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Background: Acute kidney injury (AKI) is a significant concern among hospitalized
patients receiving aminoglycosides. Identifying the risk factors associated with
aminoglycoside-induced AKI and developing machine learning models are
imperative in clinical practice.

Objective: This study aims to identify the risk factors associated with AKI in
hospitalized patients receiving aminoglycosides, and develop machine learning
models for evaluation of the AKI risk in these patients.

Methods: This study retrospectively analyzed 7,028 hospitalized patients who
received treatment with amikacin or etimicin between 2018 and 2020. According
to the type of medication used, patients were divided into amikacin group (n =
307) and etimicin group (n = 6,901). Univariate analyses and the least absolute
shrinkage and selection operator algorithm were used to screen risk factors and
construct the model. The machine learning models were developed using five
different algorithms, including logistic regression (LR), random forest (RF),
gradient boosting machine (GBM), extreme gradient boosting model
(XGBoost), and light gradient boosting machine (Light GBM).

Results: The XGBoost model exhibited the most superior performance in
predicting amikacin-associated AKI among the developed machine learning
models. For the training set, the area under the receiver-operator
characteristic curve (AUC) was 0.916, and for the test set, it was 0.841. The
model can be accessed online. Regarding AKI risk in etimicin-treated patients, the
GBM model demonstrated the best overall performance, with AUC values of
0.886 for the training set and 0.900 for the test set. The model was also made
available online.

Conclusion: These predictive models may offer a valuable tool for estimating the
risk of AKI in patients receiving amikacin or etimicin, facilitating clinical decision-
making and aiding in the prevention of AKI.

OPEN ACCESS

EDITED BY

Yoshiaki Uyama,
Pharmaceuticals and Medical Devices Agency,
Japan

REVIEWED BY

Shuhe Li,
University of Exeter, United Kingdom
Masao Iwagami,
University of Tsukuba, Japan

*CORRESPONDENCE

Xiao Li,
lixiao1688@163.com,
x.li@sdu.edu.cn

Xin Huang,
13791120711@126.com

†These authors have contributed equally to
this work

RECEIVED 02 December 2024
ACCEPTED 12 May 2025
PUBLISHED 22 May 2025

CITATION

Zhang P, Chen Q, Lao J, Shi J, Cao J, Li X and
Huang X (2025) Machine learning modeling for
the risk of acute kidney injury in inpatients
receiving amikacin and etimicin.
Front. Pharmacol. 16:1538074.
doi: 10.3389/fphar.2025.1538074

COPYRIGHT

© 2025 Zhang, Chen, Lao, Shi, Cao, Li and
Huang. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Pharmacology frontiersin.org01

TYPE Original Research
PUBLISHED 22 May 2025
DOI 10.3389/fphar.2025.1538074

https://www.frontiersin.org/articles/10.3389/fphar.2025.1538074/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1538074/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1538074/full
https://www.frontiersin.org/articles/10.3389/fphar.2025.1538074/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2025.1538074&domain=pdf&date_stamp=2025-05-22
mailto:lixiao1688@163.com
mailto:lixiao1688@163.com
mailto:x.li@sdu.edu.cn
mailto:x.li@sdu.edu.cn
mailto:13791120711@126.com
mailto:13791120711@126.com
https://doi.org/10.3389/fphar.2025.1538074
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2025.1538074


Trial Registration: ClinicalTrials.gov NCT05533593.
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1 Introduction

Acute kidney injury (AKI) is a common complication occurs in
hospitalized patients. It is characterized by a significant decline in
kidney function over a short period of time. A worldwide meta-
analysis of AKI diagnoses showed that the incidence of AKI was
21.6% in adult patients and 33.6% in pediatric patients
(Susantitaphong et al., 2013). The occurrence of AKI during a
patient’s hospitalization not only can increase the risk of death,
but also can increase the risk of readmission after discharge
(Sawhney et al., 2017; Schulman et al., 2023). Previous studies
have shown that patients with AKI have a mortality rate of
9.1%–23.9% (Susantitaphong et al., 2013; Brown et al., 2016) and
a readmission rate of 18%–28.6% (Koulouridis et al., 2015; Silver
et al., 2017).

Known major risk factors for AKI include intensive care unit
(ICU) admission, shock, chronic kidney disease (CKD),
hypertension, and diabetes (Zhou et al., 2019). The use of clinical
drugs is also a common cause of acute kidney injury. Drug-induced
acute kidney injury (D-AKI) is defined as kidney injury caused by a
drug or its metabolites within 7 days after the use of one or more
drugs (Mehta et al., 2015a). D-AKI accounts for 19%–40% of cases of
AKI in a hospital setting (Uchino et al., 2005; Xu et al., 2015). There
are many common nephrotoxic drugs which may cause D-AKI
including antibiotics, diuretics, and antineoplastic drugs (Pierson-
Marchandise et al., 2017; Rey et al., 2022).

Aminoglycoside drugs and their metabolites may disrupt
phospholipid metabolism, which can lead to apoptosis or death
of renal tubular epithelial cells (Kwiatkowska et al., 2021). Previous
studies have reported several risk factors for aminoglycoside-
associated AKI in elderly patients, including shock, mechanical
ventilation, pneumonia, heart failure, diuretics, and vancomycin
(Paquette et al., 2015; Ong et al., 2016). However, few studies focused
on risk factors for AKI after treatment with aminoglycosides in adult
patients. Besides, it is necessary to further explore practical tools for
the early identification of AKI risk in patients, due to the lagging
nature of diagnostic biomarkers. To date, few studies have developed
prediction models for AKI risk in patients treated with
aminoglycoside. In the present study, we aimed to identify the
risk factors of AKI for two typical aminoglycosides, including
amikacin and etimicin, and develop a series of machine learning
models for the risk estimation of AKI in patients receiving amikacin
or etimicin treatment.

2 Methods

2.1 Ethical considerations

This is a retrospective observational study conducted at the First
Affiliated Hospital of Shandong First Medical University. The
Institutional Review Board committees at the First Affiliated

Hospital of Shandong First Medical University approved the
study (No. YXLLKY-2022-024). The requirement for informed
consent was granted a waiver due to the retrospective nature and
minimal risk of this study.

2.2 Study design and participants

We enrolled patients who received etimicin or amikacin
treatment at the center between 1 January 2018 and
31 December 2020. Patients were excluded if they met the
following criteria: (1) aged <18 years; (2) hospital stay <48 h; (3)
AKI was diagnosed on admission; end-stage kidney disease, or
dialysis; (4) Serum creatinine (SCr) < 40 μmol/L during
hospitalization, which are not considered clinically plausible and
may distort the analysis; (5) less than two SCr test results during
hospitalization; (6) incomplete medical records. Initial
administration date of the first aminoglycoside administered,
chosen as the exposure date, was determined from electronic
medical record system. Records of each hospitalization were
regarded as an independent case for patients admitted to hospital
more than once during the study period. The study cohort selection
process is shown in Figure 1.

2.3 Data collection and variables

The data for this study was collected from Shandong Provincial
Qianfoshan Hospital Healthcare Big Data Platform. The platform
integrates multi-source data from hospital information system,
electronic medical records, laboratory information management
system, picture archiving and communication system, nursing
information system. The encrypted personal identification
number was used as a unique identifier to interlink each person’s
data information in the above-mentioned database. Based on a
literature review and expert opinions, we identified fifty-eight
candidate predictor variables (Supplementary Material).

For each patient, only clinical and laboratory variables measured
prior to the onset of AKI (or the last SCr test in non-AKI patients)
were included as candidate predictors. For AKI cases, we used the
most recent measurement prior to the first creatinine elevation that
met the KDIGO criteria. For non-AKI patients, we selected values
closest to the time of discharge or the last aminoglycoside dose. This
ensured that all predictor variables temporally preceded
the outcome.

In electronic medical record systems, missing data is a common
occurrence. Less than 10% of the missing values were found in all
variables. For missing variables, we did not perform imputation and
opted for complete-case analysis. Although tree-based algorithms
such as gradient boosting can internally handle missing values, we
excluded records with missing data to ensure consistency in
preprocessing across all model types and simplify interpretation.
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Furthermore, none of the dichotomous variables used in our study
were missing.

2.4 AKI definition

The diagnosis of AKI was based on SCr changes in accordance
with the 2012 Kidney Disease: Improving Global Outcomes
(KDIGO) Clinical Practice Guideline for AKI (Khwaja, 2012).
AKI would be diagnosed if met one of the following criteria: (1)
within 48 h, the absolute value of SCr increased ≥0.3 mg/dL
(26.5 μmol/L); (2) known or speculated increase of SCr within
7days ≥1.5 times of baseline value; (3) urine volume ≤0.5 mL/kg/
h for more than 6 h. Due to the influence of multiple factors on urine
output, it is difficult to record in retrospective studies. In the present
study, we defined AKI only according to the change in SCr. The SCr
baseline was defined as the last laboratory measurement 7 days prior
to receiving amikacin or etimicin treatment.

Given the retrospective nature of this study, it was not possible
to definitively establish a causal relationship between
aminoglycoside exposure and AKI. The temporal sequence-based
approach used to evaluate the potential linkage between AKI and
aminoglycoside administration was defined as follows: For patients
who developed AKI, drug exposure was considered to be within 72 h
prior to the first observed SCr elevation meeting the KDIGO AKI
criteria. For non-AKI patients, we selected variables measured prior
to the last serum creatinine test performed during the hospital stay.
In cases where the last SCr test was unavailable, we used the most
recent measurements before the last aminoglycoside dose or
discharge (whichever occurred earlier). This approach ensured
that all predictor variables were measured prior to the onset of

AKI (or last exposure to aminoglycosides in non-AKI patients).
Patients with AKI due to other identifiable etiologies (e.g., sepsis,
acute obstructive uropathy, contrast-induced nephropathy,
reperfusion injury) were excluded based on explicit
documentation in clinical course records. All AKI events were
temporally linked to aminoglycoside exposure, and medication
administration records were reviewed to confirm that drug
initiation preceded AKI onset.

2.5 Statistical analyses

R software (version 3.6.3) was used to statistically analyze the data
obtained in the study. The significance threshold for all statistical tests
was 0.05, and two-sided tests were conducted for all statistical tests.
The Kolmogorov-Smirnov test was initially employed to assess the
normal distribution of continuous variables. Variables conforming to
a normal distribution were presented as mean ± standard deviation,
and group comparisons were conducted using the t-test. For variables
not following a normal distribution, they were expressed as median
(interquartile range, IQR), and the Wilcoxon rank sum test was
employed for intergroup comparisons. Categorical variables,
represented as counts (n) or percentages (n%), underwent group
comparisons using the chi-square test.

2.6 Machine learning model development
and validation

The patients included in the study were randomly divided into a
training set and a test set in a ratio of 8:2. The training set data were

FIGURE 1
Flowchart of patient screening process.
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only used for training and parameter tuning of the AKI risk
prediction model, and the test set data were used to evaluate the
model performance obtained from the training set.

In order to avoid overfitting of the model caused by too many
variables, data dimension reduction and feature screening are
carried out step by step. Firstly, univariate analysis was used to
initially screen out information on variables that were significantly
correlated (P < 0.05) with AKI. Then, the Least Absolute Shrinkage
and Selection Operator (LASSO) algorithm further performed data
dimensionality reduction, and the optimal penalty coefficient (λ)
was determined by validation with the ten-fold crossover method to
screen out the characteristic variables with predictive value. Based
on the screened variables, we used five different machine learning
methods to construct prediction models, including logistic
regression (LR) (Jiang et al., 2020), random forest (RF) (Breiman,
2001), gradient boosting machine (GBM) (Friedman, 2001),
eXtreme gradient boosting (XGBoost) (Ester et al., 2022), and
light gradient boosting machine (LightGBM) (Ke et al., 2017).
We also ranked the variable importance by incorporating the
feature variables into the RF model. All statistical analyses and
model development were performed using R software (version
3.6.3). The following R packages were utilized in this study:
glmnet (version 4.1-1) for LASSO regression, randomForest
(version 4.6-14), xgboost (version 1.0.0.2), gbm (version 2.1.5),
and lightgbm (version 3.2.1 for machine learning model
construction and evaluation, pROC for ROC curve plotting and
AUC calculation, and caret for model training workflow and
parameter tuning. For each machine learning model,
hyperparameter tuning was performed using a grid search
strategy combined with five-fold cross-validation within the
training set. For the XGBoost model, we optimized max_depth,
eta (learning rate), gamma, subsample, and colsample_bytree. For
the Random Forest model, we tuned the number of trees (ntree) and
the maximum tree depth. For the GBM model, we adjusted n.trees,
interaction.depth, shrinkage, and n.minobsinnode. For the
LightGBM model, hyperparameters including num_leaves,
learning_rate, and min_data_in_leaf were tuned. The optimal
combination of hyperparameters was selected based on the cross-
validation folds in the training dataset. Model calibration was
assessed by plotting calibration curves using the calibration_curve
function from scikit-learn. Predicted probabilities were grouped into
deciles, and the observed AKI incidence within each group was
plotted against the mean predicted risk. Calibration was visually
inspected for the best performed models.

The interactive online prediction tools were developed using the
shiny (version 1.4.0.2) and shinydashboard (version 0.7.1) packages
in R, and deployed through the ShinyApps.io platform.

We used the area under the subject operating characteristic
curve (AUC), accuracy (ACC), sensitivity (SEN) and specificity
(SPE) to assess models’ performance. The confusion matrix
divides patients into four categories, including true positive (TP),
true negative (TN), false positive (FP) and false negative (FN). The
number of cases in which a positive sample was correctly predicted
as positive is represented by TP. Similarly, TN denotes the count of
cases where a negative sample was accurately predicted as negative.
The FP stands for the number of cases where a negative sample was
erroneously predicted as positive, while FN indicates the instances
where a positive sample was mistakenly predicted as negative.

Accuracy measures the overall correctness of the model’s
predictions. Sensitivity assesses the accuracy of the model in
predicting positive samples. The optimal cutoff threshold was
determined based on the maximum Youden index, and
calculated the corresponding sensitivity and specificity (Fluss
et al., 2005). Specificity assesses the accuracy of the model in
predicting negative samples. The Equations 1–4 for these metrics
are as follows.

Youden index � SPE + SEN − 1 (1)
ACC � TP + TN

TP + TN + FP + FN
(2)

SEN � TP

TP + FN
(3)

SPE � TN

TN + FP
(4)

To address the class imbalance, we employed algorithms
tolerant to skewed distributions and used discrimination-focused
metrics (AUC, sensitivity, Youden index) rather than
accuracy alone.

3 Results

3.1 Characteristics and outcomes of patients
treated with amikacin

Among 307 inpatients treated with amikacin, 47 (15.3%) were
diagnosed with AKI based on the KDIGO criteria. The baseline
characteristics of patients with and without AKI after receiving
amikacin are summarized in Table 1. The age, gender, height,
smoking history and the length of stay were found to have no
significant difference between patients with or without AKI. While,
patients in the AKI group had significantly higher hospital costs
than those in the non-AKI group (91,289.6 yuan vs 100,058.8 yuan,
P = 0.001).

3.2 Development of machine learning
models for AKI risk in patients treated
with amikacin

Based on univariate logistic regression analyses, 15 features were
reduced to four potential predictors (Supplementary Figure S1).
These four features included Cys C, total bilirubin, tetracycline, and
acidosis (Figure 2). In addition, the feature importance plots were
created by the RF algorithm to rank the importance levels. The
results showed that Cys C had the greatest impact on the prediction
results of amikacin-related AKI (Figure 2).

The predictors associated with AKI screened by LASSO
regression were incorporated into the machine learning model
and the receiver operating characteristic curve (ROC) was
plotted (Figure 3).

As shown in Table 2, the XGBoost model achieved the best
ACC value and has a better balance of sensitivity and specificity.
Calibration plot for the model is shown in Supplementary Figure
S2. The plot displays the predicted probabilities on the x-axis and
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TABLE 1 Characteristics of patients with amikacin.

Group All patients (n = 307) AKI (n = 47) Non-AKI (n = 260) P Value

Demographics

Age (years)* 60 (18,96) 61 (20,96) 59.5 (18,96) 0.432

Gender (male) 208 (67.8%) 35 (74.5%) 173 (66.5%) 0.284

Smoking history 104 (33.9%) 17 (36.2%) 87 (33.5%) 0.718

Comorbidities

Shock 17 (5.5%) 6 (12.8%) 11 (4.2%) 0.019

Hypoalbuminemia 57 (18.6%) 9 (19.2%) 48 (18.5%) 0.911

Respiratory failure 49 (16.0%) 9 (19.2%) 40 (15.4%) 0.517

Arrhythmia 31 (10.1%) 5 (10.6%) 26 (10.0%) 0.894

Myocardial infarction 14 (4.6%) 4 (8.5%) 10 (3.9%) 0.158

CHF 10 (3.3%) 4 (8.5%) 6 (2.3%) 0.028

Hepatic insufficiency 19 (6.2%) 4 (8.5%) 15 (5.8%) 0.473

Gastrointestinal hemorrhage 18 (5.9%) 5 (10.6%) 13 (5.0%) 0.130

Gastritis 9 (2.9%) 1 (2.1%) 8 (3.1%) 0.723

Hepatitis 8 (2.6%) 2 (4.3%) 6 (2.3%) 0.441

Hypertension 149 (48.5%) 23 (48.9%) 126 (48.5%) 0.952

Diabetes 62 (20.2%) 15 (31.9%) 47 (18.1%) 0.030

CHD 50 (16.3%) 10 (21.3%) 40 (15.4%) 0.314

Pneumonia 120 (39.1%) 19 (40.4%) 101 (38.9%) 0.838

Stroke 131 (42.7%) 24 (51.1%) 107 (41.2%) 0.017

Fatty liver 8 (2.6%) 1 (2.1%) 7 (2.7%) 0.691

Anemia 44 (14.3%) 12 (25.5%) 32 (12.3%) 0.017

Hypokalemia 18 (5.9%) 3 (6.4%) 15 (5.8%) 0.869

Hyponatremia 19 (6.2%) 3 (6.4%) 16 (6.2%) 0.952

Liver cirrhosis 7 (2.3%) 1 (2.1%) 6 (2.3%) 0.939

Malignancy 40 (13.0%) 5 (10.6%) 35 (13.5%) 0.597

Sepsis 3 (1.0%) 1 (2.1%) 2 (0.8%) 0.384

Gout 4 (1.3%) 0 (0.0%) 4 (1.5%) 0.392

Acidosis 9 (2.9%) 5 (10.6%) 4 (1.5%) <0.001

CKD 6 (2.0%) 1 (2.1%) 5 (1.9%) 0.926

Medications

BZDs 154 (50.2%) 28 (59.6%) 126 (48.5%) 0.161

NSAID 227 (73.9%) 35 (74.5%) 192 (73.8%) 0.929

PPI 257 (83.7%) 41 (87.2%) 216 (83.1%) 0.478

Statin 48 (15.6%) 9 (19.2%) 39 (15.0%) 0.471

Quinolones 169 (55.0%) 26 (55.3%) 143 (55.0%) 0.968

β-lactams 285 (92.8%) 45 (95.7%) 240 (92.3%) 0.401

Diuretic 225 (73.3%) 41 (87.2%) 184 (70.8%) 0.019

(Continued on following page)
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the actual observed AKI incidence on the y-axis. The calibration
curve indicates good alignment between predicted probabilities
and observed outcomes, suggesting that the model is well-
calibrated for predicting AKI occurrence in the amikacin
cohort. Therefore, we developed the web-based calculator using
the XGBoost model for risk prediction of amikacin-associated AKI
(Supplementary Figure S3). This online risk calculator for
amikacin-associated AKI was made freely available (https://
akigbm.shinyapps.io/Amikacin/). Users can enter relevant data
before and predict the risk of amikacin-associated AKI on
the website.

3.3 Characteristics and outcomes of patients
treated with etimicin

Among 6,901 patients treated with etimicin, 319 (4.6%)
developed AKI. The patient characteristics for those treated with
etimicin are presented in Table 3. Our analysis revealed that patients
in the AKI group were older and also incurred higher costs and
longer hospital stays compared to those in the non-AKI
group. However, there were no significant differences in gender
or smoking history between patients in the AKI and non-
AKI groups.

TABLE 1 (Continued) Characteristics of patients with amikacin.

Group All patients (n = 307) AKI (n = 47) Non-AKI (n = 260) P Value

ARB 58 (18.9%) 6 (12.8%) 52 (20.0%) 0.244

ACEI 17 (5.5%) 2 (4.3%) 15 (5.8%) 0.676

H2RA 40 (13.0%) 5 (10.6%) 35 (13.5%) 0.597

Glucocorticoid 270 (87.9%) 44 (93.6%) 226 (86.9%) 0.195

CCB 108 (35.2%) 19 (40.4%) 89 (34.2%) 0.413

Tetracyclines 106 (34.5%) 24 (51.1%) 82 (31.5%) 0.010

MA 66 (21.5%) 15 (31.9%) 51 (19.6%) 0.059

Chemotherapy 19 (6.2%) 3 (6.4%) 16 (6.2%) 0.952

Procedural

Surgeries 248 (80.8%) 41 (87.2%) 207 (79.6%) 0.222

Cardiac surgery 3 (1.0%) 2 (4.3%) 1 (0.4%) 0.013

Contrast examination 13 (4.2%) 0 (0.0%) 13 (5.0%) 0.012

ICU 51 (16.6%) 16 (34.0%) 35 (13.5%) <0.001

Mechanical ventilation 53 (17.3%) 13 (27.7%) 40 (15.4%) 0.049

Laboratory values

Platelets (x109/L)* 200.5 (2,752) 153.5 (2,391) 209.5 (3,752) 0.001

RBC (x1012/L)* 3.5 (1.5,5.4) 3.2 (1.6,4.9) 3.5 (1.5,5.4) 0.048

WBC (x109/L)* 8.9 (0.0.179.7) 9.2 (0.0,23.1) 8.8 (0.1,179.7) 0.849

SCr (mg/dL)* 56 (14,1061) 61.5 (14,431) 54.5 (21,1061) 0.051

TBiL (μmol/L)* 9.8 (1.6,398.2) 12.15 (3.2,398.2) 9.45 (1.6,254.3) 0.035

UA (μmol/L)* 194 (40,959.6) 205.5 (66,716) 189 (40,959.6) 0.161

β2-MG (mg/L)* 2.5 (0.8,43.2) 3.3 (0.8,43.2) 2.37 (1.0,17.2) 0.001

Cys C (mg/L)* 1.0 (0.5,7.3) 1.93 (0.59,7.29) 1.0 (0.5,6.5) <0.001

Outcomes

LOS (days)* 25.2 (4.1,187.1) 27.5 (4.1,187.1) 24.9 (5.4,77.0) 0.251

Hospital costs (yuan)* 128,215.6 (84,810.7,202,320.0) 91,289.6 (49,522.6,149,961.3) 100,058.8 (54,197.2,156,642.9) 0.001

CRRT 3 (1.0%) 2 (4.3%) 1 (0.4%) 0.013

*Two-sample Wilcoxon rank-sum test.

AKI, acute kidney injury; ACEI, angiotension converting enzyme inhibitors; ARB, angiotonin receptor blocker; BZDs, benzodiazepines; CCB, calcium channel blockers; CHD, coronary heart

disease; CHF, congestive heart failure; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; CRRT, continuous renal replacement therapy; Cys C, cystatin C; H2RA:

histamine type-2, receptor antagonist; ICU, intensive care unit; LOS, length of stay; MA, macrolides antibiotics; NSAIDs, non-steroidal anti-inflammatory drugs; PPI, proton pump inhibitors;

RBC, red blood cells; SCr, serum creatinine; TBiL, total bilirubin; UA, uric acid; β2-MG, β2-microglobulin.
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3.4 Development of a risk prediction model
for AKI in patients treated with etimicin

Based on univariate logistic regression analysis, the
47 characteristics were reduced to 13 potential predictors
(Supplementary Figure S4). These 13 features included shock,
acidosis, chronic obstructive pulmonary disease, chronic kidney
disease, contrast examination, admission to ICU, mechanical

ventilation, combined use of diuretics or NSAIDs, RBC, SCr, β2-
MG, and Cys C (Figure 4). The importance of the study variables
was ranked by the RF algorithm. The results showed that Cys C, β2-
MG, and SCr were the top three variables affecting the predicted
outcome of etimicin-associated AKI (Figure 4).

The predictors associated with AKI screened by LASSO
regression were incorporated into the machine learning model
and the ROC was plotted (Figure 5).

FIGURE 2
Ranking of importance of amikacin-associated AKI variables. TBiL, total bilirubin.

FIGURE 3
Receiver operating characteristic curves for the amikacin-AKI models. AUC, area under curve; GBM, gradient boosting machine; LightGBM, light
gradient boosting machine; LR, logistic regression; RF, random forest; XGBoost, eXtreme gradient boosting.
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As shown in Table 4, the GBMmodel preformed the best on test
set. Calibration plot for the model is shown in Supplementary Figure
S6. The plot illustrates the relationship between predicted
probabilities and observed outcomes, with the x-axis representing
predicted probabilities and the y-axis showing the actual observed
AKI incidence. The calibration curve demonstrates reasonable
agreement between predicted and observed values, indicating that
the model is well-calibrated for predicting AKI occurrence in the
etimicin cohort.Wemade this model available online as a web-based
calculator https://akigbm.shinyapps.io/EAPP/) to predict the risk of
developing etimicin-associated AKI (Supplementary Figure S7). The
user enters the relevant variables on the website and clicks the
Predict button, and the results are displayed in the form of high and
low risks. When the results suggest that the patient has a high risk of
developing AKI after receiving etimicin, it suggests that clinicians
need to strengthen themonitoring of the patient’s renal function and
adjust the treatment regimen in a timely manner.

4 Discussion

4.1 Incidence and analysis of AKI in patients
treated with amikacin and etimicin

In our study, the incidence of AKI in inpatients treated with
amikacin was 15.3% (47/307), while the incidence of AKI in
inpatients treated with etimicin was 4.6% (319/6,901). The
incidence of AKI in hospitalized patients taking
aminoglycosides had been shown in previous studies to range
from 4.3% to 26.7%, depending on the definition and study
population (Selby et al., 2009; Ong et al., 2016; Ergun et al.,
2022). Clinical studies have shown that etimicin has lower
minimum inhibitory concentration and minimum bactericidal
concentration than amikacin. Meanwhile, etimicin exhibited
longer-lasting bactericidal activity based on the time kill-curve

(Chaudhary et al., 2012). Yao et al. compared the nephrotoxicity of
three different aminoglycosides at the same dose (Yao et al., 2020).
It was shown that etimicin had lower nephrotoxicity compared to
amikacin and gentamicin.

AKI patients incurred significantly higher costs and longer
hospital stays than non-AKI patients. In addition, the probability
of patients in AKI group to undergo continuous renal replacement
therapy (CRRT) was higher, which increased the cost of
hospitalization to a certain extent. A case-control study in the
United States shows that the severityof acute kidney injury is
significantly associated with the risk of death (Shusterman et al.,
1987). Although the overall mortality rate for patients with AKI is
21% globally, the mortality rate for patients with severe AKI is as
high as 42% (Mehta et al., 2015b). Oliveira et al. found that the
mortality rate among ICU patients treated with aminoglycosides was
significantly higher in the AKI group (44.5%) than in the non-AKI
group (29.1%) (Oliveira et al., 2009). Due to the high prevalence and
mortality of in-hospital AKI, early recognition and prevention are
critical to patient outcomes.

4.2 Analysis of risk factors of
aminoglycosides-associated AKI

Previous studies have identified several independent predictors
associated with AKI, including shock, COPD, CHF, CKD, chronic
liver disease, nephrotoxic drugs, SCr, β2-MG, ICU admission, and
mechanical ventilation (Liu et al., 2019; Yue et al., 2022; Feng et al.,
2023), which were confirmed in our study as well. In addition, we
observed some new risk factors associated with AKI, such as
acidosis, tetracyclines, red blood cell count, TBiL, and Cys C.
Studies have shown that Cys C increases earlier than serum
creatinine in the early stages of kidney injury and is not affected
by age, sex, or race (Dharnidharka et al., 2002; Herget-Rosenthal
et al., 2004). A Meta-analysis that included 3,336 patients noted that

TABLE 2 Performance of machine learning models for amikacin-associated acute kidney injury.

Model Youden index Cutoff ACC SEN SPE AUC (95%CI)

Training set

LR 0.477 0.166 0.855 0.694 0.883 0.846 (0.774–0.917)

RF 0.990 0.338 0.992 1.000 0.990 0.998 (0.995–1.000)

GBM 0.496 0.143 0.747 0.750 0.746 0.842 (0.777–0.908)

XGBoost 0.678 0.103 0.784 0.917 0.761 0.916 (0.869–0.964)

LightGBM 0.995 0.395 0.996 1.000 0.995 1.000 (0.999–1.000)

Test set

LR 0.604 0.148 0.803 0.800 0.804 0.831 (0.702–0.960)

RF 0.686 0.087 0.738 1.000 0.686 0.867 (0.773–0.960)

GBM 0.704 0.143 0.820 0.900 0.804 0.809 (0.645–0.973)

XGBoost 0.724 0.176 0.836 0.900 0.824 0.841 (0.692–0.990)

LightGBM 0.604 0.172 0.803 0.800 0.804 0.839 (0.720–0.958)

ACC, accuracy; AUC, area under curve; GBM, gradient boosting machine; LightGBM, light gradient boosting machine; LR, logistic regression; RF, random forest; SEN, sensitivity; SPE,

specificity; XGBoost, eXtreme gradient boosting; 95%CI, 95% confidence interval.
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TABLE 3 Characteristics of patients with etimicin.

Group All patients (n = 6,901) AKI (n = 319) Non- AKI (n = 6,582) P Value

Demographics

Age (years)* 61 (18,99) 65 (23,98) 60 (18,99) <0.001

Gender (male) 4,600 (66.7%) 198 (62.1%) 4,402 (66.9%) 0.075

Smoking history 2,124 (30.8%) 97 (30.4%) 2027 (30.8%) 0.883

Comorbidities

Shock 107 (1.6%) 33 (10.3%) 74 (1.1%) <0.001

Hypoalbuminemia 248 (3.6%) 50 (15.7%) 198 (3.0%) <0.001

Respiratory failure 265 (3.8%) 67 (21.0%) 198 (3.0%) <0.001

Arrhythmia 327 (4.7%) 43 (13.5%) 284 (4.3%) <0.001

Myocardial infarction 155 (2.3%) 28 (8.8%) 127 (1.9%) <0.001

CHF 93 (1.4%) 27 (8.5%) 66 (1.0%) <0.001

Hepatic insufficiency 95 (1.4%) 11 (3.5%) 84 (1.3%) <0.001

Gastrointestinal hemorrhage 195 (2.8%) 16 (5.0%) 179 (2.7%) 0.016

Gastritis 1,153 (16.7%) 24 (7.5%) 1,129 (17.2%) <0.001

Hepatitis 153 (2.2%) 13 (4.1%) 140 (2.1%) 0.021

Hypertension 2,125 (30.8%) 132 (41.4%) 1993 (30.3%) <0.001

Diabetes 1,001 (14.5%) 76 (23.8%) 925 (14.1%) <0.001

CHD 945 (13.7%) 79 (24.8%) 866 (13.2%) <0.001

Pneumonia 794 (11.5%) 88 (27.6%) 706 (10.7%) <0.001

Stroke 847 (12.3%) 86 (27.0%) 761 (11.6%) <0.001

Fatty liver 239 (3.5%) 9 (2.8%) 230 (3.5%) <0.001

Anemia 229 (3.3%) 32 (10.0%) 197 (3.0%) <0.001

Hypokalemia 100 (1.5%) 15 (4.7%) 85 (1.3%) <0.001

Hyponatremia 78 (1.1%) 13 (4.1%) 65 (1.0%) 0.015

Liver cirrhosis 148 (2.1%) 13 (4.1%) 135 (2.1%) 0.841

Malignancy 1,612 (23.4%) 76 (23.8%) 1,536 (23.3%) <0.001

Sepsis 17 (0.3%) 7 (2.2%) 10 (0.2%) 0.02

Gout 19 (0.3%) 3 (0.9%) 16 (0.2%) <0.001

COPD 72 (1.0%) 5 (1.6%) 67 (1.0%) 0.015

Acidosis 19 (0.3%) 8 (2.5%) 11 (0.2%) <0.001

CKD 39 (0.6%) 5 (1.6%) 34 (0.5%) <0.001

Medications

BZDs 2,208 (32.0%) 138 (43.3%) 2070 (31.5%) <0.001

NSAID 2,940 (42.6%) 217 (68.0%) 2,723 (41.4%) <0.001

PPI 5,018 (72.7%) 261 (81.8%) 4,757 (72.3%) <0.001

Statin 648 (9.4%) 53 (16.6%) 595 (9.0%) <0.001

Quinolone 2,416 (35.0%) 148 (46.4%) 2,268 (34.5%) <0.001

β-lactam 4,903 (71.1%) 272 (85.3%) 4,631 (70.4%) <0.001

(Continued on following page)
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early serum Cys C could be used to predict AKI with higher
predictive power than urinary Cys C (Zhang et al., 2011). The
predictive ability of serum Cys C in assessing the occurrence of AKI
has been demonstrated in various patients including those with
traumatic brain injury, acute aortic coarctation, and those
undergoing cardiac surgery (Wang et al., 2020; Wang et al., 2021;
Wang et al., 2022). TBiL is an important indicator of the liver
function of the body. It has been shown that TBiL concentration is
closely related to aminoglycoside nephrotoxicity (Desai and Tsang,
1988). Bikrant et al. reported that when the bilirubin content was

greater than 17.7 mg/dL, the risk of AKI in patients with chronic
acute liver failure was 6.17 times higher than that without chronic
acute liver failure (OR: 6.17, P = 0.011) (Lal et al., 2018). The red
blood cells play an important role in maintaining normal life
activities in the body as carriers of oxygen transport. In our
study, patients in the AKI group had a lower number of red
blood cells in their bodies prior to drug administration compared
to patients in the non-AKI group. A study of liver transplant patients
showed that lower red blood cell counts were associated with an
increased risk of AKI (Zeng et al., 2023). This was consistent with the

TABLE 3 (Continued) Characteristics of patients with etimicin.

Group All patients (n = 6,901) AKI (n = 319) Non- AKI (n = 6,582) P Value

Diuretic 1951 (28.3%) 245 (76.8%) 1706 (25.9%) <0.001

ARB 608 (8.8%) 48 (15.1%) 560 (8.5%) 0.141

ACEI 156 (2.3%) 20 (6.3%) 136 (2.1%) <0.001

H2RA 1,055 (15.3%) 58 (18.2%) 997 (15.2%) <0.001

Glucocorticoid 3,603 (52.2%) 246 (77.1%) 3,357 (51.0%) <0.001

CCB 1,167 (16.9%) 84 (26.3%) 1,083 (16.5%) <0.001

Tetracyclines 237 (3.4%) 50 (15.7%) 187 (2.8%) 0.359

MA 312 (4.5%) 25 (7.8%) 287 (4.4%) 0.075

Chemotherapy 317 (4.6%) 18 (5.6%) 299 (4.5%) 0.883

Procedural

Surgeries 5,991 (86.8%) 276 (86.5%) 5,715 (86.8%) 0.874

Cardiac surgery 18 (0.3%) 1 (0.3%) 17 (0.3%) 0.85

Contrast examination 203 (2.9%) 21 (6.6%) 182 (2.8%) <0.001

ICU 251 (3.6%) 82 (25.7%) 169 (2.6%) <0.001

Mechanical ventilation 244 (3.5%) 75 (23.5%) 169 (2.6%) <0.001

Laboratory values

Platelets (x109/L)* 227 (51,070) 206 (3,554) 226.5 (31,070) <0.001

RBC (x1012/L)* 4.2 (1.2,6.9) 3.5 (1.6,5.9) 4.23 (1.2,6.9) <0.001

WBC (x109/L)* 7.6 (0.0.159.8) 8.8 (0.5,48.4) 7.5 (0.0.159.8) <0.001

SCr (mg/dL)* 69 (18,1742) 84 (19,565) 69 (18,1742) <0.001

TBiL (μmol/L)* 10.9 (1,393.3) 10.8 (2.5,360.7) 10.9 (1,393.3) 0.288

UA (μmol/L)* 254 (27,1030.7) 272 (57,1030.7) 253 (27,832) 0.004

β2-MG (mg/L)* 1.9 (0.8,60.8) 3.31 (1.1,60.8) 1.91 (0.8,27.9) <0.001

Cys C (mg/L)* 0.9 (0.3,9.4) 1.52 (0.5,6.8) 0.84 (0.3,9.4) <0.001

Outcomes

LOS (days)* 13.0 (2.0.160.7) 17.0 (2.3,117.3) 12.8 (2.0.160.7) <0.001

Hospital costs (yuan)* 66,365.7 (39,445.6,115,088.3) 33,754.3 (20,325.0,61,927.9) 34,591.4 (20,861.7,64,218.9) <0.001

CRRT 6 (0.1%) 5 (1.6%) 1 (0.0%) <0.001

*Two-sample Wilcoxon rank-sum test.

AKI, acute kidney injury; ACEI, angiotension converting enzyme inhibitors; ARB, angiotonin receptor blocker; BZDs, benzodiazepines; CCB, calcium channel blockers; CHD, coronary heart

disease; CHF, congestive heart failure; CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; CRRT, continuous renal replacement therapy; Cys C, cystatin C; H2RA,

histamine type-2, receptor antagonist, ICU, intensive care unit, LOS; length of stay; MA, macrolides antibiotics; NSAIDs, non-steroidal anti-inflammatory drugs; PPI, proton pump inhibitors;

RBC, red blood cells; SCr, serum creatinine; TBiL, total bilirubin; UA, uric acid; β2-MG, β2-microglobulin.
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results obtained in this study. Many studies have found an
association between red blood cell distribution width and AKI
(Ramires et al., 2022; Zhu et al., 2022). As the main organ
regulating systemic HCO3-concentration, the kidney plays a vital
role in maintaining acid-base balance in the body. Magalhães et al.
reported that acidosis promotes a decrease in glomerular filtration
rate and tubular function, increases nuclear factor κB and heme
oxygenase one levels, and aggravates the degree of kidney injury
(Magalhaes et al., 2016). A study based on the Food and Drug
Administration Adverse Event Reporting System revealed that the

risk of AKI was 1.73 times higher in patients using tetracyclines than
in those not using tetracyclines (Patek et al., 2020). In another study,
the combined use of tetracycline and aminoglycosides triggered an
inflammatory response by releasing large amounts of inflammatory
factors (IL-6). Meanwhile, the combination of these two drugs also
caused a significant decrease in glutathione levels and catalase
activity in kidney tissue (Elgazzar et al., 2022). With patients who
have multiple potential risk factors, we recommend that clinicians
intensify their attention to patients in order to make timely
adjustments to their treatment prescriptions.

FIGURE 4
Ranking of importance of etimicin-associated AKI variables. CKD, chronic kidney disease; COPD, chronic obstructive pulmonary disease; Cys C,
cystatin C; ICU, intensive care unit; NSAID, non-steroidal anti-inflammatory drugs; RBC, red blood cells; SCr, serum creatinine; β2-MG, β2-microglobulin.

FIGURE 5
Receiver operating characteristic curves for the etimicin-AKI models. AUC, area under curve; GBM, gradient boosting machine; LightGBM, light
gradient boosting machine; LR, logistic regression; RF, random forest; XGBoost, eXtreme gradient boosting.
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Furthermore, our study shows that there was no significant
difference in gender between the AKI and non-AKI groups. The
KDIGO guideline (2012) indicates that women are more prone to
developing AKI (Khwaja, 2012). However, there is still some
controversy regarding the association between gender and AKI.
Loutradis et al. reported that the incidence of AKI was significantly
higher in male patients than in females (11.3% vs. 7.1%, P < 0.001).
The association between men and AKI persisted after adjusting for
confounders such as age, smoking history, and alcohol consumption
(P = 0.001) (Loutradis et al., 2021). Neugarten et al. conducted a
systematic review and meta-analysis of studies on aminoglycoside-
related nephrotoxicity published between 1978 and 2015 (Neugarten
and Golestaneh, 2016). Their study showed that male patients have a
significantly higher risk of developing AKI than female patients. The
differences may due to the study population.

4.3 Machine learning models for the
prediction of AKI risk

In recent years, machine learning techniques have become
increasingly prevalent in addressing medical and clinical
challenges. Several studies have developed risk prediction models
for drug-related AKIs, such as vancomycin and diuretics (Pan et al.,
2020; Zhang et al., 2022). Pan et al. retrospectively analyzed elderly
patients treated with vancomycin between January 2016 and June
2018 at a hospital in China. Univariate analysis and multivariable
logistic regression analysis revealed that vancomycin trough
concentration ≥20 mg/L, surgery, the Charlson Comorbidities
Index ≥4 points, concomitant use of cardiotonic drug, plasma
volume expander, and piperacillin/tazobactam were risk factors
for vancomycin-associated AKI in elderly patients (Pan et al.,
2020). The machine learning models constructed based on
vancomycin-associated AKI risk factors had AUCs of 0.828 (95%
CI 0.758-0.898) and 0.736 (95% CI 0.581-0.890) in the test and

validation sets, respectively. In a prior study, we constructed a risk
prediction model for AKI in hospitalized patients treated with
diuretics (Zhang et al., 2022). There was an AUC of 0.74 (95%
CI, 0.72-0.76) for the torasemide-associated AKI prediction model,
and an AUC of 0.79 (95% CI, 0.77-0.80) for the furosemide-
associated AKI prediction model. In the present study, the AUC
values for the AKI-prediction models associated with amikacin and
etimicin were 0.841 (95% CI, 0.692-0.990) and 0.900 (95% CI, 0.847-
0.953), respectively. Compared to previous studies, our model has
better recognition ability. Due to the varying clinical profiles
associated with different drugs, aggregating them for an overall
analysis may introduce bias and potentially reduce accuracy.
Therefore, it is important to select the appropriate prediction
model tailored to patients receiving specific medications. These
prediction models can serve as valuable tools for identifying
patients at high risk of AKI. While, we acknowledge the necessity
of clinical judgment in determining the optimal course of action for
such patients. Aligned with the principles of personalized medicine
and prudent clinical practice, clinicians may consider exploring
alternative treatment options or adjusting doses for patients
identified as high risk by our calculator. This approach aims to
maximize clinical benefits while minimizing harm to patients, thus
optimizing therapeutic outcomes.

Compared with previously published machine learning models
predicting AKI risk associated with other antibiotics such as
vancomycin, β-lactams, or contrast agents, our models for
aminoglycoside-related AKI demonstrate several unique clinical
insights. First, markers such as cystatin C and total bilirubin
(TBIL), which are not commonly highlighted in AKI risk
prediction models for other nephrotoxic agents, were among the
top-ranked predictors in our study. This may reflect the specific
pharmacokinetic characteristics and renal handling mechanisms of
aminoglycosides. Second, we observed that relatively moderate
baseline kidney dysfunction, rather than overt chronic kidney
disease, was strongly associated with D-AKI in aminoglycoside

TABLE 4 Performance of machine learning models for etimicin-associated acute kidney injury.

Model Youden index Cutoff ACC SEN SPE AUC (95%CI)

Training set

LR 0.561 0.045 0.790 0.770 0.791 0.861 (0.838–0.885)

RF 1.000 0.461 1.000 1.000 1.000 1.000 (1.000–1.000)

GBM 0.634 0.036 0.818 0.816 0.818 0.886 (0.865–0.908)

XGBoost 0.910 0.102 0.949 0.962 0.948 0.992 (0.988–0.995)

LightGBM 0.788 0.066 0.888 0.900 0.888 0.950 (0.935–0.966)

Test set

LR 0.666 0.079 0.884 0.778 0.888 0.885 (0.829–0.941)

RF 0.675 0.091 0.858 0.815 0.860 0.902 (0.861–0.944)

GBM 0.691 0.067 0.908 0.778 0.913 0.900 (0.847–0.953)

XGBoost 0.667 0.053 0.868 0.796 0.871 0.882 (0.827–0.936)

LightGBM 0.701 0.045 0.815 0.889 0.812 0.896 (0.846–0.946)

ACC, accuracy; AUC, area under curve; GBM, gradient boosting machine; LightGBM, light gradient boosting machine; LR, logistic regression; RF, random forest; SEN, sensitivity; SPE,

specificity; XGBoost, eXtreme gradient boosting; 95%CI, 95% confidence interval.
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users, suggesting a unique susceptibility window. These findings
underline the importance of early biomarker monitoring and
individualized dose adjustment during aminoglycoside therapy.
To our knowledge, this is one of the few large-scale ML-based
studies focused specifically on aminoglycoside-induced AKI risk
stratification, and our results may complement existing models for
other antibiotic classes in guiding safer antimicrobial therapy.

4.4 Strengths and limitations

Our study has several strengths. First, we identified risk factors
for AKI associated with etimicin and amikacin, respectively.
Second, we ranked the importance of the risk factors obtained
from the screening, which helps to understand the impact of single
features on the prediction model. Third, we provide a reliable
prediction model for assessing the risk of AKI in patients treated
with amikacin or etimicin. This will help clinical doctors identify
high-risk patients with D-AKI and promptly develop the best
treatment strategy.

There are also limitations in our study. First, the data was
retrospectively collected from the electronic medical record
systems. All patients included in the study were sourced solely
one medical center, which may introduce a degree of bias. The
models lacked validation against other datasets. Therefore, the
applicability of our prediction models needs to be further
validated in larger datasets in the future. Second, the variables
included in our study included laboratory indicators. If patient
test data were missing, model accuracy may be reduced. A
number of patients were excluded from the final cohort,
primarily due to insufficient serum creatinine measurements
that precluded accurate AKI classification per KDIGO criteria,
or missing values in key predictor variables. It is possible that
patients with sparse creatinine or cystatin C testing were
healthier and less closely monitored, thus more likely to
belong to the non-AKI group. This pattern suggests a
potential missing-not-at-random (MNAR) mechanism, which
may introduce selection bias and limit the generalizability of
our findings. Future studies with prospective designs and
standardized data collection will be needed to address this
limitation. Third, the calibration plots revealed slight
underestimation of AKI risk at higher predicted probabilities,
particularly in the amikacin model. This may be due to a limited
number of high-risk cases in our dataset. In future studies,
calibration can be further improved using oversampling
strategies or post hoc recalibration techniques (e.g., Platt
scaling or isotonic regression) to refine risk probability
estimates before clinical deployment. Finally, overfitting is a
concern in several of our models, despite our efforts to
mitigate it through parameter tuning. Despite the relatively
small sample size in the amikacin group (n = 307, with
47 AKI cases), we developed and internally validated the
model using cross-validation and independent test sets. While
the number of positive cases in the validation subset was indeed
limited, the model still demonstrated reasonable performance
(AUC = 0.841). This model provides a preliminary, data-driven
tool for identifying patients at increased risk of AKI when treated
with amikacin, and should be interpreted in conjunction with

clinical judgment. While this issue may not significantly impact
the usability of the models or the validity of our conclusions, it
warrants attention in future research. In the future, we will
address overfitting by increasing sample size and conducting
substantive external validation.

5 Conclusion

In this retrospective study, we developed and validated machine
learning models to predict AKI in inpatients treated with amikacin
or etimicin. The models demonstrated good discrimination and
calibration performance. Key predictors included baseline renal
function, electrolyte abnormalities, and concomitant nephrotoxic
medications. These findings support the feasibility of leveraging
machine learning for early AKI risk stratification and may inform
individualized patient monitoring strategies.
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Glossary
ACC: Accuracy

ACEI: Angiotension converting enzyme inhibitor

AKI: Acute kidney injury

ARB: Angiotonin receptor blocker

AUC: Area under the receiver operating characteristic curve

BZD: Benzodiazepines

CCB: Calcium channel blockers

CHD: Coronary heart disease

CHF: Congestive heart failure

CKD: Chronic kidney disease

COPD: Chronic obstructive pulmonary disease

CRRT: Continuous renal replacement therapy

Cys C: Cystatin C

D-AKI: Drug-induced acute kidney injury

FN: False negative

FP: False positive

GBM: Gradient boosting machine

H2RA: Histamine type-2 receptor antagonist

ICU: Intensive care unit

IQR: Interquartile range

KDIGO: Kidney Disease: Improving Global Outcomes

LASSO: Least Absolute Shrinkage and Selection Operator

LightGBM: Light gradient boosting machine

LOS: Length of stay

LR: Logistic regression

MA: Macrolides antibiotics

NSAID: Non-steroidal anti-inflammatory drug

PPI: Proton pump inhibitor

RBC: Red blood cell count

RF: Random forest

ROC: Receiver operating characteristic

SCr: Serum creatinine

SEN: Sensitivity

SPE: Specificity

TBiL Total bilirubin

TN: True negative

TP: True positive

UA: Uric acid

WBC: White blood cell count

XGBoost: eXtreme gradient boosting

β2-MG: β2-microglobulin

95%CI: 95% confidence interval
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