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Platelets are a class of blood cells exfoliated from bone marrow megakaryocytes
and important participants in the blood. Aggregation is a prominent part of the
platelets involved in the hemostasis process, regulated by multiple signaling
pathways. Abnormal platelet aggregation could lead to thrombosis or
hemorrhagic disorders, which is closely related to the abnormal expression of
receptors inside and outside platelet cells and the mis-transmission of signaling
factors. In recent years, natural compounds have been shown to regulate platelet
aggregation on different levels, including platelet surface receptors, intracellular
signaling factors, and release reaction from platelet secretory granules, due to
their structiral characteristics. However, the anti-platelet aggregationmechanism
of natural compounds is not comprehensive. Therefore, we have elaborated the
main pathways that affect platelet aggregation in terms of the adenosine
diphosphate (ADP), the levels of cAMP and cGMP, arachidonic acid (ARA)
metabolism pathway, thrombin and collagen pathways in this paper.
Particularly, we reviewed various natural compounds such as glycosides,
coumarins, alkaloids, and acids that affect platelet aggregation mechanisms
through these pathways. This review provides a reference for the application
of natural compounds in the structural modification of platelet aggregation as
well as in clinical studies.
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1 Introduction

Aggregation is a major physiological function of platelets. The damaged blood vessels
would release signaling factors that induce platelet activation (Filkova et al., 2019; Rinder
et al., 1991). Activated platelets filopodia and aggregate with one another, ultimately leading
to the formation of blood clots to prevent bleeding caused by vascular injury (Dziedzic et al.,
2024; Li et al., 2017). This mechanism serves as a normal defense response of the body
(Figure 1). However, abnormal platelet aggregation could pose significant risks to health.
Excessive aggregation of activated platelets could result in intravascular thrombosis,
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hindering normal blood circulation and contributing to conditions
such as cerebral thrombosis, acute myocardial infarction, and
atherosclerosis (Huynh et al., 2023; Joshi et al., 2022; Lordan
et al., 2021). Conversely, dysfunction in platelet aggregation
could impede the repair of damaged blood vessels, leading to
prolonged bleeding. This dysfunction is particularly prevalent in
conditions such as thrombocytopenic purpura, myelodysplastic
syndrome, acute leukemia, and giant platelet syndrome (Foss and
Bruserud, 2008; Markewitz and Falk, 2022; Wu et al., 2022). In
response to extensive research on the mechanisms of platelet
aggregation, researchers have developed various antiplatelet drugs
with distinct pharmacological effects. For instance, the effects of
aspirin on platelet aggregation were elucidated through studies of
the arachidonic acid (ARA) metabolic pathway. Aspirin is a classic
drug for preventing thrombosis in clinic (Patrono, 2024; Ridker
et al., 1991). Recent advances in protein and gene detection
technologies have provided a more precise elucidation of platelet
function mechanisms. In conclusion, further review and analysis of
these mechanisms are particularly significant for the development of
new antiplatelet drugs.

Numerous natural species have significantly impacted the
human health industry. Panax ginseng C.A.Mey. [Araliaceae; P.
ginseng radix et rhizoma] is recognized in medicine for its rich array
of active ingredients. Research has demonstrated that P. ginseng
exhibits a variety of beneficial effects, including anti-inflammatory,
antioxidant, and anti-cancer properties. Furthermore, Panax
ginseng has been shown to enhance cognitive function, bolster
immune response, and address diabetes-related conditions (Zhou
et al., 2023). Additionally, P. ginseng possesses anti-platelet
aggregation activity, which reduces the risk of thrombosis and
contributes to the prevention and management of cardiovascular
diseases (Hirsch et al., 2017). Notably, a variety of chemicals
obtained from plants exerted antiplatelet aggregation activity,
albeit at low concentrations. The pharmacologically active

ingredients in herbal medicines typically include glycosides,
flavonoids, alkaloids, coumarins, and organic acids (Tian et al.,
2023; Vissenaekens et al., 2022; Ziegler and Facchini, 2008). In
recent years, research on natural drugs has increasingly focused on
the specific pharmacological mechanisms of key natural
compounds. Studies of these individual natural compounds have
elucidated the specific targets and signaling pathways in various
diseases, providing important theoretical support for the novel
drug molecules.

2 The mechanisms of natural
compounds in antiplatelet aggregation

2.1 Natural compounds affect platelet
aggregation by inhibiting the activity
of thrombin

Thrombin is a multifunctional serine protease produced by the
cleavage of prothrombin and is recognized as a key regulator of the
blood coagulation cascade, thrombosis, and platelet activation and
aggregation (Davie and Kulman, 2006; Di Cera, 2008). As a pivotal
enzyme that catalyzes numerous coagulation-related reactions,
thrombin converts fibrinogen into fibrin, promoting the
formation of insoluble cross-linked fibrin clots and thereby
exerting hemostatic effects (Hulshof et al., 2021). Additionally,
thrombin activates platelets, facilitating their aggregation,
degranulation, and the surface expression of procoagulant lipids
(such as phosphatidylserine). Thrombin binds to protease-activated
receptors (PAR-1 and PAR-4) on the surface of platelets, activating
Gq proteins and subsequently PLC, which promotes the generation
of second messengers IP3 and DAG to regulate platelet aggregation
(Lisman et al., 2005) (Figure 2). Consequently, natural compounds
can inhibit platelet aggregation by directly inhibiting thrombin

FIGURE 1
Normal platelet function. When blood vessels rupture, endothelial cells release neurotransmitters such as vWF and collagen to activate platelets.
After platelet activation, dense granules and α-granules containing multiple platelet agonists are further released to promote the activation of adjacent
platelets. Activated platelets undergo morphological changes and form complexes with collagen, ultimately completing the hemostasis.
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activity and by reducing the response to thrombin activation
through modulation of related molecular pathways. In the
prevention and treatment of thrombotic diseases, researchers
have developed numerous effective agents that modulate the
coagulation process by directly or indirectly inhibiting thrombin,
including Argatroban, Heparin, Warfarin, Rivaroxaban, Dabigatran,
and Bivalirudin (Greinacher et al., 2015). However, the clinical use
of these thrombin inhibitors may lead to severe side effects, such as
bleeding and allergic reactions (Van Aken et al., 2001).

Fortunately, a diverse array of substances exhibiting thrombin-
inhibiting activity can be sourced from the rich repository of natural
compounds. Berberine (BBR), an isoquinoline alkaloid, is a natural
compound that is widely distributed across various plants, including
Coptis chinensis Franch. [Ranunculaceae; C. chinensis radix et
rhizoma], Phellodendron amurense Rupr [Rutaceae; P. amurense
bark]. BBR possesses a diverse range of pharmacological activities,
including hypoglycemic, hypolipidemic, anti-inflammatory, anti-
tumor, and cardiovascular protective effects (Feng X. et al., 2019;
Habtemariam, 2020; Song et al., 2020). It has been utilized in
traditional Chinese medicine for thousands of years. Studies have
demonstrated that BBR can inhibit thrombin-induced platelet
aggregation in washed platelet samples (Wang et al., 2017).
Competitive binding assays indicate that BBR binds to the same

interaction sites as argatroban/thrombin. The C10methoxy group of
BBR serves as a crucial hydrogen bond acceptor, interacting with the
Phe 227 and Trp 215 residues of thrombin, which aligns with the key
amino acid residues in the active site region of thrombin (Mathews
and Tulinsky, 1995). Furthermore, the aromatic ring A of BBR
interacts with Trp-60 D of thrombin through pi-pi interactions,
suggesting that Trp-60 D is a critical amino acid residue involved in
the binding of BBR during the interaction process. This evidence
supports the conclusion that BBR acts as a direct thrombin inhibitor.

Several natural flavonoids and polyphenols derived from herbal
medicine have been recognized as thrombin inhibitors (Liu et al.,
2010). The four primary biflavonoids found in Ginkgo
biloba—ginkgetin, isoginkgetin, bilobetin, and
amentoflavone—demonstrate significant inhibitory effects on
human thrombin, with IC50 values ranging from 8.05 μM to
17.83 μM (Chen et al., 2019). Additionally, methanol (MeOH)
and hydroalcoholic (HA) extracts obtained from the leaves of
White Mangrove about Laguncularia racemosa (L.) C.F.Gaertn.
[Combretaceae; L. racemosa leaves] have been shown to induce
structural alterations in thrombin and diminish its activity. Among
these extracts, quercetin-3-O-arabinoside (QAra) and quercetin-3-
O-rhamnoside (Qn), the two glycosylated flavonoids, are identified
as the most potent inhibitors of human thrombin activity (Rodrigues

FIGURE 2
The major mechanisms of platelet aggregation. These signaling pathways are mainly involved in the arachidonic acid (ARA) metabolic pathway, the
surface receptor activation pathway, the cAMP/cGMP second messenger pathway, and agonist release from intracellular granules.
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et al., 2015). In vitro experiments have demonstrated that salvianolic
acid A directly inhibits thrombin. Interestingly, some natural
compounds do not bind directly to thrombin but instead inhibit
its activity by suppressing thrombin generation. The isocoumarin
compound Sparstolonin B (SsnB) has been shown to reduce the
catalytic activity of coagulation factor Xa (FXa) and the production
of endothelial cells, thereby inhibiting thrombin activation (Kim
et al., 2022). Additionally, various flavonoid compounds, including
quercetin, quercetin-3-O-β-d-glucoside (isoquercetin), procyanidin
B2, cyanidin, and silybin, also inhibit thrombin generation or
directly impede thrombin activity, consequently preventing fibrin
clot formation and blood coagulation (Bijak et al., 2014; Choi
et al., 2016).

2.2 Natural compoundsmodulate adenosine
diphosphate (ADP)-induced platelet
aggregation

Adenosine diphosphate (ADP) is the most important nucleotide
that induces platelet aggregation in human beings. Platelets have
three main ADP receptors, including P2Y1 (Gq protein coupled
receptor), P2Y12 (Gi protein-coupled receptor), and P2X1 (ligand
gated ion channel) (Ding et al., 2005; Jones et al., 2014; Soulet et al.,
2004). The platelet aggregation response mediated by the ADP
signaling pathway is mainly regulated by P2Y1 and P2Y12, which
play important roles in both normal hemostasis and pathological
thrombosis. The P2Y1-mediated signaling pathway mainly affects
the primary aggregation and morphological changes of platelets,
such as pseudopodia (Hechler et al., 1998). The activated P2Y1 can

affect the Gq protein to activate phospholipase C (PLC) with
hydrolyzing inositol-4,5-diphosphate (PIP2) to generate inositol-
1,4,5-triphosphate (IP3) and diacetylglycerol (DAG) (Vilahur et al.,
2018). IP3 mainly affects the Ca2+concentration in platelets (Dolan
and Diamond, 2014). DAG could further activate protein kinase C
(PKC) to regulate integrin αIIbβ3, small G protein Rap1b, and
further activate the Ras/Raf/MEK/ERK signaling pathway (Brose
and Rosenmund, 2002). P2Y12 is a Gi protein-coupled receptor,
expressed on platelet plasma membrane, that inhibits cAMP
formation, ultimately leading to platelet degranulation and release
of thromboxane A2 (TXA2), ADP, ATP, 5-HT and other active
substances further promoting platelet aggregation (Damman et al.,
2012; Hardy et al., 2005). The P2Y12 receptor-mediated signaling
pathway mainly affects the stable aggregation and particle release of
platelets. Consequently, drugs that block the downstream signaling
of the P2Y12 receptor, such as clopidogrel, serve as primary
anticoagulants.

Alkaloids are a class of basic organic compounds with nitrogen-
containing atoms, widely distributed in dicotyledons and
gymnosperms (Bhambhani et al., 2021). Recently, Modulation of
platelet aggregation through the ADP receptor pathway has been
reported in alkaloids (Figure 3) such as isoquinoline, pyridines,
organic, indole, and purines. Morphine, a classical isoquinoline
polycyclic alkaloid primarily derived from Papaver somniferum L.
[Papaveraceae; P. somniferum pericarp et fruit], was found to
interfere with the antiplatelet effects of P2Y12 inhibitors (Zhang
Y. et al., 2021). The PI3K β/Rasa3/Rap1 pathway is a key mechanism
by which ADP activates αIIbβ3 through P2Y12 to trigger platelet
aggregation. Rasa3 originates from the Ras-GAP1 family and is a
major factor in maintaining the balance of GTP-Rap1 and GDP-

FIGURE 3
Natural compounds regulate platelet aggregation through ADP receptor pathways.
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Rap1 levels. Activated P2Y12 induces Rasa3 transfer from the
cytoplasm to the cell membrane through PI3K, disrupting the
above balance to increase GTP Rap1. Excessive GTP Rap1 could
activate αIIbβ3 and ultimately promote platelet activation. The latest
research has found that BBR could inhibit ADP-induced platelet
activation and aggregation, and the mechanism is related to
attenuating the activation of PI3K, thereby hindering the transfer
of Rasa3 to the membrane to stabilize the quiescent state of integrin
αIIbβ3 (Wang C. et al., 2021). Nicotine, as a pyridine alkaloid
present in the tobacco plant, has significant neuroparalyzing
effects. In addition to the effects on cardiovascular function,
nicotine and other smoking products have a direct effect on
platelets. Indeed, the effect of nicotine on platelet aggregation
function remains controversial. Studies have found that nicotine
attenuates platelet sensitivity to ADP to inhibit aggregation (Terres
et al., 1989). However, other researchers have found that nicotine
could promote platelet aggregation, which may be related to the
duration of experimental intervention and the metabolites in human
beings. For instance, nicotine-10-N-oxide has an inhibitory effect on
collagen adhesion (Fahim et al., 2011; Ljungberg et al., 2013).
Ephedrine, a typical organic amine alkaloid primarily derived
from Ephedra sinica Stapf [Ephedraceae; E. sinica Stem-
herbaceous], has been shown to inhibit the aggregation response
of ADP by suppressing the exocytosis of the cytokine chemoreceptor
5 (Regulated upon Activation Normallt T-Expressed, RANTES) and
the expression of P-selectin in platelet granules, which may also
contribute to the induction of the hemorrhagic response (Watson
et al., 2010). Colchicine mainly derived from Colchicum autumnale
L. [Colchicaceae; C. autumnale seeds et corm], an alkaloid that
interferes with microtubule proteins, was found to significantly
inhibit platelet aggregation induced by ADP in vitro. The
mechanism is that colchicine prevents the rearrangement of
platelet organelles during aggregation and the generation of
pseudopods by inhibiting the phosphorylation of associated
membrane proteins such as myosin phosphatase (MYPT), LIM
structural domain kinase 1 (LIMK1), and cofilin-1 (Cimmino
et al., 2018). Notably, Pentoxifylline obtained by N-substituted
derivatization of theobromine also inhibits ADP-induced platelet
aggregation in vitro and in vivo (Magnusson et al., 2008). The
metabolites of pentoxifylline in vivo such as 3,7-dimetyl-1 (5-
hydroxyhexyl)xanthine (R-M1 and S-M1), 3,7-dimetyl -1 (4-
carboxybutyl)xanthine (M4) also exhibited antiplatelet effects
in vitro.

Saponins are a specialized class of glycoside compounds from
nature, which the structure of saponins is characterized by a carbon
skeleton derived from the 30-carbon 2,3-oxo-squalene precursor (de
Costa et al., 2011). Some studies have reported that certain steroidal
saponins and triterpenoid saponins have anti-thrombotic and anti-
platelet aggregation effects, and these mechanisms involve the PI3K/
Akt signaling pathway, PLC, and the effect of Ca2+ concentration.
Allium macrostemon saponin, a natural saponin, derived from A.
macrostemon Bunge [Amaryllidaceae; A. macrostemon bulb],
inhibits ADP-induced platelet aggregation, which is related to
suppressing the CD40/CD40L pathway mediated by
TRAF2 ubiquitination, as well as the inhibition of downstream
phosphorylation proteins such as PI3K/Akt, p38, JNK, and NF-
κB (Ling et al., 2020). Meanwhile, furostanol saponins from A.
macrostemon Bunge [Amaryllidaceae; A. macrostemon bulb] could

inhibit ADP-induced platelet aggregation to attenuate the degree of
cardiomyocyte injury. The mechanism may account for the
inhibition of PI3K/Akt signaling pathway phosphorylation with
platelet in vitro and in vivo, especially on Akt (Feng H. et al.,
2019). This study employed the construction of a rat model, but did
not conduct an examination of the standards for model
establishment, such as histological verification. Meanwhile, the
researchers mentioned the chromatography to separate natural
compounds, we believe that increasing quantitative studies on
saponin components in the mixture, such as HPLC, would better
demonstrate the effect of furostanol saponins on platelet
aggregation. Furostanol saponins isolated from Anemarrhena
asphodeloides Bunge [Asparagaceae; A. asphodeloides rhizoma]
did not inhibit ADP-induced platelet aggregation even at a
concentration of 100 μg/mL, while four spiropyranol saponins as
timosaponin AIII, timosaponin AII, timosaponin AIII isomers, and
timosaponin III, have varying degrees of inhibitory effects on ADP-
induced platelet aggregation, especially the strongest effect of
timosaponin AIII (Yue et al., 2010). This result demonstrated
that the structure of steroidal saponins is closely related to the
anti-platelet aggregation activity. Meanwhile, the type of groups at
C-3, C-15, and C-22 can influence the effect of steroidal saponins in
inhibiting platelet aggregation. Previous studies have found that
oleanolic acid (OA) amplifies ADP-induced platelet aggregation
responses, which are linked with the activation of PLC to induce an
increase in Ca2+ concentration, thereby promoting dense granule
secretion (Kim et al., 2014; Lee et al., 2007). However, recent studies
have demonstrated that OA inhibits human platelet aggregation by
inhibiting the binding of αIIbβ3 to PAC-1 and the expression of
P-selectin rather than ADP (Kontogianni et al., 2016). Some
researchers have suggested that the opposite results in the OA
study on platelet aggregation may be related to differences in
platelet receptor expression with different species. Ginsenosides
are the main active ingredients extracted from P. ginseng
C.A.Mey. [Araliaceae; P. ginseng radix et rhizoma]. 20(S)-
ginsenoside-Rg3 and 20(R)- ginsenoside-Rg3 showed different
inhibitory activities against ADP and other platelet receptor-
induced platelet aggregation due to the chiral character of the
configurations, indicating the influence of drug spatial
configuration on the platelet receptors (Lee et al., 2009).
Particularly, Ginsenoside Rp3 (G-Rp3) and Rp4 (G-Rp4) derived
from ginsenoside Rg1 (G-Rg1) could also inhibit ADP-induced
platelet aggregation by affecting the phosphorylation of MAPK
and PI3K/Akt pathways to reduce Ca2+ increase and
aIIbβ3 activation, suggesting that different ginsenosides may act
on the same signaling pathway, with varying intensities simply due
to differences in functional groups and spatial structures (Irfan et al.,
2018; Son et al., 2017). The latest research has found that
notoginsenoside Fc (N-Fc) in Panax notoginseng saponins (PNS)
derived from P. notoginseng (Burkill) F.H.Chen [Araliaceae; P.
notoginseng radix et rhizoma] could inhibit platelet aggregation
induced by thrombin, ADP, due to its ability to inhibit PLCγ2 and
reduce DAG, and IP3(Liu et al., 2018). Interestingly,
notoginsenoside Ft1 (N-Ft1) also derived from PNC, could
activate PLCγ2 and affect the same signaling pathway as N-Fc to
promote platelet aggregation (Liu et al., 2019). Moreover, N-Ft1
cannot induce aggregation alone, and only enhance the effects of
ADP and other receptors. These two saponins are almost opposite,
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reflecting the duality of P. notoginseng (Burkill) F.H.Chen
[Araliaceae; P. notoginseng radix et rhizoma] in affecting platelet.

Various organic acids have been demonstrated the inhibiting
effects of platelet aggregation and thrombosis. Succinic acid is a
major intermediate metabolite of the tricarboxylic acid cycle in
aerobic life forms. The platelet surface receptor SUCNR1 (GPR91) is
a succinate-mediated G-protein coupled receptor with a locus on
chromosome three that is in close proximity to P2Y1 and
P2Y12 genes (Ariza et al., 2012). Previous studies have shown
that succinic acid can enhance the effect of platelet agonists on
aggregation responses (Macaulay et al., 2007). Further research has
found that succinic acid can reverse the effects of P2Y12 and
P2Y1 inhibitors on ADP-mediated platelet aggregation (Spath
et al., 2012). This mechanism may be related to the amplification
of aggregation by succinic acid activating the relevant G-protein
coupling pathway. However, citric acid, also an intermediate in the
tricarboxylic acid cycle, could inhibit ADP-mediated platelet
aggregation to reduce myocardial ischemia and reperfusion injury
in vivo (Tang et al., 2013). Meanwhile, this study also demonstrates
that L-malic acid has a similar inhibitory effect on platelet
aggregation as citric acid. 5′- nucleotidase is an enzyme extracted
from snake venom that can inhibit platelet aggregation by
promoting the hydrolysis of ADP to adenosine (Saoud et al.,
2017). Vanillic acid is a specific competitive agent for 5′-
nucleotidase, which can reduce or even counteract the
anticoagulant effect of this enzyme (Dhananjaya et al., 2006).
This discovery provides ideas for the design and synthesis of new
snake antivenom drugs. Gallic acid is a polyphenolic benzoic acid
derived from plants. Gallic acid has been found to dose-dependently
inhibit ADP-mediated platelet aggregation, which involves
suppressing the expression of P-selectin and eliminating the
increase of Ca2+. The effect of gallic acid on the phosphorylation
of PKCα/p38 MAPK and Akt/GSK3β is considered to be the main
mechanism in inhibiting aggregation (Chang S. S. et al., 2012).
However, the concentration of gallic acid in this study was only
designed to be 100, 500, 1,000 μM. Such an expanded dosing interval
seems to be further optimized, and the impact of gallic acid on
related proteins has not been quantitatively studied or statistically
analyzed which weakens the reliability of its results. Meanwhile, this
study only considered the effects of gallic acid on platelets in vitro.
Pharmacological studies in vivo and linkage to thrombus models are
necessary to refine this study. Rosmarinic acid, a natural phenolic
acid derived from Salvia rosmarinus Spenn. [Lamiaceae; S.
rosmarinus stem et leaves], could inhibit platelet aggregation
induced by agonists such as ADP, correlated with inhibiting the
release of Platelet-derived microvesicles (PMVs) and reducing Ca2+

(Chen et al., 2022). In conclusion, the Akt and p38/MAPK pathways
seem to be common mechanisms with most phenolic acids in the
inhibition of platelet aggregation, which suggests a direction for
researchers in the new platelet drugs.

The coumarins and the derivatives have excellent anti-platelet
aggregation and vasodilation effects and have been earlier applied in
antithrombotic and anticoagulant therapy. Feroniellin B, isolated
from Feroniella lucida (Scheff.) Swingle [Rutaceae; F. lucida root],
significantly reduced platelet aggregation by 59.1% at 150 μg/mL,
and the inhibitory effect is 39 times higher than that of the standard
drug ibuprofen (Phuwapraisirisan et al., 2007). Otherwise,
feroniellins A and C with a similar branched structure to

feroniellins B have demonstrated different levels of aggregation
inhibition. This oxygen-containing cyclic structure seems to be
involved in the antagonism of ADP receptors, and the
oxygenated pyran moiety of feroniellin B is the most effective.
Sparstolonin B (SsnB) is an isocoumarin compound extracted
from medicinal plants such as Sparganium stoloniferum (Buch.-
Ham. ex Graebn.) Buch.-Ham. ex Juz. [Typhaceae; S. stoloniferum
rhizoma] and Bolboschoenus yagara (Ohwi) Y.C.Yang and M.Zhan
[Cyperaceae; B. yagara Stem-tuber]. SsnB can inhibit platelet
aggregation induced by ADP, which may be related to the
inhibition of PLCγ2/PKC phosphorylation and intracellular
calcium increase (Kim et al., 2022). This research have effectively
demonstrated the anti-aggregation effect of SsnB on human platelets
and mouse models both in vivo and in vitro. In the mice model, the
injection dose was only calculated and predicted based on the
circulating blood volume and body weight. To explore the dose-
response relationship of SsnB in vivo, increased pharmacokinetic
studies of SsnB in vivo would be better. Meanwhile, Hyuganin C, a
coumarin compound extracted from Angelica sinensis (Oliv.) Diels
[Apiaceae; A. sinensis radix et rhizoma] also significantly inhibited
the platelet aggregation induced by the abnormal increase in ADP
(Mira et al., 2017; Yang et al., 2014). Six coumarin derivatives
synthesized by coumarin and the isomers could all inhibit ADP-
mediated platelet aggregation, among which 7-hydroxy-3-phenyl
4H-chromen-4-one has the most significant effect. The mechanism
of these new coumarin derivatives involves inhibiting the activation
of GPIIb/IIIa on platelets, suppressing the increase of Ca2+

downstream of P2Y1, and eliminating the negative regulation of
P2Y12 (Lu et al., 2022).

2.3 Natural compounds affect aggregation
by regulating the levels of cAMP and cGMP

Cyclic nucleotides serve as major second messengers in humans
and play a crucial regulatory role in various cellular processes. The
activation of the cyclic adenosine monophosphate (cAMP)/cyclic
guanosine monophosphate (cGMP) pathway has an inhibitory effect
on platelet activation and aggregation (Figure 2), with functional
abnormalities strongly associated with thrombotic and hemorrhagic
diseases. The balance of synthesis and catabolism in the two cyclic
nucleotides maintains the normal expression of platelet function.
PGI2 binds to prostaglandin receptors (IP, a G protein-coupled
receptor), stimulating adenylate cyclase (AC) to convert ATP into
cAMP (Reitmair et al., 2012). Conversely, activated Gi proteins
inhibit AC to reduce cAMP promoting platelet aggregation (Ferreira
et al., 2004). Additionally, the NO-soluble guanylate cyclase (sGC) -
cGMP signaling pathway represents another critical second
messenger pathway that influences platelet function (Triposkiadis
et al., 2022). The sGC protein exists in the cytoplasm of platelets and
could be activated by NO entering the platelets to catalyze the
generation of cGMP to inhibit platelet activation (Friebe and
Koesling, 2003; Zhou et al., 2025). The drugs that generate NO,
such as sodium nitroprusside and nitroglycerin, could influence
platelet function through this pathway (Anfossi et al., 2001; Aoki
et al., 1997). The cAMP and cGMP inhibit platelet function by
affecting downstream protein phosphorylation via protein kinases
PKA and PKG, respectively. For instance, cAMP and cGMP could
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eliminate GPIbα-mediated platelet aggregation, which is attributed
to the inhibition of the Akt pathway (Makhoul et al., 2019).
Vasodilator-stimulated phosphoprotein (VASP), upon
phosphorylation by PKA, further inhibits platelet activation.
Meanwhile, PKG-mediated phosphorylation of substrates can
hinder platelet aggregation by affecting Ca2+ release.

Regulating the concentration of cAMP in platelets is the main
pathway by which alkaloids affect platelet aggregation. The
mechanism of morphine regarding the promotion of aggregation
is related to the activation of α-2- adrenoceptors in platelets as a
consequence of elevating the intracellular Ca2+ concentration and
the inhibition of adenylate cyclase to reduce the cAMP (Sheu et al.,
2002). Moreover, the decrease in cAMP caused by morphine
accelerates ATP release, leading to further platelet activation.
Interestingly, yohimbine, an indole alkaloid from Corynanthe
johimbe K.Schum. [Rubiaceae; C. johimbe bark], could inhibit
platelet aggregation by blocking α-receptors to eliminate Ca2+

release and elevate platelet cAMP concentrations, which is a
diametrically opposed pharmacological activity to morphine
(Kubacka et al., 2018; Saeed and Rasheed, 2003). Indeed, research
has found that yohimbine could indeed inhibit platelet aggregation
caused by morphine. Matrine was found to inhibit platelet
aggregation by increasing levels of cGMP. Particularly, matrine
does not alter the expression of P-selectin, GPIbα, GPVI, or
αIIbβ3 (Zhang S. et al., 2021). Modulation of the cAMP
degradation process by affecting the activity of PDE is a major
pathway by which alkaloids affect platelet aggregation, as reported in
papaverine and aminophylline. Papaverine, derived from the same
plant as morphine, inhibits PDE to increase cAMP concentration to
reduce platelet aggregation (Zahavi et al., 1984). Meanwhile,
papaverine has a direct anti-aggregation effect without inhibiting
endothelium cell-dependent platelet aggregation (Az-Ma et al.,
2000). Aminophylline, a clinical alkaloid used in asthma and
chronic obstructive pulmonary diseases (COPD), could also
inhibit platelet aggregation by inhibiting PDE to increase cAMP
levels (Dow-Edwards et al., 1980; McDonald et al., 1974). Earlier
studies have found that chronic administration of caffeine can
enhance the inhibitory effects of prostaglandin E1 (PGE1) and
5′- N-ethylcarboxamide adenosine (NECA) on platelet
aggregation, which is attributed to caffeine altering the number
of adenosine receptors to promote an increase in cAMP levels
(Zhang and Wells, 1990). Theobromine is a phosphodiesterase
inhibitor, and a purine alkaloid widely found in tea, coffee, and
chocolate (Jang et al., 2020). The administration of chocolate
containing theobromine reduces platelet aggregation activated by
ADP, which is related to increasing the sensitivity of platelets with
theobromine to cAMP (Rull et al., 2015). In conclusion, the effects of
purine alkaloids on platelet aggregation are mostly mediated
through the cAMP pathway, which may be related to the purine
structure of cAMP.

A few studies have reported the effect of saponins on cAMP in
platelet aggregation, typically consisting of triterpenoid saponins.
Ginsenoside Rk3 (G-Rk3) was found to increase cAMP in human
platelets to induce phosphorylation of the cAMP-dependent kinase
substrates VASP and inositol 1,4,5-trisphosphate receptor (IP3R),
and significantly inhibit Ca2+ recruitment and cytoplasmic
activation of integrin aIIbβ3 (Kwon et al., 2023). The main
components of Panaxatriol saponins (PTS) are ginsenosides Rg1

(G-Rg1), ginsenosides Re (G-Re), and Notoginsenoside R1 (N-R1)
with a total content of more than 67%. A study confirmed that PTS
can inhibit platelet aggregation by increasing cAMP, and the
inhibitory effect was stronger than that of PNS (Xu et al., 2021).

Currently, the studies on organic acids in platelet aggregation
regarding the cAMP or cGMP pathway are still few. A new formula
derived from Cornus officinalis Siebold & Zucc. [Cornaceae; C.
officinalis fruit], including malic acid, succinic acid, and citric
acid in the ratio of 3:2:2, inhibited platelet aggregation with a
maximum inhibition rate of 82.82%. The mixture was found to
increase the release of cGMP and NO from platelets, but had no
effect on the concentration of cAMP (Zhang et al., 2014).
Unfortunately, the specific mechanisms by which these three
acids affect the NO/cGMP pathway are still unclear. Some
research reports suggest that caffeic acid can promote the
phosphorylation of VASP and inositol triphosphate (IP3)
receptors by increasing cAMP levels to prevent the activation of
GPIIb/IIIa receptors, thereby exerting antiplatelet aggregation
(Anwar et al., 2013; Lu et al., 2015; Nam et al., 2020).

Most research has indicated that the cAMP pathway is a major
pathway by which flavonoids affect platelet aggregation. For
instance, the ability of quercetin and dihydroquercetin to inhibit
ADP-induced platelet aggregation is closely related to reversing the
increase in the content of Ca2+ by antagonizing ADP, thereby
increasing cAMP levels (Kubatiev et al., 1999; Lanza et al., 1987).
Meanwhile, some of the flavonoids, such as apigenin, quercetin, and
populin, could inhibit the activity of PDE to decrease the
degradation of cAMP (Balykina et al., 2024). These flavonoids
could aslo increase cAMP to activate PKA activity, thereby
further inhibiting platelet aggregation (Huang et al., 2021). These
studies demonstrate that flavonoids increase cAMP levels in platelets
through multiple pathways. Interestingly, naringen inhibits platelet
aggregation by increasing the levels of cGMP rather than cAMP.

2.4 Natural compounds affect platelet
aggregation by regulating arachidonic acid
(ARA) metabolism pathway

The metabolic pathway of arachidonic acid (ARA) primarily
relies on n-6 polyunsaturated fatty acids as metabolic precursors,
which generate active fatty acid metabolites through the catalysis of
various enzymes. These metabolites play critical roles in regulating
inflammation, the hematological system, immune responses, and
the respiratory system (Sonnweber et al., 2018). Cyclooxygenase
(COX) is a bifunctional enzyme that catalyzes both
cyclooxygenation and peroxidase reactions, metabolizing ARA
released from membranes by phospholipase A2 (PLA) into
prostaglandin PGG2, which is subsequently converted into
prostaglandin PGH2. PGH2 serves as the major active
intermediate in the prostaglandin pathway and can be further
synthesized into TXA2 and prostaglandin I2 (PGI2) by specific
enzymes (Harris and Zhang, 2011). TXA2 is a potent platelet-
activating substance that promotes platelet aggregation, ultimately
leading to thrombus formation. PGI2 is mainly synthesized and
released by vascular endothelial cells. However, PGI2 can inhibit
platelet aggregation by increasing the level of cAMP in platelets to
inhibits the release of Ca2+, compared to TXA2. Aspirin, a well-
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established therapeutic agent, inhibits platelet aggregation by
blocking COX-1, which in turn decreases the production of
TXA2. Notably, PGI2 exerts physiological effects that are
antagonistic to those of TXA2, as it is capable of inducing
vasodilation and inhibiting platelet activation. Treprostinil, a
synthetic analog of PGI2, has been employed in the treatment of
patients suffering from pulmonary arterial hypertension and arterial
thrombosis (Ghonem et al., 2011). Both TXA2 and PGI2 possess
very short half-lives in the human body, undergoing rapid
metabolism to form thromboxane B2 (TXB2) and 6-keto-
prostaglandin F1α (6-keto-PGF) (Capone et al., 2007),
respectively. Therefore, maintaining the balance between TXA2

and PGI2 is crucial for regulating platelet aggregation. Aspirin,
recognized as the most effective antiplatelet drug, is widely
employed in antithrombotic therapy due to its inhibitory effect
on COX-1 via the ARA pathway (Desborough and Keeling, 2017).

Recent studies have extensively reported the effects of alkaloids
on platelet function, particularly regarding aggregation (Parvin et al.,
2022). Certain alkaloids can influence platelet aggregation through
the ARA pathway (Figure 4). Both tetrandrine (TET) and
fangchinoline (FAN), which are derived from Sinomenium
acutum (Thunb.) Rehder and E.H.Wilson [Menispermaceae; S.
acutum stem et rhizoma], inhibited PAF-mediated platelet
aggregation by affecting the formation of TXA2, with FAN
demonstrating superior efficacy compared to TET (Kim H. S.
et al., 1999). Notably, these alkaloids do not interfere with the

binding of PAF to its receptor. Additionally, piperine, which
shares the same benzodioxole structure as BBR, also reduces the
release of ARA by inhibiting cytosolic phospholipase A2 (cPLA2),
thereby inhibiting platelet aggregation and suppressing TXA2 (Park
et al., 2007; Son et al., 2014). The results suggest that the
benzodioxole structure may serve as a functional group
influencing platelet aggregation. Vinblastine, a bisindole alkaloid,
is widely utilized in cancer treatment due to its mechanism of
inhibiting tubulin polymerization. Previous studies have
demonstrated that vinblastine inhibits platelet aggregation
through its effects on ARA metabolism (Brammer et al., 1982).
In contrast, vincristine, another bisindole alkaloid, does not affect
platelet aggregation (Takano, 1981). It is important to note that
tubulin is not essential for platelet aggregation (Kuntamukkula et al.,
1982). Vincristine alkaloids appear to influence aggregation by
disrupting the movement of granules within platelets (Sneddon,
1971). Furthermore, the study indicated that vincristine does not
inhibit platelet aggregation by suppressing the microtubule pathway;
instead, it affects PLA2 activity and Ca2+ influx, which inhibits ARA
release and interferes with membrane fluidity (Hashizume et al.,
1988). Specifically, vincristine exhibits a promoting effect on platelet
counts at low concentrations (0–20 μg/mL) but shows an inhibitory
effect on platelet aggregation at high concentrations (100 μg/mL)
(Takano, 1981). Recent studies indicate that caffeine can also
mitigate ARA-mediated platelet aggregation by inhibiting COX-1
and COX-2 (Hutachok et al., 2020). Furthermore, as an

FIGURE 4
Natural compounds regulate platelet aggregation through arachidonic acid (ARA) metabolic pathway.
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anticholinergic agent, anisodamine, is derived from Anisodus
tanguticus (Maxim.) Pascher [Solanaceae; A. tanguticus root] has
been demonstrated to be an effective inhibitor of platelet
aggregation. It disrupts thromboxane synthesis by inhibiting
cyclooxygenase and thromboxane synthase in the ARA pathway
(Xiu et al., 1982).

Numerous recent studies have demonstrated that saponins can
influence platelet aggregation via the ARA pathway. Ginsenosides,
the primary active components extracted from P. ginseng C.A.Mey.
[Araliaceae; P. ginseng radix et rhizoma], exert antiplatelet effects by
interfering with associated signaling pathways and inhibiting
relevant enzymes, thereby obstructing various stages of platelet
aggregation (Lee et al., 2023; Zheng et al., 2019). Four
dammarane-type saponins, namely, Ginsenoside Rk1 (G-Rk1),
Ginsenoside Rg5, 20(S)-Ginsenoside-Rg3, and 20(R)-Ginsenoside-
Rg3, have exhibited significant inhibitory activity on platelet
aggregation (Zheng et al., 2019). Notably, both Rk1 and
Rg5 could inhibit ARA-mediated platelet aggregation in a dose-
dependent manner, surpassing the efficacy of acetylsalicylic acid
(ASA). Furthermore, G-Rk1 demonstrated a pronounced inhibitory
effect on collagen-stimulated human platelet aggregation, which
may be attributed to its capacity to reduce TXA2 generation by
downregulating the expression of cPLA2 (Ser505) and p38 (Shin
et al., 2021). Additionally, the combination of Panax quinquefolius
saponins (PQS) derived from P. quinquefolius L. [Araliaceae; P.
quinquefolius radix] with aspirin and clopidogrel in dual antiplatelet
therapy (DAPT) has been shown to enhance the antiplatelet effect in
acute myocardial infarction (AMI), a mechanism attributed to the
inhibition of TXB2. Saikosaponin A significantly inhibited ARA-
induced platelet aggregation with effects comparable to those of ASA
(Chang andHsu, 1991). This data has suggested that Saikosaponin A
has a therapeutic role in thrombosis. Furthermore, PQS promotes
the synthesis of epoxyeicosatrienoic acid (EET) and PGI2, while
simultaneously inhibiting TXB2, thereby further suppressing platelet
aggregation (Kou et al., 2018; Wang et al., 2023). Research indicates
that the inhibitory effect of PQS on platelet aggregation may involve
the PI3K/Akt signaling pathway (Wang et al., 2016). Similarly, the
combination of PNS with DAPT could enhance the antithrombotic
effect, potentially related to the augmentation of anti-platelet
aggregation, activation of the fibrinolytic system, and
upregulation of 6-keto-prostaglandin F1α (6-keto-PGF1α)
production (Huang et al., 2022). Additionally, a study has
confirmed that PNS can inhibit platelet aggregation by decreasing
the TXA2/PGI2 ratio (Xu et al., 2021).

Various organic acids have been demonstrated to inhibit platelet
aggregation and thrombus formation (Tzakos et al., 2012), which
has significant implications for the prevention and treatment of
cardiovascular diseases. Acetic acid, the primary product of plant
fermentation, significantly inhibits platelet aggregation mediated by
ADP, collagen, thrombin, and ARA, potentially due to its inhibition
of COX-1 and TXA2 formation (Jing et al., 2015). Phloroglucinol is
widely used clinically to alleviate spasmodic pain (Corvino et al.,
2023). Notably, phloroglucinol has also been demonstrated to
reduce TXB2 formation by inhibiting the activity of COX
enzymes, thereby inhibiting ARA-mediated platelet aggregation
(Chang M. C. et al., 2012).

The mechanisms by which various flavonoids and their
biometabolic compounds exert effects against platelet aggregation

have been extensively studied. Typically, a single flavonoid
compound may influence platelet aggregation directly or
indirectly through multiple pathways. The ARA/COX-1/
2 pathway serves as the primary mechanism by which most
flavonoids inhibit platelet aggregation. Research has
demonstrated that flavonoids can inhibit the activity of PLA2,
thereby reducing ARA levels (Kusar et al., 2024; Ximenes et al.,
2012a; Ximenes et al., 2012b). Key factors contributing to the
inhibition of ARA metabolism-induced platelet aggregation by
flavonoids, particularly through their effects on COX-1/2 activity,
have been reported for quercetin, rutin, apigenin, and silymarin
(Bijak and Saluk-Bijak, 2017; Zaragoza et al., 2022). Additionally,
molecular docking studies indicate that quercetin and apigenin can
interact with the Tyr385 residue on COX-1, thereby preventing
COX-1 from catalyzing the conversion of ARA to the prostaglandin
intermediate PGG2. This interaction may represent a crucial
molecular mechanism through which flavonoids exert their
effects on COX enzymes (Lescano et al., 2018; Tsiailanis et al.,
2023). Interestingly, certain flavonoid compounds, such as genistein,
have been found to directly inhibit platelet aggregation induced by
stable TXA2 analogs [U46619 and 9,11-epithio-11,12-methano-
thromboxane A2 (STA2)](Nakashima et al., 1991).

2.5 Natural compounds inhibit collagen-
induced platelet aggregation

Collagen receptors in platelets include the GPIa/IIa and GPVI
glycoprotein receptors. The GPIa/IIa glycoprotein receptors, also
known as integrin α2β1 and CD49b, are heterodimeric proteins
composed of GPIa and IIa subunits that recognize GFOGER
sequences of collagen. These receptors are influenced by Mg2+

and Mn2+, which mediate adhesion and aggregation
(Madamanchi et al., 2014; Pugh et al., 2010). The I domain of
the α subunit in GPIa/IIa serves as a collagen-binding site and
exhibits some homology with the A1 structural domain of vWF,
which is essential for collagen binding in conjunction with vWF and
GPIa/IIa (Depraetere et al., 1997). GPVI receptors, another major
class of collagen glycoprotein receptors, play a crucial role in the
early phase of platelet-collagen interactions. GPVI can activate Syk
family tyrosine kinases in platelets, promoting the activation of
downstream signaling proteins such as PLCγ2 and PI3K, ultimately
leading to an increase in intracellular calcium levels in platelets.
Initial research suggested that GPVI enhances GPIa/IIa activation,
further amplifying the effects on collagen adhesion and aggregation
(Zhang et al., 2023). Notably, specific antibodies against GPIa/IIa
and GPVI, as well as Src family tyrosine kinase inhibitors, were
utilized to confirm that GPVI and GPIa/IIa receptors activate
distinct pathways, indicating that both receptors play equally
important roles in platelet binding to collagen. Furthermore, the
expression of these two glycoprotein receptors is closely associated
with Src family kinases, protein phosphatase 1 (PP1), and Syk
activation, highlighting a cooperative relationship between GPIa/
IIa and GPVI (Auger et al., 2005; Sarratt et al., 2005).

Some alkaloids have been shown to inhibit platelet aggregation
through the collagen pathway, mainly concentrated in indole,
purine, and tropane alkaloids. Reserpine, a monoterpenoid indole
alkaloid, could inhibit aggregation by inhibiting platelet adhesion to
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collagen and affecting granule content while accelerating platelet de-
aggregation (Cazenave et al., 1977). Caffeine is widely present in
coffee and tea, which is the most common purine alkaloid. The
Research has suggested that caffeine still has a certain inhibitory
effect on collagen-induced aggregation (Hutachok et al., 2020).
Previous studies have shown that atropine, the representative of
the tropane alkaloids, could inhibit collagen-induced platelet
aggregation (Ishigooka et al., 1985). Unfortunately, the specific
molecular mechanism of atropine in this inhibitory effect is still
unclear. The tropane alkaloid cocaine from Erythroxylum coca Lam.
[Erythroxylaceae; E. coca leaves] could exert inhibitory effects on
collagen-stimulated platelets at high concentrations (2,500 μmol/L)
in vitro (Cagienard et al., 2014). This mechanism may be due to the
direct effect of cocaine on the binding of fibrinogen to activated
platelets (Jennings et al., 1993). However, research has found that
cocaine could promote platelet aggregation in vivo, which is the
cause of some cerebral thrombosis and heart diseases (Treadwell and
Robinson, 2007). Some viewpoints suggest that cocaine-mediated
platelet aggregation may be related to enhanced catecholamines in
vivo (Kloner et al., 1992).

The saponins that affect collagen-induced platelet aggregation
are mainly ginsenosides. Specifically, MAPK and PI3K/Akt are
common mechanisms by which these saponins inhibit the
collagen pathway, and may be related to their maternal nuclear
structure. Red ginseng extract enriched with ginsenoside Rg3 (Rg3-
RGE) can significantly inhibit collagen-induced platelet aggregation
and intracellular calcium Ca2+ increase in a dose-dependent manner.
Meanwhile, Rg3-RGE reduces granule release induced by platelet
activation and binding to fibronectin. These results also found that
Rg3-RGE significantly inhibited the phosphorylation of MAPKS
and PI3K/Akt pathways in aggregation (Jeong et al., 2017). G-Rk1
was found to reduce collagen-induced aggregation by inhibiting
endoplasmic reticulum Ca2+ release and elevated αIIbβ3 activity.
Meanwhile, G-Rk1 has also been shown to increase the
phosphorylation of IP3RI (Ser1756), VASP (Ser157), and
maintaining the unphosphorylated state of Akt at Ser473, which
are typically regulated by cAMP (Shin et al., 2021). This result has
indicated that G-Rk1 might inhibit platelet aggregation through the
cAMP pathway. G-Rp3 regulates collagen-induced platelet
activation and thrombosis by inhibiting integrin
αIIbβ3 activation, MAPK signaling, Src, PLC γ 2, and PI3K/Akt
activation, as well as VASP) stimulation (Irfan et al., 2018).

The influence of organic acids on platelet aggregation via the
collagen pathway remains poorly studied. Ellagic acid inhibits the
activation of Plcgamma2-DAG-PKC after collagen-mediated
platelet activation, as well as reduces the activatory effect of
hydroxyl radical on p38/MAPK and Akt pathways after collagen
stimulation, ultimately leading to a decrease in Ca2+ (Chang et al.,
2013). Although researchers explored the effects of ellagic acid on
platelet aggregation by stimulating with collagen, thrombin, and
ARA in this study, they did not include the impact of ADP, an
important platelet aggregation agonist. Meanwhile, we believe that
incorporating research on LY294002, a PI3K inhibitor, can better
demonstrate the effect of ellagic acid on PI3K/Akt. Especially,
positive control drugs in the experiment should be considered in
the subsequent investigation of ellagic acid on platelet aggregation.

The GPVI receptor signaling pathway and the phosphorylation
of key enzymes is the main mechanism by which some flavonoids

inhibit platelet aggregation. Quercetin has been shown to inhibit
collagen stimulated platelet aggregation by suppressing GPVI
receptor phosphorylation (Huang et al., 2021; Hubbard et al.,
2003). This research suggested that quercetin could inhibit the
phosphorylation of Fc receptor γ chain (FcR γ-chain), thereby
reducing the early signaling pathway response of collagen-
stimulated platelet aggregation, while inhibiting the
phosphorylation of Syk, LAT, and PLCγ2 to further prevent
platelet aggregation response. Particularly, chrysinhas also has an
inhibitory effect on collagen-mediated platelet aggregation, which is
related to the inhibition of the GPVI-Syk PLCγ2-PKC-
ERK2 signaling pathway after collagen stimulation.

Most of the research results show differences in the aggregation
reactions of natural compounds. This may be due to differences in
the stages of platelets, expression levels of platelet-related receptors,
and experimental protocols. We believe that designing a standard
model for natural compounds in platelet aggregation reactions is
necessary, which involves sample collection time, anticoagulant
pretreatment of samples, and the quantity and activity of
platelets in platelet-rich plasma (PRP). In addition, quantitative
standards need to be established for the concentration and activity of
stimulants.

3 Clinic trials

3.1 Alkaloids

Clinical trials on alkaloids have been extensively reported
(Table 1). Due to the wide application of alkaloids, clinical trials
usually explore their safety. Meanwhile, due to the frequent
exposure of humans to alkaloids through daily food and
beverages, researchers often concentrate on examining the
effects of long-term consumption of these substances on the
human body. Four clinical trials have reported the effects of
caffeine on platelets, which further demonstrated that caffeine
inhibits platelet aggregation by enhancing cAMP levels (Choi,
2003; Lev et al., 2007; Varani et al., 2000; Whittaker et al., 2013).
Moreover, the results of a 2-week trial in 45 healthy volunteers
showed that caffeine potentiates cAMP effects primarily through
upregulation of the adenosine A2A receptor (Varani et al., 2000).
The combination of caffeine and clopidogrel has been shown to
increase the inhibition of platelet aggregation in the trial
involving both healthy volunteers and patients with coronary
artery disease, which was also linked with elevated cAMP levels
(Lev et al., 2007). The trial with 12 volunteers demonstrated that
caffeine could attenuate platelet aggregation mediated by high-
intensity aerobic interval training (AIT), thereby avoiding
thrombus (Whittaker et al., 2013).

The clinical trials of morphine mainly focus on the safety and
interaction with other antiplatelet drugs, due to promoting platelet
aggregation and the wide application in the clinic. A clinical trial on
ST-segment elevation myocardial infarction (STEMI) suggested that
morphine could increase the risk of early re-infarction and major
bleeding in patients, during fibrinolysis and antiplatelet therapy for
STEMI (Cantor et al., 2022). Two randomized trials reported that
morphine can reduce the blood concentration of ticagrelor in vivo.
Interestingly, the trials in healthy volunteers have shown that
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morphine does not affect the antiplatelet effect of tegretol (Hobl
et al., 2016). A trial of acute coronary syndrome (ACS) has shown
that the application of morphine did not significantly alter the in-
hospital adverse events or drug side effects caused by the ticagrelor
in ACS (Parodi et al., 2023). However, morphine exhibits a dual
inhibitory effect on blood levels and the efficacy of tegretol in

patients with acute myocardial infarction (AMI) (Kubica et al.,
2016). A randomized double-blind and placebo trial has found
that morphine could delay the absorption of clopidogrel and
reduce the levels of the metabolites, thereby deferring and
weakening the antiplatelet aggregation effect (Hobl et al., 2014).
In conclusion, morphine interactions with antiplatelet drugs are

TABLE 1 Clinical research on alkaloids.

Participants Interventions Result Ref.

Healthy, nonsmoking subjects 1) Caffeine 200 mg BID, 7 days
2) Caffeine 200 mg BID, 14 days
3) Caffeine 200 mg TID, 7 days

Adenosine A2A receptor is upregulated, and platelet
aggregation is reduced in group 1) and 2).

Varani et al.
(2000)

Healthy volunteers Intravenous injection of 10 mg ephedrine, repeat
in 15 min.

Significantly prolonged the average bleeding time by
2 min.

Flordal and
Svensson (1992)

Healthy subjects 1) Morphine (5 mg i.v. bolus) + 600 mg
Clopidogrel
2) Placebo (0.9% NaCl i.v. bolus) + 600 mg
Clopidogrel

Morphine: Max platelet agg inhibition delayed
average 2h; delayed platelet embolism inhibition
under high shear; eliminated 3 times closure time
prolongation by collagen ADP in widespread/rapid
metabolizers.

Hobl et al. (2014)

Healthy subjects 1) Morphine (5 mg i.v. bolus) + 180 mg Ticagrelor
2) Placebo (0.9% NaCl i.v. bolus) + 180 mg
Ticagrelor

Morphine does not affect ticagrelor’s effects on
platelet aggregation, thrombus formation and VASP
phosphorylation in whole blood.

Hobl et al. (2016)

Patients presenting with STEMI or very high-
risk NSTE-ACS

1) Morphine +180 mg Ticagrelor (standard tablet
or orodispersible tablet)
2) 180 mg Ticagrelor

Morphine: delayed ticagrelor onset; the percentage
of HRPR is significantly higher.

Parodi et al.
(2023)

Patients with acute myocardial infarction 1) Morphine (5 mg) + 180 mg Ticagrelor
2) Placebo +180 mg Ticagrelor

Morphine: reduce total exposure of ticagrelor and its
metabolites, delay max plasma concentration.
Increase the incidence of high platelet reactivity.

Kubica et al.
(2016)

Patients with STEMI who required analgesia 1) Morphine + ASA (100 mg daily) + Ticagrelor
(90 mg twice daily)
2) Fentanyl + ASA (100 mg daily) + Ticagrelor
(90 mg twice daily)

Compared with Group 2), Group 1): PRU is higher;
max plasma concentration of ticagrelor and its
metabolite AR-C124910XX delayed and lower, total
exposure reduced.

Iglesias et al.
(2022)

Patients with ACS 1) Morphine + Ticagrelor (180 mg)
2) Fentanyl + Ticagrelor (180 mg)

No significant difference in fentanyl or morphine
effect on ticagrelor’s platelet aggregation.

Senguttuvan et al.
(2021)

Patients with STEMI or non–STEMI with
persistent chest pain

1) Ticagrelor (180 mg) + PPCI
2) Ticagrelor (180 mg) + PPCI + Morphine
(5 mg)
3) Ticagrelor (180 mg) + PPCI + Morphine (5 mg)
+ Metoclopramide (10 mg)

Compared with Group 1): Group 2) antiplatelet
effect decreased; Group 3) no significant difference.
Compared with Group 2): Group 3) total exposure
of ticagrelor and metabolites increased.

Saad et al. (2020)

Healthy subjects 1.8 mg Colchicine No significant effect on light transmission platelet
aggregation; decrease monocyte-(MPA) and
neutrophil-platelet aggregation (NPA), PAC-1 and
P-selectin expression, platelet adhesion to collagen
2 h post-administration.

Shah et al. (2016)

Healthy males 1) AIT bout + Caffeine (3 mg/kg)
2) AIT bout + Placebo
3) Rest + Caffeine (3 mg/kg)
4) Rest + Placebo

AIT increases platelet function; caffeine (3 mg/kg)
does not exacerbate platelet function at rest or in
response to AIT.

Whittaker et al.
(2013)

Queue 1: Healthy subjects
Queue 2: Patients with coronary artery disease

Queue 1:
1) First week: 300 mg Clopidogrel+300 mg
Caffeine (30min later), Second week: Clopidogrel
+ Placebo
2) First week: 300 mg Clopidogrel + Placebo,
Second week: 300 mg Clopidogrel+300 mg
Caffeine (after 30min)
Queue 2:
3) 300 mg Caffeine+75 mg Clopidogrel
(after 2.5 h)

Queue 1: Caffeine + Clopidogrel: decrease in ADP-
induced platelet aggregation at 4h, activation
markers at 2h, VSMC phosphorylation at 4 h.
Caffeine alone: no effect on platelet markers.
Queue 2: Caffeine: decrease in platelet activation
markers (P-selectin, PAC-1 binding), no significant
effect on platelet aggregation.

Lev et al. (2007)

Patients with ST Elevation Myocardial
Infarction Treated with Pharmacological
Thrombolysis (TREAT)

Background treatment: Ticagrelor or Clopidogrel
1) Morphine
2) No morphine

Morphine: higher hazard of reinfarction at 7 and
30 days, lower hazard of major bleeding.

Cantor et al.
(2022)

Frontiers in Pharmacology frontiersin.org11

Hou et al. 10.3389/fphar.2025.1537776

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1537776


TABLE 2 Clinical research on saponins.

Preparation Main
components

Participants Sample Interventions Time Results
(treatment

group
compared to

control
group)

Ref.

T C T C

PNS capsule PNS (Panax
notoginseng
saponins)

Patients with stable
coronary heart
disease (SCHD)
and chronic
gastritis

21 21 PNS (60 mg bid)
+ ASA
(100 mg/day)

ASA
(100 mg/day)

2 months 1) P-selectin
expression↓, GPIIb-
IIIa activation↓,
platelet
aggregation↓,
platelet inhibition
rate ↑; 2) Platelet
cyclooxygenase
(COX)-1 activity↓,
production of TXB2,
PGD2, PGE2, 11-
HETE, the
downstream
oxylipids of AA/
COX-1 pathway in
platelets↓; 3) ASA-
induced gastric
mucosal injury↓,
gastric level of 6,15-
diketo-13,14-
dihydro-
prostaglandin (PG)
F1α, 13,14-dihydro-
15-keto-PGE2 and
PGE2 from AA/PG
pathway ↑.

Wang
et al.

(2021b)

Xuesaitong soft
capsules

PNS Patients with
ischemic stroke a

1,535 1,537 Xuesaitong soft
capsules (PO
120 mg bid)

Placebo (PO
120 mg bid)

3 months The proportion of
patients achieving
functional
independence↑.

Wu et al.
(2023)

Xinyue Capsule and
Fufang Chuanxiong
Capsule

Total ginsenosides,
ligustrazine, ferulic
acid

Patients with ACS
after PCI

404 404 Xinyue Capsule
(PO 2 capsules
tid) + Fufang
Chuanxiong
Capsule (PO
2 capsules tid)
+ Conventional
treatment

Conventional
treatment

6 months The occurrence of
cardiovascular
events↓ (the
composite of cardiac
death, nonfatal
recurrent MI,
ischemia-driven
revascularization,
the composite of
readmission for
ACS, stroke, or
congestive heart
failure).

Zhang
et al.
(2020)

Sanchitongshu
capsule

PTS (contain G-Rg1,
G-Re, NG-R1)

Patients of ischemic
stroke in anterior
cerebral circulation

71 69 Aspirin (50 mg/
day) +
Sanchitongshu
capsule
(200 mg tid)

Aspirin (50 mg/
day) + Placebo
capsule

4 weeks 1) Significantly
ameliorated
neurological deficit
and activities of daily
living↑; 2) Adverse
reaction occurred
equally in both arms,
was light to
moderate.

He et al.
(2011)

Xuesaitong soft
capsules

PNS Patients with ICD 50 50 Xuesaitong soft
capsules
(2 capsules tid) +
Conventional
therapy

Conventional
therapy

6 months 1) Plaque size,
plaque thickness,
and intima-media
thickness (IMT) ↓; 2)
Incidence of
cardiovascular
events ↓.

Honyan
(2017)

Xuesaitong soft
capsules

PNS Patients with acute
lacunar infarction

43 43 Xuesaitong soft
capsules

Conventional
therapy

8 weeks 1) Total effective rate
of treatment ↑; 2)

(Continued on following page)
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related to the health status of human beings. These results remind
researchers to focus on this factor with designing clinical trials.

A trial involving six healthy volunteers showed that ephedrine
significantly prolonged the bleeding time of the volunteers by almost
2 min, which was associated with the competitive intervention of
ephedrine on α2 receptors (Flordal and Svensson, 1992). Notably,
smoking activates the platelets and induces an increase in
procoagulant substances such as thrombin, ADP, and collagen,
which exacerbates platelet aggregation. This research suggests
that long-term intake of nicotine should be more concerned
about altering cardiovascular function (Renaud et al., 1984). A
clinical trial reported that oral administration of 1.8 mg
colchicine for 2 h decreased the expression of PAC-1 and
P-selectin on the platelet surface (Shah et al., 2016). However,
the aggregation did not change in this trial, suggesting that the
amount of impact on platelet aggregation with colchicine still needs
more clinical proof.

3.2 Saponins

Recently years, certain clinical trials have found that saponin
compounds have positive prospects in anti-platelet aggregation and
anti-thrombotic effects (Table 2). Ginsenosides and
Notoginsenosides have been used for the prevention and therapy
of cardiovascular diseases, which are related to their regulation of

platelet function and cardioprotective activity. A randomized,
blinded, controlled trial for 2 months demonstrated that PNS in
combination with ASA increased the inhibition of ARA
metabolism-mediated expression of downstream oxidized lipids
TXB2, PGD2, PGE2, and 11-HETE, thereby reducing platelet
activation and aggregation caused by hypercoagulable states in
thrombosis. Moreover, this trial also demonstrated that combined
PNS could avoid ASA-induced gastrointestinal injury (Wang W.
et al., 2021). A randomized controlled clinical trial for 6 months with
106 volunteers demonstrated that a commercial Chinese polyherbal
preparation (CCPP) containing PNS, named Xuesaitong
(Supplementary Table S1), in combination with conventional
drugs, could enhance the inhibition of platelet aggregation in
elderly patients with ischemic cerebrovascular disease (ICD), and
the whole-blood viscosity (low-shear rate, high-shear rate) and
plasma viscosity were significantly reduced, which reducing the
cardiovascular events (Liu et al., 2017). For this clinical research,
we believe that cross-over trials should be increased to avoid errors
caused by individual differences among volunteers. Although
researchers have reported adverse events related to cardiovascular
diseases, we still recommend that all adverse events should
be reported.

Di’ao Xinxuekang (DAXXK) is a total steroid saponin extracted
from the rhizomes of Dioscorea panthaica Prain & Burkill
[Dioscoreaceae; D. panthaica radix et rhizoma] and Dioscorea
nipponica Makino [Dioscoreaceae; D. nipponica rhizoma], with

TABLE 2 (Continued) Clinical research on saponins.

Preparation Main
components

Participants Sample Interventions Time Results
(treatment

group
compared to

control
group)

Ref.

T C T C

complicated by
cerebral
microbleeds

(2 capsules tid) +
Conventional
therapy

CSS score, NIHSS
score ↓; 3) Cadherin
S100B expression
level in serum ↓,
soluble receptor for
advanced glycation
end products
(sRAGE) level ↑.

Meihua
et al.
(2017)

Xuesaitong capsules PNS Patients with ICD 53 53 Xuesaitong soft
capsules
(2 capsules tid) +
Conventional
therapy

Conventional
therapy

6 months 1) Plaque thickness,
plaque size, and
IMT↓; 2) Two
groups of whole
blood viscosity (low
shear rate, high shear
rate), plasma
viscosity,
reticulocytes, platelet
aggregation rate↓; 3)
Incidence of
cardiovascular
events↓.

Liu et al.
(2017)

Compound danshen
dropping pill

Salviae miltiorrhizae,
Borneolum
Syntheticum, Panax
notoginseng

Senile angina
pectoris of coronary
heart disease

77 76 Compound
danshen
dropping pill
(10 pills tid) +
Conventional
therapy

Isosorbide
mononitrate +
Conventional
therapy

6 months 1) Total effective
rate↑,
electrocardiogram
effective rate↑; 2)
Incidence of adverse
reaction↓.

Zhiming
(2015)
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the main component being dioscin. A previous clinical trial for
6 months with 267 volunteers found that continued therapy of
DAXXK significantly reduced the platelet aggregation induced by
ADP and epinephrine to reduce angina events in vivo (Meixiu et al.,
1995). The clinical trial involving 56 volunteers has demonstrated
that treatment with dioscin (160mg, p.o., tid) for 8 weeks
significantly reduced the rate of high platelet aggregation induced
by ADP compared to the placebo group, with no significant adverse
effects (Qilian and Daxin, 2006).

3.3 Organic acids

The source of aspirin is closely related to the natural compound
salicylic acid, which was originally derived from the leaves and bark
of willow trees. Research has demonstrated that salicylic acid
exhibits anti-platelet aggregation activity. However, the direct use
of salicylic acid presents several disadvantages, including significant
gastrointestinal discomfort and other side effects that limit its
clinical application (Wachtel-Galor and Benzie, 2011). Aspirin,
synthesized through the acetylation modification of salicylic acid,
not only retains effective anti-platelet aggregation activity but also
substantially reduces clinical side effects, such as gastrointestinal
irritation. Since ASA is the antiplatelet drug in various
cardiovascular diseases (CVDs), its effectiveness and safety have
been widely reported in clinics. Researchers have more focused on
clinical studies with a dose adjustment of ASA and combination with
other drugs. Thrombotic occlusion may occur in the vein graft after
coronary artery bypass grafting (CABG) (Post Coronary Artery
Bypass Graft Trial, 1997). A clinical trial with 110 patients found
that 81 mg qid of ASA after CABG immediately inhibited
TXB2 formation in serum and platelet aggregation more than
81 or 325 mg qd of ASA (Paikin et al., 2015). This result
suggests that a therapeutic strategy of frequent administration of
ASA may be more beneficial for the maintenance of grafts in CABG
patients. ASA insensitivity in patients with CVDs is a major cause of
antithrombotic treatment failure. A trial found that small doses of
rivaroxaban could reverse platelet hyposensitivity to ASA in patients
who have failed ASA therapy to improve efficacy. Although this trial
was conducted in vitro with the addition of rivaroxaban, these data
still provide an idea for optimizing antithrombotic therapy for ASA
failure (Khan et al., 2022). Moreover, the DAPT of ASA combined
with clopidogrel is the most common therapeutic schedule. A recent
6-year-long clinical trial reported that ASA combined with
clopidogrel reduced the risk of neurologic deterioration in
ischemic stroke (Chen et al., 2024). Phosphatidylserine (PS) is an
auxiliary participant in the coagulation process on the platelet
membrane. Platelet activation exposes more PS to the extra-
membranous side. In this point PS exposure rather participates
in platelet-depending thrombin generation, coagulation, and
platelet-fibrin thrombus formation (Lentz, 2003). Ticagrelor
combined with ASA reduces the extra-membrane exposure of
platelet PS in patients with coronary syndromes, thus playing a
positive role in prophylaxis and therapy for thrombosis (Muravlev
et al., 2023).

Citric acid, as an adjuvant for most drugs, has been receiving
attention in clinical practice for its effects on human beings. The trial
on the effect of citric acid on hemodialysis kinetics found that citric

acid can inhibit the release of serotonin to eliminate platelet
activation. However, this effect does not seem to have much
impact on intradialytic hypotension (IDH) (Gritters et al., 2007).
Interestingly, citric acid was found to potentiate the effects of GPIIb/
IIIa antagonists on platelets from healthy volunteers in vitro trials,
especially the eptifibatide. This effect provides a rationale for citric
acid in anti-aggregation and also facilitates the progress of platelet
aggregation detection in the clinic (Storey et al., 1998). Likewise, the
results of a trial with 15 subjects who did not respond to ASA
showed that the combination of ASA and citric acid had a stronger
inhibitory effect than ASA alone, depending on the improvement of
platelet sensitivity to ASA by citric acid (Kaplan et al., 2000). A
clinical trial involving continuous intake of caffeic acid for 1 week
found that coffee exhibited different effects on different platelet
agonists. For instance, coffee promotes ADP-mediated aggregation
and inhibits platelet aggregation induced by collagen. Fortunately,
the intake of coffee can reduce whole blood viscosity, which has
positive implications for CVDs (Schumacher et al., 2011). In
conclusion, more refined clinical trials are still needed to
demonstrate the role of phenolic acids in coffee in platelet
aggregation.

3.4 Flavonoids

Most of the research reported the progress of clinical trials on
flavonoid-rich mixtures or extracts in antiplatelet aggregation.
However, the studies in single flavonoids are still relatively scarce
at present. A clinical trial found that quercetin reached 4.66 μM
(±0.77) and 9.72 μM (±1.38) in human beings after 30 min of
ingestion of 150 and 300 mg of quercetin-4′-O-β-D-glucoside with
the oral administration, demonstrating the bioavailability of
quercetin in vivo. Moreover, this trial demonstrated platelet
aggregation was inhibited after 30 and 120 min of quercetin
ingestion in human beings, which was correlated with an effect
on the inhibition of the GPVI receptor pathway (Hubbard et al.,
2004). Interestingly, the concentration of quercetin in vivo is
significantly lower than the concentration at which it exerts
antiplatelet aggregation effects in vitro (Misztal et al., 2022; Oh
et al., 2012). Some studies have shown that metabolites of quercetin,
such as isorhamnetin (Rodriguez et al., 2021; Stochmal et al., 2022),
quercetin-3-glucuronide (Ishizawa et al., 2011; Wright et al., 2010),
and 3,4-Dihydroxyphenylacetic acid (Kim et al., 1998; Kim D. H.
et al., 1999), could also inhibit platelet aggregation, explaining the
inconsistency between the concentrations at which quercetin exerts
the pharmacological effects in vitro and in vivo. To further
investigate the effects of quercetin ingestion on platelet
aggregation, researchers replaced quercetin intake with onion
soup rich in quercetin glycosides and found that quercetin was
detectable in vivo. Meanwhile, platelet aggregation was inhibited as
in previous studies, which was associated with inhibition of the
GPVI receptor pathway (Hubbard et al., 2006). These clinical trials
have demonstrated the effect of quercetin on platelet aggregation as
well as in vitro studies. Interestingly, a trial has found that quercetin
supplementation alone does not seem to affect platelet aggregation.
This result may be in response to the fact that some of the quercetin
prototype compounds are poorly absorbed orally in humans unable
to reach effective blood concentrations to exert the pharmacological
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effects, which provides direction for quercetin in terms of enhancing
the bioavailability (Janssen et al., 1998). Some clinical trials have
investigated the role of anthocyanins in anti-platelet aggregation. In
a double-blind, randomized, controlled trial with 93 participants,
anthocyanins ingested as oral doses of 80, 160, and 320 mg/day,
respectively, were found to inhibit platelet aggregation due to
dyslipidemia. More importantly, this study found that the effect
of anthocyanins on platelet aggregation was linked with the
inhibition of GPIIbIIIa, ADP receptors, and the reduction of
ROS levels with a pronounced dose-dependent relationship (Tian
et al., 2021). Meanwhile, another double-blind, randomized,
controlled trial with 16 volunteers reported a 29% reduction in
ADP-induced platelet aggregation in whole blood as well as a 14%
reduction in P-selectin expression after 28 days of administration of
anthocyanins, which is further evidence of the antiplatelet effect of
anthocyanins in vivo (Thompson et al., 2017). Notably, this clinical
study did not report the pharmacokinetics of anthocyanins in vivo,

which has certain limitations in demonstrating the dose-response
relationship about anthocyanins. Specifically, we believe that
researchers also need to report all potential adverse reactions that
may occur in subjects in clinic. Interestingly, a clinical result found
that epigallocatechin-3-gallate could inhibit platelet aggregation
induced by ADP and collagen receptors in vivo, and did not
affect platelet activation per se. Specifically, epigallocatechin-3-
gallate was not associated with an increased risk of bleeding
when used in conjunction with antiplatelet agents such as
clopidogrel, aspirin, and tegretol (Joo et al., 2018).

3.5 Coumarins

Due to the widespread application of coumarin
anticoagulants in cardiovascular disease, the clinical trials of
coumarin drugs have focused on the effectiveness, safety, and

TABLE 3 Clinical research on coumarin.

Object Sample Interventions Time/day Results Ref.

T C T C

Patients with atrial
fibrillation on chronic
hemodialysis

49 48 Phenprocoumon
(2.5 mg bid)

Apixaban (INR 2.0–3.0) Median follow-
up time: T
(506 days); C
(429 days)

No differencesin safety or
efficacy outcomes.

Reinecke et al.
(2023)

Patients with Nonvalvular
Atrial Fibrillation
Undergoing Percutaneous
Coronary Intervention

980 1)
978;
2) 763

Triple therapy of warfarin,
aspirin (≤100 mg once
daily), and a P2Y12 platelet
inhibitor (clopidogrel or
ticagrelor)

Dual therapy: P2Y12

platelet antagonist
(clopidogrel or ticagrelor)
+ 110 mg or 150 mg twice
daily dabigatran

Follow-up time:
≥6 months

Dual therapy had lower rates
of bleeding, irrespective of
BMI. Thromboembolic event
rates appeared consistent
across categories of BMI.

De Caterina
et al. (2020)

Survivors of acute
myocardial infarction

1)
68;
2)
61

57 1) Aspirin (75 mg/d) +
Warfarin (INR 2.0–2.5); 2)
Warfarin (INR 2.8–4.2)

Aspirin (160 mg/d) 6 weeks Warfarin significantly
reduced the endogenous
thrombin generation and the
potential to generate
thrombin in plasma ex vivo.

Brodin et al.
(2009)

Patients with atrial
fibrillation

100 100 Warfarin Rivaroxaban 1 year Patients receiving rivaroxaban
treatment have a lower
incidence of gastrointestinal
bleeding.

Sedaghat et al.
(2021)

Consecutive patients with
left atrial appendage
(LAA) thrombi

48 114 Phenprocoumon Non- Vitamin
K-dependent oral
anticoagulants (NOACs)

1 year 1) No significant difference in
the efficacy of resolution after
a mean of 58 ± 42.2 (median
48) days.
2) Resolution rate of LAA-
thrombi in the
phenprocoumon and NOAC
groups was 2/3 after
8–10 weeks.
3) Thrombi resolved more in
NOAC groups after 12 weeks.

Biller et al.
(2022)

Patients with recurrent
venous thromboembolism

30 28 Acenocoumarol Rivaroxaban (20 mg once
a day) + Aspirin (300 mg
once a day)

90 days Recurrent thromboembolic
events and minor bleeding
events occurred less in the
rivaroxaban plus aspirin
group.

Maximiliano
et al. (2023)

Patients undergoing PCI 104 1,478 Clopidogrel +
Acenocoumarol

Clopidogrel - Concomitant treatment with
acenocoumarol significantly
increases platelet reactivity
and the rate of HPR in
patients treated with
clopidogrel.

Dewilde et al.
(2015)
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potential for combination with other drugs (Table 3). A
prospective randomized open blinded endpoint (PROBE)
outcome assessment trial reported that phenprocoumon can
be used as an anticoagulant in patients with atrial fibrillation
and end-stage kidney disease undergoing chronic hemodialysis,
which remains a need to be concerned about the risk of
thromboembolic and hemorrhagic events in therapy (Reinecke
et al., 2023). Dicoumarol was initially isolated from moldy sweet
clover derived from Melilotus officinalis (L.) Lam. [Fabaceae; M.
officinalis herb] and exhibits anticoagulant activity. However, its
clinical applications are limited due to side effects, including a
high risk of bleeding and a narrow therapeutic window (Sun et al.,
2020). Warfarin, a derivative of dicoumarol, was synthesized by
modifying its chemical structure. This modification not only
preserved the anticoagulant properties but also significantly
enhanced its pharmacokinetic characteristics (Duxbury and
Poller, 2001). A trial reported that warfarin can significantly
reduce thrombin in AMI patients both in vitro and vivo, whereas
aspirin alone did not reflect this inhibitory effect on thrombin.
The result explains the potential mechanism by which warfarin is
superior to ASA in preventing AMI (Brodin et al., 2009). Clinical
research involving 24 volunteers found that warfarin does not
have a significant inhibitory effect on platelet aggregation.
Moreover, elevated international normalized ratio (INR)
increased collagen and adrenal-mediated platelet aggregation,
even with warfarin (Chylova et al., 2021). Meanwhile, another
trial demonstrated platelet hyperaggregability in three of seven
subjects taking warfarin, further alerting clinical concerns about
the effects of warfarin on platelets (Helgason et al., 1993). These
clinical results demonstrate the complexity of warfarin on
platelet aggregation in therapy, which needs to be explored
even more with additional trials. Previous studies have shown
that clopidogrel patients induce high on-clopidogrel platelet
reactivity (HPR) to ADP, leading to a series of safety events
after percutaneous coronary intervention (PCI) (Bliden et al.,
2007). Clinical data demonstrated that combination therapy with
phenylcoumarin significantly increased the HPR rate in patients
treated with clopidogrel (Dewilde et al., 2015), which provides a
clinical rationale for the considerations of combining clopidogrel
with coumarin derivatives.

4 Future perspectives and conclusion

Previous studies have demonstrated abnormal platelet
aggregation could be associated with thrombosis which is a
significant contributor to cardiovascular diseases such as acute
myocardial infarction, stroke, atherosclerosis, and pulmonary
embolism. The regulation of ADP receptors, ARA metabolic
pathways, nucleotide system, collagen, and thrombin pathways
regulation are the main pathways for platelet aggregation.
Furthermore, the anti-platelet aggregation activity of various
natural ingredients with alkaloids, organic acids, saponins,
coumarins, and flavonoids has been widely reported. These
ingredients could inhibit platelet-activating factors, regulate
cAMP and cGMP concentrations, affect PI3K/Akt and MAPK
signaling pathways, as well as interfere with adhesion molecule
expression, thereby improving abnormal platelet aggregation.

Despite the unique advantages of natural compounds in
modulating platelet aggregation through multi-target and multi-
pathway mechanisms, current research in this field still faces
significant limitations. The antiplatelet mechanisms of most
natural compounds remain incompletely understood, with the
majority of studies focusing on isolated pathways rather than
addressing the complex synergistic interactions inherent to their
multi-target nature. To bridge this gap, future investigations should
leverage advanced omics technologies—such as transcriptomics,
proteomics, and metabolomics—to systematically elucidate the
regulatory effects of natural compounds on the platelet activation
network. Additionally, the metabolic profiles of many natural
compounds remain poorly characterized in vivo, and their low
bioavailability and rapid metabolic clearance further hinder
clinical application. Strategies such as structural modification or
formulation optimization could enhance compound stability and
tissue targeting, thereby improving their druggability.

In this study, we discussed the application potential of certain
natural ingredients for anti-platelet aggregation from the
perspective of clinical trial effects and safety for the first time.
While numerous natural compounds exhibit promising
antiplatelet effects in vitro or in animal models, clinical
evidence supporting their efficacy and safety remains limited.
Many existing clinical trials suffer from methodological
shortcomings, including inadequate randomization, lack of
blinding, and insufficient consideration of confounding factors
such as genetic variability, drug-drug interactions, and long-term
safety. These limitations undermine the reliability of the findings
and highlight the need for more rigorously designed clinical
studies. In the clinical trials with platelets, we believe that the
primary objective is to ensure that the trials are randomized and
blinded. Crossover design with placebo and Reference Listed Drug
(RLD) with clinical trials in healthy subjects should be set up to
ensure baseline consistency of the evaluation metrics. Particularly,
for the design of clinical trials in disease model groups,
stratification of the age of the subjects, genetic characterization,
and the introduction period of the concomitant drug should also
be emphasized by the investigator. The active ingredients could
exert anti-platelet aggregation effects through multiple targets and
pathways, highlighting their significant potential in this area.
However, future studies should aim to provide deeper insights
into the various underlying mechanisms by which these
compounds exhibit inhibitory activity against platelet
aggregation. Additionally, the pharmacokinetic characteristics of
ingredients with strong antiplatelet effects require further
exploration. More high-quality clinical trials are necessary to
evaluate the efficacy and safety while optimizing administration
methods and dosages.
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