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The response rate of immune checkpoint blockade (ICB) therapy for non-small-
cell lung cancer (NSCLC) remains limited. Recent evidence suggests that obese
cancer patients are more likely to benefit from ICB therapy, however, the specific
mechanism needs further research. In this study, we found that anti-PD-1 therapy
wasmore effective in obese NSCLC patients compared to normal weight patients
and this was verified in mouse NSCLC model. Further bioinformatics analysis
indicated that the glycolytic metabolism was markedly elevated in obese NSCLC
patients. In vitro co-culture experiment showed that both increased glycolysis of
tumor cells and external addition of lactate promoted T cell PD-1 expression. And,
PD-1 upregulation was related to monocarboxylate transporter 1 (MCT1)-
mediated lactate transport and subsequent lysine lactylation of histones in
T cells. Based on the aforementioned data, our study contributes to better
application of anti-PD-1 therapy in NSCLC.
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Introduction

Lung cancer still poses a significant medical burden and economic loss worldwide (Li
et al., 2023; Chen et al., 2022). Lung cancer consists of small-cell lung cancer (SCLC) and
non-small-cell lung cancer (NSCLC) (Yang et al., 2019). NSCLC represents approximately
85% of all lung cancer cases andmainly consists of adenocarcinoma (LUAD), squamous cell
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carcinoma (LUSC), large cell carcinoma (LCC) (La Montagna et al.,
2021), however, the 5-year survival rate of advanced NSCLC
remains poor (around 20%) (Allemani et al., 2018).

Immune checkpoint blockade (ICB) is a powerful anti-cancer
treatment modality for a wide variety of human malignancies (Page
et al., 2014; Zeng et al., 2022). Blockade of PD-1 has achieved
impressive clinical responses and revolutionized the treatment of
many cancers including NSCLC (Peters et al., 2018). The 5-year
survival rates of advanced NSCLC after anti-PD-1 immunotherapy
Nivolumab or Pembrolizumab were 15.6% and 23.2%, respectively
(Topalian et al., 2019; Garon et al., 2019). Nonetheless, the efficacy of
ICB for NSCLC varies significantly among individuals, with an
overall response rate of only 20%–30%. In fact, a large number of
patients fail to respond to ICB or develop drug resistance (Lahiri
et al., 2023). Therefore, how to elevate the efficacy of ICB in NSCLC
still need further research.

Obesity is a global health problem and has been shown to be
associated with the development of lung cancer (Blüher, 2019; Sung
et al., 2019). Recent evidence suggests that obese cancer patients are
more likely to benefit from ICB (You et al., 2021). Kichenadasse et al.
(Kichenadasse et al., 2020) and Cortellini et al. (Cortellini et al.,
2020) found that progression free survival (PFS)/overall survival
(OS) in NSCLC patients with high body mass index (BMI) were
longer than patients with low BMI during anti-PD-1/PD-
L1 treatment. Similarly, obese patients in melanoma (Cortellini
et al., 2019) and renal cell carcinoma (Sanchez et al., 2020) have
been found to benefit more from immunotherapy. However, how
obesity affects the ICB and how obesity affects the interaction
between tumor cells and immune cells is still not clear.

In this study, we found that anti-PD-1 therapy was more
effective in obese NSCLC patients from in-house data, and this
was validated in mouse NSCLC model. Moreover, bioinformatics
analysis indicated that the glycolytic metabolism was significantly
upregulated in the obese NSCLC patients. In vitro co-culture
experiment further showed that both increased glycolysis of
tumor cells and external addition of lactate promoted T cell PD-
1 expression. Further, PD-1 upregulation may be related to MCT1-
mediated lactate transport and subsequent lysine lactylation of
histones in T cells. Our study helps to reveal the mechanism by
which obesity affects the efficacy of ICB.

Materials and methods

Reagents

Oxamic acid and Rotenone were fromMCE. Glucose and lactate
were from Solarbio.Anti-mouse PD-L1 monoclonal antibody and
control IgG were purchased from Bio X Cell. High fat diet (45% fat,
60% fat) and control diet (10% fat) were from Medicience. FITC
labeled anti-mouse CD45 mAb and PE labeled anti-mouse CD8a
mAb were from Biolegend.

Cell lines

The NCI-H23 human NSCLC cell line, LLC mouse lung cancer
cells and Jurkat human T lymphocytic leukemia cells were from

ATCC and maintained in DMEM or RPMI 1640 (HyClone)
supplemented with 10% FBS (Bioexplorer), 100 U/mL penicillin
(Yeasen), and 100 U/mL streptomycin (Yeasen) at 37°C in a
humidified incubator containing 5% CO2.

Western blot

Western blotting was performed as described previously (Feng
et al., 2024). The primary antibodies were used as follows: PD-1
(Abcam), Histone H3, β-tublin (Cell Signaling Technology), pan-
Kla (PTMBIO). Goat anti-rabbit IgG-horseradish peroxidase (HRP)
(Proteintech) was the secondary antibody.

qRT-PCR

qRT-PCR was performed as described previously (Feng et al.,
2024). GAPDH was used as internal control for cells and tissues
mRNAs assays. The primer sequences were used as follows.

Lactate detection

The detection of lactate in cell line-cultured supernatants and
single cell suspension from mouse tumor tissue samples was
performed according to the manufacturer’s protocols of the
lactate colorimetric test kit (Elabscience, E-BC-K002-M). For
lactate detection in tissues, specifically, weighing 0.1 g of tissue
was added in reagent one for adequate homogenization. The next
step was centrifugation at 4°C and 12,000 g for 10 min to obtain the
supernatant for the lactate test. The content of the detected lactate
was shown as mmol/gprot.

Mouse model

4-week female C57BL/6 mice were fed with control diet with
10% fat (CD10), high fat diet with 45% fat (HFD45) or 60% fat
(HFD60) for 10 weeks to generate the normal weight mice
(CD10 group) and high fat induced obese mice (HFD45 group
and HFD60 group). The left lung of those mice was inoculated with
cell suspension of LLC (CDX group) mice lung cancer cell (1 × 106

cells) in a total volume of 50 μL (PBS: Matrigel = 4 : 1 as vehicle) or

Primer Sequence (5′-3′)

HK1(human)-F CTGCGGTTGTGGATAAGA

HK1(human)-R TGGAGAAGTGTGGATGAAG

PDK1 (human)-F AGATGAGTGACCGAGGAG

PDK1 (human)-R CTTGGAAGTATTGTGCGTAA

LDHA (human)-F TGCCTGTATGGAGTGGAA

LDHA (human)-R CCTGCTTGTGAACCTCTT

GAPDH (human)-F GGAGCGAGATCCCTCCAAAAT

GAPDH (human)-R GGCTGTTGTCATACTTCTCATGG
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FIGURE 1
Immunotherapy ismore effective in obese NSCLC patients. (A)Comparison of clinical characteristics between obese (BMI ≥ 25.0) and normal weight
(18.5 ≤ BMI < 25.0) NSCLC patients from our center; (B) PFS and (C) OS comparison between obese and normal weight NSCLC patients treated by
Nivolumab; (D) PCA analysis of transcriptome sequencing data of 15 NSCLC patients’ tumor tissues from our center showed BMI contributed the primary
difference; (E, F) CIBERSORT analysis of tumor infiltrating immune cells and comparison between the normal weight group and obese group.
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control vehicle (CTRL group) with insulin injection syringes to
construct the orthotopic cell line derived xenograft model (Wang
et al., 2020). CDX mice of CD10 and HFD60 groups were
intraperitoneally injected anti-PD1 antibody (anti-PD1 group) or
homologous antibody (Iso-IgG group) or solvent (Vehicle group)
every 3 days from the 3rd day after incubation of LLC mice cancer
cell. The mice were intensively observed for survival status and
tumor tissue were harvested when dying for Western blot, flow
cytometry, and detection of intracellular lactate.

Bioinformatics analysis

Tumor tissue bulk RNA-seq data from 15 patients of our
previous NSCLC cohort (Tan et al., 2016) were analyzed by
principal component analysis (PCA) and CIBERSORT (Newman
et al., 2015) to compare the difference of immune cell infiltration
between normal weight group and obese group. Gene set
enrichment analysis (GSEA) and differentially expressed genes
(DEGs) were also analyzed in RNA seq of our NSCLC cohort
and TCGA colorectal adenocarcinoma cohort (because TCGA
NSCLC cohort was without BMI) to characterize the biological
process changes in obese group compared with normal
weight group.

Statistical analysis

All quantified data were expressed as the mean values ±standard
error (mean ± SE). Student’s t-test for non-paired replicates was
performed to identify statistically significant differences between
treatment means. When p < 0.05 differences were considered
significant. Progression free survival (PFS) and overall survival
(OS) data were analyzed by Kaplan-Meier plot, and hazard ratio
(HR) was estimated by Cox proportional hazards model with
Logrank test.

Results

Immunotherapy is more effective in obese
NSCLC patients

We examined the response of 54 NSCLC patients including
obese group and normal weight group to Nivolumab in our center,
patient information was showed in Figure 1A. There was no
significant difference in clinic features between the normal weight
group (18.5 kg/m2 ≤BMI <25.0 kg/m2) and the obese group
(BMI ≥25.0 kg/m2), however, the obese group had longer mPFS
(181.7 vs. 66.5 days, HR = 0.5485, Logrank p = 0.0288) and OS (NR
vs. 452.5 days, HR = 0.6560, Logrank p = 0.0412) than the normal
weight group (Figures 1B, C).

We then analyzed RNA-seq data from 15 NSCLC patients
(6 obese and 10 normal) to obtain the percentage of various
types of infiltrating immune cells in each tumor tissue sample
(Figures 1D–F). The PCA result showed that the obese group
and the normal weight group had significantly different clusters
(Figure 1D). We found there was no difference in the number of

CD8+ T cells between the normal weight group and obese group,
suggesting that the differences in the function of CD8+ T cells
should be further explored (Figures 1E, F). In addition, the activated
NK cells in the obese group were significantly lower than those in the
normal weight group, which was consistent with the findings of
Bohn et al. in melanoma (Bohn et al., 2018).

Anti-PD1 treatment is more effective in
obese NSCLC mice

We next investigated the response of the mice in the obese group
and the normal weight group to anti-PD1 treatment. C57BL/
6 normal weight mice (CD10 group, control diet with 10% fat)
and high fat induced obese mice (HFD60 group, high fat diet with
60% fat) were inoculated with LLC lung cancer cells to construct the
orthotopic cell line derived xenograft (CDX) model.
Intraperitoneally injected anti-PD1 antibody (anti-PD1 group) or
homologous antibody (Iso-IgG group) or solvent (Vehicle group)
every 3 days from the 3rd day. The survival analysis in Figure 2A
showed that there was no difference in OS between HFD60 Vehicle
group and CD10 Vehicle group. And anti-PD1 antibody could
prolong OS in both HFD60 Anti-PD1 group and CD10 Anti-
PD1 group when compared with HFD60 Vehicle group and
CD10 Vehicle group, while Iso-IgG and Vehicle had no effect on
survival benefits. Moreover, HFD60 Anti-PD1 group showed
extended OS when compared to CD10 Anti-PD1 group (median
OS: 27 days vs 21 days). Then, CD45−tumor cells and CD8+ T cell in
tumor tissues were sorted by flow cytometry, we found that tumor-
infiltrating CD8+ T cells had higher PD1+ ratio (p = 0.0002) in
HFD60 group than CD10 group (Figure 2B). Notably, CD45−tumor
cells and tumor-infiltrating CD8+ T cells had higher intracellular
lactate levels in HFD60 group than CD10 group (Figures 2C,D).

Obese NSCLC patients have higher
glycolytic metabolism than normal weight
NSCLC patients

GSEA analysis showed that canonical glycolysis signaling (GO:
0061621) was significantly upregulated in obese group compared to
normal weight group (Figure 3A). And the expression levels of
14 glycolytic pathway genes (14/22, 64%) were upregulated in obese
group compared to normal weight group (Figure 3B). Furthermore,
10 glycolytic pathway genes (10/22, 45%) were among those
883 differentially expressed genes (DEGs) between the normal
weight group and the obese group (Figures 3C, D). In addition,
we also found that canonical glycolysis signaling was obviously
upregulated in obese group compared to normal weight group in the
TCGA colorectal adenocarcinoma data (Figure 3E).

Lactate released from tumor cells elevates
T cell PD-1 expression

Given that obese NSCLC patients have higher glycolytic
metabolism than normal weight NSCLC patients (Figure 3) and
tumor-infiltrating CD8+ T cells had higher intracellular lactate
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levels (Figures 2C, D), then we wanted to know if tumor cells
secreted excessive lactate through glycolytic metabolism to promote
T cell PD-1 upregulation. To unveil the effect of lung cancer cells on
T cells, The NCI-H23 human NSCLC cells were co-cultured with
Jurkat human T lymphocytic leukemia cells and treated with
different concentrations of glucose. As shown in Figure 4A,
lactate level in Jurkat cells increased with the increase of glucose
concentration and accumulated over time. Meanwhile, the
expressions of glycolytic metabolism related genes such as Hk1,
Pdk1 and Ldha in NCI-H23 cells were increased with the growing
concentration and treatment time of glucose (Figures 4B–D). In
addition, the expression level of PD-1 in Jurkat cells in the co-culture
system was also gradually upregulated with the treatment of glucose
(Figures 4E, F).

To further explore the relationship between the lactate and PD-
1, LDH-A inhibitor oxamic acid and mitochondrial respiratory
chain inhibitor rotenone were employed. The results showed that
oxamic acid decreased the lactate level of Jurkat cells in the co-
culture system, as well as PD-1 expression, whereas rotenone caused
the opposite results (Figures 5A, B). Above observations suggested
that lactate from tumor cells might enhance the PD-1 expression
in T cell.

To verify this result, we isolated CD8 + T cells from mouse
spleens and treated cells with or without lactate. We found that
lactate significantly upregulated the PD1+ ratio of CD8+ T cells (p =
0.0015) and PD1 fluorescence intensity (p = 0.001) (Figure 5C).

Western blot and qPCR analysis demonstrated that lactate evidently
elevated the protein and mRNA expression of PD-1 in T cells
(Figures 5D, E). Since MCT1 is a well-known lactate transporter
(Zhao et al., 2020), we next analyzed the expression of MCT1 in
CD8+ T cells in tumor microenvironment by single-cell sequencing
data from ArrayExpress database (data number. E-MTAB-6149).
We found that the expression of MCT1 was significantly positively
correlated with the expression of PD-1 (Figure 5F). In addition, PD-
1 and MCT1 were highly expressed in CD8+ exhausted T cells in
tumor-infiltrating immune cells (Figure 5G). Altogether, the
upregulation of PD-1 in T cells may be caused by the secretion
of lactate by tumor cells due to their active glycolytic metabolism.

Lactate released from tumor cells elevates
T cell PD-1 expression associated with the
lysine lactylation of histones in T cells

Meanwhile, the lung tissue of CTRL group (CTRL-Lung), CDX
group (CDX-lung) and tumor tissue (CDX-tumor) from CDX
models (CD10 group, HFD40 group, HFD60 group) were
harvested 2 weeks later (Figure 6A) and lysine lactylation of
protein were investigated by Western blot. As shown in
Figure 6B, the lysine lactylation of protein in lung cancer tissues
of normal weight or obese mice was significantly increased
compared with normal lung tissue (including histones at

FIGURE 2
In orthotopic CDXmousemodel of LLC cell line, the obese group showed better response to anti-PD1 treatment and higher intracellular lactate and
PD1 expression onCD8+ T cells. (A)Normal weight (CD10) and obese (HFD60)micewere incubatedwith LLC cell line to generate orthotopic CDXmodel,
and treated by anti-PD1, isotype IgG, and Vehicle. The overall survival was analyzed and compared among different groups; (B) PD-1 expression on CD8+
T cells by flow cytometry; Intracellular lactate analysis of (C) CD45−tumor cells and (D) CD8+ T cells.
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15 kDa), which was consistent with low glycolytic metabolism, low
lactate level in normal lung tissues and high glycolytic metabolism,
high lactate level in lung cancer tissues. Compared with normal
weight mice, the lung cancer tissue of obese mice had higher lysine
lactylation of protein, and the lysine lactylation of lung cancer tissue
increased with the level of obesity (CD10 normal weight/
HFD45 mild obesity/HFD60 severe obesity). We subsequently
detected the expression of PD-1 protein and found that the
expression of PD-1 in tumors of normal weight or obese mice
was higher than that in lung tissues. Besides, the expression of PD-1
in tumors of obese mice was significantly higher than that of normal
weight mice, and the expression of PD-1 also showed dose-
dependent relationship with the level of obesity (Figure 6C).
We then isolated CD8+ T cells from mouse spleens and treated
CD8+ T cells with or without lactate and found that lactate
obviously elevated the lysine lactylation of histones (Figure 6D).
Collectively, the aforementioned results indicated that tumor cells
upregulated the expression of PD-1 by releasing lactate to promote
the lysine lactylation of histones in T cells.

Discussion

The emergence of ICB has fundamentally changed the treatment
of patients with advanced lung cancer (Sun et al., 2023). Compared
with traditional chemotherapy, ICB causes fewer adverse events and
significantly improves OS (Li et al., 2023). ICB alone or in
combination with other treatments has brought hope for the
treatment of lung cancer patients and is constantly developing
(Konen et al., 2024). The FDA has approved a variety of
immunotherapy drugs to treat NSCLC alone or in combination
therapy. However, the different response of patients to ICB, as well
as the intrinsic or acquired resistance of patients to ICB, are
important questions in NSCLC research. There is no doubt that
the application of personalized ICB to NSCLC patients is
challenging.

The role of overweight or obesity in tumor is mainly reflected in
two aspects: firstly, it promotes the occurrence and development of
tumor; secondly, it affects the therapeutic effect of tumor (Saha et al.,
2023). Obesity is associated with up to 49% of tumors, including a

FIGURE 3
Obese NSCLC patients have higher glycolytic metabolism than normal weight NSCLC patients. (A)GO analysis of canonical glycolysis (GO 0061621)
based on transcriptome data of 15 NSCLC patients’ tumor tissues from our center; (B) The heatmap of 14 main genes in canonical glycolytic pathway
between the obese group and the normal weight group; (C) Volcano plot of DEGs between the obese group and the normal weight group; (D) Venn
diagram of the intersection of DEGs and canonical glycolysis genes; (E) GO analysis of canonical glycolysis (GO 0061621) based on transcriptome
data of colorectal adenocarcinoma patients in TCGA database.
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series of common cancers such as lung and colorectal cancer (Lauby-
Secretan et al., 2016; Yu et al., 2018). Obesity inhibits chemotherapy
efficacy by inducing inflammation and connective tissue hyperplasia
in pancreatic cancer (Incio et al., 2016), enhancing MVP protein
expression in breast cancer (Lehuédé et al., 2019), and inducing
epithelial mesenchymal transformation in prostate cancer (Su et al.,
2019). Obesity also inhibits the efficacy of anti-VEGF targeted
therapy by enhancing the activity of FGF-2 pathway in breast
cancer (Incio et al., 2018). Mechanically, previous studies focused
on the effect of obesity on tumor microenvironment (TME) by
inducing systemic inflammation, insulin resistance, sex hormone
imbalance and other endocrine and metabolic disorders, as well as

the upregulation of adipocytes and adipokines (Park et al., 2014;
Renehan et al., 2015; Iyengar et al., 2016; Quail and Dannenberg,
2019). However, the mechanism of how obesity affects the metabolic
interactions between tumor cells and immune cells, the tumor
immune escape, and the impact on tumor immunotherapy is
poorly understood. There is increasing clinical evidence that
obese cancer patients are more likely to benefit from ICB and
obesity is an independent predictor of better outcomes of
immunotherapy PFS and OS, with a Hazard ratio (HR) of
0.71–0.76 compared to normal weight patients (You et al., 2021).
More importantly, clinical data showed that obese cancer patients
benefited more from ICB than normal weight in people with high

FIGURE 4
NSCLC tumor cells elevate PD-1 expression of T cells in a co-culture system. (A) Lactate levels in Jurkat cells when co-culturedwith NCI-H23 cells at
different concentrations of glucose in 0 h, 6 h, 12 h and 24 h; (B) HK1, (C) PDK1, (D) LDHA mRNA expressions by qPCR in NCI-H23 cells at different
concentrations of glucose in 0 h, 6 h, 12 h and 24 h; (E) The protein levels of PD-1 in Jurkat cells when co-cultured with NCI-H23 cells at different
concentrations of glucose in 0 h, 6 h, 12 h and 24 h.
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PD-L1 expression (Kichenadasse et al., 2020; Cortellini et al., 2020).
It is suggested that obesity may promote the efficacy of ICB due to
affecting the interaction of tumor cell PD-L1 and immune cell PD-1.
In this study, we found that anti-PD-1 therapy was more effective in

obese NSCLC patients from our center, and this was validated in
mouse NSCLC model (Figures 1, 2). Therefore, obesity may have an
impact on the PD-L1/PD-1 pathway in the interaction between
tumor cells and immune cells, and further exploration of its

FIGURE 5
Lactate released from tumor cells elevates T cell PD-1 expression. (A) Lactate levels in Jurkat cells when co-culturedwith NCI-H23 cells treatedwith
glucose, glucose + oxamic acid, glucose + rotenone; (B) PD-1 protein expression in Jurkat cells when co-cultured with NCI-H23 cells treated with
glucose, glucose + oxamic acid, glucose + rotenone by Western blot; Comparison of PD-1 expression on mouse spleen CD8+ T cells cultured with or
without lactate by (C) flow cytometry, (D) Western blot, and (E) qPCR; (F) Correlation analysis of PD-1 and MCT1 in CD8+ T cells in tumor
microenvironment by single-cell sequencing data from ArrayExpress database (data number. E-MTAB-6149); (G) The mRNA expressions of PD-1 and
MCT1 in different clusters of tumor infiltrating immune cells by scRNA-seq.
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underlying mechanism will help reveal the therapeutic response
mode and drug resistance mechanism of ICB.

Several studies have suggested the effects of obesity on T cells.
Obese melanoma mice secrete leptin, and leptin activates the
p-STAT3 pathway in peripheral blood CD8+ T cells through
leptin receptor to bind to the PD-1 gene promoter region, up-
regulating the transcription and expression of PD-1, thus inducing
T cells of obese mice in a state of depletion with high expression of
PD-1. In this case, obese melanoma mice had a better response to
anti-PD-1 antibody, while there was no significant difference in the
number of peripheral blood CD8+ T cells (Wang et al., 2019).
However, the study did not solve the following problems: firstly, PD-
1 expression was still increased after injection of leptin receptor
knockout CD8+ T cells into obese mice, suggesting that in addition
to leptin/pSTAT3 pathway activation, there are other pathways that
upregulate the PD-1 expression of CD8+ T cells in obese mice.
Secondly, the study only focused on peripheral blood CD8+ T cells,
how TILs, as the main executive cell of TME, in obesity conditions
remains to be studied. Here we found that glycolytic metabolism was
significantly upregulated in the obese NSCLC patients (Figure 3). In
vitro co-culture experiment further showed that the glycolysis level
of tumor cells increased, and lactate released from tumor cells
elevated T cell PD-1 expression (Figures 4, 5). Recent studies
have shown that lactic acid produced by tumor cell glycolysis can

be absorbed by Treg cells in TME via MCT1 and then promoting the
inhibitory function of Treg cells (Watson et al., 2021). These results
further support the effect of tumor cell glycolysis derived lactic acid
on T cells.

In 2018, Zhao et al. reported that lactate upregulated the
expression of homeostasis gene through histone lysine
lactacylation (Kla), which transformed the M1 macrophages
into M2 macrophages (Zhang et al., 2019). Meanwhile,
homeostasis gene expression in tumor-associated macrophages
was positively correlated with histone lysine lactacylation in
mouse melanoma and lung cancer models. It is known that
the transformation process of CD8+ effector T cell (Teff) to
CD8+ exhausted T cell (Tex) is dependent on histone epigenetic
modification (Khan et al., 2019; Beltra et al., 2020). It is not clear
whether histone lysine lactacylation exists during the negative
transformation of CD8+ effector T cells to CD8+ exhausted
T cells. Our results suggest that there is a higher histone
lysine lactylation in NSCLC tissues of obese mice, which is
positively correlated with PD-1 expression (Figure 6).

In summary, obesity promote the expression of PD-1 by up-
regulating the glycolytic-mediated histone lactacylation
modification of CD8+ T cells in the TME, thus affecting the
efficacy of ICB. Our findings provide new insights for better
application of PD-1/PD-L1 therapy in NSCLC.

FIGURE 6
Lactate released from tumor cells elevates PD-1 expression on T cell associated with the lysine lactylation of histones in T cells. (A) Diagram of the
experimental design: lung tissue of CTRL group (CTRL-Lung), CDX group (CDX-lung) and tumor tissue (CDX-tumor) from CDX models (CD10 group,
HFD40 group, HFD60) were harvested 2 weeks later and lysine lactylation of protein were investigated byWestern blot; (B) Lysine lactylation of protein in
CTRL-Lung, CDX-lung, and CDX-tumor tissues of CD10 group, HFD40 group, and HFD60 group by Western blot; (C) The protein levels of PD-1
expression in CTRL-Lung, CDX-lung, and CDX-tumor tissues of CD10 group, HFD40 group, and HFD60 group by Western blot; (D) The histone protein
lysine lactylation of mouse spleen CD8+ T cells treated with or without lactate by Western blot.
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