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Introduction: Thempox disease, caused by thempox virus (MPXV), has become a
rising public health issue due to its potential to cause outbreaks. Consistently, this
investigation aims to evaluate the current advances in the development of novel
immunotherapeutic approaches against MPXV, which are crucial for preventing
and controlling mpox spread.

Methods: This scoping review was performed by analyzing the content of
English-language articles published between 2018 and 2024, which reported
the development of next-generation vaccines against MPXV and their assessment
in animal models. Patents within the scope of this research were also included.
Contrarywise, studies based solely on immunoinformaticmethods, reviews, book
chapters, news, and others were excluded. The literature search was executed in
11 databases, such as Scopus, MEDLINE, and PubMed.

Results: A total of 36 records (32 studies and 4 patents) were included in this
review. All 32 articles contain preclinical studies with varied group sizes (4–16) in
which the main animal models were BALB/c mice. Less commonly used models
included CAST/Ei mice and cynomolgus macaques. Moreover, most vaccines
targeted one ormoreMPXV antigens, such as A29L, A35R, B6R, andM1R, through
active immunization (via mRNAs or recombinant antigens) or passive
immunization (antibody delivery).

Conclusion: Overall, new generation vaccines might represent prospective
candidates to combat the mpox health concern. Nonetheless, several of the
analyzed studies possess drawbacks, including animal models with limited
similarity to humans, small group sizes, and brief follow-up durations.
Consequently, additional research is required to ascertain the long-term
protection, efficacy, and safety of these immunotherapeutic approaches.
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1 Introduction

Mpox (formerly known as monkeypox) is a zoonotic disease caused by the mpox virus
(MPXV), which is a double-stranded DNA virus with an average genome size of around
170–250 kb. It is classified within the Poxviridae family and in the Orthopoxvirus genus,
which also encompasses the variola virus responsible for smallpox (Branda et al., 2024;
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Zinnah et al., 2024). Since 2022, mpox has arisen as a significant
priority for scientists, as the World Health Organization (WHO)
proclaimed it as an urgent health crisis of worldwide concern due to
the alarming global dissemination of the disease (Srivastava et al.,
2023). Since January 1, 2024, 24,872 cases of clade I and clade II
MPXV have been officially reported in 81 different locations (as of
January 16, 2025) (Centers for Disease Control and Prevention,
2022). Individuals infected with MPXV tend to present a variety of
symptoms that include, but are not limited to, fever, cough, rash,
headache, confusion, abdominal pain, nausea, vomiting, and
conjunctivitis (Niu et al., 2023). On the other hand, even though
the mental health impact of mpox is still unclear, patients may suffer
from anxiety, social isolation, stigma, panic, fear, and anger, among
other psychological signs (Curtis et al., 2023).

The MPXV can spread through several mechanisms, including
animal-to-animal, animal-to-human, or human-to-human, and the
predominant mode of infection from animal to human is through
close contact with the infected animal or its bodily fluids (Karagoz
et al., 2023). Although the mortality rate of mpox has been reported
to be around 1%–11% (Beer and Bhargavi Rao, 2019), this fatality
rate is significantly influenced by the medical care supplied to the
patients, the viral strain, and the immunological and health
attributes of the infected persons (Hatami et al., 2023). Moreover,
the hospitalization rate of mpox has been estimated to be
approximately 6.34%, with data from nine studies considering
2,275 patients from the 2022 mpox outbreak (Li P. et al., 2023).
Despite this, the recent COVID-19 pandemic has demonstrated that
viruses can mutate quickly, acquiring more virulent properties that
may set the world’s population at risk (Han et al., 2023; Williams
et al., 2023). Hence, international authorities, along with
stakeholders and scientists, must collaborate to ensure affordable
access to mpox vaccinations and to encourage the international
response to the mpox epidemic (Gruber, 2022; Lee et al., 2024).

Two principal forms of MPXV have been noticed during its
pathogenic process, an extracellular enveloped virus (EEV) and an
intracellular mature virus (IMV) (Lu et al., 2023; Sagdat et al., 2024).
Therefore, the proteins displayed by these infectious viral entities
have been identified as potential targets for the development of novel
treatments and vaccines against MPXV due to their immunogenic
activities. For instance, A29L, E8L, H3L, and M1R are proteins that
belong to the IMV form, while A35R, B6R, and C19L are present in
the EEV (Wang et al., 2023; Sagdat et al., 2024). Particularly, A29L
and M1R participate in the cellular entrance stage of the mature
virus, while A35R and B6R are recognized as molecular components
involved in the transmission process of the enveloped virus (Sagdat
et al., 2024). In spite of the advances in the discovery of potential
MPXV drug targets, there is currently no specialized vaccine or drug
approved for this virus (Gong et al., 2022; Haruna et al., 2022).

As an alternative, vaccines andmedications previously approved
for smallpox and other orthopoxviruses are being considered
nowadays to fight MPXV infection due to the genomic similarity
between these viruses (Yashavarddhan et al., 2023). The key vaccines
authorized in some countries for this purpose are JYNNEOS (live,
non-replicating, Modified Vaccinia Ankara-Bavarian Nordic
vaccine, also known as MVA-BN, Imvamune, or Imvanex) and
ACAM2000 (live, replicating vaccinia virus, VACV), while some of
the most important anti-poxvirus drugs applied against MPXV are
tecovirimat, cidofovir, brincidofovir, and vaccinia immune globulin

(VIG) (Islam et al., 2022; Mohanto et al., 2023; Shamim et al., 2023;
Yashavarddhan et al., 2023). Nonetheless, the efficacy of these
vaccines and drugs against MPXV remains ambiguous; as well as
they are not readily accessible worldwide (Webb et al., 2022; Jiang
et al., 2024; Ganesan et al., 2025).

Mpox vaccine candidates have evolved over different
generations that, as mentioned above, were mainly dependent on
vaccines developed against smallpox. For instance, Dryvax, was a
first-generation vaccine that used a live, replication-competent
VACV obtained from calf lymph and was approved in 1931 by
the FDA to protect from smallpox (Bryer et al., 2022; Chakraborty
et al., 2022); however, this vaccine is no longer manufactured (Kajal
et al., 2024). Indeed, ACAM2000 vaccine was licensed by the FDA in
2007 and replaced the Dryvax vaccine (Bryer et al., 2022).
ACAM2000 is a second-generation vaccine for smallpox derived
from a single-clonal isolate from the Dryvax vaccine that retains its
replication competency but is produced with modern cell culture
techniques to increase its safety (Frey, 2014; Poland et al., 2022).
Even so, ACAM2000 poses a risk of severe side effects, such as
myopericarditis, particularly in individuals without prior smallpox
immunity, making it unsuitable for subjects with severe
immunosuppression (Gruber, 2022). Third-generation vaccines
include the live, attenuated, non-replicating JYNNEOS vaccine
approved in 2019 by the FDA for the prevention of smallpox
and mpox (Chakraborty et al., 2022; Gruber, 2022; Poland et al.,
2022) and the highly attenuated vaccine LC16m8 (not yet approved
by the FDA, but licensed in Japan) obtained in 1970 from the VACV
Lister strain of the first-generation smallpox vaccines (Poland et al.,
2022; Sudarmaji et al., 2022; Grabenstein and Hacker, 2024). Finally,
OrthopoxVac is a fourth-generation live vaccine against smallpox,
mpox, and other orthopoxviruses based on the VACdelta6 strain
that received approval from the Russian Federation in 2022
(Shchelkunova and Shchelkunov, 2023; Liu, 2024; Kumar
et al., 2025).

Notwithstanding the above, in light of the incidence of new
outbreaks (Cevik et al., 2024; Sah et al., 2024) and the possible
occurrence of mutations in theMPXV genome (Jahankir et al., 2024;
Shen-Gunther et al., 2025), the development of next-generation
vaccines designed exclusively for MPXV is mandatory (Fantin and
Coelho, 2024; Liu et al., 2024). Next-generation vaccines can be
defined as those that are addressed on targeting specific
immunodominant antigens (e.g., via the delivery of mRNAs or
recombinant proteins) to promote immune responses instead of
relying on a whole inactivated or live attenuated infectious agent
(Dormitzer et al., 2008; van Riel and de Wit, 2020; Rezaei and
Nazari, 2022; Khalid and Poh, 2023). Some of the pioneering reports
in this field were focused on developing new generation vaccines
against MPXV based on VACV antigens.

In this context, Hooper et al. (2003) identified that the
antibodies produced by rhesus macaques (Macaca mulatta) after
immunization with a plasmid DNA vaccine containing the A27L,
A33R, B5R, and L1R genes from VACV cross-reacted with MPXV
orthologous proteins, demonstrating the forthcoming importance of
these antigens in the design of mpox vaccines. Afterward, Heraud
et al. (2006) generated both plasmid DNA and recombinant protein
vaccines based on VACV, A27L, A33R, B5R, and L1R proteins;
however, only recombinant proteins adjuvanted with CpG or a DNA
prime/protein-CpG boost regimen protected rhesus macaques from
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the lethal MPXV challenge. Buchman et al. (2010) showed that the
recombinant VACV proteins A27, A33, B5, and L1 containing CpG/
alum were effective against MPXV lethal infection in cynomolgus
macaques (Macaca fascicularis). Hirao et al. (2011) tested a plasmid
DNA vaccine encoding VACV A4L, A27L, A33R, A56R, B5R, F9L,
H3L, and L1R proteins that protected cynomolgus macaques from
the lethal MPXV challenge. On the other hand, one of the first
vaccine candidates centered on specific MPXV antigens was
reported by Franceschi et al. (2015). These researchers designed
vaccines based on recombinant bovine herpesvirus 4 (BoHV-4)
vectors carrying MPXV antigens (A29L, B6R, or M1R).
Particularly, M1R alone or in combination with A29L and B6R
resulted effective against the MPXV lethal challenge in STAT1(−/−)

mice. However, current research on new-generation vaccines using
antigens belonging to MPXV itself is still in progress and there is
uncertainty regarding the efficacy and safety of these emerging
immunotherapies. The timeline of the evolution of mpox vaccine
candidates is illustrated in Figure 1.

Although a handful of published reviews (Abdelaal et al., 2022;
Papukashvili et al., 2022; Lee et al., 2023; Saadh et al., 2023; Garcia-
Atutxa et al., 2024) have focused on the development of novel mpox
vaccines, relevant reviews that follow strict Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines (Tricco et al., 2018; Page et al., 2021) are limited.
Moreover, several existing literature reviews, systematic reviews,
and meta-analyses are centered mainly on the application of
smallpox vaccines against MPXV (Ghazy et al., 2023; Kang et al.,
2023; Malik et al., 2023; Eslami et al., 2024; Grabenstein and Hacker,
2024; Pischel et al., 2024) rather than analyzing the advances in next-
generation vaccines designed exclusively for MPXV. Furthermore,
despite the fact that a couple of next-generation mpox vaccines are
currently in ongoing clinical trials, the data from preclinical trials in
animal models can be of high relevance to guide virologists and
policymakers in the development of new immunotherapeutic
platforms that may avoid the emergence of a mpox pandemic.
Consistently, the current scoping review critically evaluated the
latest advancements in mpox vaccine development, as well as
highlighted the knowledge gaps in this research field. Moreover,

it is worth mentioning that this scoping review is not an update or a
repetition of previous works; rather, it aims to discuss the current
advances and future directions in the development of next-
generation vaccines against MPXV.

2 Methods

The elaboration of this scoping review was based on the
PRISMA 2020 guidelines (Page et al., 2021) and on the PRISMA
Extension for Scoping Reviews (PRISMA-ScR) (Tricco et al., 2018).
All the methodology was performed independently by two reviewers
(L.A.B.-V. and D.B.-V.) without automation tools, and any kind of
uncertainty was discussed with a third reviewer (S.P.). No additional
protocol was prepared or registered apart from the methodology
presented herein.

2.1 Eligibility criteria

For this scoping review, we considered studies published from
2018 to 2024 and written in the English language. The selection
process was based on the PICO framework as follows: animal
models (Population) immunized with next-generation vaccines
against MPXV (Intervention), in which antibody elicitation, cell
immune response, and/or reduction in disease severity after viral
challenge (i.e., recovery of weight loss and survival) were evaluated
(Outcome). The Comparison term of the PICO framework was not
applied at all in this case since the studies by themselves already
compared the effect of the mpox vaccines between vaccinated and
control groups. Hence, studies that reported the immunological
effects of next-generation mpox vaccines in animal models were the
main target of this scoping review. Published patents were also
included if they were centered on new generation vaccine designs
exclusively against MPXV. Conversely, we did not consider reports
that were based solely on bioinformatic tests. Articles were also not
selected if they were centered on the development of vaccines against
exclusively other viruses (e.g., SARS-CoV-2, smallpox, and

FIGURE 1
Pictorial representation of the evolution of mpox vaccine candidates across time (created with a licensed version of BioRender.com).
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camelpox). Finally, review articles, book chapters, comments,
conference abstracts, retracted articles, and news, among other
types of scientific communications, were also excluded.

2.2 Search strategy, information sources,
and study selection

All the literature searches were carried out on August 22, 2024.
In order to maximize the reach of the searches, we consulted
11 databases during the search strategy. These databases were
Scopus, MEDLINE (via ProQuest), Web of Science, PubMed,
Academic Search Ultimate (EBSCOhost), SpringerLink Journals,
Gale Academic OneFile, Taylor & Francis Journals, Wiley Online
Library, Directory of Open Access Journals (DOAJ), and
PATENTSCOPE. We restricted the searches to abstracts
(abstract and title in the case of PubMed) in order to avoid
gathering studies that were outside the focus of this research.
These searches were limited to 6 years ago. Moreover, the
combination of keywords was meticulously designed and
evaluated with preliminary searches to ensure its effectiveness
based on the inclusion/exclusion criteria (no entries were
gathered in these initial explorations). Important information
regarding the searches in these databases, such as the keywords
used, dates of coverage, and search strings are presented in
Supplementary Table S1.

We performed every database search in triplicate using the
aforementioned strings and dates to validate their reproducibility.
After eliminating duplicated records, the titles and abstracts of the
remaining entries were reviewed following the previously defined
inclusion/exclusion criteria in order to include or exclude them.
Subsequently, the full texts of the records potentially meeting the
inclusion criteria were sought for retrieval. At this stage, all non-
open access articles were obtained with the credentials of our
institute or via the interlibrary loan services of our institution
(Tecnologico de Monterrey). Finally, the full-text articles were
reviewed and either included or excluded according to the
eligibility criteria.

2.3 Data extraction and data items

The process of data extraction was carried out by examining
the full-texts of the included articles. The data items obtained from
these articles included the first author and publication year, the
animal model used in the study, type of vaccine administered,
MPXV clade and/or isolate addressed by the vaccine design,
targeted antigens, immunization scheme, placebo type, viral
strain and viral dose used in challenge, and survival rates. To
avoid misinterpretations of data that are usually reported in a
heterogeneous manner across studies or are only illustrated in
graphs or figures, such as antibody titers and levels of cellular
responses generated by vaccines, these data were addressed based
on the interpretation provided by the authors of each study.
Finally, the data items extracted from the patents consisted of
title, first author, publication year, application country and
company or institution, type of vaccine, targeted antigens,
country or office, and patent number.

2.4 Data synthesis and analysis

The data synthesis and analysis were carried out by categorizing
and discussing the studies based on the type of vaccine. These
categories included mRNA-based vaccines, recombinant antigens of
the MPXV, antibodies targeting MPXV antigens, and circular RNAs
(circRNAs) encoding MPXV antigens. The content of each article
was reviewed within the text, with a summary of the data presented
in one table. On the other hand, the information on the identified
patents was summarized in another table.

2.5 Risk of bias assessment

Although the risk of bias assessment is not mandatory for scoping
reviews, we decided to include such evaluation to give added value to
this work and so that readers who consult the information analyzed
herein are aware of the possible risks of bias in the included studies. In
this regard, we assessed the risk of bias based on some of the key
recommendations for evaluating preclinical studies stated by Landis
et al. (2012) and Macleod et al. (2015), which are adapted to evaluate
factors relevant to laboratory studies in animal models. The levels of
risk were set as low, unclear, or high. The domains of this assessment
considered random assignation of animal models to experimental
groups, complete descriptions of the methodology for the evaluation
of outcomes, the inclusion of a clear justification of sample size to
ensure that the studies were appropriately powered, and blinded
measurement of outcomes. Additionally, we evaluated whether the
studies reported an ethical statement and approval for animal
experimentation. Finally, potential investigator conflicts of interest
were also considered in the assessment.

3 Results

3.1 Selection of sources of evidence

In this study, initially, 715 records were retrieved from the
consulted databases, and then 476 duplicates were removed.
Subsequently, the abstracts and titles of the remaining 239 records
were screened and 166 were excluded due to non-relevance. The full-
texts of the 73 remaining records were successfully retrieved and
consequently, 51 entries were eliminated following the inclusion/
exclusion criteria stated in the methodology. Throughout the writing
of other sections of the manuscript and during the peer review
process, 15 additional records were found, 14 of them were
successfully included, and 1 could not be retrieved (i.e., Chuai
et al., 2025). In the end, 36 records were included, comprising
32 studies and 4 patents. This selection process is depicted in Figure 2.

3.2 General overview of the included studies

The majority of the proposed vaccine designs against MPXV are
mRNA vaccines loaded into lipid nanoparticles (mRNA-LNP) to
facilitate the delivery of the coding sequences of MPXV antigens
(19 studies out of 32). Other vaccine types reported were
recombinant antigens of MPXV (8 studies out of 32), antibodies
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or mRNAs encoding antibodies against MPXV antigens (4 studies
out of 32), and circRNAs encoding antigens ofMPXV (1 study out of
32). The most common animal model used in the reports for
evaluating the vaccines corresponded to BALB/c mice (present in
at least 26 studies). Other less recurrent animal models were CAST/
Ei mice, C57BL/6 mice, cynomolgus macaques, and dormice.
Moreover, almost all the vaccine approaches were intended to
target one or multiple antigens belonging to MPXV (e.g., A29L,
A35R, B6R, E8L, H3L, and/or M1R), either via active immunization
(delivery of the antigens through mRNAs or recombinant proteins)
or via passive immunization (delivery of antibodies targeting the
MPXV antigen). After immunization, the animal models were
challenged with the VACV strains Tian Tan (TT) or Wester
Reserve (WR) in most of the studies in order to evaluate the
protection conferred by the vaccines. However, six studies did
not perform this assessment. Besides, only eight articles provided
information about the protective effect of a vaccine in animal models
infected with MPXV after vaccination. All the included studies are
cited chronologically in Supplementary Table S2, along with the
relevant data extracted from them.

3.3 mRNA-based vaccines against MPXV

The emergence of mRNA vaccines gained the attention of the
scientific community during the COVID-19 pandemic,

demonstrating their rapid development potential and
effectiveness. These vaccines work by encoding proteins from
infectious agents, such as viruses, which serve as antigens capable
of triggering immune responses (Heinz and Stiasny, 2021). This
technology can also be applied to deliver mRNAs that encode
antibodies targeting specific antigens (Deal et al., 2021). In both
cases, the most common method for delivering mRNAs is through
LNP formulations. LNPs are used because they protect the mRNA
from degradation, improve cellular uptake, and enable the release of
the mRNA into the cytoplasm for protein translation (Heinz and
Stiasny, 2021).

In this matter, Fang et al. (2023) created two candidate vaccines
for MPXV, MPXVac-097, which encoded the A29L, A35R, B6R,
E8L, and M1R antigens, and a mixture of the five individual mRNA-
LNPs termed Mix-5. The MPXVac-097 multi-antigen mRNA-LNP
vaccine exhibited neutralizing efficacy against cowpox, VACV, and
MPXV, with antibody titers rising in a dose number-dependent
manner. A comparison of MPXVac-097 with Mix-5 demonstrated
that both vaccines induced similar binding antibody responses,
especially against antigens A35R and E8L, across different dosage
regimens. Furthermore, both MPXVac-097 and Mix-5 conferred
protection in mice challenged with VACV, as vaccinated animals
sustained steady body weight and displayed only minor symptoms,
in contrast to the substantial weight loss and clinical manifestations
observed in unvaccinated controls. Safety assessments verified that
MPXVac-097 was well-tolerated, exhibiting no notable pathological

FIGURE 2
Flow diagram of the search methodology followed in this scoping review. The methodology was conducted following the PRISMA guidelines.
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signs in immunized mice. The lack of toxicity-related alterations and
the strong immunogenicity indicate that MPXVac-097 is a suitable
option for mpox vaccination.

Zhang R. R. et al. (2023) created mRNA-LNP vaccines that were
formulated using different combinations of viral antigens from
MPXV. The vaccines, designed with equal amounts of mRNA-
LNPs, were identified as AR-MPXV5 (A29L, A35R, B6R, E8L,
and M1R), AR-MPXV4a (A29L, B6R, E8L, and M1R), AR-
MPXV4b (A29L, A35R, B6R, and E8L) and AR-MPXV3 (A29L,
B6R, and E8L). BALB/c mice were immunized with each mRNA-
LNP formulation, followed by a booster dose after 3 weeks, and were
challenged with VACV TT. AR-MPXV5 and AR-MPXV4a
vaccinated groups experienced minor weight loss, while the
placebo group exhibited a significant decrease in weight.
Nonetheless, all animals in the control and vaccinated groups
survived the viral challenge. The viral load in the vaccinated
groups was barely detectable, with AR-MPXV4b showing no
presence of infectious particles or viral DNA. AR-MPXV5 and
AR-MPXV4a produced high levels of neutralizing antibodies,
while no neutralizing antibodies were detected in AR-MPXV4b
and AR-MPXV3 after the first immunization. However, following
the second immunization, neutralizing antibodies were detected in
both AR-MPXV4b and AR-MPXV3 groups, though at lower levels
compared to AR-MPXV5 and AR-MPXV4a. This preclinical
analysis demonstrated that all the vaccines protected mice from
VACV TT. Nevertheless, AR-MPXV5 and AR-MPXV4a triggered
the strongest immune response, as they generated significantly
higher levels of neutralizing antibodies, offering effective
protection against VACV exposure (Zhang R. R. et al., 2023).
This research highlights the critical role of specific antigen
combinations in enhancing vaccine efficacy. In fact, further
exploration of the efficacy of the AR-MPXV5 vaccine unveiled
that the administration of two doses in cynomolgus macaques
successfully induces both antibody and cellular immune
responses. In a challenge model using a contemporary MPXV
clade II strain, the AR-MPXV5 vaccine effectively prevented skin
lesions, cleared viremia, and reduced viral loads across multiple
tissues in naive male non-human primates. Outstandingly, the
vaccine was well-tolerated in rhesus macaques with chronic
simian immunodeficiency virus infection, generating MPXV-
specific humoral and cellular responses comparable to those
observed in healthy animals (Ye Q. et al., 2024).

In another effort to develop effective immunogenic platforms
against MPXV, Sang et al. (2023) developed two mRNA-based
vaccines targeting antigens derived from two IMV-specific
(i.e., A29L and M1R) and two EEV-specific proteins (i.e., A35R
and B6R). These vaccines were named as mRNA-A-LNP and
mRNA-B-LNP. Among the tested antigens, M1R and A35R
produced high antibody titers. Moreover, the second dose of the
mRNA-A-LNP vaccine was more effective in generating
neutralizing antibodies. To assess the protective capability of the
vaccines, immunized BALB/c were challenged with VACV TT.
Remarkably, both vaccines prompted a rapid recovery, as viral
load measurements indicated that, within 24 h post-vaccination,
VACV was nearly undetectable in the immunized mice, while the
control group displayed evident viral presence. Besides, a safety
assessment indicated that the mice did not lose weight and showed
no signs of inflammation or local skin reactions (Sang et al., 2023).

These findings suggest that the vaccines developed are effective and
safe, making them promising mpox vaccine candidates.

Two other mRNA-LNP vaccines were designed by Zeng et al.
(2023) to encode four MPXV antigens (i.e., A29, A35, B6, and M1)
designated as Rmix4 and Lmix4, or six MPXV antigens (i.e., A29,
A35, B6, E8, H3 and M1) labeled as Rmix6 and Lmix6. In the case of
Lmix vaccines, mRNAs were directly encapsulated into LNPs using
the same antigens as the Rmix. In contrast, Rmix formulations were
prepared by mixing linearized plasmids encoding the antigens (four
or six, respectively) and then transcribing the mixture into mRNA
before encapsulation into LNPs. Notably, Rmix6 had a higher T-cell
response compared to Rmix4. All mRNA-LNP vaccine candidates
incorporating multiple antigens generated comparably strong cross-
protective immune responses against VACV. After immunization
and viral challenge in BALB/c mice, L/Rmix4 and L/Rmix6 provided
significant protection against VACV WR. In the control group,
almost all mice died and exhibited significant weight loss, while in
the vaccinated groups, all mice survived and maintained constant
weight. Furthermore, the antigen M1 promoted the production of
high levels of neutralizing antibodies, which indicates its importance
in vaccine design (Zeng et al., 2023). Overall, the proposed multi-
antigen mRNA-LNP vaccine could be a favorable approach for
producing substantial immune responses against MPXV.

Zhang N. et al. (2023) tailored four mRNA-LNP vaccines,
harnessing different combinations of surface antigens belonging
to MPXV. Accordingly, four different combinations were generated:
MPV-E2, including A35R and B6R from the enveloped virion (EV);
MPV-M2, composed of H3L and M1R from the mature virion
(MV); MPV-M4 combining A29L, E8L, H3L, and M1R; and MPV-
EM6 combining A29L, A35R, B6R, E8L, H3L, and M1R. The
vaccines were tested on BALB/c mice, and the results indicated
that the MPV-EM6 vaccine provided a higher protection against the
VACV TT challenge. In this context, A35, E8L and M1R were the
antigens that produced more antibodies, which continued to
increase with the booster dose. In terms of neutralizing
antibodies, MPV-EM6 also induced the highest antibody levels.
Across all groups that were immunized, the mice maintained stable
body weight, displaying complete protection with MPV-EM6 and
MPV-M4 vaccines. While the control group lost significant body
weight and mice were sacrificed after 6 days (Zhang N. et al., 2023).
These outcomes highlight the potential of these multi-antigen
vaccines as promising candidates against MPXV.

Other mRNA-LNP vaccine candidates were created by Xia et al.
(2023) using antigens from MPXV (A29L, A35R, B6R, and M1R)
that are homologous to those of VACV (A27, A33, B5, and L1), and
was tested in C5BL/6 mice by administering the antigens
individually or as a cocktail. Afterward, mice were challenged
with the VACV TT strain to assess the efficacy of the vaccine.
The study revealed that, at high doses, the vaccines significantly
reduced the viral load of mice, and the mixed cocktail promoted the
survival rate in all mice. Intriguingly, all the vaccines stimulated
strong antibody responses (especially the mRNA-LNP vaccines at
5 μg), suggesting that they were the most effective ones. Notably,
mice that were vaccinated quickly recovered their body weight and
reduced their viral load, being the 5 μg dose the one showing the
strongest effect. In contrast, the control group, which was injected
with PBS, experienced a decrease in their body weight and could not
recover from the challenge. Overall, the cocktail containing 0.5 μg
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from each mRNA-based antigen provided full protection against
VACV, while the 5 μg dose of individual antigens offered full
protection against VACV except for the A33, which did not
protect entirely against VACV (Xia et al., 2023). These findings
show once again the putative importance of mRNA-LNP against
mpox outbreaks, ensuring a rapid recovery with minimal
side effects.

Hou et al. (2023) constructed a set of mRNA-LNP vaccines
against MPXV, namely, VGPox 1 and VGPox 2, which encoded the
extracellular domain of A35R, a signal peptide, and an M1R antigen.
The other vaccine was VGPox 3, which contained a mixture of the
mRNAs encoding A35R andM1R encapsulated in LNPs. In a single-
dose experiment, BALB/c mice were immunized and challenged
with VACV WR, which provided rapid protection, as immunized
mice showed no significant weight loss, while the control group lost
body weight significantly. Neutralizing antibodies were also
evaluated, and it was found that VGPox 1 and VGPox 2 had
higher neutralization activity. Nonetheless, all three vaccine types
protected mice from VACV. In a further experiment, at 162 days
post-vaccination, mice were exposed intranasally to a lethal dose of
VACVWR, and all three mRNA vaccine formulations conferred full
protection (Hou et al., 2023). These findings suggest that the three
mRNA-LNP vaccines could provide sustained protection
against MPXV.

Freyn et al. (2023) developed mRNA-LNP vaccines encoding
four surface proteins (A29, A35, B6 and M1) from MPXV. They
investigated different concentrations of individual antigens, as well
as different combinations of the antigens. Following the
immunization of BALB/c mice, single MPXV antigens provided
partial protection against VACV WR, with M1 producing the
highest neutralizing antibody response at a concentration of
0.5 µg or 2 µg. Mice that received a 2 μg dose of the MPXV
mRNA vaccine exhibited full survival, experiencing only minimal
and temporary weight reduction following the challenge. Likewise,
the 8 μg mRNA multi-antigen vaccines allowed complete survival
and no significant weight loss after exposure to VACV (Freyn et al.,
2023). Consistently, these observations indicate that multi-antigen
combinations reported in this investigation deserve further
exploration.

Subsequently, two mRNA-LNP vaccines encoding the surface
proteins A29L, M1R, A35R and B6R antigens from MPXV were
designed by Yang et al. (2023a). The vaccines were named MPXfus
and MPXmix. MPXfus is a system in which the four antigens are
combined together and encoded by a single mRNA as a fusion
protein, and MPXmix is a multicomponent formulation that
contains four individual mRNA-LNPs, each one containing the
antigens in equal amounts. BALB/c mice were immunized, and
after the first dose, anti-M1R and anti-A35R antibody titers induced
by the MPXfus vaccine were higher than those induced by MPXmix.
Both groups of vaccinated mice developed neutralizing antibodies
against VACV, as confirmed through a virus neutralization assay.
This implied that the vaccines can induce an immune response
against poxviruses (Yang et al., 2023a). Despite these observations,
this study did not assess the effectiveness of disease reduction with a
viral challenge, limiting its conclusions about the protective
potential of the vaccines MPXmix and MPXfus.

Zuiani et al. (2024) created two mRNA-LNP vaccines against
MPXV, namely, BTN166a (encoding A35, B6, H3, and M1) and

BTI166c (encoding A35, B6 and M1). The BTN166 vaccines were
tested in four biological models, which included Wistar rats, BALB/
c, CAST/Ei mice, and cynomolgus macaques. Nevertheless, the viral
challenge was just performed in the last three animal models. Each
model animal received two doses of BTN166 vaccines or individual
antigens (BALB/c mice), and was challenged with either VACVWR
(BALB/c mice) or Clade I MPXV (CAST/Ei mice and cynomolgus
macaques). Particularly, the antigens A35, B6 and M1 provided
complete protection against VACV WR in BALB/c mice. However,
A35 combined with B6 were less effective in the Clade I MPXV
challenge model (CAST/Ei mice). Remarkably, the BNT166a
vaccine, which combines multiple antigens, resulted in better
immune responses (Zuiani et al., 2024). Mice immunized with
BTN166 vaccines did not experience a significant percentage of
weight loss, while the control group showed considerable weight
loss. Moreover, BTN166 vaccines demonstrated substantial survival
rates, especially BTN166a showed the best results in the two mice
models. In the case of cynomolgus macaques, which were challenged
with Clade I MPXV, BNT166a vaccination provided considerable
protection. After the challenge, initially, the vaccinated macaques
showed minimal weight loss that quickly resolved, and all of the
BNT116a immunized macaques survived, which highlights the
vaccine’s robust effects across different species (Zuiani et al.,
2024). This report broadly describes the effects of vaccines on
various organisms, making BNT166a one of the most compelling
vaccine proposals for mpox management.

(Chi et al., 2024) engineered six mRNA combinations that
encode antibodies aimed at targeting EEV and IMV surface
proteins in order to neutralize orthopoxviruses. Each antibody
was designed to target a specific antigen from VACV or MPXV,
being mRNA-mab301-LNP for antigen A27 (VACV), mRNA-
mab22-LNP for antigen A33 (VACV), mRNA-mab283-LNP for
antigen B5 (VACV), and mRNA-mab26-LNP for antigen M1
(MPXV). Additionally, two combinations of these mRNAs,
Mix2a (mRNA-mab22-LNP and mRNA-mab26-LNP) and
Mix2b, were formulated; however, the content of Mix2b
formulation is not clearly stated within the report. BALB/c mice
were immunized with individual mRNA-LNPs or cocktails and
challenged with VACV WR. Rapid antibody production after a
single dose of each vaccine was noticed, especially for mRNA-
mab26, which showed the higher level. In addition, the results
indicated that Mix2a and Mix2b provided superior protection, as
mice immunized with Mix2a and Mix2b also showed negligible
weight loss. Mix2a and Mix2b effectively cleared infectious virus
from lung tissue and prevented VACV-induced lung pathology.
Besides, from the individual mRNA-LNP vaccines, mab22 provided
complete protection against weight loss and mortality, with no
detectable levels of VACV virus particles in the lungs.
Importantly, all monoclonal antibodies and Mix vaccines
guaranteed survival of the challenged mice. Overall, these
mRNA-encoded antibodies are promising candidates for the
prevention of orthopoxvirus outbreaks, particularly of MPXV.

More recently, Su et al. (2024) created a vaccine termed ALAB-
LNP to express four VACV antigens (A27, L1, A33 and B5) arranged
in tandem within a single molecule. This vaccine was compared to
another formulation called 4Sin-LNP, which expressed a mixture of
the same antigens as individual mRNA-LNPs. In the experiment,
both BALB/c mice and Sprague Dawley rats received two doses of
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the vaccines. The results indicated that mice immunized with
varying doses of ALAB-LNP or 4Sin-LNP generated strong
antibody responses against L1, A33, and B5 after the first dose,
and the levels of the antibodies against the four antigens increased
after the boost immunization. Additionally, all the vaccine
formulations produced neutralizing antibodies after the second
dose, being ALAB-LNP (particularly at 20 µg), the one that had
the highest production. The vaccines also showed cross-neutralizing
activity against MPXV. However, the study did not evaluate survival
rates of immunized animal models challenged with VACV or
MPXV, leaving gaps in understanding the protective effects of
the vaccines. Thus, additional testing is urged, particularly
focusing on the vaccines’ efficacy and their possible adverse effects.

Four mRNA-LNP vaccines, designated as LBA (A29L and B6R),
LAM (A35R and M1R), a cocktail LBAAM (A29L, A35R, B6R, and
M1R), and LBA&LAM, which combined LBA and LAM vaccines,
were developed by Ye T. et al. (2024). To evaluate their efficacy,
BALB/c mice were immunized, followed by a challenge with VACV
TT in order to assess the vaccines’ efficacy. The results showed that
LAM and LBA&LAM vaccines produced high levels of neutralizing
antibodies against MPXV. In relation to the efficacy of the vaccines,
mice immunized with the different formulations showed better
protection against VACV than the control group. Mice in the
control group experienced substantial weight loss after being
exposed to VACV TT and all the animals in this group were
euthanized, while the vaccinated groups did not experience a
significant decrease in body weight, being LBA&LAM and
LBAAM the ones that maintained a stable body weight
throughout the challenge and promoted quick recovery from the
viral challenge. Importantly, all vaccinated groups survived the
challenge, demonstrating the effectiveness of these mRNA-
LNP vaccines.

A multi-antigen mRNA-LNP vaccine, called MPXV-1103, was
tailored by Li E. et al. (2024) containing A35, A29, B6, and
M1 surface proteins from the MPXV in a single sequence linked
together by three (G4S1)3 flexible linkers. Animal studies were
performed to test MPXV-1103, the individual mRNA-LNPs of
the antigens, as well as a vaccine called Mix-4-LNP (a mixture of
the mRNA-LNPs of the individual antigens). The vaccines were
evaluated in BALB/c mice that received two doses of the same and
were later challenged with VACV TT. Post-immunization results
revealed that MPXV-1103 induced high amounts of antibodies at all
doses, which displayed a significant neutralizing activity. In terms of
efficacy, all the vaccinated mice recovered weight at 4 days post-
infection. Successfully, all mice immunized with any of the vaccines
survived, while LNP and PBS controls did not survive. Additionally,
viral load analysis revealed that the MPXV-1103, A35, and
M1 vaccines led to low or undetectable levels of viral DNA and
particles. Subsequent research on the MPXV-1103 vaccine
demonstrated its ability to induce sustained humoral and cellular
immune responses in BALB/c mice, generating IgG antibodies
specific to MPXV antigens A29, A35, B6, and M1, while also
activating cytotoxic CD8+ T cells. These immune mechanisms
conferred complete protection against a lethal VACV TT
challenge, even at 280 days post-vaccination (Li et al., 2025).
These results imply the remarkable potential of MPXV-1103 for
combating mpox.

More recently, in October of 2024, Mucker et al. (2024) reported
the outcomes of an investigation in which the protective efficacy of
the mRNA-LNP vaccine, mRNA-1769, which encodes optimized
versions of four key MPXV antigens (A29L, A35R, B6R, and M1R)
was tested in a non-human primate model of cynomolgus macaques
challenged with clade I MPXV Zaire 1979. The vaccine conferred
complete protection against the lethal MPXV. Moreover, animals
vaccinated with mRNA-1769 exhibited a tenfold reduction in lesion
count, a shorter disease duration, and significantly lower circulating
and mucosal viremia levels compared to those immunized with
MVA. Detailed immunological profiling revealed that mRNA-1769
induced stronger MPXV-specific neutralizing responses, broader
heterologous neutralizing titers, and more robust humoral immune
functions against the four MPXV antigens than MVA
immunization. Later, the same group of scientists demonstrated
that the mRNA-1769 vaccine effectively protects mice against
intranasal and intraperitoneal MPXV challenges. Besides, a single
dose of the vaccine conferred substantial protection, which was
further enhanced by a booster, maintaining efficacy for at least
4 months. Also, immunodeficient C57Bl/6 Rag2 KOmice that could
not produce mature B and T cells exhibited protection when
administered serum from mRNA-1769-immunized macaques
before the VACV WRvFire challenge (Cotter et al., 2024). These
findings indicate that the mRNA-1769 vaccine not only provides
robust protection against the lethal MPXV challenge but also offers
enhanced disease mitigation, highlighting potential advancements
in mpox vaccine development.

In another research, Kong et al. (2024) developed trivalent
mRNA-LNP vaccines that encode single-chain immunogens
containing soluble regions of the MPXV antigens A35R, B6R,
and M1R; these vaccines were called AMAB-wt, AMAB-C140S,
and AMB-C140S. Strong neutralizing antibodies against VACV and
MPXV were noticed with the three vaccines. As well, these vaccines
also provided remarkable protection in BALB/c mice lethally
challenged with VACV WR and significantly reduced viral load
after MPXV challenge. The single-chain or cocktail mRNA vaccines
encoding the soluble antigens conferred 100% or 80% (in the case of
AMAB-wt, 8.1 × 105 PFU VACV WR) survival against a lethal
VACV challenge, whereas a cocktail of the full-length antigens
demonstrated comparatively lower protection. It is important to
mention that, in the case of the challenge withWIBP-MPXV-001, all
groups of BALB/c mice survived, so it is suggested to test this vaccine
in an animal model with greater susceptibility to MPXV.

An additional mRNA-LNP vaccine was proposed by Tian et al.
(2024) to express the antigen A29L fromMPXV. To test this vaccine,
BALB/c mice were immunized with two doses of the formulation,
followed by a challenge with VACV TT. The A29L vaccine exhibited
strong positive effects against VACV, significantly reducing viral
load. Additionally, the percentage of body weight in the immunized
group slightly decreased, and mice quickly recovered, reflecting the
activation of immune defenses. Nevertheless, none of the mice in the
two groups (vaccinated and controls) succumbed to the infection.
The observations also suggested that the A29L mRNA-LNP vaccine
did not have adverse effects such as substantial cutaneous reactions.
Moreover, the vaccine successfully induces a robust immune
response by cross-neutralizing both VACV and MPXV, making
it a safe and effective vaccine. Hence, further research should be
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conducted on the A29L mRNA vaccine, aiding in the development
of vaccines against MPXV.

3.4 Vaccines based on recombinant
MPXV antigens

Recombinant antigens have become a key component in the
development of next-generation vaccines, particularly in response to
emerging infectious diseases such as mpox. These antigens are
produced by expressing viral proteins in platforms, including
Escherichia coli, yeast, insect cells, or mammalian cell lines like
CHO cells (de Pinho Favaro et al., 2022). Once purified, these
proteins serve as antigens that stimulate the immune system to
recognize and respond to the infectious agent. Intriguingly,
recombinant antigen technology is advantageous in vaccine
production due to its scalability, high yields, and cost-
effectiveness (Khalid et al., 2024).

A recombinant vaccine targeting antigens from MPXV was
developed by Gao et al. (2023). Their first assessment aimed to
determine whether vaccination with MVA could induce antibodies
that cross-react with antigens from MPXV. The experiment was
conducted on BALB/c mice that received two doses of MVA on days
0 and 21 at different viral concentrations, including 105 TCID50/mL,
106 TCID50/mL, or 107 TCID50/mL. Researchers collected serum
samples from the vaccinated mice, as those samples contained the
antibodies produced after MVA immunization. The serum from the
MVA-immunized mice was used in ELISA assays in order to test if
the antibodies would bind to A29, A35, B6, H3, I1 and M1 despite
the fact that MVA does not express these specific antigens. These
results suggest that given the high similarity between MVA and
MPXV, the neutralizing antibody response induced by MVA
immunization is likely to cross-react with MPXV. Additionally,
the highest immune responses occurred with the 107 TCID50/mL
concentration (the highest dose) (Gao et al., 2023).

In the second phase of the study (Gao et al., 2023), recombinant
versions of MPXV antigens were synthesized using CHO cells.
Although M1 and A29 elicited stronger neutralizing antibody
responses, researchers decided to include other antigens such as
A35, B6, H3 and I1 for further investigation. These recombinant
antigens were tested for their ability to induce neutralizing
antibodies against MVA. BALB/c mice were immunized twice
with these antigens, either alone or combined with the adjuvant
AddaVax to enhance immune responses. Adjuvanted A29, I1, and
H3 antigens induced antibody responses four times higher than
unadjuvanted groups, demonstrating the adjuvant’s immune-
enhancing effect. Meanwhile, IgG antibody levels for A35, B6,
and M1 remained comparable across groups. On the other hand,
mice vaccinated with A29 and M1 developed significant cross-
neutralizing antibodies that were effective against MVA (Gao
et al., 2023). One drawback of this study is the absence of viral
challenge, which could have provided additional information about
the vaccine’s effectiveness. However, the findings showed the
prospective role of M1 and A29 in the future development of
recombinant antigen-based vaccines for the current mpox outbreak.

Tang et al. (2023) assessed the immunogenicity of a vaccine
containing soluble forms of the MPXV recombinant antigens A29L,
A35R, M1R, and B6R, along with its protective efficacy against the

2022 mpox mutant strain in BALB/c mice. Following vaccine
administration with QS-21 adjuvant, antibody titers increased
sharply after the initial boost. The vaccine-induced neutralizing
antibodies effectively suppressed MPXV replication and minimized
organ pathology in infected mice. Body weight measurements
remained consistent across all three experimental groups
(vaccinated, QS-21 alone, and PBS) that were challenged with the
MPXV strain WIBP-MPXV-001. However, qPCR analysis revealed
significant reductions in viral load within the lungs, ovaries, and
spleens of vaccinated mice compared to those receiving QS-21, as
well as in the lungs and ovaries when compared to the PBS-treated
group. Although these findings are promising, further validation in a
model more susceptible to MPXV infection and symptomatic
disease is recommended.

During an investigation performed by Yang et al. (2023b), the
MPXV antigens A29L, A35R, B6R, and M1R were successfully
expressed in E. coli BL21 (DE3) cells and subsequently purified.
In order to test their immunogenicity, these four recombinant
proteins were combined in a mix called AMBA, which was
administered to BALB/c mice alone, with aluminum hydroxide
or with CpG7909 as adjuvants. Succeeding assays demonstrated
that the immunization induced robust antigen-specific antibody
production and a CD4+ T cell-mediated immune response.
Additionally, virus neutralization assays confirmed that sera from
immunized mice displayed high neutralizing activity against VACV.
Notably, CpG7909 was found to be more effective than aluminum
hydroxide in enhancing the immune response. Still, this vaccine
should be tested in the future in an animal model subjected to viral
challenge to verify its protective efficacy.

In another study carried out to evaluate the efficacy of a
recombinant antigen vaccine, Wang et al. (2024) expressed a
“two-in-one” immunogen in CHO cells, combining the MPXV
antigens A35 from the EMV and M1 from the IMV. The
experimental procedure involved immunizing BALB/c mice with
three doses of alum-adjuvanted DAM. These mice were exposed to
VACV WR to assess the vaccine’s efficacy. Remarkably, mice
immunized with alum-adjuvanted DAM did not show significant
weight loss compared to the control group, which experienced
substantial weight loss and did not recover. In terms of survival,
alum-adjuvanted DAM successfully provided full protection in the
vaccinated group. Notably, increasing the concentration of DAM in
mice resulted in stronger immune responses. This research indicates
that the DAM vaccine could be a viable and safe alternative to the
live VACV vaccine, as it produces higher levels of neutralizing
antibodies and provides full protection against VACV.

Another recombinant antigen-based vaccine was evaluated by Li
J. et al. (2024), who harnessed the B6R antigen of MPXV in
combination with the BC02 adjuvant (B6R-BC02), which
contains aluminum hydroxide and BC01 (BCG-CpG-DNA). To
evaluate the ability of this vaccine to induce both cellular and
humoral immune responses, BALB/c mice received two injections
of B6R-BC02, leading to the production of MPXV-specific IgG,
IgG1, and IgG2a antibodies. Additionally, it triggered a strong
MPXV-specific Th1-oriented cellular immune response and
persistent effector memory B-cell responses. This report also
evidenced that BC02 enhances the activation of immune
responses, promoting both rapid initiation and the long-term
production of antibodies, along with sustained cellular immune
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responses. Despite these outcomes, the protective effect of the B6R-
BC02 vaccine against a viral challenge in a reliable animal model for
MPXV infection remains to be explored.

Yang et al. (2024) proposed another set of recombinant antigen-
based vaccine candidates against MPXV, which comprised Mix-AE
(A29 and E8), Mix-AEM (A29, E8, andM1), Mix-AEMA (A29, A35,
E8, and M1), Mix-AEMB (A29, B6, E8, and M1), and Mix-AEMAB
(A29, A35, B6, E8, and M1). The recombinant proteins of the
vaccines were expressed in E. coli BL21 (DE3). Once BALB/c
mice were immunized, the vaccines successfully induced strong
neutralizing antibody responses and provided significant
protection against VACV TT infection. Among these, Mix-AEM
elicited notably higher levels of neutralizing antibodies, cellular
immune response capacity, and virus clearance compared to
Mix-AE. Immunization with single antigens showed that
M1 induced greater neutralizing antibody levels than A29 and
E8. These observations imply that M1 is a crucial and
indispensable antigen for the design of new mpox vaccine
candidates.

In an innovative methodology for producing next-generation
mpox vaccines, Chen et al. (2025) used a reversible chemical cross-
linking strategy to engineer protein antigens. The strategy was
applied to the MPXV antigens A29L and A35R, creating antigen
subunit vaccines in which each protein was cross-linked (i.e., A29L-
CC and A35R-CC). Studies performed in vivo pointed out that the
cross-linking strategy improved antigen delivery to lymph nodes
and boosted both antigen-specific and virus-neutralizing antibody
production. Subsequent experiments on vaccinated dormice that
were challenged with the MPXV strain hMpxV/China/GZ8H-01/
2023 that was obtained from a patient in Guangzhou, China showed
that the engineered vaccines containing the two antigens reduced
tissue damage, lowered viral load, and prolonged mouse survival,
highlighting the potential of chemical cross-linking in protein-based
subunit vaccine development. Particularly, immunization with a
formulation containing A29L-CC, A35R-CC, and an alum adjuvant
provided strong protection against MPXV-associated damage with a
survival rate of 87.5%. This outcome also suggested that the
combination of aluminum adjuvant and chemical cross-linked
antigens generated a synergistic effect, enhancing the efficacy of
the dual-antigen vaccine.

Likewise, in a recent vaccine proposal, Bai et al. (2025)
engineered a chimeric A35R-Fc protein that included the Fc
region of human IgG1 fused to the C-terminal of A35R. The
results obtained by the authors demonstrated that A35R-Fc
displayed a markedly higher binding affinity to A35R antibodies
than a commercially available A35R protein and showed strong
reactivity with human plasma. Furthermore, mice immunized with
A35R-Fc developed significantly elevated neutralizing antibody
titers against live MPXV. Given these promising results, it is
crucial to evaluate this design in an animal model subjected to a
viral challenge to confirm the vaccine’s protective efficacy.

3.5 Antibodies targeting MPXV antigens

In the search for innovative vaccine strategies, passive
immunization has emerged as a promising yet underexplored
approach. Instead of prompting the body to produce its own

immune response, this strategy involves administering antibodies
directly, thus offering immediate protection against infections,
particularly in high-risk populations (Tharmalingam et al., 2022).
These antibodies are often generated through recombinant
approaches, allowing precise targeting of viral antigens. Platforms
like CHO cells and plant expression systems are commonly used to
produce these recombinant antibodies at a large scale (Pirkalkhoran
et al., 2023). Alternatively, the hybridoma technique is also a
common method for producing monoclonal antibodies. It
involves fusing B lymphocytes from an immunized animal with
myeloma cells, creating hybrid cells known as “hybridomas.” Once
the desired antibody-secreting clones are identified, they are
cultured to continuously proliferate, enabling large-scale
production for clinical applications (Moraes et al., 2021). In spite
of the potential of antibody-centered platforms for combating viral
diseases, only a few studies have been conducted on the development
of this type of immunotherapy against mpox.

A vaccine type based on passive immunization was developed by
Li M. et al. (2023). After identifying that the monoclonal antibodies
3A1, 2D1, and 9F8 bind to A29L, they proceeded to produce those
antibodies through hybridoma technology. The prophylactic and
therapeutic efficacy of the antibodies was evaluated by administering
monoclonal antibodies to mice and challenging them with VACV
TT and VACVWR strains. The challenge occurred either 1 day after
prophylactic administration (before infection) or following
therapeutic administration (after infection). Interestingly,
9F8 displayed the highest neutralization activity and
demonstrated full protective activity, while 3A1 and 2D1 showed
partial protection in some groups, indicating that the antibody
9F8 could be considered in forthcoming immunotherapeutic
trials against MPXV.

Zhao et al. (2024) investigated the use of monoclonal antibodies
to target specific antigens of MPXV. Accordingly, the
immunotherapeutic approaches tested were hMB621 and
hMB668, which are antibodies that target the MPXV B6 antigen.
These antibodies were administered to BALB/c mice, which were
later challenged with VACV WR, followed by a second antibody
dose. Neutralization tests indicated that both hMB621 and
hMB668 have remarkable neutralizing activity against VACV. In
terms of efficacy, mice control groups experienced significant weight
loss and did not recover. In contrast, mice treated with hMB621 and
hMB668 showed weight gain from day four post-infection and all of
them survived the viral challenge. These outcomes indicate that both
antibodies display significant neutralization activity and are
promising candidates against MPXV.

In another investigation, three monoclonal antibodies with
neutralizing activity were identified, M1H11 and M3B2, both
targeting M1R, and B7C9, which specifically binds to B6R.
Further experiments indicated that a combination of M1H11 and
M3B2 exhibited superior protective effects in BALB/c mice. To
further optimize this response, a bispecific antibody named Bis-
M1M3 was engineered by conjugating the Fc region of the human-
mouse chimericM1H11 with the scFv fragment ofM3B2. In BALB/c
mice challenged with MPXV, Bis-M1M3 provided remarkable
protection. Additional analyses demonstrated that the
monoclonal antibodies and Bis-M1M3 exerted virus-neutralizing
effects before viral entry into host cells. Additionally,
pharmacokinetic studies in rhesus macaques revealed that Bis-
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M1M3 has an extended half-life (5.142 days), highlighting its
potential as a therapeutic agent (Ren et al., 2024).

3.6 circRNA-based vaccine encoding
MPXV antigens

In the evolving landscape of RNA-based vaccines, a new
contender is emerging with the potential to overcome some of
the limitations faced by traditional mRNA approaches. For
instance, mRNAs are susceptible to degradation, which can limit
the duration of protein expression. circRNAs, unlike their linear
counterparts, form a closed-loop structure, making them far more

resistant to enzymatic degradation (Liu et al., 2022). This enhanced
stability leads to longer-lasting protein production, potentially
reducing the dose required by circRNAs to trigger immune
responses. Nonetheless, additional analyses are required to
ascertain the safety of this type of vaccine (Bai et al., 2023).

In this context, circRNA-based vaccines were developed by
(Zhou et al., 2024) to induce immune responses via the surface
proteins A29L, A35R, B6R andM1R fromMPXV. The antigens were
encapsulated in LNPs to create four different types of vaccines:
cirA29L, ciA35R, cirB6R, and cirM1R, as well as a mixture of the
four antigens called cirMix4. Subsequently, BALB/c mice were
immunized twice with either individual circRNAs or with the
multi-antigen formulation, followed by a challenge with VACV

FIGURE 3
Overview of the mechanisms of new generation vaccines against MPXV. (A)mRNA and circRNA vaccines function by encoding MPXV antigens (e.g.,
A29L, A35R, B6R, E8L, and/or M1R), which trigger immune responses that prepare the system against the virus. (B) Recombinant protein vaccines, on the
other hand, deliver specific antigens produced in expression platforms like Escherichia coli or CHO cells, directly stimulating immune responses without
the need for cellular transcription. (C)mRNA-based antibody vaccines encode antibodies that target MPXV antigens, enabling the body to produce
them internally and offering a faster protective alternative to conventional active immunization through the neutralization of the virus. (D) Similarly, anti-
MPXV antibody vaccines work by administering antibodies produced in mammalian cells (using either recombinant or hybridoma technology), providing
immediate immunity without requiring the host to produce its own antibodies (created with a licensed version of BioRender.com).
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TT. Mice that received a placebo or circA29L showed a significant
weight loss and died after several days, while the other groups
gradually recovered, with cirMix4 and circM1R demonstrating the

quickest recovery. Mice vaccinated with circA35R and circM1R had
fewer viral particles in their examined tissues compared to the
placebo group. Moreover, all the vaccines except for circA29L

FIGURE 4
Results of the risk of bias assessment. The domains were evaluated for each included article, considering criteria for preclinical studies. Quotations
extracted from the reports were included within the assessment to justify the risk assigned to each of the domains. The cells in green color represent low
risk, yellow color unclear risk, and red color high risk.
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showed complete protection against VACV, ensuring the survival of
the immunized mice. Intriguingly, the cirMix4 vaccine induced high
neutralizing antibodies against VACV and MPXV and also
demonstrated the potential for robust cellular immunity,
indicating that this vaccine could provide effective protection
against MPXV.

A visual summary of the different types of immunogenic
approaches targeting MPXV discussed in this manuscript is
depicted in Figure 3.

3.7 Risk of bias across studies

The risks of bias in the studies involved that 16 reports did not
mention randomization for generating experimental groups. Only
one study provided a detailed explanation of its experimental design
and justified its group sizes. Additionally, only two reports explicitly
stated that the researchers performed a blinded measurement of the
outcomes, particularly during viral challenges. Regarding the
disclosure of ethical statements, two studies failed to present this
information within the text of the article. Finally, many authors had
affiliations with the pharmaceutical industry or had patent
applications related to their findings or other vaccines. This
assessment is presented in Figure 4, which includes relevant
quotations from the included studies to justify the levels of
risk assigned.

3.8 Patents of next-generation vaccines
against MPXV

In the current inquiry, only 4 patents were found published
between 2018 and 2024 and related to the development of next-
generation vaccines exclusively against MPXV. All of them were
issued under the registry of the World Intellectual Property
Organization. China currently holds the highest number of
patents in this field (2), followed by Germany (1) and USA (1).
Despite the low number found, the quantity of patents in this field is
expected to increase in the coming years since several of the reports
on new generation mpox vaccines discussed herein declared the
application of patents in their conflicts of interest (see Risk of bias
across studies, Figure 4). Notably, all the patents examined in this
review are directly associated with vaccine designs detailed in some
of the analyzed studies. This connection underscores that these
patents are not standalone claims but rather tangible products of the
scientific breakthroughs documented in peer-reviewed research. As
a result, they serve as clear indicators of the accelerated technological
innovation in this field and reflect the urgency and global priority
placed on mpox vaccine development. The key aspects of these
patents are shown in Table 1.

4 Discussion

The results of this scoping review indicate that mRNA-based
vaccines encoding MPXV antigens elicit the production of
antibodies that aid in virus clearance, induce immune cell
responses, and protect animal models from viral challenge, thus

representing potential approaches to combat mpox. These
observations are congruent with the previous key role played by
mRNA-based vaccines in mitigating the COVID-19 pandemic
(Iqbal et al., 2024). However, a few other studies included in this
analysis suggest that recombinant MPXV antigens, antibodies
targeting MPXV antigens, and circRNAs encoding MPXV
antigens also hold potential as alternatives to prevent and
contend this emerging virus. Therefore, these types of vaccine
formulations should not be underestimated for future exploration.

Particularly, the application of antibodies in mpox prevention
warrants further exploration, as this strategy could be helpful in
cases where individuals necessitate urgent protection or are
incapable of promptly generating antibodies, such as newborns,
older adults, or patients with preexisting immunodeficiencies
(Perricone et al., 2021; Verwey and Madhi, 2023). Moreover, it is
important to acknowledge that the obstacles related to large-scale
synthesis and purification of recombinant antibodies can be
overcome due to recent advancements in the generation of
mRNAs that can encode complex antibody structures upon
delivery to the organism (Deal et al., 2021; Zhao et al., 2023). In
fact, the completion of phase I clinical trials of mRNA-1944
(NCT03829384), a mRNA-LNP encoding an antibody (CHKV-
24) targeting the Chikungunya virus (August et al., 2021), might
be a great promise for mRNA-based antibodies to reach the clinical
landscape. In parallel, the efficacy of the mRNA-encoded antibodies
against MPXV (Chi et al., 2024) should be studied in more depth in
future investigations.

This review also indicates the limitations of the included studies.
For instance, a number of experiments (18 out of 32 studies) solely
used VACV strains, which are safer to handle (Peng et al., 2023;
Sharma et al., 2023), as the viral challenge to test the protection
conferred by the vaccines rather than MPXV itself. Although VACV
can serve as the platform for a range of vaccines targeting
orthopoxviruses (Shchelkunova and Shchelkunov, 2023;
Shchelkunov et al., 2024), the existence of genomic and structural
differences between VACV and MPXV affect the level of virulence
exhibited by each virus (Weaver and Isaacs, 2008; Forni et al., 2022;
Shen-Gunther et al., 2025). Importantly, the low virulence of VACV
was shown in some studies, where placebo-vaccinated controls
survived despite not receiving prior immunization with the tested
vaccines. Accordingly, this factor may introduce potential
reproducibility risks in the studies regarding the actual capacity
of these vaccines to protect against MPXV infection, and future
studies should consider using MPXV strains as the viral challenge
for testing vaccine efficacy. Indeed, a recent systematic review
(Eslami et al., 2024) focused on first, second, third, and fourth-
generation vaccines (platforms not centered on the MPXV itself)
and excluded articles that did not use MPXV as a challenge to test
the immunogenic effects of the vaccines.

Besides, the efficacy of new generation vaccines against the
different MPXV clades must be evaluated in the outlook since
the virulence of this virus also differs between clades, with
MPXV clade I being the most virulent of all, followed by clade
IIa and clade IIb (Americo et al., 2023; Okwor et al., 2023).While not
the main focus of the respective reports, some researchers designed
their vaccines using sequences of MPXV isolates different from
those used in the viral challenge and those vaccines provided
protection against the viral challenge (Kong et al., 2024; Chen
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et al., 2025). This suggests that these vaccines could potentially
provide cross-protection between different isolates, although this
fact was not concluded in the corresponding studies. Nevertheless, it
is also crucial that future mpox vaccine designs incorporate antigens
from multiple MPXV clades rather than focusing solely on one
clade. Although some new generation mpox vaccine designs were
labeled as “multivalent/polyvalent vaccines” by the authors of the
respective studies, this terminology is not completely appropriate as
multivalent vaccines are focused on targeting multiple variant
strains or serotypes of a virus (Lauer et al., 2017; Sanyal, 2022;
Hou et al., 2024). On the contrary, several current next-generation
mpox vaccine candidates were tailored to target multiple antigens of
a single clade, potentially limiting their cross-protective efficacy.
Consequently, it is mandatory that upcoming investigations on new
generation mpox vaccines consider that optimal vaccine designs
should aim to confer robust protection across the diverse clades of
MPXV, similar to what has been previously done with vaccines
against other viruses, such as Bimervax (PHH-1V), which targets the
alpha and beta variants of SARS-CoV-2 (Leal et al., 2023; England
et al., 2024), as well as the bivalent oral polio vaccine that targets
types 1 and 3 polioviruses (Sutter et al., 2010; Farrell et al., 2017).

In addition to the previous limitations, several investigations
relied only on BALB/c mice as the biological model; in fact, only
three studies assessed vaccine effectiveness in non-human primates
(Mucker et al., 2024; Ye Q. et al., 2024; Zuiani et al., 2024). Although
CAST/Ei mice are an appropriate model for orthopoxvirus-related
studies (Americo et al., 2014; Earl et al., 2015), prairie dogs, rhesus
macaques, and cynomolgus macaques are considered the most
suitable animal models for studying the efficacy of mpox
vaccines, as they exhibit a disease profile that resembles the one
observed in humans (Guarner et al., 2004; Aid et al., 2023; Falendysz
et al., 2023; Li Q. et al., 2024). However, despite their relevance,
working with non-human primate species can be more expensive
and limit the size of experimental groups, which can reduce
statistical significance (Wei et al., 2023). For this reason, it is

understandable that most of the studies analyzed in this scoping
review utilizedmore accessible models, such as BALB/c mice, CAST/
Ei mice, and C57BL/6 mice. Interestingly, despite the fact that
BALB/c mice do not present susceptibility to MPXV infection
(Shang et al., 2025), observations reported by Cheng et al. (2024)
suggest that BALB/c mice infected with clade IIb MPXV strain
SZTH42 may represent a suitable infection model for mpox-related,
as the infection with that strain induced a clear pathogenic
phenotype in the mice. Nevertheless, in the future, those vaccines
tested only in mice that yielded promising results will need to be
further evaluated in non-human primates.

Additionally, no animal model will perfectly replicate the full
spectrum of symptoms seen in human infection (Wei et al., 2023),
and the selection of the animal model will depend on the specific
question pursued by each investigation (Rosa et al., 2023).
Therefore, it is advisable to assess vaccines in various animal
models, integrating key data from each model to obtain a clearer
perspective that can guide advancements in human clinical trials.
This clinical timeline is exemplified by Zuiani et al. (2024), who
evaluated the protective effects of the BNT166a vaccine in CAST/Ei
mice, BALB/c mice, and cynomolgus macaques to gain a broader
understanding of the effects of BNT166a in different animal models
challenged. Interestingly, BNT166a is one of the first next-
generation vaccines exclusively designed for MPXV registered at
ClinicalTrials.gov (NCT05988203) for a phase I/II trial aiming to
evaluate the safety and immune responses of this immunogenic
approach. Similarly, the mRNA-based vaccine named mRNA-1769,
reported by Mucker et al. (2024) and Cotter et al. (2024), which was
highlighted by Mayer et al. (2024), has already been registered
(NCT05995275) for a phase I/II study which intends to assess
the safety and immunogenicity of the vaccine in healthy subjects.

Another major constraint of preclinical studies on mpox
vaccines is related to the small group sizes considered in the
experimental designs. This is primarily due to ethical principles
that restrict the excessive use of animals in experimental designs.

TABLE 1 Summary of patents centered on vaccines against MPXV.

Title Authors and
publication
year

Application
country and
company or
institution

Type of
vaccine

Targeted antigens Country or
office

Patent
number

RNA compositions for
delivery of monkeypox
antigens and related
methods

Poran et al. (2023) Germany, BioNTech SE RNA-based
vaccines or
recombinant
antigens

A29L, A35R, B6R, MIR, E8L,
A28L, H3L, A45L, B9R,
B16R, C10L, C21L, E7R, F3L,
F4L, G6R, H5R, I3L, O2L,
Q1L, B12R, and C17L

World
Intellectual
Property
Organization

WO2023230295

Multi-antigen chimeric
poxvirus vaccine and use
thereof

Gao et al. (2024a) China, Institute of
Microbiology, Chinese
Academy of Sciences

Recombinant
antigens of the
MPXV

A35R, B6R, and M1R World
Intellectual
Property
Organization

WO2024114542

Monkeypox virus nucleic
acid vaccine and use
thereof

Gao et al. (2024b) China, Institute of
Microbiology, Chinese
Academy of Sciences

mRNA-based
vaccine

A35R and M1R World
Intellectual
Property
Organization

WO2024152870

Compositions and
methods for enhancement
of mRNA vaccine
performance and
vaccination against mpox

Chen and Fang
(2024)

United States, Yale
University

mRNA-based
vaccine

A29L, A35R, B6R, E8L,
and M1R

World
Intellectual
Property
Organization

WO2024263202
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While these ethical guidelines are crucial to minimizing animal
suffering, they can lead to lower validity of the inferences made in a
particular investigation (Konietschke et al., 2021). Accordingly,
findings from these reports must be interpreted with caution
before advancing to the next clinical phases, as their limited
group sizes may impact the statistical robustness and
generalizability of the outcomes. It is advisable that forthcoming
preclinical studies on mpox vaccines consider other approaches
within their experimental designs that allow them to obtain
significant data with ethically and statistically acceptable group
sizes. For example, using data from control groups of previous
studies can enhance the power of these experiments through
Bayesian priors and reduce the need for large groups in the new
study (Bonapersona et al., 2021). The number of animal models used
in experiments could also be reduced while increasing
reproducibility by conducting mini-experiments, in which the
originally considered group size is divided into smaller groups
and tested at different time points. For instance, if a conventional
design called for nine animal replicates in a single experiment, this
number could be split into three mini-experiments with three
biological replicates conducted at different times (von
Kortzfleisch et al., 2020). This can introduce variation in external
factors across the experiments, potentially helping to validate
whether the outcomes are reproducible, at least at the intra-
laboratory level. In any case, group size calculation or
justification must be properly reported to avoid risks of bias
(Avey et al., 2016). Noticeably, only one article on next-
generation mpox vaccines justified the value of the sample sizes
(Freyn et al., 2023).

Over-standardization of experimental setups often results in
irreproducibility, so introducing more variability across vaccine
testing may help ensure that findings are robust and applicable in
diverse settings (Karp, 2018). Thus, there should also be an
emphasis on conducting multi-laboratory studies for mpox
vaccine development, as this can contribute to increasing the
heterogeneity in experiments and validate their reproducibility
(Voelkl et al., 2018). Additionally, integrating a broad genetic
diversity in animal models and varying co-housing laboratory
conditions is crucial for validation (Voelkl et al., 2020).
Contrary to this, certain parameters should indeed be
standardized within mpox vaccine evaluations to allow for
comparisons between their outcome measures. These include
the lethal dose of VACV or MPXV used during viral challenges
and the route of administration, as these factors influence the
severity of the MPXV infection manifested by the biological
models (Wei et al., 2023). Notwithstanding this, the
administration routes and doses used in the existing literature
are highly heterogeneous, often depending on the viral strains and
biological model. Indeed, only one article investigated the effect of
the route of infection on the efficacy of the mpox vaccine (Cotter
et al., 2024). To address this, we recommend conducting a
specialized review of these factors to identify the most suitable
doses and administration routes for each animal model and strain
of VACV or MPXV.

Evaluating the long-term protection of mpox next-generation
vaccines is crucial for shaping effective vaccination policies,
especially as immunity can vary greatly across different vaccines.
Some vaccines offer lifelong protection, while others require

frequent boosters to maintain efficacy (Vashishtha and Kumar,
2024). Understanding the duration of immunity provided by
mpox vaccines is essential, as this data informs public health
strategies, particularly for vulnerable populations such as the
elderly (Vidor, 2010). In this regard, while handful reports on
new generation mpox vaccines indicated the existence of long-
term immunity based on sustained cellular immune responses or
antibody titers across several weeks or months (Li J. et al., 2024; Su
et al., 2024; Yang et al., 2024; Ye Q. et al., 2024), some other
experiments also provided information about long-lasting
protection, being 65 days (Zhang N. et al., 2023), 91 days (Zhang
R. R. et al., 2023), 16 weeks/112 days (Cotter et al., 2024), 162 days
(Hou et al., 2023), 190 days (Kong et al., 2024), and 280 days (Li
et al., 2025) after the first immunization, the longest times
considered to perform the viral challenge. Consistently, mpox
vaccine-related preclinical studies and clinical trials should focus
not only on immediate efficacy but also on the persistence of
immunity to ensure that long-term protection can be achieved
with these vaccines.

Likewise, the pharmacodynamics, pharmacokinetics, and safety
of mpox vaccines must be thoroughly explored. In spite of the fact
that numerous investigations sustained the safety of their respective
next-generation mpox vaccine designs through biochemical and
histological analyses (Fang et al., 2023; Sang et al., 2023; Xia et al.,
2023; Li E. et al., 2024; Tian et al., 2024; Wang et al., 2024), each type
of mpox vaccine candidate might induce particular adverse events in
humans following immunization. For mRNA vaccines, the lipid
formulation can promote the entry of the mRNA into potentially
any cell in the body (Federico, 2022), and it has even been suggested
that it could integrate into the host DNA (Domazet-Lošo, 2022;
Acevedo-Whitehouse and Bruno, 2023). Myocarditis and
pericarditis have also been broadly documented in individuals
who received mRNA COVID-19 vaccines (Lane et al., 2022),
while chest pain is one of the most reported adverse effects for
Nuvaxovid, a protein-based vaccine for COVID-19 (Clothier et al.,
2024). On the other hand, adverse events for the antibody
bamlanivimab for COVID-19 were generally mild and well-
tolerated, being nausea and diarrhea among the most common
events (Amani et al., 2024). Likewise, most of the adverse effects
reported for the mRNA-1944 vaccine against Chikungunya virus
were ephemeral and self-resolving, requiring no therapeutic
intervention (August et al., 2021). Additionally, the use of
recombinant antigen proteins raises questions, as the interaction
between these proteins and the antibodies formed during the
immune response can significantly alter their pharmacodynamics
and pharmacokinetics (Mahmood and Green, 2005). Only clinical
studies will provide a clearer understanding of how all these vaccines
interact with the human body. Therefore, we emphasize the need for
continued testing of next-generation mpox vaccines in the
coming years.

On the other hand, some MPXV proteins, such as VP37,
which plays a critical role in the formation of the enveloped virus
(Huo et al., 2024), have not yet been thoroughly investigated as
potential vaccine targets. Moreover, the functions of many
MPXV hypothetical proteins remain unvalidated through
experimental methods (Gupta, 2023; Raen et al., 2024).
Consequently, a deeper exploration of these proteins could
facilitate the identification of novel vaccine candidates for
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mpox. In this context, we believe that bioinformatics studies also
offer a rich source of information for potential designs of next-
generation mpox vaccines. Although these studies were excluded
from this scoping review, the bioinformatic-related reports
identified through our search methodology can be found in
Supplementary Table S3.

The growing importance of developing new generation mpox
vaccines has also driven the exploration of innovative strategies to
enhance immune responses through adjuvant-based strategies. One
such approach is the programmable self-adjuvant bionic vaccine
based on macrophage-derived vesicles (AM@AEvs-PB), which
facilitates efficient antigen presentation. This system incorporates
MPXV antigens A29L, B6R, and M1R, leveraging activated
macrophage vesicles to improve immune activation and protect
from viral challenge (Lin et al., 2025). Besides, it has been discovered
that the self-assembling lipopeptide C16-GCV2E3 can enhance
immune responses when delivered with recombinant MPXV
antigens (Bao et al., 2025). Thus, integrating these innovations

with existing next-generation mpox vaccine candidates and
future vaccine designs could significantly improve efforts to
combat mpox.

Notably, to date, there are no plant-based vaccine candidates
for mpox. This implies that there is a valuable opportunity and a
clear path for future studies to explore innovative immunization
strategies against this virus. Importantly, the potential of plant-
derived immunotherapies to prevent and manage other viruses
(El Jaddaoui et al., 2022; Su et al., 2023), cancers (Rahimian et al.,
2021), neurodegenerative diseases (Bravo-Vázquez et al., 2023),
among several other human ailments, has been widely explored.
Plant-based vaccines offer several advantages, including cost-
effectiveness, ease of large-scale production, non-invasive
administration as plants or leaves can serve as the delivery
system, and improved safety profiles due to their lower risk of
contamination with animal or human pathogens (Rosales-
Mendoza et al., 2020; Ndayambaje et al., 2025). Thus, it is
strongly recommended that future studies focus on the

FIGURE 5
Future directions for next-generation mpox vaccine development. (A) Forthcoming investigations should explore more in-depth antibody-based
strategies, multivalent vaccines targeting multiple clades of MPXV, and the utilization of MPXV, rather than VACV, for challenge studies, incorporating
diverse MPXV clades for comprehensive analysis. (B) The use of animal models that better replicate human disease complexity, such as non-human
primates, along with the integration of data from other animal models, can support more robust analyses of mpox vaccine efficacy. (C) Ensuring
adequate group sizes and avoiding over-standardization of experimental conditions will be key for validating reproducibility while standardizing factors
such as lethal doses and virus administration routes tailored to the biological model is necessary. (D) Additional focus on pharmacodynamics,
pharmacokinetics, safety, long-term protection, bioinformatic studies, emerging adjuvants (e.g., programable macrophage-derived vesicles) and plant-
based vaccine development will also contribute to advancing mpox vaccine research (created with a licensed version of BioRender.com).
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production of MPXV antigens with widely characterized
immunogenic properties in plant-based expression platforms,
as these approaches could ultimately improve the accessibility
and global reach of mpox vaccination. The suggested future
directions for upcoming studies in this field are illustrated
in Figure 5.

Our scoping review possesses several strengths. The study
employed a thorough and transparent methodology,
incorporating a comprehensive literature search through multiple
databases. The search approach was meticulously adjusted several
times prior to the final article extraction to guarantee
comprehensiveness. Indeed, following the strict PRISMA
guidelines in this study could have provided a great reduction in
the risk of bias associated with human inaccuracies. Some
limitations of our work include the possibility of missing articles
published before the selected date range of 2018–2024. Nonetheless,
since the first included article chronologically was from 2023, the
risk of excluding earlier studies is likely low. As well, we further
complemented the content of this scoping review by mentioning
some significant pioneering reports in this field within the
Introduction section.

Another limitation is that all the data came from preclinical
studies with high heterogeneity across different aspects such as
experimental designs, animal models, immunization schedules,
placebos, strains used in the viral challenges, and follow-up times
after the challenges. Even though we handled this heterogeneity by
grouping studies according to vaccine type, similar to an existing
vaccine-related systematic review (Hashemi et al., 2023), the
interpretation of the findings discussed herein should be
approached with caution as the variability between
investigations may influence the overall conclusion on the real
efficacy of each class of new generation mpox vaccine. To gain a
deeper understanding of the heterogeneity among studies, of
vaccine efficacy, and integrate these insights into final
conclusions, additional data from both preclinical and ongoing
clinical studies are needed. This expanded dataset would enable the
elaboration of reviews that incorporate statistical assessments
through meta-analysis, as previously evidenced by Gross et al.
(2018). Finally, limiting the inclusion criteria to English-language
articles may have excluded studies in other languages. Anyhow,
few records in other languages were detected and the final
conclusions would likely remain largely unchanged even if these
studies were included.

The findings reported thus far on next-generation mpox
vaccines, particularly those based on mRNA and recombinant
antigens, indicate a strong trend toward conferring high
protection against mpox disease. This is particularly evident in
the high survival rates observed in animal models challenged.
These findings are consistent with efficacy estimates for mRNA
and protein subunit vaccines against SARS-CoV-2, which have
demonstrated over 90% effectiveness in preventing disease in
individuals over 18 years old (Sandoval et al., 2023). However, as
previously discussed, many of the studies utilized VACV as the
challenge virus, which is less virulent than MPXV and poses a lower
risk to biological models. On the other hand, some studies
challenged BALB/c mice with MPXV, which is not entirely
correct since BALB/c mice are generally not susceptible to
MPXV infection. Consequently, these findings may not be fully

conclusive. Still, studies that employed MPXV for the challenge in
appropriate animal models continue to support the notion that
mRNA and recombinant antigen vaccines could achieve high
efficacy against mpox.

For other immunotherapeutic platforms, such as antibodies and
circRNA-based vaccines, the current body of research remains
limited, preventing definitive conclusions about their efficacy.
Anyhow, the available data suggest that these immunotherapies
may achieve efficacy levels comparable to those of mRNA and
recombinant antigen-based vaccines. Once clinical study data
become available, we recommend conducting a systematic review
to compare the efficacy of each vaccine platform in disease
prevention. Therefore, this scoping review should serve as a
precursor for future systematic reviews with meta-analyses,
enabling the generation of statistically substantiated conclusions
regarding the efficacy of different next-generation mpox vaccine
candidates.

Overall, this research provides practical insights for clinical
virologists to continue exploring the effects of the best antigen
combinations in multi-antigen vaccines to prevent and manage
mpox disease. In general, vaccines that incorporated multiple
antigens in their design provided greater protection against viral
challenges, resulting in higher survival rates. This suggests that
targeting a broader range of viral components can enhance
immune responses and improve overall vaccine efficacy.
Notwithstanding this, we emphasize the necessity of
developing multivalent vaccine designs that offer broader
protection against the diverse clades of MPXV. Additionally,
this work underscores the critical importance of international
and interdisciplinary collaboration in the development of
effective vaccines to prevent an mpox pandemic. From a
policy perspective, this investigation also highlights that
investments from non-governmental organizations and the
pharmaceutical industry are critical nowadays to drive the
development of innovative vaccine platforms, such as mRNA-
based vaccines, recombinant antigens, or antibody-based passive
immunizations. These collective efforts will be essential in
addressing emerging health threats and ensuring global
readiness against potential mpox outbreaks.
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