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Background: Traditional Chinese Medicine (TCM) prescriptions are complex,
multi-botanical drug systems in which dosage critically influences therapeutic
efficacy. While network pharmacology is widely used to analyze TCM
mechanisms, existing methods ignore the dosage of botanical drugs, a key
limitation that may skew predictions. This study investigates how integrating
dosage data alters network analysis outputs, addressing a fundamental gap in
understanding TCM’s dosage-dependent effects.

Methods: Our analysis compared dosage-weighted and traditional non-dosage
network approaches across 94 traditional Chinese medicine (TCM) prescriptions.
We developed four custom indicators to quantify differences throughout the
network pipeline: Dedis (input distance difference), DeSD (input standard
deviation difference), DeDT (drug target prediction difference), and DePy
(pathway prediction difference). The interrelationships among these indicators
were examined to indicate when dosage adjustments influence predictions. A
detailed case study further demonstrated the impact of dosage modifications on
predictive outcomes.

Results: Among the indicators with inputs difference, Dedis, but not DeSD,
exhibited a statistically significant relationship with output predictions, with
target differences (DeDT) ranging from 0% to 68.9% and pathway differences
(DePy) ranging from 0% to 74.6%. The interrelationships between these indicators
were visualized using a clock model representation. The case study further
demonstrated the impact of dosage on network outputs, revealing dosage
refined both the predicted drug targets for individual botanical drugs and the
subsequent pathway analysis results.

Conclusion: Our study demonstrated that dosage significantly influences the
outcomes of network analysis, with Dedis serving as a reliable indicator of
whether such changes would occur. Specifically, changes resulting from
dosage-dependent refinement of both drug target prediction and pathway
analysis were observed.
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1 Introduction

The efficacy of drug combinations is highly dependent on the
dosage of their components (Suberu et al., 2013; Xu et al., 2018; Yi et al.,
2022). This principle also applies to Traditional Chinese Medicine
(TCM), where prescriptions function as “super-combinations”
comprising multiple botanical drugs. In TCM practice, dosages are
meticulously adjusted based on patient-specific factors such as age,
gender, and symptoms to achieve personalized therapeutic outcomes
(Zha et al., 2015). Despite the clinical importance of dosage,mechanistic
studies of TCM face significant challenges due to the complexity of its
multi-botanical drug formulations, their intricate interactions, and the
dynamic interplay between metabolites of botanical drugs and
biological systems.

To address these challenges, computational approaches, e.g.,
network pharmacology, emerged as powerful tools for deciphering
TCMmechanisms (Bulusu et al., 2016; Cheng et al., 2019; Nogales et al.,
2022). This method aligns with TCM’s holistic philosophy by
integrating data on botanical drugs, bioactive metabolites, molecular
targets, and diseases into one network (Hopkins, 2008; Li, 2009). By
mapping these relationships, network analysis can identify functional
molecules and potential targets within a prescription, offering valuable
insights for experimental validation. However, while advancements
have been made in data quality, methodology, and interpretation,
existing network analysis has consistently overlooked a critical
factor: the dosage of botanical drugs (Li et al., 2022; Zhao et al.,
2023; Xin et al., 2021; Jiashuo et al., 2022).

In this study, we systematically evaluated the impact of dosage
on network analysis predictions. Using a dataset of 94 TCM
prescriptions, we compared the prediction outcomes from
traditional (non-dosage) and dosage-weighted network analysis.
By establishing several quantitative observation indicators, dosage
influence on these predictions was rigorously assessed. Finally, a case
study was used to demonstrate how dosage-weighted network
analysis can elucidate the mechanistic basis of a TCM
prescription. Our findings highlight the indispensable role of
dosage in understanding the mechanism of combination drugs.

2 Materials and methods

2.1 Traditional prescription collection
and filtering

The data used in this study were derived from our previous
research, which systematically analyzed TCM prescriptions to
identify potential drug candidates for the treatment of pox (Wu and
Guo, 2024). The prescriptions were manually collected from online
databases and local libraries to ensure comprehensive coverage. All data
are publicly available and accessible through our prior publication.
Given that this study focused on the dosage effect in TCM analysis, two
types of prescriptions were excluded: 1. Prescriptions containing

botanical drugs with non-quantifiable dosage units, such as
“50 grains of glutinous rice,” “two dates,” or “a handful of bamboo
leaves.” 2. Botanical drugs for which relevant information—specifically
bioactive metabolites and targets—could not be retrieved using the
TCM-LTM database (Li et al., 2022).

2.2 Retrieval of network components

The network components for analyzing TCM include botanical
drugs, their bioactive metabolites, the targets of these metabolites,
and the pox viruses along with their associated targets. To retrieve
the metabolites and their corresponding targets, the LTM-TCM
database was utilized. The LTM-TCM database specifically designed
for network pharmacology research in TCM, is comprised of data
from 14 authoritative databases, encompassing information on
9,122 botanical drugs, 34,967 metabolites, and 13,109 targets (Li
et al., 2022). The bioactive metabolites within the database are
defined based on Lipinski’s rule. Using this resource, we collected
the bioactive metabolites and their corresponding targets for each of
the 94 prescriptions.

Although pox viruses are diverse, they exhibit a degree of
homology. Four prevalent species including vaccinia, smallpox,
chickenpox, and mpox were selected for this study. A total of
686 disease-associated target genes were identified from the
GeneCards database (Stelzer et al., 2016) using these four pox
viruses as search keywords.

2.3 Network building

In this study, the network was constructed based on the “botanical
drugs–bioactive metabolites–target–pox virus” framework. In the
unweighted network, each relationship was treated equally, and a
weight of one was assigned to the edges connecting the components
of the network. For the dosage-weighted network, the dosage of each
botanical drug was used to assign weights to the corresponding edges.
The key step in this process involved constructing a standardized dosage
vector, which was derived by standardizing the dosages of botanical
drugs within the prescriptions. For example, in the prescription called
ChongHe powder, the components included one Fen of Bai Yao Zi, one
Fen of Gan Cao, and one Qian of Xiong Huang. Using the unit
conversion relationships (Qiu, 1996) summarized in Table 1, these
traditional units were converted into metric units, resulting in a dosage
vector of [0.4 g, 0.4 g, 4 g], which was then normalized by dividing each
value by theminimumweight (0.4 g in this case) to yield a standardized
dosage vector of [1, 1, 10]. The standardized dosage vector was
subsequently applied as the weight to the edges connected to the
corresponding botanical drugs. In contrast, in the non-dosage
network, the standardized dosage vector for this prescription was
[1, 1, 1].

2.4 The output of the network

For both the non-dosage and dosage-weighted networks, nodes
with a degree higher than the average were identified as key targets of
the prescription. These key targets were subsequently compared to

Abbreviations: TCM, Traditional Chinese medicine; Dedis, Difference in
distance; DeSD, Difference in standard deviation; DeDT, Difference in drug
target; DePy, Difference in pathways.
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pox-related targets, and the overlapping targets were defined as drug
targets for the prescription. To explore the potential working
mechanisms of the prescriptions, the version of
4.14.4 clusterProfiler R package (Wu et al., 2021) was employed
for Gene Ontology (GO) annotation based on the filtered drug
targets. A significance threshold of p < 0.05 and a minimum of
10 enriched genes associated with each pathway were applied to
identify biologically relevant pathways, which provides insights into
the potential mechanisms underlying the therapeutic effects of the
prescriptions.

2.5 The output difference

The output of the network analysis included the predicted drug
targets and their corresponding pathways. To quantify the
differences in output between the non-dosage and dosage-
weighted networks, two indicators were created: 1. Difference in
Drug Targets (DeDT) to measure the disparity between the
predicted drug targets from the two networks; 2. Difference in
Pathways (DePy) to quantify the variation in the enriched
pathways associated with the predicted drug targets.

DeDTorDePy � 1 − S1 ∩ S2
S1 ∪ S2

The 1-Jaccard Similarity Index (Kosub, 2019) was employed to
quantify the difference. The set of drug targets or pathways predicted
by the non-dosage network was denoted as S1, while S2 represents
the corresponding predictions from the dosage-weighted network.

2.6 The input difference

The input to the network consisted of botanical drugs and their
associated metabolites.

2.6.1 The difference in distance (Dedis)
We used Euclidean distance to measure the distance between

two points in Euclidean space (Tabak, 2014). Here, it measured the
distance between the standardized dosage vector and the
unweighted vector. The calculation formula was as follows.

Dedis �
����������∑n
i�1

xi − yi( )2√

Where x and y are a standardized dosage vector, where x is derived
from the dosage-weighted network and y is derived from the
corresponding non-dosage network.

2.6.2 The difference in standard deviation (DeSD)
The standard deviation (SD) was used to measure the degree of

stability within the system. The dosages of botanical drugs in the
prescription formed the dosage system. Since the ratio of each
component was equal to one in the unweighted network, the
standard deviation was always 0. Therefore, the SD of the input
in the dosage-weighted network was the difference in the stability of
the two networks. Here, we used the sd() function of R_4.4.1 to
calculate the SD of the dosage vectors for botanical drugs and
bioactive metabolites, respectively.

2.7 Statistical analysis

Wilcoxon rank-sum test was utilized to assess the statistical
significance of relationships between network input and output
variables, as well as between botanical drug counts and their
corresponding standard deviations. For evaluating linear
associations, Pearson correlation coefficients were applied to
examine two key relationships: 1. Between the Dedis and DeSD
indicators; 2. Between botanical drug counts and standard
deviations.

3 Result

3.1 Data characteristics

The 94 filtered prescriptions from a prior study were analyzed
(Supplementary Table S1). These prescriptions were derived from
historical medical texts spanning the Song, Yuan, Ming, and Qing
dynasties in China. After comparing outputs from non-dosage and
dosage-weighted networks for each prescription, we observed that
the DeSD and Dedis values - used to quantify the differences in
inputs between the two types of networks - ranged from 0.12 to
34.37 and 0.35 to 99, respectively. Additionally, the DeDT and DePy
indicators, which were employed to access the difference in network
analysis outputs, ranged from 0.0% to 68.9% and 0.0%–74.6%,
respectively, suggesting the impact of dosage across prescriptions
(Supplementary Table S2).

3.2 Producing Dedis is key for the dosage to
affect output

DeSD and Dedis were created to delineate the differences in
network input attributable to dosage from two distinct perspectives.
DeSD quantified the deviation of dosages from the mean value,
while Dedis measured the distance between evenly distributed
dosages and specific dosage values. A significant linear
relationship was observed between these two indices (cor = 0.49,
p = 4e-7). To evaluate the impact of incorporating dosage into the
network, outcomes from networks that considered dosage were
compared with those that did not, resulting in the generation of
DeDT and DePy indicators. Based on the median values of DeDT
and DePy, the 94 results were categorized into two groups: high
output change and low output change. Upon comparing the DeSD

TABLE 1 The unit conversion in four dynasties.

Song-Yuan
(960–1,368)

Ming-Qing
(1,368–1,911)

Metric
conversion

1 Fen = 0.4 g 1 Fen = 0.37 g

Conversion of
units

1 Liang = 10 Qian = 100 Fen
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and Dedis values between these groups, it was observed that only
Dedis exhibited a statistically significant difference (Figure 1).

Botanical drugs and their metabolites serve as inputs to the
network at two distinct levels. Botanical drugs typically comprise a
complex mixture of metabolites, which act as the direct agents
interacting with target genes, thereby determining the efficacy of the
botanical drug. To further investigate the relationship between
DeSD/Dedis and DeDT/DePy, a comparative analysis found that
Dedis did not exhibit statistically significant difference at the
metabolite level. In light of this observation, we proposed that
the therapeutic effects of botanical drugs were driven by the
synergistic interactions of multiple bioactive metabolites, rather
than the mere summation of their individual functions. This
conclusion was supported by the well-documented phenomenon
that isolated so-called key metabolites from botanical drugs often
failed to replicate the therapeutic effects observed in whole extracts
(Gilbert and Alves, 2003; Rasoanaivo et al., 2011; Caesar and
Cech, 2019).

To better illustrate these relationships, a clock model was
constructed (Figure 2A). As shown, the function pointer shifted
when the two hands formed an arc, but it still pointed to the same
function when the arc was not long (Figure 2A2). The arc
represented the Dedis and the function pointer represented the
output of the dosage-weighted network. The clock model illustrated
that Dedis was a necessary and insufficient condition to determine
the output change (Figure 2A1,A2,A3). In addition, the standard
deviation (SD) was the intrinsic property abstracted as the length of
the hands. The difference in length of the two hands cannot change
the direction of the function pointer. Therefore, the DeSD should
not be used as the indicator to predict whether the dosage-weighted
network might yield altered output or not. When the angle between
the two hands remained unchanged, the arc increased with the
increased length of the hands, indicating a linear relationship
between DeSD and Dedis (Figure 2A4).

From this clock model illustration, we can easily deduce that the
efficacy of a drug combination will be enhanced when the dosage of

FIGURE 1
Input-output relationship analysis based on comparison between non-dosage and dosage-weighted networks. Left panels (A1–D1) display input
indicators versus differences in predicted drug targets (DeDT); right panels (A2–D2) show input indicators versus pathway differences (DePy). First row:
botanical drug-level analysis; second row: metabolite-level analysis. X-axis groups: Prescriptions divided by median output difference (“high” >median,
“low” ≤median; cutoff values: DeDT = 0.029, DePy = 0.068). DeSD, as one indicator of input difference, is the difference of standard deviation of the
dosage of botanical drugs between non-dosage and dosage-weighted networks; Dedis, another indicator of input difference, is the Euclidean distance of
the dosage of botanical drugs between two networks; The compound_DeSD and compound_Dedis are the same definition but at the metabolite level.
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each component multiplies proportionally (when the hand is
extended, the original hand overlaps with the new one without
changing the direction of the function pointer, meaning the function
remains the same) (Figure 2A1).

3.3 A case study: comparison between non-
dosage and dosage-weighted networks
analysis of Chong He powder

To demonstrate the impact of dosage on TCM network analysis,
we selected Chong He Powder from our dataset of 94 prescriptions
(selection criteria: Dedis >0). This prescription, historically
indicated for pox-infected patients with dryness and heat
symptoms, comprises three botanical drugs with distinct dosages:
realgar for 1 Liang, Bai Yao zi for 1 Qian, and Gan Cao for 1 Qian.
This case study examined how dosage weight redistributed influence
among the botanical drugs and refined the potential pathways,
aligning with the documented clinical efficacy of the prescription.

3.3.1 Dosage influence on drug target prediction of
the Chong He Power

To evaluate the impact of dosage on drug target prediction, we
constructed two distinct networks for Chong He Powder: a non-

dosage network and a dosage-weighted network (Figure 3A1,A2). A
key finding was that the dosage-weighted network identified
significantly more drug targets (represented by light-blue nodes
with red outlines) compared to the non-dosage network. Notably,
Realgar (xionghuang) which had a dosage ten-fold higher than the
other two botanical drugs (baiyaozi and gancao), exhibited a
pronounced increase in connected pox-related targets. This was
evidenced by more red-outlined nodes (drug targets) linked to
Realgar and increased connectivity (purple edges) in the dosage-
weighted network. Since network analysis serves as a theoretical
framework to elucidate the mechanistic basis of traditional
prescription, a model that captures more biologically relevant
targets holds greater predictive value.

3.3.2 Mechanistic insights from dosage-weighted
network analysis

To delineate the influence of dosage onmechanistic insights, drug
targets from both non-dosage and dosage-weighted networks were
integrated into a single network for better comparison (Figure 3B).
The analysis revealed that most drug targets predicted by the non-
dosage network were also captured by the dosage-weighted network
(with gray round bubbles predominating over orange ones). These
common targets were primarily related to inflammatory response and
body temperature regulation, which aligns with Chong He Powder’s

FIGURE 2
Description of the clock model. (A) schematic illustration of the clock model. The dosage of components was abstracted as hands on the dial, the
dashed hand represented the non-dosage network and the solid outline represented the dosage-weighted network. Standard deviation (SD), an intrinsic
property of the dosage vector, was abstracted as the length of the hand. The distance of the dosage of two networks (Dedis) was abstracted as an arc
corresponding to the angle formed by the two hands. The arrow named function pointer denotes the output of the dosage-weighted network.
(A1–A4) The four statuses of the clockmodel. (A1)NoDedis formed and two hands overlap. The function pointer does not change. (A2) TheDedis formed
but it could not change the function pointer to the next function interval. (A3) The formed Dedis changes the function pointer to the next function
interval. (A4) Longer solid hand produces a longer arc with the dished hand.
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main efficacy of alleviating dryness and heat. However, while the non-
dosage network identified pathways such as transmembrane transport
and blood pressure regulation, the dosage-weighted network
specifically targeted pathways focused on T cell immune
regulation. Crucially, existing research strongly demonstrates that
T-cell and inflammation regulation are key defense mechanisms
against pox viruses (Harbour et al., 2023; Grifoni et al., 2022; Mitjà
et al., 2023). In this case, the non-dosage network failed to capture this
critical connection. This finding highlighted the usage of the dosage-

weighted network for mechanistic elucidation in traditional
medicine research.

3.4 Broder applications of dosage-weighted
network analysis

The comparison between non-dosage and dosage-weighted
network analyses in our work focused on the same prescriptions.

FIGURE 3
The comparison between non-dosage and dosage-weighted networks analysis of Chong He powder prescription. (A1) Non-dosage network
predictions of key targets and drug targets; (A2)Dosage-weighted network predictions showing refined target selection. For clarity, bioactivemetabolites
bridging the botanical drugs and targets were omitted, leaving only the botanical drugs and targets shown. (B) Integrated target network combining
predictions from bothmethods, with color-coded nodes indicating: (I) targets unique to the non-dosage network (orange), (ii) targets unique to the
dosage-weighted network (blue), and (iii) shared targets (gray). Associated top 10 Gene Ontology pathways (ranked by significance) are displayed
alongside the network.
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This approach has demonstrated how integrating dosage
information provides a distinct perspective for deciphering
prescription mechanisms compared to the traditional non-dosage
method. Importantly, the dosage-weighted network analysis can also
be applied to compare different prescriptions containing identical
botanical drugs but distinct dosage proportions. For example, “Gan
Jie Soup” and “Ren Shen Gan Jie Soup” share the same botanical
drug components but with different dosage ratios. Historical records
indicated that these prescriptions from different eras were used to
treat similar clinical symptoms. When applying dosage-weighted
network analysis to these two formulations, identical drug targets
were predicted. This finding explained how these prescriptions with
varying dosages could have comparable clinical efficacy for nearly
identical symptom profiles. In contrast, non-dosage network
analysis would fail to reveal this dosage-efficacy relationship, as it
would invariably produce identical predictions regardless of dosage
variations. Therefore, dosage-weighted network pharmacology
offers a valuable alternative approach to understanding
combination drug principles through the lens of dosage
optimization.

3.5 Supplemental insight: prescription
dosage variability increases with fewer
botanical drugs

Secondary analysis revealed a weak inverse correlation between
prescription dosage variability (standard deviation) and the number

of botanical drugs (r = −0.3, p = 0.001; Figure 4A). Notably, total
prescription dosage remained stable across various numbers of
botanical drugs (Figure 4B). This observation may reflect
established combination drug safety practices, where individual
drug dosages are typically minimized to maintain overall dosage
within a safe therapeutic range. Such an approach may potentially
reduce the adverse effects while preserving treatment efficacy (Ali
et al., 2017).

4 Discussion

In this study, we integrated the dosage factor into network
analysis. We demonstrated that DeDis, rather than DeSD, could be
used as an indicator of network prediction changes by dosage
integration. Through the case study, we showed how dosage
refined the impact of each botanical drug and changed the
network predictions on drug targets and subsequent mechanism
elucidation. Our findings suggested that dosage is a critical, yet
understudied, variable in drug combination research. By integrating
dosage into network analysis, a more flexible and practically
accurate prediction was achieved.

Dosage is an important factor in understanding the mechanism
of the drug combination and holds great potential in enhancing the
usage of drug combinations. However, the cost of large-scale
experiments holds back the relevant research. Some researchers
used dosage data of common drug combinations to train machine-
learning models for inferring appropriate dosage ranges (Zhou et al.,

FIGURE 4
Relationship between botanical drug count and total dosage. (A)DeSD (difference in standard deviation) and (B) total dosage distributions are shown
for two prescription groups: “less” (botanical drug count ≤median 6) and “more” (count >median). Boxplot elements: center line = median; box limits =
25th–75th percentiles (IQR); whiskers = 1.5 × IQR; solid circles = outliers. Statistical comparison was performed using the Wilcoxon rank-sum test.
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2021; Zhu, 2022). However, these methods often lack mechanistic
explanations, producing predictions without theoretical grounding.
By systematically analyzing how dosage influences drug
combination efficacy, our model provided new insights into the
possible mechanisms underlying dosage effect in drug
combinations.

Although our analysis was conducted only on 94 TCM
prescriptions, the methodology is broadly applicable to other
combination drugs. A key limitation, however, is the absence of
gold-standard dosage-efficacy datasets for validation. When such
datasets become available, our model can be further refined to
accommodate more applications.

The efficacy of complex drug combinations, such as those in
TCM, depends not only on multi-component interactions but also
on the dosage of individual components. Our work highlights that
dosage adjustment of existing combinations is equally critical for
understanding therapeutic outcomes. Moving forward,
computational approaches—particularly pattern recognition and
data analysis—will be essential for deciphering dosage-dependent
mechanisms and advancing precision medicine in the future.
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