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Recent studies have identified the reprogramming of lipidmetabolism as a critical
hallmark of malignancy. Enhanced cholesterol uptake and increased cholesterol
biosynthesis significantly contribute to the rapid growth of tumors, with
cholesterol also playing essential roles in cellular signaling pathways. Targeting
cholesterol metabolism has emerged as a promising therapeutic strategy in
oncology. The sterol regulatory element-binding protein-2 (SREBP2) serves as
a primary transcriptional regulator of genes involved in cholesterol biosynthesis
and is crucial for maintaining cholesterol homeostasis. Numerous studies have
reported the upregulation of SREBP2 across various cancers, facilitating tumor
progression. This review aims to provide a comprehensive overview of the
structure, biological functions, and regulatory mechanisms of SREBP2.
Furthermore, we summarize that SREBP2 plays a crucial role in various
cancers and tumor microenvironment primarily by regulating cholesterol, as
well as through several non-cholesterol pathways. We also particularly
emphasize therapeutic agents targeting SREBP2 that are currently under
investigation. This review seeks to enhance our understanding of SREBP2’s
involvement in cancer and provide theoretical references for cancer therapies
that target SREBP2.
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1 Introduction

Lipids comprise a diverse array of molecules that serve as essential components of
biological membranes and are widely distributed across cellular organelles (Pomorski et al.,
2001; Efeyan et al., 2015). Cholesterol is a lipid that primarily regulates the rigidity, fluidity,
and permeability of the lipid bilayer in cell membranes, and also plays a critical role in signal
transduction, promoting diverse cellular functions (Goldstein et al., 2006; Menendez and
Lupu, 2007). Dysregulation of cholesterol metabolism can initiate or exacerbate the
progression of numerous diseases (Cohen et al., 2011; Schwartz et al., 2013; Goldstein
and Brown, 2015). Recent reports indicate a significant upregulation of cholesterol
biosynthesis in human cancers, as elevated synthesis and uptake of cholesterol are
necessary to meet the demands of membrane biogenesis and support ongoing cellular
replication (Gruenbacher and Thurnher, 2015; Bathaie et al., 2017). In the tumor
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microenvironment, cancer cells exploit cholesterol metabolism to
facilitate rapid migration, invasion, and metastasis (Bian
et al., 2021).

Lipid metabolism is transcriptionally regulated by sterol
regulatory element-binding proteins (SREBPs) (Horton et al.,
2002). First isolated from the nuclei of HeLa cells in 1993,
SREBPs belong to the basic helix-loop-helix–leucine zipper
(bHLH-Zip) family of transcription factors (Briggs et al., 1993;
Wang et al., 1993; Brown and Goldstein, 1997). The SREBPs
family comprises three subtypes, SREBP1a and SREBP1c,
SREBP2(Brown and Goldstein, 1997). SREBP2 predominantly
activates the transcription of key genes in the mevalonate (MVA)
pathway, thereby regulating cholesterol synthesis (Hua et al., 1993;
Horton et al., 2002; Horton et al., 2003). SREBP2-mediated
cholesterol metabolism plays a crucial role in various cancers,
including lung cancer, colorectal cancer, and breast cancer,
among others. In this review, we first introduce the structure,
biological processes, and recent advances in the regulation of
SREBP2. Subsequently, we summarize the role of SREBP2 in
different types of cancer and tumor microenvironment. Given
the emergence of SREBP2 as a significant target for cancer
therapy, we focus on and discuss several important SREBP2-
targeting drugs. Through these discussions, this article aims to
provide new insights into potential cancer therapies.

2 SREBP2 structure

The human SREBP2 gene is located on chromosome 22q13 and
encodes a protein consisting of 1,141 amino acids. It was first cloned
and characterized by Xianxin Hua et al., in 1993, who isolated cDNA
from cultured HeLa cells (Hua et al., 1993; Miserez et al., 1997). The
SREBP2 protein comprises three main segments: (a) an NH2-
terminal domain of approximately 480 amino acids, which
contains an acidic region responsible for transcriptional

activation, along with a basic helix-loop-helix-leucine zipper
(bHLH-Zip) motif that specifically binds to DNA sequences; (b)
a middle hydrophobic region of approximately 80 amino acids,
which includes two hydrophobic transmembrane segments; and (c)
a COOH-terminal domain of approximately 590 amino acids
(Brown and Goldstein, 1997) (Figure 1).

The hydrolyzed activated NH2-terminal of SREBP2 binds to
sterol regulatory element (SRE) sequences in the promoters of target
genes in the nucleus, thereby upregulating their transcription
(Goldstein et al., 2006). The middle hydrophobic region features
two hydrophobic membrane-spanning sequences and a hydrophilic
lumenal loop that separates these segments (Luo et al., 2020). This
hydrophilic luminal loop extends into the endoplasmic reticulum
(ER) lumen (Weber et al., 2004; Luo et al., 2020). The COOH-
terminal domain of SREBP2, referred to as the regulatory domain,
interacts with the WD-repeat domain of SREBP-cleavage activating
protein (SCAP) (Gong et al., 2016; Brown et al., 2018).

3 Regulation of SREBP2

The SREBP2 gene is transcribed and translated into
SREBP2 precursor (Pre -SREBP2), which is then anchored in the
endoplasmic reticulum. To become active, Pre -SREBP2 must exit
the ER and undergo cleavage in the Golgi apparatus. This cleavage
releases the N-terminal domain (n-SREBP2), which then
translocates to the nucleus to activate the transcription of
downstream target genes. This process is regulated by various
mechanisms, as discussed below.

3.1 Transcription regulation of the SREBP2

Notably, because there is a 10-base pair SRE upstream of the
transcription start site of SREBP2, it is also regulated by
n-SREBP2(Sato et al., 1996). In addition, the region upstream
contains binding sites for the transcription factors SP1 and NF-Y
(Sato et al., 1996). Both of them cooperate with n-SREBP2 to
upregulate the transcription of SREBP2. The key negative
regulators of SREBP2 gene expression include SIRT6 and
forkhead box O (FOXO3) (Tao et al., 2013). FOXO3 binds to a
conserved insulin response element (IRE) in the SREBP2 gene and
recruits SIRT6(Tao et al., 2013). Subsequently, SIRT6 deacetylates
histone H3 at lysine residues 9 and 56 on the SREBP2 gene promoter
(Tao et al., 2013). This modification promotes a repressive
chromatin state, thereby inhibiting the expression of SREBP2 and
its target genes (Figure 2).

3.2 Post-transcriptional regulation of
the SREBP2

SREBP2 is post-transcriptionally regulated by microRNAs
(miRNAs), which are small endogenous non-coding RNAs that
exert their effects by binding to target mRNAs (Bartel, 2004). Studies
demonstrated that miR-185 significantly reduced the levels of both
full-length and mature SREBP2 proteins in liver cancer and prostate
cancer cells by binding to the 3′untranslated region (3′UTR) of

FIGURE 1
Structure of SREBP2. (Created in BioRender. Chen, R. (2025)
https://BioRender.com/r73a111). The SREBP2 protein comprises three
main segments: an NH2-terminal domain of approximately
480 amino acids, a middle hydrophobic region of approximately
80 amino acids, and a COOH-terminal domain of approximately
590 amino acids. The NH2-terminal domain contains an acidic region
that is responsible for transcriptional activation, as well as a basic helix-
loop-helix-leucine zipper (bHLH-Zip) motif that specifically binds to
DNA sequences.
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SREBP2 mRNA (Li et al., 2013; Yang et al., 2014; Chen et al., 2021).
In vivo experiments also revealed that the miR-185 sequences
resulted in decreased SREBP2 levels (Yang et al., 2014). However,
inhibiting miR-185 did not lead to increased mRNA levels of
SREBP2 or its downstream targets in vivo and vitro, suggesting
that basal miR-185 may not significantly repress SREBP2 in these
contexts (Chen et al., 2021). Additionally, several oncological studies
have demonstrated that miR-185-5p, miR-195, miR-130b, miR-328-
3p, and miR-98 directly target SREBP2 gene, leading to the
inhibition of its expression (Geng et al., 2018; Yu et al., 2019;
Huang et al., 2022; Tan et al., 2022; Tang et al., 2023).
Overexpression of miR-27a and miR-10a was also found to
decrease SREBP2 levels, although the mechanisms underlying
these effects remain to be elucidated (Shirasaki et al., 2013; Horii
et al., 2019) (Figure 3).

3.3 Post-translational modification of
the SREBP2

Ubiquitination of the SREBP2 protein is a key post-translational
modification. MARCHF6 serves as a primary ubiquitin ligase
SREBP2 degradation (Dickson et al., 2023). However, XBP1-u
inhibits the ubiquitination and proteasomal degradation of
SREBP2, then stabilizing the protein in HCC(Wei et al., 2022).

In pancreatic cancer, kinesin family member 11 (KIF11) interacts
with SREBP2, increasing its protein levels by attenuating
ubiquitination-mediated degradation (Gu et al., 2022) (Figure 3).
The degradation of SREBP2 is regulated by its binding to SCAP.
Early studies demonstrated that SREBP2 precursor levels are
markedly reduced in the absence of SCAP (Rawson et al., 1999;
Shao and Espenshade, 2014). Recent investigations have identified
two distinct motifs within the carboxyl-terminal domain (CTD) of
SREBP2: one functioning as a protective signal and the other as a
degradation signal. When SREBP2 dissociates from SCAP, the
degradation signal triggers its proteasomal degradation in the
endoplasmic reticulum. Conversely, the protective signal motif
enables SREBP2 to bind SCAP, thereby masking the degradation
signal and stabilizing the protein (Kober et al., 2020).

3.4 Regulation of SREBP2 protein egress
from the ER

The SREBP2 precursor binds to sterol regulatory element-
binding protein-cleavage activating protein (SCAP) via its
C-terminal domain, anchoring it within the ER. The transfer of
the SREBP2-SCAP complex is regulated by cholesterol levels. SCAP
undergoes conformational changes in response to fluctuations in ER
cholesterol levels (Brown et al., 2018). Recent cryoelectron

FIGURE 2
Transcription regulation of SREBP2. (Created in BioRender. Chen, R. (2024) https://BioRender.com/h24n110). The transcription start site of
SREBP2 contains binding sites for the transcription factors SP1 and NF-Y, along with a 10-base pair SRE. SP1 and NF-Y cooperate with n-SREBP2 to
upregulate the transcription of SREBP2. FOXO3 acts as a negative regulator by binding to a conserved insulin response element (IRE) in the SREBP2 gene
and recruiting SIRT6. Subsequently, SIRT6 deacetylates histone H3 in the SREBP2 gene promoter, thereby suppressing SREBP2 expression.

FIGURE 3
Post-transcriptional regulation and post-translational modifications of SREBP2. (Created in BioRender. Chen, R. (2024) https://BioRender.com/
q25n513). miR-185, miR-185-5p, miR-195, miR-130b, miR-328-3p, and miR-98 directly bind to the 3′-untranslated region (3′UTR) of SREBP2 mRNA,
leading to the inhibition of its expression. MARCHF6 serves as a primary ubiquitin ligase that promotes SREBP2 degradation. XBP1-u and KIF11 inhibit the
ubiquitination and proteasomal degradation of SREBP2.
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microscopy (cryo-EM) structures suggest that Scap’s two ER luminal
loops (loop 1 and loop 7), which flank an intramembrane sterol-
sensing domain (SSD), intertwine tightly to form a stable domain
(Kober et al., 2021; Yan et al., 2021a; Yan et al., 2021b). The domain
may interact with the membrane to sense cholesterol (Kober et al.,
2021). When cholesterol levels exceed 5% of the molar content of
membrane lipids in the endoplasmic reticulum (ER), the interaction
between SCAP’s loop 1 and loop 7 dissociates, allowing SCAP to
bind to cholesterol, inducing SCAP to bind INSIG. (Radhakrishnan
et al., 2008). This interaction promotes the binding of SCAP to
INSIG, an ER-retention membrane protein, which inhibits the
association of the SCAP-SREBP2 complex with COPII vesicles
(Sun et al., 2005). Consequently, this effectively prevents the exit
of the SCAP-SREBP2 complex from the ER. Additionally,
Cholesterol not only promotes the binding of SCAP to INSIG
proteins but also stabilizes INSIG, preventing its degradation via
the ubiquitin-proteasome pathway (Gong et al., 2006; Lee et al.,
2006). Conversely, when cholesterol levels decrease, the first and
seventh loops of SCAP interconnect, enabling the SCAP-SREBP2
complex to bind to COPII vesicles, which facilitates its translocation
to the Golgi apparatus (Sun et al., 2005; Brown et al., 2018)
(Figure 4). Moreover, the transport of the SREBP2 is also
regulated by other molecules. Multimeric endoplasmic reticulum
(ER) proteins known as ERLINs, large tumor suppressor kinase 2
(LATS2), along with two ubiquitin ligases, TRC8 and RNF145,
negatively regulate the egress of SREBP2 from the ER. ERLINs
tightly interact with the SCAP-SREBP2-INSIG complex, while
TRC8 directly binds to SREBP2 and SCAP (Irisawa et al., 2009;
Huber et al., 2013). RNF145 ubiquitylates SCAP within a critical
loop essential for COPII binding (Zhang L. et al., 2017). These events
impair COPII binding and hinder the transport of SREBP2.
LATS2 directly interacts with SREBP2 to retain it in the ER.
However, MiR-96 reduced the levels of the SREBP2 anchor
protein INSIG2 (Aylon et al., 2016). Phosphoenolpyruvate

carboxykinase 1 (PCK1) can phosphorylate the Ser207 of
INSIG1 and the Ser151 of INSIG2, thereby disrupting the
interaction between INSIG proteins and SCAP. These result in
an increase in transport of SREBP2(Xu et al., 2020). However,
another study found that SREBP2 processing unperturbed by
phosphorylated INSIG2, which exhibits exclusive inhibitory
specificity toward SREBP1(Tian et al., 2024).

3.5 SREBP2 proteolytic activation in
the Golgi

The SCAP–SREBP2 complex binds to COPII and is transported
from the endoplasmic reticulum (ER) to the Golgi apparatus. Within
the Golgi, the PAQR3 protein interacts with the
SCAP–SREBP2 complex, retaining it in this organelle. Under
cholesterol-depleting conditions, the transcription of the
PAQR3 gene is upregulated, facilitating the retention process (Xu
et al., 2015). SREBP2 undergoes proteolytic activation in a two-step
process. The first step involves the cleavage of the luminal loop of
SREBP2 by site 1 protease (S1P), producing a cleaved form of
SREBP2 that is approximately half the size of the original
protein; this cleavage is crucial for the subsequent activation step
(Sakai et al., 1998). SPRING acts as an activating cofactor for S1P to
involve in the proteolytic cleavage of SREBP2. Multiple studies have
established that SPRING (previously C12ORF29) deficiency impairs
SREBP2 processing (Bayraktar et al., 2020; Loregger et al., 2020).
Current works demonstrate that SPRING facilitates S1P maturation
to regulate SREBP2 activation (Bayraktar et al., 2020; Xiao et al.,
2021; Hendrix et al., 2024a). Crucially, SPRING specifically enables a
specific pool of S1P to execute SREBPs proteolytic cleavage, rather
than being universally involved in all S1P-dependent pathways
(Hendrix et al., 2024b). Additionally, SPRING has been reported
to regulate the transport of SCAP (Aregger et al., 2020; Loregger

FIGURE 4
Activation regulation of SREBP2. (Created in BioRender. Chen, R. (2025) https://BioRender.com/xugbutl). Under cholesterol depletion: The SCAP-
SREBP2 complex binds to COPII vesicles, facilitating its translocation to the Golgi apparatus. PAQR3 interacts with the SCAP-SREBP2 complex in the
Golgi, retaining it within this organelle. Sequential proteolytic cleavage by Site-1 protease (S1P) and Site-2 protease (S2P) generates nuclear SREBP2
(n-SREBP2), which translocates to the nucleus as a homodimer to bind sterol regulatory elements (SREs) and activate transcription of target genes.
Under cholesterol repletion: SCAP binds to INSIG, forming an ER-anchored INSIG/SCAP/SREBP complex that inhibits the transport of SREBP2 to the
Golgi apparatus.
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et al., 2020). Following cleavage of SREBP2 by S1P, the N-terminal
region of the SREBP2 protein undergoes a second proteolytic
processing by site 2 protease (S2P) (Rawson et al., 1997). These
cleavage events release a soluble N-terminal transcription factor
known as n-SREBP2, which translocates to the nucleus as a
homodimer (Brown et al., 2018). In the nucleus, n-SREBP2 binds
to SRE sequences, thereby activating the transcription of target genes
involved in cholesterol metabolism (Goldstein et al.,
2006) (Figure 4).

3.6 Regulation of n-SREBP2 protein

The level and transcriptional activity of n-SREBP2 protein are
regulated by various pathways. The mechanistic target of rapamycin
complex 1 (mTORC1) upregulates n-SREBP2 protein level through
two primary mechanisms. mTORC1 increases n-SREBP2 proteins
by decreasing the nuclear entry of lipin 1, a phosphatidic acid
phosphatase that downregulates the protein levels of n-SREBP2
in the nucleus (Peterson et al., 2011). mTORC1 can also activate
SREBP2 by inhibiting cholesterol trafficking from lysosomes to the
ER, which increases n-SREBP2 proteins level (Eid et al., 2017).
Conversely, carbohydrate response element-binding protein
(ChREBP) enhances the ubiquitination and proteasomal
degradation of n-SREBP2, although the underlying mechanism
remains unclear (Zhang D. et al., 2017). Phosphorylation of
n-SREBP2 by serine/threonine protein kinase GSK3 targets it for
proteasomal degradation via the SCF-FBW7 ubiquitin ligase
complex, resulting in a reduction in n-SREBP2 levels (Sundqvist
et al., 2005). However, miR-182 binds to the 3′UTR of FBW7,
leading to a decrease in FBXW7mRNA levels and a reduction in the
degradation of n-SREBP2 protein (Jeon et al., 2013). Notably, the

deubiquitinating enzyme USP28 has been shown to stabilize
n-SREBP2 by reversing ubiquitination (Maier et al., 2023).

Importantly, the n-SREBP2 undergoes various post-translational
modifications, including acetylation, phosphorylation, and
sumoylation, which modulates the transcriptional activity of
n-SREBP2. The histone acetyltransferase p300 and its related
protein CBP can acetylate n-SREBP2 and increased its
transcriptional activity, whereas deacetylation of Sirtuin1 (SIRT1)
can deacetylate n-SREBP2 and counteract the effects of p300 and
CBP(Giandomenico et al., 2003;Walker et al., 2010). SREBP2 has also
been identified as a phosphorylation target of extracellular signal-
regulated kinase (Erk) at Ser-455 and Ser-432, with Erk1/2-dependent
phosphorylation upregulating SREBP2’s N-terminal transactivation
(Bennett and Osborne, 2000; Kotzka et al., 2004). Conversely, AMP-
activated protein kinase (AMPK) interacts with and directly
phosphorylates n-SREBP2, inhibiting its nuclear translocation and
transcriptional activity (Meng et al., 2024). SUMO1-mediated
sumoylation at the sumoylation site of SREBP2 (Lys 464) also
inhibits the transcriptional activity of n-SREBP2(Hirano et al.,
2003) (Figure 5).

4 SREBP2 in cancer

Cholesterol homeostasis is crucial for both cellular and systemic
functions. In cancer cells, cholesterol levels are significantly elevated
to support rapid proliferation, resulting in increased uptake and
storage of cholesterol within malignant tumors. As a key
transcription factor regulating the expression of genes involved in
cholesterol synthesis and uptake, SREBP2 connects oncogenic
signaling with alterations in cholesterol metabolism, thereby
playing a vital role in cancer development.

FIGURE 5
Regulation of n-SREBP2 protein. (Created in BioRender. Chen, R. (2024) https://BioRender.com/z88u544). mTORC1 phosphorylates lipin 1,
reducing its nuclear entry. Lipin 1 decreases n-SREBP2 levels. The histone acetyltransferase p300 and its related protein CBP acetylate n-SREBP2 to
enhance its transcriptional activity, while Sirtuin1 (SIRT1) deacetylates n-SREBP2. Additionally, phosphorylation of n-SREBP2 by ERK proteins also
increases its transcriptional activity. Conversely, AMP-activated protein kinase (AMPK) phosphorylates n-SREBP2, inhibiting its nuclear translocation
and transcriptional activity. SUMO1-mediated SUMOylation of n-SREBP2 also suppresses its transcriptional activity. Serine/threonine protein kinase
GSK3 phosphorylates n-SREBP2, mediating its proteasomal degradation via the SCF-FBW7 ubiquitin ligase complex, thereby reducing n-SREBP2 levels.
Carbohydrate response element-binding protein (ChREBP) also promotes n-SREBP2 ubiquitination and proteasomal degradation.
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4.1 Liver cancer

There is a mounting body of evidence suggesting that SREBP2-
mediated cholesterol biosynthesis plays a pivotal role in
hepatocellular carcinoma (HCC) tumorigenesis (Calvisi et al.,
2011; Che et al., 2020; Chen W. et al., 2022; Saito et al., 2023;
Wang et al., 2023). In HCC, SREBP2 upregulates TAZ expression
and increases TAZ interaction with TEAD2 by mediating
cholesterol metabolism, thereby promotes HCC through
enhanced DNA damage and associated proliferation (Saito et al.,
2023). Furthermore, in the context of gut microbiota dysregulation,
the increased levels of SREBP2 and heightened expression of
cholesterol synthesis-related genes are associated with the
reduction of tryptophan metabolites and weakened AhR
activation, contributing to the initiation of liver cancer (Chen W.
et al., 2022). Conversely, impaired SREBP2 maturation and
suppressed cholesterol biosynthesis inhibit HCC cell proliferation,
which is associated with a favorable prognosis in HCC patients
(Feng et al., 2017; Liang et al., 2019; Xiang et al., 2022; He et al.,
2024). In addition, SREBP2 plays a significant role in promoting the
metastasis of liver cancer by enhancing the expression of genes
involved in cellular migration and invasion. Nuclear translocation of
SREBP2 is promoted by inhibition of LATS, significantly reducing
E-cadherin expression while upregulating N-cadherin, Snail, and
Vimentin, thereby facilitating HCC cell migration and invasion
(Zhang et al., 2023). Beyond its role in promoting the
progression of HCC, SREBP2 also significantly contributes to
drug resistance in this malignancy. Cleavage of SREBP2 from the
ER by Caspase-3 (CASP3) activates cholesterol biosynthesis,
subsequently activating the sonic hedgehog signaling pathway,
which renders cancer stem cell populations in HCC resistant to
sorafenib and lenvatinib treatment (Mok et al., 2022). The study
highlighting the need for therapeutic strategies that can effectively
target SREBP2 to overcome resistance and improve patient
responses to treatment. In conclusion, these studies suggest that
SREBP2 participates in hepatocellular carcinogenesis and
progression and targeting SREBP2 may represent a promising
therapeutic strategy for liver cancer.

4.2 Pancreatic cancer

In pancreatic cancer, a growing body of research indicates that
the activation of SREBP2 leads to alterations in cholesterol
metabolism, thereby enhancing cancer cell resistance to apoptosis
and promoting tumorigenesis and progression. KRAS mutations are
prevalent in promoting pancreatic ductal adenocarcinoma (PDAC)
(Duan et al., 2024). A study employing scRNA-seq revealed that the
cholesterol synthesis pathway, including SREBP2, is specifically
upregulated in KRAS mutant pancreatic organoids. These
findings support a model in which oncogenic KRAS mutations
activate SREBP2, leading to the reprogramming of cholesterol
metabolism (Duan et al., 2024). The resultant cholesterol
accumulation provides energy for pancreatic cancer growth and
enhances resistance to apoptosis. Reducing the expression levels of
SREBP2 can reverse the reprogramming of cholesterol metabolism
induced by oncogenic KRAS (Zhang D. et al., 2021). Furthermore,
SREBP2 interacts with transcription factor CP2 (TFCP2) in

pancreatic cancer cells, allowing them to overcome KRAS
mutation-induced senescence (Zhang D. et al., 2021). This
interaction results in enhanced growth and metastasis of
pancreatic cancer cells (Zhang D. et al., 2021). SREBP2 also
forms a complex with β-catenin on the promoters of MVA
pathway genes following the disruption of ciliogenesis, activating
the transcription of cholesterol metabolism-related genes and
further promoting PDAC development (Deng et al., 2018).
Together, these findings underscore the significant role of
SREBP2 in the tumorigenesis and progression of pancreatic cancer.

4.3 Colorectal cancer

An increasing body of evidence reveals that SREBP2-mediated
cholesterol biosynthesis is involved in colorectal carcinogenesis,
progression and change in energy homeostasis. Clinical studies
have demonstrated that SREBP2 levels are elevated in early-stage
colorectal cancer but diminished in late-stage disease (Sharma et al.,
2019). SREBP2-mediated cholesterol metabolism participates in
oncogenic pathways that drive and promote colorectal cancer
(CRC). Dysregulated activity of Yes-associated protein (YAP) and
mechanistic target of rapamycin complex 1 (mTORC1) is associated
with tumorigenesis and progression (Pan et al., 2021).
SREBP2 interacts with ZMYND8, which is upregulated by YAP,
leading to increased cholesterol levels that subsequently activate
mTORC1 and drive the colorectal carcinogenesis. This interaction
highlights the SREBP2-mediated YAP/ZMYND8/
mTORC1 pathway, which endows CRC cells with specific
metabolic vulnerabilities (Pan et al., 2021). Similarly, in
aggressive mesenchymal CRC, enhanced stabilization of SCAP
and activation of SREBP2 also creates a cholesterol metabolic
addiction and a therapeutic vulnerability (Muta et al., 2023). It
makes statin-based inhibitors strongly suppress tumor growth
(Muta et al., 2023). This heightened expression of SREBP2 plays
a crucial role in the metabolic adaptations of CRC, highlighting the
significance of cholesterol metabolism in this malignancy (Wen
et al., 2018; Jin et al., 2023). In addition, SREBP2 also promotes the
colorectal cancer metastasis. SREBP2 and SREBP2-dependent
cholesterol biosynthesis are activated by c-Met/PI3K/AKT/mTOR
axis in CRC, which allows CRC cells to undergo dynamic metabolic
adjustments, facilitating adaptation to metastatic conditions (Zhang
K. L. et al., 2021). This activation is required for the CRC cells
metastasis, colonization and growth (Zhang K. L. et al., 2021).
Collectively, these findings clarify that SREBP2 play a vital role
in colorectal cancer development. Strategies targeting SREBP2-
mediated cholesterol metabolism beneficial for the development
of effective therapeutic for CRC.

4.4 Lung cancer

In lung cancer, downregulation of SREBP2 significantly inhibits
the proliferation, migration, and invasion of cancer cells (Zhu et al.,
2024). In addition, SREBP2 also promotes the occurrence of
complication associated with lung cancer treatment. Lung cancer-
related pleural effusion (LCPF), a common complication of lung
cancer treatment, stimulates expression of SREBP2, which can
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induce pleural angiogenesis in patients and exacerbate advanced on-
small cell lung cancer (NSCLC) with pleural effusion (Tsai et al.,
2022). At present, drug resistance brings great challenges to the
advanced treatment and prognosis of cancer patients. Activating the
cleavage of SREBP2 increased the synthesis of cholesterol, leading to
NSCLC cells more resistant to cisplatin (Akman et al., 2024).
Another study found that SREBP2 and the cholesterol
metabolism was highly activated in NSCLC cells resistance to
osimertinib (Cao et al., 2024). Inhibiting SREBP2 is helpful for
reversing NSCLC cells osimertinib acquired resistance (Cao et al.,
2024). In summary, these results illustrate that SREBP2 participates
in lung cancer progression, treatment complications, and drug
resistance, and SREBP2 is a potential target for lung
cancer treatment.

4.5 Breast cancer

In breast cancer, SREBP2 expression is upregulated, and its
elevated levels contribute to tumor progression (Ricoult et al., 2016;
Huang et al., 2017; Cai et al., 2019; Chen Y. Y. et al., 2022; Hunt et al.,
2023). The transcription of SREBP2 is enhanced through
phosphorylation of STAT3 (Tyr705) in triple-negative breast
cancer (TNBC) (Chen Y. Y. et al., 2022). Additionally, RORγ
mediates the chromatin recruitment and activation of SREBP2 in
TNBC cells (Cai et al., 2019). Phosphorylated β-catenin also
stimulates SREBP2 expression, promoting circulating tumor cell
colony formation and tumor recurrence (Hunt et al., 2023). In
contrast, inhibition of SREBP2 protein levels suppresses breast
cancer cell proliferation. The cholesterol transporter ABCA9,
which accumulates cholesterol in the endoplasmic reticulum
(ER), reduces SREBP2 expression, thereby impairing breast
cancer cell proliferation (Hwang et al., 2023). Furthermore,
elevated SREBP2 expression is induced by CREB signaling, which
subsequently upregulates NFATc1 expression required for mature
osteoclast formation, contributing critically to breast cancer
invasion and bone metastasis (Jie et al., 2019). Another study
demonstrated that increased SREBP2 levels, mediated by the
mTORC1 pathway, promote metastasis and a more malignant
phenotype in breast cancer (Ning et al., 2023). Collectively, these
findings indicate that the upregulation of SREBP2 drives
tumorigenesis and progression in breast cancer.

4.6 Ovarian cancer

An expanding array of studies demonstrates that
SREBP2 expression is increased and that cholesterol synthesis is
facilitated in ovarian cancer (OC), which plays a pivotal role in
tumorigenesis (Zhao et al., 2020). Decreasing SREBP2 levels can
prevent statin-induced sterol feedback, thereby enhancing statin
toxicity and efficacy in ovarian cancer cells (Casella et al., 2014). In
addition to promoting tumor progression by upregulating
cholesterol metabolism, SREBP2 can also promote the
proliferation, migration, and epithelial-to-mesenchymal transition
(EMT) of OC cells by directly activating the PRSS8/SCNN1A axis
(Cai et al., 2021). Moreover, SREBP2 is implicated in mechanisms of
drug resistance in OC. One study found that SREBP2 and its

downstream genes were upregulated in cisplatin-resistant cells,
indicating its involvement in mediating resistance to cisplatin
(Zheng et al., 2018). Notably, blocking the SREBP2 pathway has
been shown to increase cisplatin sensitivity in OC (Zheng et al.,
2018). As such, these findings suggest that targeting SREBP2 and its
related pathways may offer a promising strategy for developing
effective therapeutic interventions for OC.

4.7 Endometrial cancer

Research generally indicates that inhibition of
SREBP2 expression contributes to the suppression of endometrial
cancer progression (Gao et al., 2018;Wang et al., 2021). For instance,
the downregulation of SREBP2 by BF175, resulting in reduced
cholesterol levels in endometrial cancer, enhance anti-tumor
effect (Wang et al., 2021). Similarly, fatostatin inhibits the
development of endometrial carcinoma by downregulating
SREBP2 and interfering with SREBP2-mediated cholesterol
metabolic pathways, further demonstrating anti-tumor effect of
downregulated SREBP2 (Gao et al., 2018). Contrastingly, another
study reported low expression levels of SREBP2 and AMPK in
endometrial cancer tissues, noting that SREBP2 is a target gene
inhibited by AMPK (Efsun Antmen et al., 2021). This discrepancy
may be attributed to variations in the samples studied and the
context of SREBP2 regulation in different tumor
microenvironments. Overall, these findings highlight the complex
role of SREBP2 in endometrial cancer, suggesting that its regulation
may have therapeutic implications.

4.8 Prostate cancer

Androgens play a critical role in maintaining the survival and
proliferation of prostate cancer (PCa) by binding to and activating
the androgen receptor (AR) (Fujita and Nonomura, 2019).
Consequently, lipid synthesis and uptake are vital energy
resources that support tumor progression in PCa. A study
comparing prostate cancer tissue with benign prostate tissue
through single-cell sequencing revealed heightened activity in
cholesterol metabolism and underscored the essential role of
SREBP2 in prostate cancer progression (Wei et al., 2024). In
castration-resistant prostate cancer (CRPC), the SREBP2 is
activated by PTEN/p53 deficiency, thereby upregulating
cholesterol metabolism and facilitating tumor cell survival and
growth (Shangguan et al., 2022). Another study also found that
increasing SREBP2 transcription contributes to the malignant
characteristics of prostate adenocarcinoma (Lin et al., 2022).
Conversely, downregulated of SREBP2 in prostate cancer cells
leads to suppressed cancer progression (Li et al., 2013; Li et al.,
2014; Longo et al., 2019). Additionally, studies have shown that
SREBP2 and its downstream effector genes are upregulated in
prostate cancer following androgen ablation, triggering the
formation of androgen-independent (AI) tumors (Ettinger et al.,
2004). Targeting SREBP2 effectively inhibited tumor growth and
metastasis (Wei et al., 2024). Collectively, these findings suggest that
inhibiting SREBP2 represents a promising therapeutic strategy for
prostate cancer.
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4.9 Bladder cancer

In bladder cancer, a study indicates that SREBP2 interacts with
CBP and NFYC-37, activating the transcription of genes involved in
the mevalonate pathway, thereby promoting cholesterol
biosynthesis and tumor growth (Liu et al., 2023). In studies
utilizing mRNA/miRNA microarrays and protein analysis in
T24 bladder cancer cells, archazolid B was found to activate
SREBP2, resulting in severely deregulated cholesterol homeostasis
and contributing to archazolid B-induced resistance (Hamm et al.,
2014). Additionally, SREBP2 plays an important in metastasis of
bladder cancer. Decreasing SREBP2 expression by the Farnesoid X
Receptor (FXR) has been shown to suppress lung metastasis in
bladder cancer (Lai et al., 2022). Combining with cholesterol
suppression treatment can further inhibits the migratory,
invasive, and angiogenic properties of human urothelial
carcinoma, including bladder cancer (Lai et al., 2022). These
results suggest that targeting SREPB2 seems to have potential as
a strategy for bladder cancer treatment.

4.10 Glioblastoma

In glioblastoma (GBM), SREBP2 is highly expressed and plays a
crucial role in upregulating cholesterol biosynthesis in glioblastoma
stem-like cells (GSCs), promoting tumor proliferation, self-renewal,
and overall tumor growth (Gu et al., 2023). Retention of cholesterol
impairs its intracellular delivery in GSCs, subsequently triggering
the SREBP2 transcriptional program to meet cholesterol demands
(Maghe et al., 2024). Conversely, reduced SREBP2 expression can
exacerbate autophagy defects and increase cell death in GSCs,
consequently suppressing tumor progression (Maghe et al., 2024).
Additionally, oxygen and nutrient limitations in the tumor
microenvironment are closely associated with cancer progression
(Lewis et al., 2015). In glioblastoma multiforme, inhibiting
SREBP2 function has been shown to block lipid biosynthesis in
hypoxic cancer cells, impairing their survival under hypoxic
conditions (Lewis et al., 2015). These results illustrate that
SREBP2-mediated cholesterol metabolism participates in
glioblastoma progression. Furthermore, decreasing the expression
of the SREBP2 gene in glioblastoma can suppress mesenchymal
transformation in non-mesenchymal gliomas, thereby inhibiting
tumor metastasis (Ferrarese et al., 2023). Furthermore, lipid
synthesis pathways mediated by SREBP2 are implicated in the
resistance mechanism to temozolomide (TMZ), a common
chemotherapy for GBM (Choo et al., 2023). Inhibiting
SREBP2 enhances sensitivity to TMZ therapy, indicating its
potential as a therapeutic target (Choo et al., 2023).

4.11 Melanoma

In melanoma, the SREBP2 pathway is activated by different
ways, leading to high levels of cholesterol biosynthesis, which in turn
sustains the rapid proliferation of melanoma cells both in vivo and
in vitro (Yamauchi et al., 2011; Dinavahi et al., 2022). Additionally,
in addition to promoting tumor progression by upregulating
cholesterol metabolism, SREBP2 can also reduce reactive oxygen

species (ROS) and lipid peroxidation, which confers resistance to
inducers of ferroptosis in melanoma cells, thereby facilitating tumor
progression (Hong et al., 2021).

4.12 Other cancers

In gastric cancer, expression of SREBP2 and cholesterol
synthesis are promoted by sterol O-acyltransferase 1 (SOAT1),
which facilitates cancer cells lymph node metastasis (Zhu et al.,
2021). Another study shows that gastric cancer stem cells enhance
the expression of SREBP2 to augment cholesterol metabolism,
thereby altering tumor cell membranes and increasing their
resistance to perforin released by natural killer (NK) cells (Zhu
and Wang, 2024). In esophageal squamous cell carcinoma (ESCC),
SREBP2 interacts with c-Myc, synergistically inducing the
expression of HMGCR, which promotes ESCC migration,
invasiveness, viability, and anchorage-independent growth
(Zhong et al., 2019). Additionally, lysophosphatidylcholine
acyltransferase 1 (LPCAT1) regulates the nuclear translocation of
SREBP2, thereby promoting the proliferation of ESCC cells (Tao
et al., 2021). In clear cell renal cell carcinoma (ccRCC),
SREBP2 interacts with MED15 that acts as a SREBP2 coactivator
to promote cholesterol biosynthesis enzyme expression, resulting in
enhancing malignant tumor behavior phenotypes (Hua et al., 2024).
PI3K/AKT/mTOR/SREBP2 pathway is upregulated by VHL
mutations and the subsequent stabilization of HIFα, contributing
to the accumulation of intracellular cholesteryl esters and facilitating
ccRCC development (Zhang et al., 2024). In osteosarcoma, research
indicates that SREBP2 phosphorylation at T610 by PKM2 enhances
its stability and promoting tumorigenesis (Pu et al., 2022). In t (4; 11)
leukemia, SREBP2 is significantly overexpressed and correlates with
a poorer prognosis (Erkner et al., 2024). In summary, SREBP2 is
significantly involved in the occurrence and development of various
tumors (Table 1).

5 SREBP2 in tumor microenvironment

As previously discussed, SREBP2 signaling pathway is
frequently activated in cancer cells, leading to increased
cholesterol biosynthesis and uptake that promotes proliferation.
However, the tumor microenvironment (TME) is a critical
component of cancer, and current understanding of
tumorigenesis and progression is increasingly shifting from a
tumor cell-centric view to one that embraces the complexity of
the tumor ecosystem (de Visser and Joyce, 2023). Consequently,
recent many researches have focused on the regulation of
SREBP2 within the TME. CD8+ T cells, which are immune cells
capable of recognizing and eliminating cancer cells, are exposed to
oxidized sterols secreted by cancer cells into the tumor
microenvironment (TME) (Yan et al., 2023). These oxidized
sterols significantly suppress SREBP2 activity in CD8+ T cells,
resulting in cholesterol depletion and autophagy-mediated T cell
apoptosis or dysfunction (Yan et al., 2023). Another study
employing fatostatin to inhibit SREBP2 found that reduced
cholesterol levels in the TME led to a decreased proportion of
regulatory T (Treg) cells and alleviated CD8+ T cell exhaustion,
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TABLE 1 Molecular mechanism of SREBP2 in cancer from the finding.

Cancer type Functional Impact Molecular mechanism from the findings References

Liver cancer Proliferation, DNA damage SREBP2-mediated cholesterol metabolism upregulates TAZ
expression and increases TAZ interaction with TEAD2 to
enhance DNA damage and proliferation

Saito et al. (2023)

tumorigenesis SREBP2-mediated cholesterol metabolism contributes to the
initiation of liver cancer in the context of gut microbiota
dysregulation

Chen et al. (2022a)

Metastasis LATS upregulates SREBP2 to suppress E-cadherin and induce
N-cadherin/Snail/Vimentin, thereby promoting HCC
metastasis

Zhang et al. (2023)

Drug resistance Caspase-3 activates SREBP2-mediated cholesterol
metabolism, which sequentially induces SHH signaling,
driving chemoresistance in HCC cancer stem cells

Mok et al. (2022)

Pancreatic cancer Apoptosis KRAS mutation activates SREBP2, driving cholesterol
reprogramming to enhance apoptosis resistance in PDAC.

Duan et al. (2024)

Metastasis The interaction between SREBP2 and TFCP2 promotes PDAC
progression and metastasis

Zhang et al. (2021a)

Tumorigenesis SREBP2 forms a complex with β-catenin to activate
transcription of cholesterol metabolism genes, thereby
promoting PDAC progression

Deng et al. (2018)

Colorectal cancer Tumorigenesis SREBP2-mediated YAP/ZMYND8/mTORC1 pathway drives
CRC development

Pan et al. (2021)

Therapeutic vulnerability Activation of SREBP2-mediated cholesterol metabolism
creates a cholesterol a therapeutic vulnerability in aggressive
mesenchymal CRC.

Muta et al. (2023)

Metastasis The c-Met/PI3K/AKT/mTOR signaling axis activates
SREBP2-Mediated cholesterol metabolism to promote CRC
adaptation to metastatic condition

Zhang et al. (2021b)

Lung cancer Pleural angiogenesis LCPF stimulates SREBP2 expression to induce pleural
angiogenesis

Tsai et al. (2022)

Drug resistance Activation of SREBP2-mediated cholesterol metabolism
confers enhanced cisplatin and osimertinib resistance in
NSCLC.

Akman et al. (2024), Cao et al. (2024)

Breast cancer Growth STAT3 phosphorylation (Tyr705) enhances
SREBP2 transcription to regulate TNBC cell growth

Chen et al. (2022b)

Metabolic reprogramming RORγ mediates the chromatin recruitment and activation of
SREBP2 in TNBC.

Cai et al. (2019)

Proliferation Phosphorylated β-catenin stimulates SREBP2 expression,
promoting circulating tumor cell colony formation and tumor
recurrence in breast cancer

Hunt et al. (2023)

Proliferation ABCA9 accumulates cholesterol in ER, reduces
SREBP2 expression, thereby impairing breast cancer cells
proliferation

Hwang et al. (2023)

Invasion, Metastasis CREB induces SREBP2-driven NFATc1 upregulation,
promoting breast cancer invasion and bone metastasis

Jie et al. (2019)

Ovarian cancer Statin toxicity Decreasing SREBP2 levels prevent statin-induced sterol
feedback, thereby enhancing statin toxicity and efficacy in OC
cells

Casella et al. (2014)

Proliferation, Migration, EMT SREBP2 activates the PRSS8/SCNN1A axis to promote OC
proliferation, migration, and EMT.

Cai et al. (2021)

Drug resistance Upregulated SREBP2 mediates resistance to cisplatin in OC. Zheng et al. (2018)

Endometrial cancer Cancer progression Pharmacological inhibition of SREBP2 by BF175 and
fatostatin impedes endometrial cancer progression

Wang et al. (2021), Gao et al. (2018)

Prostate cancer Proliferation Shangguan et al. (2022)

(Continued on following page)
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thereby enhancing antitumor activity (Zhu et al., 2024). However,
recent studies have shown that the upregulation of SREBP2 also
supports CD8+ T cell function, not through cholesterol metabolism,
but by mediating the synthesis of non-steroidal products such as
coenzyme Q (CoQ) (Reina-Campos et al., 2023). This process
promotes their differentiation into tissue-resident memory CD8+

T (TRM) cells, thereby enhancing antitumor immunity (Reina-
Campos et al., 2023). Natural killer T (NKT) cells can mediate

immune responses in cancer. Obesity-induced activation of
SREBP2 and altered cholesterol metabolism in liver lead to
hypercholesterolemia, resulting in excessive cholesterol uptake by
NKT cells (Tang et al., 2022). This leads to the accumulation of lipid
peroxides in NKT cells, thereby impairing their antitumor
immunosurveillance capabilities (Tang et al., 2022). Furthermore,
in melanoma, it has been observed that cancer-derived lactate
activates SREBP2 in conventional dendritic cells (DCs), driving

TABLE 1 (Continued) Molecular mechanism of SREBP2 in cancer from the finding.

Cancer type Functional Impact Molecular mechanism from the findings References

SREBP2-mediated cholesterol metabolism is activated by
PTEN/p53 deficiency, thereby facilitating prostate cancer cell
survival and growth

Anti-tumor activity The upregulated SREBP2 in prostate cancer following
androgen ablation triggers the development of CRPC.

Ettinger et al. (2004)

Proliferation, Metastasis Targeting SREBP2 effectively inhibited prostate cancer growth
and metastasis

Wei et al. (2024)

Bladder cancer Proliferation SREBP2 interacts with CBP and NFYC-37, upregulating
cholesterol biosynthesis, thereby promoting cholesterol
biosynthesis and bladder cancer growth

Liu et al. (2023)

Metastasis FXR upregulates SREBP2 expression to promote lung
metastasis in bladder cancer

Lai et al. (2022)

Glioblastoma Proliferation, Self-renewal SREBP2 upregulates cholesterol biosynthesis, promoting
GSCs proliferation, self-renewal, and overall tumor growth

Gu et al. (2023)

Autophagy Reduced SREBP2 expression exacerbates autophagy defects
and increase cell death in GSCs

Maghe et al. (2024)

Survival Inhibiting SREBP2 function show to block lipid biosynthesis
in hypoxic cancer cells, impairing their survival under hypoxic
conditions

Lewis et al. (2015)

Metastasis Decreasing the expression of the SREBP2 suppresses
mesenchymal transformation in non-mesenchymal gliomas,
thereby inhibiting tumor metastasis

Ferrarese et al. (2023)

Drug resistance Activation of SREBP2-mediated cholesterol metabolism
mediates resistance to TMZ in Melanoma

Choo et al. (2023)

Melanoma Proliferation SREBP2-mediated high level of cholesterol biosynthesis
sustains the rapid proliferation of melanoma

Yamauchi et al. (2011), Dinavahi et al.
(2022)

Ferroptosis SREBP2 reduces ROS and lipid peroxidation, conferring
resistance to ferroptosis in melanoma

Hong et al. (2021)

Gastric cancer Metastasis SREBP2-mediated cholesterol metabolism is activated by
SOAT1, thereby facilitating cancer cells lymph node
metastasis

Zhu et al. (2021)

Resistance to NK cell
cytotoxicity

Increased expression of SREBP2 increases the resistance of
gastric cancer stem cells to perforin released by natural killer
cells

Zhu and Wang (2024)

Esophageal squamous cell
carcinoma

Migration, Invasiveness SREBP2 interacts with c-Myc, promoting ESCC migration,
invasiveness, viability, and anchorage-independent growth

Zhong et al. (2019)

Proliferation LPCAT1 regulates the nuclear translocation of SREBP2,
promoting the proliferation of ESCC cell

Tao et al. (2021)

Clear cell renal cell carcinoma Proliferation, Migration,
Invasion

SREBP2 interacts with MED15, resulting in enhancing ccRCC
malignant tumor behavior phenotypes

Hua et al. (2024)

Proliferation, Migration,
Invasion

PI3K/AKT/mTOR/SREBP2 pathway is upregulated by VHL
mutations and the subsequent stabilization of HIFα,
facilitating ccRCC development

Zhang et al. (2024)

Osteosarcoma Tumorigenesis SREBP2 phosphorylation at T610 by PKM2 enhances
osteosarcoma stability and promoting tumorigenesis

Pu et al. (2022)
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their transformation into regulatory DCs (mregDCs) (Plebanek
et al., 2024). These mature mregDCs suppress DC antigen cross-
presentation, thereby promoting melanoma progression (Plebanek
et al., 2024).

6 Targeting SREBP2 for cancer therapy

As outlined above, abnormal expression and activation of
SREBP2 play a significant role in the initiation and progression
of various cancers. Consequently, targeting SREBP2 maturation or
transcriptional activity has emerged as a high priority in cancer
therapy. Recent studies have identified various SREBP2 inhibitors,

and findings regarding several of these agents for cancer treatment
are summarized below (Table 2).

6.1 Fatostatin

Fatostatin, a non-sterol diarylthiazole derivative, has been
investigated for the treatment of multiple tumors. Originally
developed from a chemical library in 2003 and referred to as
125B11, fatostatin has demonstrated promising antitumor effects
(Choi et al., 2003). It inhibited IGF1-induced growth in prostate
cancer DU-145 cells with an half-maximal inhibitory concentrations
(IC50) of 0.1 µM (Choi et al., 2003). Mechanistically, fatostatin

TABLE 2 SREBP2 inhibitor.

SREBP2 inhibitor Target Cancer type IC50 Dose and intervention time in animol
model

Fatostatin SCAP Prostate cancer 0.1 µM (DU-145) 15 mg/kg for 42–60 days

9.1 µM (C4-2B)

10.4 µM (LNCaP)

Endometrial carcinoma 17.96 µM (Ishikawa)

4.53 µM (HEC-1A)

Breast cancer -

Glioblastoma multiforme -

Acute lymphoblastic
leukemia

-

Hepatocellular carcinoma -

Betulin SCAP-INSIG Prostate cancer 24 h -

4.921 μg/mL (LNCaP)

2.936 μg/mL (PC3)

48 h

7.347 μg/mL (LNCaP)

3.035 μg/mL (PC3)

Breast cancer -

Hepatocellular carcinoma -

Lung cancer -

Xanthohumol SCAP-SREBP2
complex

Hepatocellular carcinoma - 300 mg/kg for 56 days

PF-429242 S1P Hepatocellular carcinoma 0.5 µM(HepG2) 30 mg/kg

glioblastoma full serum media

15 ± 1.3 mM (T98G)

lipoprotein-deficient

0.32 ± 0.09 mM (T98G)

15.2 ± 3.0 Mm
(U87-MG)

27.6 ± 5.3 mM (A172)

BF175 - endometrial cancer 0.3 mg/g/week
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blocks the ER-Golgi translocation of SREBP2 by directly binding to
SCAP at a site distinct from the sterol-binding domain, thereby
inhibiting the cleavage and activation of SREBP2 (Kamisuki et al.,
2009). In prostate cancer, fatostatin reduces the secretion of
extracellular vesicles (EVs) from hypoxia-stimulated cancer cells
by inhibiting cholesterol biosynthesis, which decreases tumor EMT,
invasiveness, and stemness (Schlaepfer et al., 2015). A study utilizing
human prostate cancer cell lines demonstrated that fatostatin
inhibits cell proliferation, invasion, and migration while inducing
caspase-mediated apoptosis, with IC50 (72 h of treatment) of 9.1 µM
and 10.4 µM in C4-2B and LNCaP cells, respectively (Li et al., 2014).
In vivo, fatostatin exhibited antitumor efficacy in a subcutaneous
C4-2B xenograft mouse model when administered at a dose of
15 mg/kg for 42 days (Li et al., 2014). Another study also indicated
that treatment with fatostatin (15 mg/kg) for 60 days in the Pmlpc−/−

mouse prostate tumor metastatic model effectively suppressed the
SREBP pathway and increased antimetastatic activity (Chen et al.,
2018). In androgen receptor-negative prostate cancer cells harboring
mutant p53, fatostatin also inhibited cell growth and induced
apoptosis (Li et al., 2015). Similar to its effects in prostate cancer,
fatostatin has been shown to inhibit growth and proliferation while
inducing caspase-mediated apoptosis in endometrial carcinoma,
with IC50 (after 72 h of treatment) of 17.96 µM and 4.53 µM in
Ishikawa and HEC-1A cells, respectively (Gao et al., 2018; Yao et al.,
2020). In breast cancer, fatostatin prevents SREBP2 activation,
attenuating osteoclastogenesis and breast cancer-induced
osteolysis in vivo, thereby providing therapeutic benefits for
patients with osteolytic bone lesions (Jie et al., 2019). In HCC,
fatostatin markedly suppressed the EMT process (Zhang et al.,
2023). Studies focusing on the tumor microenvironment have
revealed that fatostatin decreases SREBP2 activation and
intracellular cholesterol accumulation, leading to a reduction in
regulatory T (Treg) cells—immunosuppressive cells—while
alleviating CD8+ T cell exhaustion in the TME (Zhu et al., 2024).
These findings confirm fatostatin’s promise in tumor
immunotherapy by inhibiting SREBP2 activation. In acute
lymphoblastic leukemia (ALL), fatostatin disrupts cholesterol
metabolism, effectively counteracting drug tolerance by inducing
cell death and repressing stemness (Malyukova et al., 2024). In
glioblastoma multiforme, fatostatin has shown potential in
overcoming temozolomide resistance (Choo et al., 2023). Despite
its potential therapeutic value, fatostatin has been shown to inhibit
the growth of control cells due to its toxic effects (Li et al., 2014;
Erkner et al., 2024). Consequently, clinical trials involving fatostatin
have not advanced, likely due to safety concerns associated with the
compound. The in vivo activity and pharmacokinetics of fatostatin
are both lower than expected (Peng et al., 2023). In addition, a study
has found that fatostatin has additional pathway targets rather than
specifically blocking SCAP’s ER-to-Golgi transport (Shao et al.,
2016). Therefore, continued efforts should be made to develop
specific SCAP inhibitors.

6.2 Betulin

Betulin is a pentacyclic triterpene abundantly found in birch
bark (Alakurtti et al., 2006). Unlike fatostatin, which directly
binds to SCAP to inhibit the translocation of SREBP2 to the

Golgi, the tumor-suppressive effects of betulin primarily rely on
enhancing the interaction between SCAP and INSIG (Tang et al.,
2011, 2021). This interaction obstructs SCAP from binding to
COPII vesicles, preventing the SCAP-SREBP2 complex from
exiting the endoplasmic reticulum (ER) and thereby
inhibiting SREBP2 activation (Tang et al., 2011, 2021). A
study on prostate cancer demonstrated that betulin
significantly downregulated SREBP2 and its target genes,
exhibiting inhibitory effects on the downstream activity of the
androgen receptor (AR), which suppressed prostate cancer
progression (Wei et al., 2024). The IC50 values of betulin for
LNCaP and PC3 cell lines at 24 h were 4.921 μg/mL and 2.936 μg/
mL, respectively. At 48 h, the IC50 values for LNCaP and
PC3 cells were 7.347 μg/mL and 3.035 μg/mL, respectively
(Wei et al., 2024). In a study focusing on obesity-induced
breast cancer, betulin was shown to inhibit
SREBP2 processing in MCF-7 cells (McClellan et al., 2022).
This reduction led to decreased survival and proliferation of
breast cancer cells (McClellan et al., 2022). In HCC, treatment
with betulin effectively alleviated inflammatory responses and
HCC development in vivo by targeting the SREBP2 pathway (Li
et al., 2017). In terms of tumor resistance, betulin enhanced
gefitinib sensitivity in lung cancer both in vitro and in vivo (Li
et al., 2016). Treatment with betulin and gefitinib significantly
reduced tumor growth by inhibiting SREBP2 and targeting
tumor metabolism (Li et al., 2016). Studies in rat and dog
models indicated that betulin exhibited very low toxicity, with
no severe adverse effects observed in vitro (Jäger et al., 2008).
However, Betulin has poor water solubility; therefore, preclinical
studies on more soluble forms of betulin are required (Adepoju
et al., 2023).

6.3 Xanthohumol

Xanthohumol (XN) is a prenylated flavonoid derived from
natural food constituents, recognized for its antioxidant and anti-
inflammatory properties, which contribute to its antitumor
effects (Stevens et al., 2000; Lupinacci et al., 2009). Shingo
Miyata et al. demonstrated that XN acts as a novel inactivator
of SREBP2. Mechanistically, Sec23/24 is a heterodimer recruited
to the ER membrane, driving the formation of COPII vesicles
(Espenshade et al., 2002). The binding of XN to Sec23/24 disrupts
the incorporation of the SCAP/SREBP2 complex into COPII,
preventing its ER-to-Golgi translocation and thus inhibiting
SREBP2 activation (Espenshade et al., 2002; Miyata et al.,
2015). In vitro, treatment with 10 µM XN significantly
decreased the production of mature SREBP2 in human
hepatoma Huh-7 cells (Miyata et al., 2015). In vivo, mature
SREBP-2 levels were markedly downregulated in
apolipoprotein E-deficient (ApoE−/−) mice fed a Western-type
diet and treated with XN (300 mg/kg body weight/day) for
8 weeks (Doddapattar et al., 2013). However, current data are
insufficient to systematically evaluate the anticancer activity of
XN, highlighting the need for further in vivo studies to enhance
understanding of its clinical efficacy (Harish et al., 2021).
Additionally, XN also suffers from low oral bioavailability
(Legette et al., 2014).
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6.4 PF-429242

PF-429242 is an aminopyrrolidineamide that inhibits
endogenous SREBP2 processing and decreases SREBP2 activation
through pharmacological inhibition of S1P activity (Hawkins et al.,
2008). PF-429242 inhibited GSK343-induced SREBP2 activation,
contributing to its anticancer activity in HCC(Yang et al., 2019).
Furthermore, research has demonstrated that PF-429242 suppresses
the expression of SREBP2 target genes and cholesterol synthesis in
hepatoma HepG2 cells, exhibiting an IC50 of 0.5 µM. In a vivo
research indicated that treatment with PF-429242 at a dose of
30 mg/kg for 24 h, administered every 6 h, effectively reduced
the expression of hepatic SREBP2 target genes and lowered
cholesterol levels in mice (Hawkins et al., 2008). In a series of
in vitro experiments, PF-429242 was identified as an anti-
glioblastoma agent by suppressing SREBP2 activation, inhibiting
cell growth and inducing apoptotic cell death (Caruana et al., 2017).
The IC50 of PF-429242 in T98G cells with full serummedia was 15 ±
1.3 mM for 72 h, which was higher than the IC50 of 0.32 ± 0.09 mM
in lipoprotein-deficient serum, indicating that extracellular
cholesterol reduces the potency of PF-429242 (Caruana et al.,
2017). They also assessed the IC50 of PF-429242 in two other
human glioblastoma cell lines, U87-MG and A172, which were
found to be 15.2 ± 3.0 mM and 27.6 ± 5.3 mM, respectively (Caruana
et al., 2017). However, PF-429242 presents certain medicinal
limitations, including a high clearance rate and poor oral
bioavailability (Hawkins et al., 2008).

6.5 BF175

Xiaoping Zhao et al. designed and synthesized several boron-
containing bioactive stilbene derivatives, among which
BF175 was identified as an inhibitor of SREBP2 expression
and transcriptional activity (Zhao et al., 2014). In a high-fat
diet mouse model, treatment with BF175 (0.3 mg/g body weight/
week) for 1 week significantly decreased the mRNA levels of
SREBP2 and cholesterol biosynthesis in vivo (Zhao et al., 2014).
Unlike the direct inhibition of SREBP1a by blocking the MED15-
KIX and SREBP-1a-TAD interaction, the mechanism by which
BF175 suppresses SREBP2 expression and transcriptional activity
remains unclear and requires further investigation (Zhao et al.,
2014). In endometrial cancer, treatment of AN3CA cells with
varying concentrations of BF175 for 24 h resulted in a significant,
dose-dependent reduction in SREBP2 expression, demonstrating
antitumor activity (Wang et al., 2021). Additionally,
BF175 exhibited low toxicity in tissue culture, suggesting it
may be an ideal candidate as an SREBP2 inhibitor for cancer
treatment (Zhao et al., 2014).

7 Conclusion and future directions

This review has provided an overview of the structure and
regulation of SREBP2, highlighting its functions and mechanisms
in various cancers. As a central transcription factor in cholesterol
metabolism, SREBP2 plays a crucial role in malignancy by linking
oncogenic signaling pathways with alterations in lipid metabolism.

Additionally, SREBP2 also exerts tumorigenic effects through
several non-cholesterol-related pathways. Numerous signaling
molecules regulate the transcription, activation, and stability of
SREBP2, driving tumorigenesis and progression. Additionally,
while only a limited number of studies have explored this aspect,
SREBP2 also influence inflammation, immunity and tumor
microenvironment—processes that are intricately connected to
tumor biology. Future studies should focus on elucidating the
relationship between SREBP2-mediated immunity and
tumorigenesis, as well as cancer progression. A more
comprehensive understanding of these interactions may offer
valuable insights into the role of SREBP2 in cancer and uncover
novel therapeutic strategies targeting antitumor immunity.

Given that SREBP2 is involved in the progression of various
cancers, it holds promise as both a prognostic biomarker and a
potential therapeutic target, making the development of
SREBP2 inhibitors a key component of future cancer treatment
strategies. While several SREBP2 inhibitors have shown anticancer
effects in preclinical models, they have not yet entered clinical trials.
The development of these inhibitors faces several challenges,
including issues related to poor solubility, insufficient potency,
and rapid metabolism, which hinder their progression into
clinical use. Overcoming these hurdles will require the
establishment of efficient high-throughput screening systems for
SREBP2 inhibitors and the rational design of compounds with
improved pharmacological properties. In addition, current
inhibitors lack specificity for SREBP2. In the SREBP family,
SREBP1 and SREBP2 have the same activation pathways, which
leads to inhibitors targeting both proteins simultaneously.
Furthermore, these agents may exert effects on other oncogenic
pathways. Fatostatin, Betulin, and Xanthohumol have been shown
to suppress cancer progression not only via the SCAP-SREBP
pathway but also through inhibition of mTOR, MAPK, and
Notch signaling (Kunnimalaiyaan et al., 2015; Han et al., 2019;
Cai et al., 2023). These multi-target inhibitors still require more
research regarding their efficacy and safety. SREBP2-interacting
proteins or therapeutic antibodies may offer superior target
selectivity, though these approaches remain unexplored to date.
Recent studies identified UT-59 as a SCAP-specific inhibitor that
could open the door to developing therapeutic leads for cancer;
however, its therapeutic efficacy and mechanistic details require
further experimental validation (Xu et al., 2024). Given the critical
role of the basic helix-loop-helix (bHLH) domain in
SREBP2 function, designing inhibitors targeting this region
represents a promising therapeutic development strategy. In
conclusion, SREBP2 is a key regulator of cholesterol metabolism
and plays an integral role in cancer progression. Targeting
SREBP2 directly may present a promising anticancer strategy.
Further investigation into its regulatory mechanisms in tumors,
coupled with the development of more effective inhibitors, holds the
potential to offer new, impactful therapeutic opportunities for
cancer treatment.
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