantly located in
smooth muscle tissues, including bronchioles and blood vessels.
Activation of β2 receptors results in relaxation of smooth muscles,
leading to bronchodilation and vasodilation (Kotlikoff and Kamm,
1996). This effect is crucial for improving airflow during respiratory
distress and enhancing blood flow to skeletal muscles during
physical exertion. Importantly, β2 receptor activation can
counteract some of the vasoconstrictive effects mediated by
α1 receptors in certain vascular beds (Wachter and Gilbert,
2012). While less commonly discussed, β3 receptors are involved
in lipolysis in adipose tissue and may play a role in regulating energy
metabolism (Cero et al., 2021). Their activation can lead to increased
energy expenditure and thermogenesis.

The interplay between α and β adrenergic receptors allows for a
finely tuned physiological response to stressors. During a fight-or-
flight situation, α1-mediated vasoconstriction ensures that vital
organs receive adequate blood flow while β2-mediated
vasodilation enhances oxygen delivery to skeletal muscles. This
balance is essential for optimizing performance under stress.
Moreover, the distribution of these receptors varies across
different tissues, allowing for localized responses tailored to
specific physiological needs. While both α1 and β2 receptors may
be present in a given tissue (e.g., blood vessels), their differential
activation can result in opposing effects—vasoconstriction versus
vasodilation—depending on the prevailing hormonal environment
(Ahlquist, 1976; Richards et al., 2017).

2.2.3 V receptors
Vasopressin acts primarily through three receptor subtypes:

V1a, V1b, and V2 receptors. Activation of V1a receptors leads to
vasoconstriction and also influences various non-cardiovascular
functions, including enhancing platelet aggregation and
promoting renal vasoconstriction (Honda and Takano, 2009).
V2 receptors mediate the antidiuretic effects of vasopressin
by promoting water reabsorption (Carty et al., 2024). This
action is crucial for maintaining fluid balance and osmotic
homeostasis. Additionally, V2 receptor activation may have
implications for fluid retention in states of hypovolemia or
dehydration (Lemmens-Gruber and Kamyar, 2006). V1b
receptors are involved in stimulating adrenocorticotropic
hormone (ACTH) release, which plays a role in stress
responses. The activation of these receptors can influence
cortisol secretion, thereby affecting metabolic processes and
immune responses (Meijer et al., 2011).
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2.2.4 AT receptors
Angiotensin II (Ang II) is a potent vasoconstrictor primarily

acting through twomain receptor subtypes: AT1 and AT2 receptors.
AT1 receptors mediate most of the well-known effects of Ang II,
including vasoconstriction, increased blood pressure, and
stimulation of aldosterone secretion from the adrenal cortex. The
activation of AT1 receptors not only regulates blood pressure but
also mediates non-cardiovascular effects such as promoting
inflammation, fibrosis, and cellular hypertrophy in various tissues
(Ruiz-Ortega et al., 2006). This pro-inflammatory action can
contribute to the pathogenesis of conditions like hypertension
and heart failure (Carter et al., 2024). In contrast to
AT1 receptors, AT2 receptors generally mediate opposing effects,
including vasodilation and inhibition of cell growth. They are
involved in tissue repair processes and may exert protective
effects against hypertrophy and fibrosis (Namsolleck et al., 2014).
The balance between AT1 and AT2 receptor activation is crucial for
maintaining cardiovascular homeostasis and influencing non-
cardiovascular outcomes.

3 Non-cardiovascular effects

3.1 Effects on the CNS

3.1.1 Effects on mood and cognition
Catecholamines are well-known for their role in the “fight or

flight” response, where they prepare the body for stressful situations.
NE, in particular, has been implicated in mood regulation and
cognitive functions. It is a key neurotransmitter in the brain’s
arousal system and is associated with attention, learning, and
memory (Maletic et al., 2017). Dysregulation of NE levels has
been linked to mood disorders such as depression and anxiety.
For example, increased NE activity is often observed in states of
heightened stress or anxiety, while decreased levels can contribute to
depressive symptoms (Craske and Stein, 2016; Heller et al., 2019).
Dopamine is also a key neurotransmitter in CNS function,
regulating processes including reward, movement, and cognition
(Channer et al., 2023).

Vasopressin also influences mood and social behaviors.
Research indicates that vasopressin can affect social recognition
and bonding, particularly in species like voles, where it plays a role in
pair bonding behaviors in a sex-specific manner, with effects
typically being stronger in males than in females (Rigney et al.,
2023). In humans, vasopressin’s effects on mood may be less
pronounced but still significant; its release can be influenced by
social interactions and stress levels (Hu et al., 2024). Additionally,
vasopressin has been associated with analgesic effects that may
indirectly affect mood by modulating pain perception, and these
effects have been shown to be more significant in women (Colloca
et al., 2016).

3.1.2 Neurological function
The impact of vasoactive agents extends to neurological function

as well. NE is involved in modulating alertness and attention
through its action on adrenergic receptors in various brain
regions. This modulation can enhance cognitive performance
under certain conditions but may also lead to neurotoxicity if

levels become excessively high or prolonged (Troadec et al., 2001;
Álvarez-Diduk and Galano, 2015).

Vasopressin’s role in theCNS includesmodulating circadian rhythms
and influencing stress responses. The release of vasopressin in the brain
can enhance the body’s ability to cope with stressors by promoting
adaptive behaviors. Furthermore, the interaction of vasopressin with its
receptors in the brain suggests potential neuroprotective effects by
reducing neuronal excitability and promoting resistance against stress-
induced damage (Corbani et al., 2018).

3.1.3 Potential neurotoxicity
While vasoactive agents have beneficial effects on mood and

cognition, there is also potential for neurotoxicity. High levels of
catecholamines can lead to neuronal damage due to oxidative stress
and excitotoxicity. For instance, excessive catecholamine release
during chronic stress can lead to neurotoxic effects on neurons
due to oxidative stress and excitotoxicity (Álvarez-Diduk and
Galano, 2015). Chronic exposure to elevated NE levels has been
associated with neuronal apoptosis and impaired neurogenesis
(Jhaveri et al., 2010; Flint et al., 2013). Similarly, excessive
vasopressin release can result in adverse effects on neuronal
function, particularly when it leads to increased blood pressure
and vascular resistance that may compromise cerebral perfusion
(Sharshar and Annane, 2008).

Additionally, while vasopressin can enhance social bonding and
reduce anxiety under normal conditions, its dysregulation may
contribute to maladaptive behaviors or exacerbate anxiety
disorders (Hu et al., 2024).

3.2 GI effects

3.2.1 Effects on GI motility
Vasoactive agents can alter GI motility through their actions on

smooth muscle and neuronal pathways. For instance,
catecholamines like NE and EPI primarily act on α and β
adrenergic receptors, leading to varied effects on motility.
Activation of α1-adrenergic receptors generally promotes smooth
muscle contraction, resulting in decreased motility in the GI tract.
Conversely, β2-adrenergic receptor activation can lead to relaxation
of smooth muscle and increased motility in certain contexts, such as
during physical stress when blood flow is redirected to essential
organs (Tank and Lee Wong, 2015; Mittal et al., 2017).

3.2.2 Implications for GI blood supply
Vasopressin can activate V1 receptors within the hepato-

splanchnic vascular bed, triggering potent vasoconstriction that
reduces blood flow in patients with portal hypertension. There
was evidence that low to moderate doses of vasopressin resulted
in significant reductions in portal blood flow (by 26%–37%) while
having no impact on portal or hepatic venous pressures (Bown et al.,
2016). Therefore, when treating septic shock, despite achieving
hemodynamic stability with vasopressin, there was a notable
decrease in mesenteric and portal vein blood flow, which could
compromise gut health and function. Whether this reduction in
blood flow can lead to ischemia of the GI mucosa, impairing its
ability to secrete digestive enzymes and even absorb nutrients,
remained unclear (Martikainen et al., 2003).
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3.2.3 GI ischemia and bleeding
Strong vasoconstriction caused by NE, phenylephrine,

angiotensin II and vasopressin could lead to decreased splanchnic
blood flow, resulting in non-occlusive acute mesenteric ischemia. A
case series highlighted the potential for high doses of NE to contribute
to splanchnic vasoconstriction, leading to non-occlusive mesenteric
ischemia in patients with severe acute pancreatitis (Reichling et al.,
2020). Similarly, vasopressin, which acts on V1 a receptors to induce
vasoconstriction, can also affect splanchnic hemodynamics. In a
porcine model of septic shock, a low-dose vasopressin of
0.006 U/kg/h caused a decrease in mesenteric blood flow, resulting
in elevated lactate levels and signs of intestinal ischemia (Hiltebrand
et al., 2007). Furthermore, the risk of GI bleeding is heightened in
patients with increased catecholamine levels due to potential mucosal
ischemia and impaired healing responses (Krag et al., 2013). The
balance between maintaining adequate perfusion pressure while
avoiding excessive vasoconstriction is critical in preventing these
complications.

3.3 Renal effects

Vasoactive agents, including catecholamines and non-
catecholamines, play a significant role in regulating renal blood
flow (RBF) and function. Their effects can have profound
implications for kidney health, particularly in critically ill patients
where the risk of acute kidney injury (AKI) and renal ischemia is
heightened.

3.3.1 Effects on RBF
Vasoactive agents influence RBF primarily through their actions

on specific receptors located in the renal vasculature. Vasopressin
acts predominantly through V1a receptors, which are distributed
heterogeneously in the renal circulation. At low doses, vasopressin
induces vasoconstriction mainly in the efferent arterioles of the
glomeruli, which can theoretically increase glomerular perfusion
pressure and enhance glomerular filtration rate (GFR). This
mechanism is beneficial in states of hypotension or shock, where
maintaining renal perfusion is critical. A study comparing the effects
of vasopressin and NE in ovine models of septic AKI demonstrated
that NE transiently improved renal function but worsened renal
medullary ischemia and hypoxia. In contrast, vasopressin provided a
sustained improvement in creatinine clearance without significantly
affecting renal medullary perfusion or oxygenation (Okazaki et al.,
2020). This suggests that vasopressin may be more beneficial in
preserving renal function during septic conditions. Post-hoc
analyses from the Vasopressin and Septic Shock Trial (VASST)
revealed that patients classified as being at risk for kidney injury had
lower rates of progression to more severe forms of AKI when treated
with vasopressin compared to NE (Gordon et al., 2010; Lucchese,
2010). Specifically, among patients in the “Risk” category according
to RIFLE criteria, those receiving vasopressin showed a significantly
reduced need for renal replacement therapy and lower mortality
rates (Gordon et al., 2010).

3.3.2 Role of dopamine
Dopamine is known to exert a dose-dependent effect on RBF. At

low doses (1–5 μg/kg/min), dopamine primarily stimulates D1-like

receptors, leading to renal vasodilation and increased RBF. This
effect is attributed to the dilation of afferent arterioles, which
enhances GFR and promotes natriuresis (Elkayam et al., 2008;
Olivares-Hernández et al., 2021). Low-dose dopamine infusion
has been shown to increase mean RBF by approximately 20% in
animal models without affecting systemic hemodynamics (Di
Giantomasso et al., 2004).

However, the benefits of low-dose dopamine in clinical practice
have been challenged. Research indicates that while it may increase
RBF in healthy individuals, its efficacy diminishes in patients with
AKI or those at risk for renal failure. Studies found that low-dose
dopamine worsened renal perfusion in patients with acute renal
failure, increasing renal vascular resistance rather than decreasing it
(Kellum and Decker, 2001; Lauschke et al., 2006). Therefore, the
routine use of low-dose or “renal dose” dopamine for the treatment
or prevention of acute renal failure cannot be justified since it has no
benefit in either preventing or ameliorating AKI in critically ill
patients (Friedrich et al., 2005; Karthik and Lisbon, 2006; Joannidis
et al., 2017).

3.3.3 Risk factors for AKI
The use of vasoactive agents carries inherent risks for developing

AKI or exacerbating existing renal dysfunction. Key factors include:
(1) Vasoconstriction: Renal vasoconstriction induced by vasoactive
agents is a well-known phenomenon that may contribute to AKI
(Redfors et al., 2011). When vasoactive agents are used to restore
systemic blood pressure during shock, they can inadvertently cause
renal vasoconstriction, leading to a reduction in RBF, a decline in the
GFR, and ultimately, AKI. (2) Hemodynamic Instability: In critically
ill patients, fluctuations in blood pressure due to the use of
vasoactive agents can contribute to periods of inadequate renal
perfusion. Sustained hypotension or rapid changes in vascular
resistance can compromise kidney function (Busse and
Ostermann, 2019). (3) Underlying Conditions: Patients with
conditions such as heart failure, cirrhosis, or sepsis are at higher
risk for AKI when treated with vasoactive agents. These conditions
often involve complex hemodynamic changes that can exacerbate
the effects of these drugs on renal circulation (Ronco et al., 2019). (4)
Duration and Dosage: The dosage of vasoactive agents and duration
of treatment are critical factors influencing the risk of AKI (Martin
et al., 2015). High doses or prolonged use may lead to cumulative
adverse effects on kidney function. Current guidelines recommend
NE as the first-line agent, but in cases of high NE requirements, the
addition of nonadrenergic vasopressors is advised (Venkatesh et al.,
2019). This miscellaneous therapies for catecholamine sparing,
while physiologically plausible, require careful consideration of
patient-specific characteristics to avoid potential adverse effects
on renal function.

3.4 Endocrine effects

3.4.1 Effects on insulin and glucagon secretion
Vasoactive agents can modulate the secretion of key hormones

involved in glucose metabolism, notably insulin and glucagon.
Activation of α2-adrenergic receptors in pancreatic β-cells
inhibits insulin secretion, which can lead to increased blood
glucose levels during stress responses. This is possibly caused by
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decreasing calcium influx through voltage-dependent calcium
channels (Hsu et al., 1991). Conversely, β-adrenergic receptor
stimulation enhances insulin secretion during exercise or stress
response to facilitate glucose uptake and utilization by muscles,
although this effect can be overshadowed by the inhibitory actions of
α2 receptors during acute stress (Singh et al., 2018).

Recent studies have highlighted dopamine’s role in regulating
pancreatic hormone release (Aslanoglou et al., 2021; Bonifazi et al.,
2024). Dopamine acts on both α- and β-cell adrenergic receptors,
influencing the secretion of glucagon and insulin (Bonifazi et al.,
2024). Notably, dopamine functions as a biased agonist at α2A-
adrenergic receptors, preferentially signaling through G protein-
mediated pathways to inhibit insulin release (Aslanoglou et al.,
2021). This dual action highlights the complexity of hormonal
regulation in response to vasoactive agents.

In experiments on mouse islets, it has been shown that
vasopressin can significantly amplify glucose-induced insulin
release (Szczepanska-Sadowska et al., 2024). Vasopressin also
potentiates the stimulatory effects of glucose and ACTH on
insulin secretion (Szczepanska-Sadowska et al., 2024). It enhances
the release of insulin by glucose in the pancreas via potentiation of
paracrine production of glucagon. Glucagon subsequently activates
GLP-1 receptors, which play an important role in promoting insulin
release (Szczepanska-Sadowska et al., 2024). In addition, stimulation
of V1b receptor is essential for the appropriate regulation of the
hypothalamic-pituitary-adrenal (HPA) axis during inflammatory
stress. Mice deprived of V1b receptor show significantly lower
increases in ACTH and corticosterone during acute immune
stress, which in turn may affect insulin release (Szczepanska-
Sadowska et al., 2024). This indicates that vasopressin, through
its regulation of the HPA axis, has also an indirect impact on
insulin release.

3.4.2 Implications for metabolic processes
The impact of vasoactive agents extends beyond immediate

hormone secretion to broader metabolic processes.
Catecholamines stimulate glycogenolysis in the liver through β-
adrenergic receptor activation, leading to increased glucose
availability during stress (Wang et al., 2024). The role of
catecholamines in hepatic glycogenolysis is further mediated by
their interaction with the cAMP-protein kinase A (PKA) signaling
pathway. Upon activation of β-adrenergic receptors, there is an
increase in cAMP levels, which subsequently activates PKA. PKA
then phosphorylates glycogen phosphorylase, the enzyme
responsible for breaking down glycogen into glucose-1-
phosphate, which is eventually converted to glucose (Xu et al.,
2014). This pathway highlights the importance of catecholamines
in regulating glucose metabolism and ensuring an adequate supply
of glucose during stress.

Vasoactive agents also play a significant role in the mobilization
of free fatty acids (FFAs) from adipose tissue, which is crucial during
periods of stress or fasting when the body requires alternative energy
sources. The mechanism through which catecholamines enhance
FFA release involves the activation of β-adrenergic receptors, which
leads to the phosphorylation of specific proteins that promote
lipolysis (Reilly et al., 2020). This process results in the
breakdown of triglycerides stored in adipocytes into FFAs and
glycerol, which are then released into the bloodstream to be used

as energy substrates by various tissues, including the heart and
skeletal muscle (Reilly et al., 2020). In addition to their role in FFA
mobilization, catecholamines also influence the metabolic fate of
these fatty acids. For instance, catecholamines can suppress the re-
esterification of FFAs back into triglycerides within adipocytes,
thereby favoring their oxidation. This is achieved through the
activation of signal transducer and activator of transcription 3
(STAT3), which is phosphorylated upon catecholamine
stimulation, promoting FFA oxidation over storage (Reilly
et al., 2020).

Research has demonstrated that vasopressin receptor-deficient
mice exhibit altered lipid metabolism, characterized by changes in
lipid accumulation and metabolism in tissues such as brown adipose
tissue and skeletal muscle (Harada et al., 2025). These findings
suggest that vasopressin’s regulatory effects on lipid metabolism are
mediated through its action on V receptors, highlighting its
extensive role in metabolic homeostasis. Further exploration into
the molecular interaction between vasopressin and insulin revealed
that vasopressin can modulate metabolic processes by influencing
insulin secretion and action (Szczepanska-Sadowska et al., 2024).
Vasopressin stimulates glycogenolysis and fatty acid synthesis in the
liver, while also promoting insulin release from pancreatic cells
(Szczepanska-Sadowska et al., 2024). This interaction suggests that
vasopressin may play a role in coordinating energy balance and lipid
metabolism, potentially impacting conditions such as obesity
and diabetes.

3.5 Hematological effects on coagulation
and platelet function

Vasoactive agents, including catecholamines and non-
catecholamines like vasopressin, significantly influence
coagulation and platelet function. Their effects can have crucial
implications for thromboembolic events, particularly in critically ill
patients where the balance between hemostasis and thrombosis is
critical (Achaibar and Waldmann, 2015; Neuenfeldt et al., 2021).

Evidence showed that catecholamines enhance ex vivo platelet
aggregation in healthy donor blood, indicating that they play a role
in promoting hemostasis under certain conditions (Matthay et al.,
2022). In trauma patients, elevated levels of catecholamines were
associated with impaired platelet aggregation and decreased clot
strength, suggesting that excessive catecholamine exposure may
contribute to a dysfunctional platelet phenotype (Matthay et al.,
2022). Catecholamines contribute to platelet aggregation through
the stimulation of α2A and β2 adrenergic receptors. This interaction
is particularly relevant in the context of acute coronary syndrome
(ACS), where catecholamines released during the event can
influence platelet reactivity and the efficacy of antiplatelet
therapies such as aspirin and clopidogrel (Cuisset et al., 2010).
EPI is a special physiological platelet activator that induces
platelet aggregation without an initial change in platelet shape.
This process involves the production of thromboxane A2, which
further enhances platelet aggregation and shape change during the
second wave of EPI-induced aggregation (Blockmans et al., 1996).
Platelets can accumulate significant amounts of catecholamines,
which can affect their activation state and contribute to the
overall sympathetic nervous system activity (Zweifler et al., 1990).
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Moreover, the uptake and retention of catecholamines by platelets
are influenced by the concentration and duration of exposure to
these hormones. Catecholamines also stimulate the release of
coagulation factors such as factor VIII (FVIII) and von
Willebrand factor (vWF) from endothelial cells (Han et al.,
2017). Thus, EPI was once used to treat von Willebrand’s
disease, the most common inherited bleeding disorder worldwide
(Rickles et al., 1976). This action contributes to a hypercoagulable
state, particularly during acute stress responses when catecholamine
levels are elevated. The release of these factors enhances clot
formation but can also increase the risk of thrombosis if not
properly regulated.

Vasopressin has been shown to have direct procoagulant effects
through its action on V1a receptors located on vascular smooth
muscle and platelets (Hasan et al., 2006). Activation of these
receptors leads to increased platelet aggregation and the release
of vWF, enhancing the ability of platelets to adhere to the damaged
endothelium (Casonato et al., 2015). In addition, extra-renal
V2 receptors activation induces the release of coagulation factors
(Demiselle et al., 2020). Desmopressin, a synthetic analogue of
vasopressin, has been widely recognized for its efficacy as a
hemostatic agent in the management of inherited bleeding
disorders (Mohinani et al., 2023). This compound is particularly
effective in conditions such as mild hemophilia A and von
Willebrand disease, where it functions by increasing the levels of
coagulation FVIII and vWF in the circulation (Mohinani et al.,
2023). The mechanism of action involves the stimulation of
extrarenal V2-receptors, which leads to the release of these
factors from endothelial cells, thereby enhancing hemostasis
(Mohinani et al., 2023). Moreover, desmopressin has been
demonstrated to be safe in managing bleeding complications
during pregnancy in women with congenital bleeding disorders
(Al Arashi et al., 2024).

4 Clinical implications in patient
management

4.1 Importance of monitoring non-
cardiovascular effects

While vasoactive agents are critical for managing hemodynamic
instability in critically ill patients, their use carries significant risks
for adverse effects on non-cardiovascular systems. These effects
include renal impairment, GI ischemia, neurological disturbances,
hematological complications, and endocrine dysregulation.
Awareness of these potential complications is essential for
clinicians to optimize treatment strategies and minimize risks
associated with vasoactive therapy.

Thus, continuous monitoring allows early detection of non-
cardiovascular adverse effects. For instance, observing changes in
urine output can signal renal impairment due to reduced renal
perfusion from vasopressor therapy. Similarly, monitoring GI
symptoms can help detect potential ischemia or bleeding early,
allowing for timely intervention. Each patient’s response to
vasoactive agents can vary significantly based on underlying
health conditions, comorbidities, and the severity of their illness.
Regular assessment enables healthcare providers to tailor treatment

plans according to individual patient needs, adjusting dosages or
switching agents as necessary to minimize adverse effects.

By actively monitoring non-cardiovascular effects, healthcare
providers can implement preventive measures that may improve
overall patient outcomes. For example, recognizing signs of
hypercoagulable state early can lead to prompt adjustments in
therapy or supportive care strategies that mitigate complications
such as deep vein thrombosis. Understanding the potential for
adverse effects allows for better risk stratification among patients
receiving vasoactive therapy. This information is crucial in
prioritizing monitoring efforts and determining which patients
may require more intensive observation based on their risk profiles.

4.2 Strategies to mitigate risks associated
with non-cardiovascular effects

Firstly, establishing standardized protocols for monitoring vital
signs, fluid balance, renal function (e.g., serum creatinine), and GI
symptoms can help healthcare teams identify potential issues early.
Implementing checklists or electronic health record alerts can
facilitate adherence to these protocols. Secondly, engaging a
multidisciplinary team—including intensivists, pharmacists,
dietitians, and nursing staff—can enhance the management of
patients receiving vasoactive agents. Collaborative discussions
regarding medication management and potential side effects can
lead to more comprehensive care strategies. Thirdly, providing
education for healthcare professionals about the potential non-
cardiovascular effects of vasoactive agents is essential. Training
programs should emphasize recognizing early signs of
complications and understanding the pharmacological
mechanisms underlying these effects. Fourthly, careful fluid
management is crucial in mitigating renal complications
associated with vasoactive agents. Employing dynamic
assessments of fluid responsiveness (e.g., using ultrasound or
other hemodynamic monitoring techniques) can guide fluid
resuscitation efforts while avoiding volume overload. Lastly,
engaging patients in their care by discussing potential side effects
and encouraging them to report any unusual symptoms can enhance
monitoring efforts. Educating patients about the importance of
reporting changes in their condition fosters a collaborative
approach to care.

Of note, some emerging technologies or alternative therapies
could be developed to monitor and mitigate the non-cardiovascular
effects of vasoactive agents. Combined usage of multiple vasoactive
agents with different mechanisms, also termed ‘broad-spectrum
vasopressors’, can be an effective strategy to mitigate non-
cardiovascular side effects (Wieruszewski and Khanna, 2022).
This multimodal approach leverages the distinct pathways and
actions of various agents to achieve therapeutic goals while
minimizing adverse effects.

AI-driven algorithms have increasingly been applied in
healthcare settings to predict and prevent adverse effects
associated with various medications. These algorithms leverage
machine learning techniques to analyze large datasets, identifying
patterns and risk factors that may not be immediately apparent to
clinicians (Classen et al., 2023; Litvinova et al., 2024). By doing so,
they can provide early warnings and suggest interventions that could
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mitigate potential adverse effects, thereby enhancing patient safety
and improving clinical outcomes (Litvinova et al., 2024).
Furthermore, the use of AI in pharmacovigilance has been
explored to automate signal detection and manage adverse drug
events (Wadhwa et al., 2021). This approach involves data mining
techniques to identify potential signals from various sources,
including clinical trials and post-marketing data. By automating
the detection of adverse events, AI-driven systems can provide
timely alerts and facilitate the prevention of adverse effects
associated with vasoactive agents, thereby improving patient
safety and healthcare outcomes.

Additionally, the use of CRISPR-Cas9 technology in precision
gene editing offers a novel approach to understanding and
potentially mitigating the non-cardiovascular effects of vasoactive
agents. By enabling precise modifications at the genetic level,
CRISPR can help elucidate the pathways through which these
agents exert their effects, paving the way for more targeted
therapies that minimize unintended consequences (Legere and
Hinson, 2024).

5 Future directions

Despite the widespread use of vasoactive agents, significant
knowledge gaps exist regarding their non-cardiovascular effects.
There is a need for comprehensive studies examining how
vasoactive agents affect renal function, GI health, neurological
status, and coagulation pathways. For example, elucidating how
catecholamines influence neurotransmitter release or how
vasopressin affects renal tubular function could lead to better
therapeutic strategies and minimize adverse outcomes. Similarly, the
impact of these agents on GI ischemia and bleeding requires more
targeted research to develop effective monitoring and intervention
strategies. There is also a lack of long-term studies assessing the chronic
effects of vasoactive agents on non-cardiovascular systems. Most
existing research focuses on short-term outcomes, which may not
capture the full spectrum of potential adverse effects that could arise
from prolonged exposure to these medications.

Therefore, addressing the non-cardiovascular side effects of
vasoactive agents requires a multifaceted approach involving
further research into their mechanisms and long-term impacts, as
well as innovative strategies for developing novel therapies.

6 Conclusion

Vasoactive drugs are essential for managing critical conditions
like shock but can have significant non-cardiovascular effects that

require attention. This review examines their impact on renal
function, GI health, neurological status, and coagulation pathways.
These non-cardiovascular effects require careful monitoring and
innovative research to enhance patient safety and outcomes.
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