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Cervical cancer is a common malignancy among women, and tumor excision is
the most common surgical intervention. Anesthetics used during surgery include
general intravenous, volatile, local anesthetics, sedative and analgesic. Studies
have shown that the selection of perioperative surgical methods and anesthetics
may influence postoperative metastasis and cancer recurrence through their
effects on the immune response and tumor cells. Therefore, the selection of
perioperative anesthetic has a significant impact on patients undergoing surgery
for cervical cancer. This study summarizes the effects and related mechanisms of
common anesthetics on the prognosis of patients undergoing surgery for cervical
cancer to provide a basis for developing more optimal anesthesia protocols.
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1 Introduction

Cervical cancer is the fourth most common malignancy in women worldwide (Bray
et al., 2024), and surgical resection is the primary intervention. However, the postoperative
recurrence rate of cervical cancer is still very high. Patients undergoing surgery for cancer
may experience tumor cell spread to the circulating blood or lymphatic system, or may shed
tumor cells during resection. These factors affect postoperative metastasis and the
recurrence of cervical cancer. Studies have shown that the selection of perioperative
anesthetic has an impact on postoperative recurrence, metastasis, and immune function
(Kim, 2018; Ackerman et al., 2021).

Anesthetics include general intravenous, volatile, local anesthetics, sedative and
analgesic. Propofol, a widely used intravenous anesthetic, may exert antitumor effects
bymodulating noncoding RNAs, signaling pathways, and host immune functions (Liu et al.,
2021; Liu et al., 2016). There is evidence that volatile anesthetics may also influence cancer
recurrence andmetastasis by modulating immunity (Wang et al., 2022; Buckley et al., 2014).
Long-term exposure with sevoflurane negatively affects estrogen and progesterone
regulation (Dogru et al., 2017), and estrogen and progesterone may influence anesthetic
dose (Shimizu et al., 2010; Basaran et al., 2019). In addition, studies have shown that
estrogen may promote the development of cervical cancer (Baik et al., 2022), while
progesterone often inhibits the progression of the disease (Yoo et al., 2013).
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TABLE 1 Effects and related mechanisms of anesthetics on cervical cancer cells.

Agents Cell lines Study
type

Treatment Mechanisms Functions References

Proliferation Apoptosis Migration Invasion

Propofol Caski and SiHa In vitro/in
vivo

50 μM,24 h; 20 mg/kg, once a
week for 5 weeks

miR155HG↓ ↓ - - ↓ Du et al. (2021b)

HeLa, Caski and
C33A

In vitro/in
vivo

10 μg/mL, 24 h; 50 mg/kg, once
a day for 3 weeks

HOTAIR↓→mTOR/p70S6K↓ ↓ ↑ - - Zhang et al. (2015)

HeLa and SiHa In vitro/in
vivo

10 μg/mL, 24 h; 35 mg/kg, once
a week for 4 weeks

HOTAIR↓→miR-129-5p/RPL14↑ ↓ ↑ ↓ ↓ Sun et al. (2021)

HeLa In vitro/in
vivo

0, 2.5, 5, 10 mug/mL
10, 20, 50 mg/kg

wnt/beta-catenin↓ ↓ ↑ ↓ ↓ Huang et al. (2020b)

MS751, Caski, SiHa,
Hela and C33A

In vitro 10–100 μmol/L,72 h EGFR/JAK2/STAT3↑ ↓ ↑ - - Li et al. (2017)

C33A and HeLa In vitro 1–20 (10) μg/mL,24 h SLC7A11/GPX4↓, Ubiquinol/CoQ10/FSP1↓,
YAP/ACSL4/TFRC↑→Paclitaxel-Initiated
Cell Ferroptosis↑

↓ ↑ - - Zhao et al. (2022)

HeLa In vitro 400 μM, 24 h AMPK/mTOR↑, ER stress↑→ impair
autophagic flux

↓ ↑ - - Chen et al. (2018)

Dexmedetomidine HeLa and SiHa In vitro - JAK/STAT↓ ↓ - ↓ ↓ Xu et al. (2021)

Sevoflurane HeLa
SiHa and C33A

In vitro 2%, 4%, 8%, 6 h RhoA/MYPT1/MLC↓; Ras/ERK/AKT↓ ↓ - ↓ ↓ Ding et al. (2019)

HeLa In vitro - miR-203↑ ↓ ↑ ↓ ↓ Zhang et al. (2020b)

HeLa and SiHa In vitro 3%, 2 h - ↑ ↓ ↑ - Xue et al. (2019)

Caski and HeLa In vitro 1%, 2%, 3%, 2h/4 h PI3K/AKT↑, ERK1/2↑→HDAC6↑ ↑ - ↑ ↑ Zhang et al. (2020a)

Isoflurane SiHa and Caski In vitro 1%, 2%, 3%, 2h/4 h p-mTOR↑→HDAC6↑ ↑ - - - Zhang et al. (2021)

Cervical cancer cells In vitro - miR-375↓ ↑ ↓ - ↑ Li et al. (2019)

HeLa In vitro/in
vivo

- AMPK/mTOR↑→autophagy↑ ↓ ↑ - - Wei et al. (2021)

HeLa In vitro/in
vivo

1.4%, 6 h; 1.4%, 2 h, once a day
for 10 days

- ↓ ↑ - - Ma et al. (2020)

Morphine C33A and Caski In vitro 0.25–4 μM, 24 h EGFR↑; RhoA↑ ↑ - ↑ - Yu et al. (2022)

Sufentanil HeLa In vitro 500 nmol/L PI3K/AKT/mTOR↓ ↓ ↑ - - Jin, Sun, and Liu,
(2021)

Celecoxib HeLa In vitro 5–160 μmol/L, 24–96 h - ↓ - - - Wang et al. (2012)

(Continued on following page)
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TABLE 1 (Continued) Effects and related mechanisms of anesthetics on cervical cancer cells.

Agents Cell lines Study
type

Treatment Mechanisms Functions References

Proliferation Apoptosis Migration Invasion

HeLa In vitro 24 h tNOX↓ ↓ - - - Morre and Morre,
(2006)

HeLa, Caski and
C33A

In vitro 50 μM, 8 h caspase-8↑; NF-κB↓ ↓ ↑ - - Kim et al. (2004)

HeLa, Caski and
C33A

In vitro 50 μM, 8 h GADD153↓ - ↑ - - Kim et al. (2007)

HeLa In vitro 100 μM, 24 h survivin↓ - ↑ - - Fukada et al. (2007)

HeLa In vitro 40 μM, 12/24 h P53↑ ↓ ↑ - - Setiawati and Setiawati,
(2016)

Lidocaine HeLa In vitro 1 mM, 3 mM, 48 h Ki67↓, and change distribution of Ki-67 ↓ - - - Haraguchi-Suzuki et al.
(2022)

HeLa In vitro 500 μM, 24 h lncRNA-MEG3↑→miR-
421↓→BTG1↑→PI3K/AKT↓

↓ ↑ - - Zhu and Han, (2019)

Ropivacaine SiHa and Caski In vitro 0.25, 0.5.1 mM, 72 h miR-96↓→MEG2↑→pSTAT3↓ ↓ ↑ - - Chen et al. (2020)

-, indeterminate or limited data; ↑, increase; ↓, decrease.
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Nonsteroidal anti-inflammatory drugs (NSAIDs) may have an
antitumor effect by exerting anti-inflammatory effects (Saka-
Herrán et al., 2021). In addition, local anesthetics may inhibit
tumor progression by regulating immunity and inducing
apoptosis (Pérez-González et al., 2017; Chen et al., 2022). These
findings suggest that perioperative anesthetics may have varying

effects on cervical cancer. Therefore, anesthesiologists can improve
the prognosis of patients undergoing surgery for cervical cancer by
selecting the appropriate anesthetic agents.

The present article reviews the postoperative effects of intravenous,
volatile, local anesthetics, sedative and analgesic on patients undergoing
surgery for cervical cancer and their underlying mechanisms (Table1).

FIGURE 1
Different effects of sevoflurane on cervical cancer cells.

FIGURE 2
Effects of anesthetics on cervical cancer cells. Shorter duration of sevoflurane and isoflurane use may have a tumor promoting effect on
cervical cancer.
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2 Intravenous anesthetic agents

2.1 Propofol

Available data suggest that propofol can inhibit proliferation and
metastasis, and induce apoptosis of malignant tumors (Yu et al., 2020;
Liu et al., 2021; Du et al., 2021a; Hu et al., 2022), thereby reducing the
risk for cancer recurrence and improving survival, especially in patients
undergoing major surgery for cancer (Yap et al., 2019; Sessler and
Riedel, 2019). Propofol may affect the development and prognosis of
cancer by regulating microRNAs (miRNAs), and modulating signaling
pathways and host immune function.

miRNA dysregulation is associated with cancer progression. An
in vitro study demonstrated that propofol inhibits the growth and
invasion of cervical cancer cells and epithelial-mesenchymal
transition by inhibiting miR155HG (Du Y. et al., 2021). The long
noncoding RNA (lncRNA) Hox transcript antisense intergenic RNA
(HOTAIR) has been reported to be associated with tumor
recurrence in cervical cancer (Li et al., 2015; Zhou et al., 2020).
Propofol inhibits activation of the mammalian target of rapamycin
(mTOR)/p70S6K pathway (Zhang et al., 2015) and modulates the
HOTAIR/miR-129-5p/ribosomal protein L14 (RPL14) axis (Sun
et al., 2021) by decreasing HOTAIR expression, which
subsequently inhibits the growth of cervical cancer cells.

Signaling pathways play an important role in regulating the
development and progression of cancer. Researchers have found that
the overexpression of epidermal growth factor receptor (EGFR) and
signal transducer and activator of transcription (STAT3) are associated
with poor prognosis in patients with cervical cancer, and propofol can
enhance the antitumor effect of cisplatin on cervical cancer cells by
inhibiting the EGFR/Janus tyrosine kinase 2 (JAK2)/STAT3 pathway
(Li et al., 2017).In addition, it has been reported that propofol induces
ferroptosis by regulating the solute carrier family 7 member 11
(SLC7A11)/glutathione peroxidase 4 (GPX4), ubiquinol/CoQ10/
FSP1, and Yes1 associated transcriptional regulator (YAP)/acyl-CoA
synthetase long-chain family member 4 (ACSL4)/transferrin receptor
(TFRC) pathways, and has a synergistic antitumor effect with paclitaxel
(Zhao et al., 2022). Propofol also induces endoplasmic reticulum stress,
regulates adenosine monophosphate-activated protein kinase (AMPK)/
mTOR signaling, and impairs autophagic flux, thereby inhibiting the
growth of HeLa cells (Chen et al., 2018). In addition, inhibition of the
Wnt/β-catenin pathway may be the underlying mechanism by which
propofol inhibits the growth and migration of cervical cancer cells
(Huang et al., 2020a).

Atomic force microscopy has been used to analyze propofol-
induced changes in the ultrastructure of the cell membrane of
cervical cancer cells. Cervical cancer cells exhibit an evident
decrease in membrane roughness, and their lamellipodia
significantly retract or disappear after treatment with propofol,
which affects cell migration (Zhang et al., 2016).

The antitumor effects of propofol have been verified in animal
trials. By generating xenograft tumor and lung metastasis model
animals, researchers have found that propofol significantly reduced
the level of MIR155HG in tumor tissues and suppressed tumor
growth and metastasis of cervical carcinoma cells in vivo (Du et al.,
2021a). Additionally, propofol inhibited increases in tumor size in a
cervical cancer xenograft model (Zhang et al., 2015; Huang et al.,
2020a; Sun et al., 2021).

Patients who experience recurrence and metastasis are usually
due to immunosuppression. Natural killer (NK) cells play an
important role in controlling tumor metastasis (López-Soto et al.,
2017; Lo et al., 2020). A clinical study found that, during the
perioperative period in laparoscopic radical procedures in
patients with cervical cancer, the number of CD3-positive (+),
CD4+, and NK cells, and the ratio of CD4+/CD8+ cells in the
sevoflurane anesthesia group were significantly lower than those in
the propofol anesthesia group, indicating that propofol may be
beneficial in reducing perioperative immunosuppression, thus
mitigating adverse prognoses in patients with cervical cancer (Liu
et al., 2016). In addition, a retrospective study comparing the effects
of anesthesia on overall, cancer-specific, and recurrence-free survival
in patients undergoing surgery for cervical cancer reported that
propofol was associated with better long-term outcomes (Takeyama
et al., 2021). These findings suggest that propofol has an antitumor
effect on cervical cancer.

2.2 Ketamine

Ketamine acts rapidly and does not cause respiratory depression,
which supports its safety and widespread use. However, studies have
demonstrated that ketamine has immunosuppressive effects that
may adversely affect tumor prognosis. Ketamine may promote
tumor metastasis by inhibiting NK cell activity and increasing
the number of regulatory T cells (Tregs) to suppress immunity
(Melamed et al., 2003; Hou et al., 2016). However, recent clinical and
in vitro studies have shown that ketamine has no effect on the
cytotoxicity of NK cells in patients undergoing surgery for cancer
(Kubota et al., 2022; Cho et al., 2021). Ketamine can even inhibit the
proliferation andmigration of cancer cells and induce ferroptosis (Li
D. et al., 2021; Hu et al., 2020). Two clinical studies found that
ketamine inhibited immune function in cervical cancer patients
undergoing surgery (Wang et al., 2011; Jiang et al., 2022). Studies
investigating the role of ketamine in cervical cancer cells are lacking
and, thus, merit elaboration.

2.3 Etomidate

Etomidate is beneficial for improving hemodynamic stability
during surgery. Many in vitro studies have shown that etomidate
plays an antitumor role by suppressing cell proliferation and
migration and promoting cell apoptosis (Chu et al., 2019; Li H.
et al., 2021). In addition, a retrospective cohort study found that
etomidate was more detrimental than propofol to the prognosis of
patients who underwent radical gastrectomy (Lu et al., 2022).
However, research investigating the relationship between
etomidate and the progression of cervical cancer is lacking and,
as such, merits further promotion.

2.4 Dexmedetomidine

Dexmedetomidine (DEX) is an α-2A adrenergic receptor
(ADRA2A) agonist with unique sedative and analgesic effects
and minimal respiratory depression, and is widely used in the
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clinic. A meta-analysis revealed that DEX can reduce perioperative
stress and inflammation, protect immune function in patients
undergoing surgery, reduce postoperative complications, and
improve prognosis (Wang et al., 2019). Studies have found that
DEX promotes the proliferation and metastasis of breast, lung and
colon cancers (Lavon et al., 2018), but plays an antitumor role in
ovarian and esophageal cancers (Shin et al., 2021; Hu et al., 2021).
These conflicting results may be attributed to differences in the
duration and concentration of DEX exposure and tumor models.
DEX plays multiple roles in cancer cells, the effects on tumor
progression are complex and non-uniform, and there is a lack of
high-quality clinical evidence on the prognostic effects of DEX in
cancer patients. In vitro studies have shown that DEX inhibits
cervical cancer cell proliferation and migration through the JAK/
STAT signaling pathway (Xu et al., 2021). Data regarding the effects
of DEX on the progression of cervical cancer are insufficient and
further research is needed.

In summary, propofol and DEX may exert antitumor effects on
cervical cancer, whereas the effects of ketamine and etomidate
remain uncertain. More studies are needed to explore the
relationship between intravenous anesthetics and the progression
of cervical cancer and the molecular mechanisms involved,
especially in clinical trials, to verify the effect of intravenous
anesthetics on the long-term prognosis of cervical cancer in humans.

3 Volatile anesthetic agents

3.1 Sevoflurane

The biological effect of sevoflurane on cancer cells remains
unclear. Sevoflurane enhances the proliferation and migration of
ovarian cancer cells. Sevoflurane enhances the proliferation and
migration of ovarian cancer cells (Ishikawa et al., 2021; Hu et al.,
2022), but inhibits proliferation and migration of colorectal cancer
and gastric cancer cells (Fan et al., 2019; Yong et al., 2021). Studies
have shown that sevoflurane mediates antiproliferation and
antimigration of cervical cancer cells by targeting resistance to
audiogenic seizures (Ras) and ras homolog family member A
(RhoA) and up-regulating miR-203 (Ding et al., 2019; Zhang
et al., 2020a). However, another study suggested that sevoflurane
promotes the proliferation of cervical cancer cells but has no effect
on cisplatin sensitivity (Xue et al., 2019). Exposure to clinically
relevant concentrations of sevoflurane induces the upregulation of
histone deacetylase 6 through the phosphatidyl inositol 3-kinase
(PI3K)/protein kinase B (AKT-) and extracellular regulated protein
kinases (ERK1/2-) signaling pathways, thereby promoting the
proliferation and metastatic potential of cervical cancer cells
(Zhang et al., 2020a). These conflicting results can be attributed
to the duration and concentration of sevoflurane
exposure (Figure 1).

A retrospective cohort study showed that the prognosis of
patients undergoing surgery for cervical cancer and received
sevoflurane anesthesia was worse than that of those who received
propofol anesthesia (Takeyama et al., 2021). However, studies have
shown that the anesthetic effect of sevoflurane combined with
remifentanil in laparoscopic radical surgery for cervical cancer is
better than that of propofol combined with remifentanil.

Sevoflurane combined with remifentanil anesthesia can also
improve perioperative cellular immune function and relieve
physiological stress (Wang et al., 2022; Suo et al., 2022).

3.2 Isoflurane

Isoflurane promotes proliferation, migration, and invasion in
most cancer cells (Zheng et al., 2022; Benzonana et al., 2013).
Isoflurane upregulated the expression of histone deacetylase 6,
which is associated with the mTOR-dependent pathway, thereby
promoting the proliferation of squamous cervical cancer cells
(Zhang et al., 2021). Isoflurane promoted cell proliferation and
inhibited apoptosis in cervical cancer by downregulating miR-375
(Li et al., 2019). However, another study reported that isoflurane
inhibited the proliferation of cancer cells and promoted apoptosis
and autophagy through the AMPK/mTOR pathway (Wei et al.,
2021). In addition, isoflurane has a potential inhibitory effect on
cervical cancer in nude mice (Ma et al., 2020). To our knowledge, no
laboratory studies have investigated the relationship between
isoflurane and the progression of cervical cancer.

3.3 Desflurane

Conclusions regarding the effects of desflurane on cancer
prognosis are mixed. Studies have suggested that total
intravenous and desflurane anesthesia have comparable effects on
cancer prognosis in patients undergoing surgery (Cho et al., 2021).
Studies have also shown that the survival rate of patients with gastric
and colon cancer undergoing surgery and received total intravenous
anesthesia with propofol was higher than that of those who received
desflurane anesthesia during the 3–5-year follow-up period after
surgery (Wu et al., 2018; Huang et al., 2020b). There have been no
laboratory or clinical studies investigating the relationship between
desflurane and the progression of cervical cancer.

Volatile anesthetics can affect cancer recurrence and metastasis
by altering innate immunity and decreasing NK cell cytotoxicity
(Buckley et al., 2014). One study demonstrated that propofol was
superior to sevoflurane in protecting circulating lymphocytes in
patients undergoing laparoscopic radical hysterectomy for cervical
cancer (Liu et al., 2016). Moreover, the effect of volatile anesthetics
on the prognosis of patients with cervical cancer remains
controversial; as such, further laboratory and clinical trials are
required to obtain more conclusive results.

4 Sedative and analgesic agents

4.1 Opioids

Opioids are the most commonly used perioperative analgesics in
patients with cancer who undergo surgery. Opioids may contribute
to cancer progression by suppressing immunity and promoting
cancer-related inflammation, tumor cell migration, and
angiogenesis (Perry and Douglas, 2019; Amaram-Davila et al.,
2020; Abdel Shaheed et al., 2022). However, studies have shown
that opioids may play an antitumor role by activating tumor cell
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apoptosis and reducing invasion and metastasis (Connolly and
Buggy, 2016; Lec et al., 2020; Ramirez et al., 2021). These
conflicting results may be related to the type and dosage of
opioids, and the type of cancer.

Morphine is an opioid-based analgesic. In vitro studies have shown
that morphine can promote the proliferation of cervical cancer cells by
activating the opioid receptor-dependent EGFR-mediated signaling
pathway and stimulate migration by activating the opioid receptor-
independent RhoA-mediated signaling pathway (Yu et al., 2022). In
contrast, sufentanil induces apoptosis in cervical cancer cells through
the PI3K/AKT/mTOR signaling pathway (Jin et al., 2021). Another
study reported that morphine suppresses immunity through the JAK3/
STAT5 pathway (Jiang et al., 2022). A clinical study reported that
bupivacaine combined with morphine inhibited postoperative immune
function in patients with cervical cancer, whereas ropivacaine combined
with fentanyl had a lower immunosuppressive effect (Dianqing et al.,
2007). In addition, compared with fentanyl, remifentanil had aminimal
effect onT lymphocytes after surgery for cervical cancer (Lu et al., 2018).
The effect of opioids on the long-term prognosis of patients undergoing
surgery for cervical cancer has not been extensively studied, and further
research, especially clinical studies, is required to confirm this finding.

4.2 Benzodiazepines

Benzodiazepines have both sedative and hypnotic effects. The
results of two meta-analyses suggested that there may be no
association between benzodiazepines and survival in patients with
cancer (O’Donnell et al., 2019; O’Donnell et al., 2018). However,
in vitro and animal studies have shown that diazepam and
midazolam exhibit antitumor and anti-inflammatory effects
(Oshima et al., 2022; Wang et al., 2018; Kim et al., 2008).
Midazolam may exert its antitumor effect by inhibiting the local
invasion of tumor-associated neutrophils and tumor-associated
macrophages, or by inhibiting their proliferation and migration.
However, no laboratory or clinical studies have investigated the
relationship between benzodiazepines and the progression of
cervical cancer; therefore, further research is needed.

4.3 NSAIDs

NSAIDs are commonly used as analgesics during surgery. It is
well known that inflammatory responses to tumor tissues may
promote the occurrence and development of tumors (Nasry
et al., 2018; Balkwill and Mantovani, 2001). In contrast, NSAIDs
play an anti-inflammatory role by inhibiting cyclooxygenase (COX)
enzymes to inhibit the synthesis of prostaglandins, thus playing an
antitumor role (Retsky et al., 2013; Brusselaers and Lagergren, 2018).

NSAIDs have been shown to exert antitumor effects in cervical
cancer in vitro and in animal models by inhibiting growth and
migration, and inducing apoptosis (Soriano-Hernandez et al., 2015;
Marinov et al., 2021; Kim et al., 2003). Celecoxib radio-sensitizes HeLa
cells by downregulation of COX-2 and vascular endothelial growth
factor C (VEGF-C) (Wang et al., 2012). Moreover, in addition to COX-
2, NSAIDs, such as celecoxib, inhibit HeLa growth through tNOX, a
cancer-specific cell surface oxidase (ECTO-NOX), via protein disulfide-
thiol interchange activity (Morre andMorre, 2006). In vitro studies have

also shown that NF-kappaB, DNA damage inducible gene (GADD153)
and survivin play important roles in celecoxib-induced apoptosis (Kim
et al., 2004; Kim et al., 2007; Fukada et al., 2007). Moreover, celecoxib
induces apoptosis and cell cycle arrest of cervical cancer cells by
upregulation of p53 through various molecular mechanisms
(Setiawati and Setiawati, 2016; Saha et al., 2012). However, a meta-
analysis revealed that the long-term use of NSAIDs was not associated
with the progression of cervical intraepithelial neoplasia (Grabosch
et al., 2018; Grabosch et al., 2014). More clinical trials are needed to
confirm the relationship between NSAIDs and the long-term prognosis
of cervical cancer.

5 Local anesthetic agents

Local anesthetics are typically used as regional and neuraxial
anesthetics during the perioperative period. Studies have shown that
local anesthetics can enhance immune response and reduce
inflammation, thus exhibiting antitumor effects (Pérez-González
et al., 2017; Ramirez et al., 2015). In addition, many in vitro
experiments have demonstrated that local anesthetics may inhibit
the growth, migration, and invasive capacity of cancer cells, and
induce apoptosis and autophagy through various mechanisms,
thereby playing an inhibitory role in tumor progression (Chen
et al., 2022; Li et al., 2018). However, a meta-analysis revealed
that perioperative local anesthesia may improve the survival of
patients with cancer after oncological surgery, although there is
no evidence supporting a correlation with cancer recurrence after
oncological surgery (Sun et al., 2015).

Studies have found that lidocaine, a commonly used local
anesthetic, decreases Ki-67 expression in cervical cancer cells, thus
inhibiting their growth (Haraguchi-Suzuki et al., 2022). LncRNA
maternally expressed gene 3 (lncRNA-MEG3) is associated with the
progression of cervical cancer (Wang et al., 2017). In an in vitro study,
lidocaine inhibited the proliferation and induced apoptosis of cervical
cancer cells by activating the lncRNA-MEG3/miR-421/BTG anti-
proliferation factor 1 (BTG1) pathway (Zhu and Han, 2019).
Ropivacaine has been shown to exert similar antitumor effects by
reducing miR-96 expression and upregulating MEG2 expression,
leading to STAT3 dephosphorylation (Chen et al., 2020). Clinical
studies have demonstrated that intraoperative lidocaine has a
protective effect on perioperative immune function in patients with
cervical cancer undergoing radical hysterectomy, which may inhibit
tumor metastasis (Wang et al., 2015; Hong and Lim, 2008). Clinical
studies investigating the relationship between local anesthetics and the
progression of cervical cancer are lacking. As such, further research is
needed to determine the long-term effects of local anesthetics in patients
undergoing surgery for cervical cancer.

6 Conclusion

Perioperative anesthetics affect cancer progression. Herein, we
summarized the long-term postoperative effects of anesthetics on
patients with cervical cancer. Current in vitro studies have
demonstrated that propofol, DEX, remifentanil, celecoxib, and
local anesthetics, such as lidocaine, may exert antitumor effects
on cervical cancer. The effects of sevoflurane and isoflurane on
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cervical cancer, however, remain controversial (Figure 2). Studies
have demonstrated that shorter periods of sevoflurane and
isoflurane use may have tumor-promoting effects on cervical
cancer, although further basic research is needed to confirm this.

Clinical trials aimed at confirming that the perioperative use of
DEX, remifentanil, and celecoxib can reduce tumor recurrence and
prolong the survival of patients undergoing surgery for cervical
cancer are lacking. Furthermore, randomized controlled trials that
evaluate the impact of perioperative lidocaine use on patients
undergoing cervical cancer surgery have not included assessments
of patient survival (Wang et al., 2015; Hong and Lim, 2008). The
investigation into the effects of perioperative sevoflurane and
propofol on the prognosis of patients with cervical cancer is
limited to retrospective cohort studies (Takeyama et al., 2021),
with a distinct lack of randomized controlled trials. Presently,
there is an absence of robust clinical evidence, such as
randomized controlled trials or high-quality meta-analyses, to
substantiate the influence of various anesthetic agents on the
long-term prognosis of patients following cervical cancer surgery.
Therefore, more prospective studies and long-term follow-ups of
cancer recurrence after surgery are needed to develop more
sophisticated and effective anesthesia protocols for patients
undergoing surgery for cervical cancer.
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