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Background: Childhood acute myeloid leukemia (AML) constitutes a significant
proportion of pediatric malignancies, with current treatment options remaining
limited. This study aimed to investigate the role of Astragalus polysaccharide (APS)
in immune infiltration and prognosis of pediatric AML.

Methods: Differentially expressed genes (DEGs) were identified from the GEO
database (dataset GSE2191), and APS-related genes (APSRGs) were obtained from
the Swiss Target Prediction platform. DEGs with |logFC| > 1 and p < 0.05 were
intersected with APSRGs to identify APS-related differentially expressed genes
(APSRDEGs), visualized using a Venn diagram. A protein-protein interaction (PPI)
network analysis was conducted to identify hub genes. Gene Ontology (GO) and
KEGG enrichment analyses were performed to determine biological processes
(BP), cellular components (CC), molecular functions (MF), and relevant pathways
associated with the hub genes. Correlation analysis, receiver operating
characteristic (ROC) curve analysis, and immune infiltration analysis were
conducted to assess the relationship between hub genes and pediatric AML.

Results: The GSE2191 dataset was divided into pediatric AML (PAML) and control
groups. A total of 1,881 DEGs were identified, of which 20 were APSRDEGs. PPI
network analysis revealed that 13 APSRDEGs were interconnected, and nine hub
genes were identified: CASP3, PTPRC, ELANE, HMOX1, CHUK, FLT1, JAK3, CTSL,
and AURKA. GO and KEGG enrichment analyses indicated that these genes were
significantly associated with key biological processes, cellular components,
molecular functions, and pathways involved in AML. ROC curve analysis
revealed that the expression levels of the nine hub genes differed significantly
between the PAML and control groups. Immune infiltration analysis
demonstrated a strong correlation between several hub genes and immune
cells, with HMOX1 showing the strongest positive correlation with neutrophils.
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Conclusion: This study identified nine hub genes related to APS in pediatric AML.
These findings suggest that APS may significantly affect immune infiltration and
prognosis in pediatric AML, highlighting its potential as a therapeutic modulator for
the disease.
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1 Introduction

Acute myeloid leukemia (AML) is a malignant hematological
disorder that primarily affects myeloid stem cells, leading to the
uncontrolled proliferation of immature blood cells. It represents one
of the most common forms of leukemia in adults and children, with
pediatric acute myeloid leukemia (PAML) accounting for
approximately 20% of childhood leukemia cases (Hiroto et al.,
2019). Despite significant advances in treatment strategies,
including intensive chemotherapy and hematopoietic stem cell
transplantation, the prognosis for pediatric AML remains poor.
One of the most significant challenges in managing AML is the high
relapse rate, with approximately one-third to one-half of patients
experiencing recurrence after initial remission (Stevens et al., 2017).
This relapse is often due to the persistence of leukemic stem cells that
evade conventional therapies. Consequently, there is an urgent need
for alternative or adjunctive therapies that could improve the
prognosis of PAML patients. Astragalus polysaccharide (APS), a
bioactive compound derived from the traditional Chinese herb
Astragalus membranaceus, has demonstrated various immune-
modulating and anti-tumor properties. This study aims to
investigate the potential of APS in modulating immune
infiltration and enhancing prognostic biomarkers in pediatric
AML, offering new insights into the possibility of combining APS
with existing therapies to reduce relapse rates and improve
overall outcomes.

Astragalus polysaccharide (APS), a principal bioactive
component derived from the traditional Chinese medicinal herb
Astragalus membranaceus, has demonstrated a wide range of
pharmacological activities, including potent antitumor effects.
While the anti-cancer properties of APS have been extensively
studied in various malignancies, such as colon, liver, lung, and
gastric cancers, its potential role in leukemia, particularly AML,
remains less explored. Recent studies have suggested that APS exerts
significant inhibitory effects on cancer cell proliferation, migration,
and invasion, primarily by modulating key signaling pathways
involved in tumor growth, apoptosis, and immune responses. For
example, APS has been shown to induce apoptosis in various cancer
cell lines, including those from colon and breast cancers, by
activating intrinsic apoptotic pathways and downregulating anti-
apoptotic proteins (Di et al., 2009).

In the context of leukemia, APS has demonstrated promising
potential in regulating the immune microenvironment and
enhancing the immune response against tumor cells. Studies
indicate that APS may improve the efficacy of chemotherapy by
enhancing immune cell activity, particularly by stimulating the
proliferation and activation of natural killer (NK) cells and T
lymphocytes. These immune cells play a crucial role in the

elimination of leukemic cells, and APS has been shown to
augment their cytotoxic functions. Additionally, APS has been
observed to reduce the inflammatory responses typically
associated with leukemia, potentially mitigating the adverse
effects of chemotherapy and improving the overall
therapeutic response.

While conventional treatments for AML, including
chemotherapy and hematopoietic stem cell transplantation,
remain the standard of care, these therapies are often limited by
issues such as drug resistance, toxicity, and high relapse rates. APS,
with its ability to modulate immune responses and enhance the
sensitivity of leukemic cells to chemotherapy, presents a promising
alternative or adjunct to traditional treatments. By targeting
multiple pathways, including apoptosis, immune modulation, and
inflammation, APS offers a multi-targeted approach that could help
overcome the limitations of current therapies. This makes APS a
potential candidate for combination therapies, particularly in
addressing the challenge of relapse in pediatric AML. However,
despite its potential, the precise molecular mechanisms underlying
the anticancer effects of APS in leukemia, especially AML, require
further investigation.

Network pharmacology provides a systemic approach to
exploring complex interactions between multiple components
and targets, offering valuable insights into disease mechanisms
and therapeutic strategies (Hopkins, 2008). Tumorigenesis is
driven by multi-gene interactions, necessitating multi-target
therapeutic approaches. Network pharmacology facilitates the
identification of novel therapeutic targets through integrative
analyses, relying on extensive data to uncover potential
mechanisms of action. Network pharmacology is particularly
relevant given the multi-gene regulatory nature of leukemia and
the corresponding need for multi-target treatment strategies.
However, the application of network pharmacology to
investigate the effects of APS on AML remains underexplored.
To elucidate the comprehensive mechanisms of APS in childhood
AML, we employed a network pharmacology approach to identify
potential targets and functional pathways. This study integrated
pediatric AML datasets from the Gene Expression Omnibus
(GEO) with APS-related genes (APSRGs) identified using the
SwissTargetPrediction platform. Differentially expressed genes
(DEGs) were analyzed to identify APS-related differentially
expressed genes (APSRDEGs). Hub genes were identified using
a protein-protein interaction (PPI) network, followed by Gene
Ontology (GO) and KEGG pathway enrichment analyses. Further,
ROC curve analyses and immune infiltration studies were
performed to assess these genes diagnostic and prognostic
significance. Ultimately, we identified key diagnostic and
immune infiltration-associated genes for childhood AML.
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2 Materials and methods

2.1 Data download

Data for PAMLwere downloaded from the GEO database (http://
www.ncbi.nlm.nih.gov/geo/) (Davis and Meltzer, 2007). The dataset
GSE2191 (Yagi et al., 2003) comprises samples derived from Homo
sapiens, with tissue sources including bone marrow and peripheral
blood. The platform used for GSE2191 was GPL8300, with detailed
information provided in Table 1. This dataset includes 54 PAML and
4 control samples, all incorporated into this study. The dataset was
standardized using the R package limma (Ritchie et al., 2015). Probe
annotations were normalized and standardized, and boxplots
depicting data before and after standardization were generated.

2.2 Astragalus polysaccharide target
prediction

The PubChem database (https://pubchem.ncbi.nlm.nih.gov/)
(Kim et al., 2021), a comprehensive resource for chemical
information, was utilized to retrieve the Simplified Molecular
Input Line Entry System (SMILES) expression of APS. Target
prediction for APSRGs was performed using the
SwissTargetPrediction online tool (http://swisstargetprediction.ch/
) (Daina et al., 2019) based on compound structure. The specific
details are summarized in Supplementary Table S1. Subsequently, an
APS-target network was constructed to visualize interactions
between APS and its predicted targets.

2.3 Identification of APS-related
differentially expressed genes in
pediatric AML

Samples in dataset GSE2191 were divided into two groups: the
PAML group and the control group. Differential gene expression
analysis was conducted using the R package limma. Genes
were identified as differentially expressed if they met the criteria
of |logFC| > 1 and p < 0.05. Upregulated genes were defined as those
with logFC > 1 and p < 0.05, while downregulated genes were those
with logFC < −1 and p < 0.05. The Benjamini–Hochberg (BH)
method was used for p-value adjustment.

To identify APSRDEGs associated with pediatric AML, DEGs
from dataset GSE2191 were intersected with APSRGs. Only
overlapping genes meeting the DEG criteria were
considered APSRDEGs.

2.4 PPI network construction and hub gene
identification

The STRING database (http://string-db.org/) (Szklarczyk
et al., 2019) was employed to construct a PPI network for
APSRDEGs, with a minimum interaction confidence score of
0.400 (medium confidence). Local regions of the PPI network,
representing potential molecular complexes with specific
biological functions, were identified for further analysis. Hub
genes were selected using the CytoHubba plugin in Cytoscape
(Shannon et al., 2003; Chin et al., 2014), applying five
algorithms: Maximal Clique Centrality (MCC), Maximum
Neighborhood Component (MNC), Degree, Edge Percolated
Component (EPC), and Closeness (Yang et al., 2019). Top-
ranking APSRDEGs identified by all five algorithms were
intersected, and a Venn diagram was generated to determine
the Hub genes.

2.5 GO and KEGG pathway
enrichment analysis

GOanalysis (Mi et al., 2019) was performed to investigate the
biological processes (BP), cellular components (CC), and molecular
functions (MF) associated with Hub genes. Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis (Kanehisa and Goto,
2000), was conducted to explore the involvement of Hub genes in
disease pathways. The R package clusterProfiler (Yu et al., 2012) was
used for both GO and KEGG enrichment analyses, with statistical
significance defined as asjusted p-value < 0.05 and FDR (q-value) <
0.25. The Benjamini–Hochberg (BH) method was used for p-value
correction.

2.6 Differential expression validation and
ROC curve analysis of hub genes

Group comparison plots were generated to validate the
differential expression of Hub genes between the PAML and
control groups. The diagnostic performance of Hub genes was
evaluated using ROC curves, plotted with the R package pROC.
The area under the curve (AUC) was calculated to quantify
diagnostic accuracy. AUC values > 0.9 indicated high accuracy,
values between 0.7 and 0.9 indicated moderate accuracy, and
values between 0.5 and 0.7 indicated low accuracy.

2.7 Hub gene correlation and functional
similarity analysis

The Spearman algorithm was used to assess correlations
between the expression levels of Hub genes in dataset GSE2191.

TABLE 1 GEO microarray chip information.

GSE2191

Platform GPL8300

Type Array

Species Homo sapiens

Tissue Bone marrow or peripheral blood

Samples in the PAML group 54

Samples in the Control group 4

Reference PMID: 12738660

GEO, gene expression omnibus; PAML, pediatric acute myeloid leukemia.
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Genes with the strongest correlations were identified using the R
package ggplot2. Correlation strength was categorized as follows:
weak or no correlation (|r| < 0.3), weak correlation (0.3 ≤ |r| < 0.5),
moderate correlation (0.5 ≤ |r| < 0.8), and strong correlation
(|r| ≥ 0.8).

Functional similarities among Hub genes were analyzed using
GOSemSim (Yu et al., 2010), which calculates functional similarity
scores based on GO annotations.

2.8 Immune infiltration analysis (ssGSEA)

The relative abundance of immune cell infiltration in each
sample was assessed using the single-sample gene-set enrichment
analysis (ssGSEA) (Xiao et al., 2020) method. Immune cell
infiltration matrices were generated for dataset GSE2191, and
correlations between Hub genes and immune cell infiltration
levels were analyzed using the Spearman algorithm.

FIGURE 1
Flow chart for the comprehensive analysis of APS PAML, pediatric acute myeloid leukemia; DEGs, differentially expressed genes; APS, astragalus
polysacharin; APSRGs, astragalus polysacharin-related genes. APSRDEGs, astragalus polysacharin-related differentially expressed genes; ROC, receiver
operating characteristic; GO, gene ontology; KEGG, kyoto encyclopedia of genes and genomes; PPI, protein-protein interaction.
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2.9 Statistical analysis

All statistical analyses were performed using R software (version
4.3.0). For comparisons of continuous variables between two groups,
normally distributed variables were analyzed by independent
Student’s T-Test. In contrast, non-normally distributed variables
were analyzed using the Mann-Whitney U test (Wilcoxon rank-sum
test). For comparisons involving three or more groups, the
Kruskal–Wallis test was applied. Spearman correlation
coefficients were calculated for association analyses. Statistical
significance was set at a two-sided p < 0.05 unless
otherwise specified.

3 Results

3.1 Technology roadmap

Figure 1 illustrates the comprehensive workflow of the study,
outlining the key stages of the data analysis process and the
methodologies employed to explore the role of Astragalus
polysaccharide (APS) in pediatric acute myeloid leukemia
(PAML). The roadmap begins with the identification of
differentially expressed genes (DEGs) from the GSE2191 dataset,
followed by the integration of APS-related genes (APSRGs)
identified through the Swiss Target Prediction platform. The
intersecting DEGs and APSRGs were used to identify APS-
related differentially expressed genes (APSRDEGs), which were
then analyzed through protein-protein interaction (PPI) network
analysis to identify hub genes.

Subsequently, Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway enrichment analyses were
performed to explore the biological processes, molecular functions,
and relevant pathways associated with the identified hub genes. The
inclusion of receiver operating characteristic (ROC) curve analysis
and immune infiltration studies further helped assess the diagnostic
and prognostic significance of these hub genes in the
context of PAML.

Figure 1 also highlights the sequential integration of these
analyses, from data extraction and gene identification to in-depth
statistical and immune-related assessments, emphasizing the
methodological framework that underpins the study’s aim to
identify key biomarkers and therapeutic targets for APS in
PAML. This roadmap serves as a visual guide to understanding
how the various data sets and analytical tools converge to uncover
the complex interactions between APS and the immune
microenvironment in AML. The visual representation is critical
for understanding the logical flow of the study, from gene
identification to pathway analysis, immune infiltration, and the
final determination of potential therapeutic applications of
APS in AML.

3.2 Target prediction of Astragalus
Polysaccharides

The English term Astragalus Polysaccharide (APS) was used as
the keyword to search in the PubChem database. APS is a complex

polysaccharide composed of multiple monosaccharide units
connected by glycosidic bonds, so it is not possible to fully
describe its structure with a simple chemical formula. The
specific chemical formula may vary slightly depending on the
different extracts, for example, shorter APS molecules are roughly
between C18H32O16 to C24H42O21. Target prediction was conducted
using the Swiss Target Prediction platform, identifying 101 APS-
related genes (APSRGs). These genes were visualized using a
Cytoscape network diagram (Figure 2), with detailed information
provided in Supplementary Table S2.

3.3 Standardization of the pediatric acute
myeloid leukemia dataset

The dataset GSE2191 was standardized using the R package
limma. Boxplots were generated comparing the expression
distributions before and after standardization (Figures 3A, B).

3.4 Identification of APS-related
differentially expressed genes in pediatric
acute myeloid leukemia

The data of dataset GSE2191 were divided into the PAML and
control groups. A total of 1,881 differentially expressed genes
(DEGs) meeting the thresholds |logFC| > 1 and p < 0.05 were
identified. Of these, 1,119 genes were upregulated, and 762 were
downregulated. A volcano plot summarizing these results was
generated (Figure 4A).

The intersection of APSRGs and DEGs was visualized using
a Venn diagram and yielded 20 APS-related differentially
expressed genes (APSRDEGs): ALOX5, ALPL, FLT1,
GABRG2, HMOX1, ILK, JAK3, PDE4A, PTPRC, and SLC9A1
(Figure 4B). Heatmap analysis of APSRDEG expression
differences between the groups was performed using the
heatmap package (Figure 4C).

3.5 Construction of a PPI network and hub
gene screening

Protein-protein interaction (PPI) analysis for the 20 APSRDEGs
was conducted using the STRING database. However, as depicted in
Figure 5A, only 13 of the 20 APSRDEGs formed significant
interactions with other proteins, highlighting the most
interconnected genes in the network. They are ALPL, AURKA,
CA2, CASP3, CHUK, CTSL, ELANE, FABP4, FLT1, HMOX1,
JAK3, PTPRC, and SLC9A1. The remaining seven APSRDEGs,
while identified in the initial analysis, did not show strong or
significant interactions in the PPI network and were not included
in Figure 5A. This subset of genes still holds potential for further
investigation, but their lower interaction scores in the network
suggest that their roles may be more isolated or indirect. Scores
for these genes were calculated using five CytoHubba algorithms
(MCC, MNC, Degree, EPC, and Closeness), and the top 10 ranked
genes for each algorithm were visualized as PPI networks (Figures
5B–F). A Venn diagram identified nine hub genes shared across the
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algorithms: CASP3, PTPRC, ELANE, HMOX1, CHUK, FLT1, JAK3,
CTSL, and AURKA (Figure 5G).

3.6 Gene ontology (GO) and pathway (KEGG)
enrichment analysis

Gene Ontology (GO) and KEGG pathway enrichment analyses
were performed for the nine hub genes, with results summarized in
Table 2. Key biological processes (BP) included negative regulation
of leukocyte activation and immune-mediated processes. Cellular
components (CC) such as membrane rafts and vacuolar lumen were
enriched, along with molecular functions (MF) like proteoglycan

binding and endopeptidase activity. Enriched KEGG pathways
included apoptosis, hepatitis B, and primary immunodeficiency.
Results were visualized using bar and bubble plots (Figures 6A, B)
and network diagrams (Figures 6C–F).

3.6.1 Biological processes (BP)
The GO analysis revealed that the hub genes were significantly

involved in several important biological processes relevant to AML,
such as the negative regulation of leukocyte activation and immune-
mediated processes. These processes are critical for understanding
how APS may enhance immune surveillance in the AML
microenvironment, potentially aiding in the elimination of
leukemic cells. The activation and modulation of immune

FIGURE 2
APS and Targets Interaction Network. The orange oval is Astragalus polysaccharide, and the yellow oval is SwissTargetPrediction target.

Frontiers in Pharmacology frontiersin.org06

He et al. 10.3389/fphar.2025.1538888

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2025.1538888


responses are key to improving the body’s ability to target and
control leukemia. Additionally, regulation of protein serine/
threonine kinase activity was identified, which is involved in
several crucial signaling pathways that regulate cell growth and
apoptosis in AML.

3.6.2 Molecular functions (MF)
The molecular function analysis showed that the hub genes were

significantly associated with proteoglycan binding and endopeptidase
activity. Proteoglycans are important components of the extracellular
matrix and cell surface, and their binding may be involved in
modulating cellular adhesion and migration, processes that are
critical in cancer metastasis and the spread of leukemia.
Endopeptidase activity is also relevant in regulating proteolytic
processes that can influence tumor progression and the activation
of immune cells, which is essential for cancer therapy. By modulating
these activities, APS may promote more efficient immune responses
and potentially reduce tumor invasiveness in AML.

3.6.3 Cellular components (CC)
The enrichment analysis showed significant involvement of the

hub genes in membrane rafts and vacuolar lumen, both of which are
critical for immune cell function. Membrane rafts are specialized
membrane microdomains that play essential roles in signal
transduction and immune cell activation, while the vacuolar
lumen is involved in processes such as autophagy and the
degradation of cellular debris. These components are particularly
relevant in the context of leukemia, as they may be involved in the
activation of immune cells (such as T cells and NK cells), which are
essential for recognizing and attacking leukemic cells.

3.6.4 KEGG pathways
The KEGG pathway analysis highlighted several pathways that

are directly involved in AML pathogenesis, including apoptosis,
primary immunodeficiency, and hepatitis B. The apoptosis pathway
is of particular relevance in leukemia, as the ability to promote or
inhibit apoptosis is a fundamental mechanism in the treatment of
cancers like AML. By modulating apoptotic pathways, APS may
enhance the elimination of leukemic cells while reducing
chemotherapy resistance. The primary immunodeficiency

pathway also holds significance, as many childhood leukemias,
including AML, are associated with immune system dysfunction.
APS’s potential to influence immune signaling pathways could help
reprogram the immune response, enhancing the body’s ability to
fight leukemia and possibly reducing the incidence of relapse.

3.7 Differential expression validation and
ROC curve analysis

The expression of hub genes in the PAML and control groups
were analyzed, with all nine genes showing significant differential
expression (p < 0.05), which are CASP3, PTPRC, ELANE, HMOX1,
CHUK, FLT1, JAK3, CTSL, AURKA. ROC curve analysis using the
pROC package revealed high classification accuracy (AUC > 0.9) for
six genes (PTPRC, HMOX1, CHUK, FLT1, CTSL, AURKA), while
CASP3, ELANE, and JAK3 demonstrated moderate accuracy (0.7 <
AUC < 0.9) (Figures 7A–J).

3.8 Hub gene correlation and
functional analysis

Pairwise correlations among the nine hub genes were calculated,
revealing the strongest positive correlation between HMOX1 and
CTSL (r = 0.584, p < 0.05), and the strongest negative correlation
between JAK3 and CHUK (r = −0.395, p < 0.05) (Figure 8A). To
further illustrate these findings, scatter plots were generated using
the ggplot2 package to depict the strongest positively and negatively
correlated gene pairs (Figures 8B, C).

In addition, functional similarity analysis was performed to
evaluate the biological significance of these genes in PAML. The
results, visualized in Figure 8D, highlight JAK3 as playing a critical
role in the biological processes underlying PAML.

3.9 Immune infiltration analysis in PAML

Using the ssGSEA algorithm, immune infiltration analysis of
GSE2191 revealed 15 immune cell types with significant abundance

FIGURE 3
Normalization of GSE2191. (A) Boxplot of GSE2191 distribution in the dataset before normalization. (B) Boxplot of GSE2191 distribution of the
standardized dataset. Control group (gray) and childhood acute myeloid leukemia (PAML) group (purple).
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differences (p < 0.05), including activated B cell, activated CD8+

T cell, activated dendritic cell, CD56 dim natural killer cell, effector
memory CD4+ T cell, eosinophil, mast cell, myeloid-derived
suppressor cell, memory B cell, natural killer cell, natural killer
T cell, neutrophil, type 1 T helper cell, type 17 T helper cell, type
2 T helper cell (Figure 9A). Then, the correlation heatmap was used
to show the correlation results of the abundance of 15 immune cell
infiltration in the immune infiltration analysis in dataset GSE2191
(Figure 9B). The study revealed that most immune cell pairs
displayed strong positive correlations. Notably, MDSCs and
Neutrophils exhibited the strongest significant positive correlation
(r = 0.84, p value < 0.05). Finally, Finally, the relationship between
Hub Genes and immune cell infiltration abundance was illustrated
using a correlation bubble plot (Figure 9C). The results indicated

that many immune cells showed significant correlations with Hub
Genes, with HMOX1 and Neutrophils demonstrating the strongest
positive correlation (r = 0.592, p < 0.05).

4 Discussion

Acute myeloid leukemia (AML) is a malignant neoplasm
originating from myeloid stem cell precursors, primarily affecting
white blood cells, distinct from erythrocytes, platelets, B cells, and
T cells. The disease arises from genetic mutations that drive
abnormal clonal proliferation and tumor formation. AML
accounts for approximately one-third of all leukemia diagnoses
and is characterized by immune dysregulation due to underlying

FIGURE 4
Differential Gene Expression Analysis. (A) Volcano plot of differentially expressed genes analysis between PAML and Control groups in dataset
GSE2191. (B) DEGs in dataset GSE2191, APSRGs Venn diagram. (C) Heat map of APSRDEGs in dataset GSE2191. The PAML group is in purple, and the
Control group is in gray. In the heat map, red represents high expression, blue represents low expression, and the depth of color represents the degree of
expression.
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genetic abnormalities. Despite advancements in oncology, the
treatment paradigm for AML has remained largely unchanged
for nearly 50 years, with induction chemotherapy and remission
therapy as the primary approaches. Our research focuses on
modulating immune function as a novel therapeutic avenue to
improve patient survival outcomes.

This study investigates the immunomodulatory effects of APS in
pediatric AML, highlighting its potential to reshape the immune

microenvironment and influence prognostic outcomes. PAML is often
associatedwith poor survival rates and high relapse risks, necessitating the
development of therapies beyond conventional chemotherapy (Hu et al.,
2016; Zhang et al., 2018). APS, known for its immune-enhancing
properties, emerges as a promising adjunct therapy, potentially
fortifying the immune system to combat leukemic cells effectively.

APS treatment was associated with significant changes in the
expression of genes involved in apoptosis and immune cell

FIGURE 5
PPI Network and Hub Genes Analysis. (A) PPI Network of APSRDEGs calculated from the STRING database. Only 13 of the 20 APSRDEGs formed
significant interactions with other proteins, highlighting the most interconnected genes in the network. (B–F) PPI Network of TOP10 APSRDEGs
calculated by five algorithms of CytoHubba plug-in, including MCC (B), MNC (C), Degree (D), EPC (E) and Closeness (F). (G). APSRDEGs Venn diagram of
TOP10 for the five algorithms of the CytoHubba plugin.
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activation, notably CASP3, PTPRC and ELANE (Porter and Jänicke,
1999; Hussar, 2022; Chua and Laurent, 2006; Cohen, 1997). CASP3,
a critical mediator of apoptosis, plays a role in programmed cell
death, which is essential for eliminating cancerous cells. These
findings align with studies indicating that APS can trigger
apoptosis in various malignancies. The modulation of PTPRC
(CD45) suggests enhanced leukocyte activity, which is vital for
initiating and sustaining an anti-tumor immune response (Li P.
et al., 2023; Salmond, 2024; Wong et al., 2013; Yang and Klein,
2022). The enrichment of these genes indicates APS’s role in
reprogramming immune responses to target leukemic cells more
effectively.

Moreover, the PPI network analysis revealed the central role of
immune-related hub genes such as JAK3 and CHUK, both integral
to cytokine signaling and immune regulation. JAK3 is particularly
significant due to its association with cytokine-driven immune cell
activation, suggesting that APS may enhance the proliferation and
activity of immune cells targeting AML cells (Yamaoka and
Kitamura, 2023; Li G. et al., 2023).

The ssGSEA analysis demonstrated that APS treatment increases the
infiltration of immune cells such as activated CD8+ T cells, natural killer
(NK) cells, and dendritic cells, which are crucial for anti-tumor immunity
(Li et al., 2024). These cells contribute to direct cytotoxic activity and
facilitate adaptive immune responses through antigen presentation
(Smith et al., 2021). Moreover, our research revealed correlations

between immune cells (e.g., CD8+ T cells, MDSCs, Neutrophils, and
Type 17T helper cells) and hub genes such as JAK3, CTSL,HMOX1, and
FLT1. GO and KEGG enrichment analyses further supported these
findings, highlighting APS’s influence on pathways involved in the
negative regulation of leukocyte activation and immune-mediated
apoptosis. Pathway analyses also identified APS’s role in modulating
serine/threonine kinase activity and cytokine-mediated signaling, essential
for coordinating complex immune responses against AML cells. This
broad immune modulation aligns with traditional Chinese medicinal
principles of multi-target and multi-pathway treatment strategies (Yang
et al., 2024; Zhang et al., 2021). These findings support the hypothesis that
APS has the potential to improve the efficacy of current AML treatments
and reduce relapse rates bymodulating the tumormicroenvironment and
immune system.

APS’s ability to enhance immune cell infiltration within the AML
microenvironments offers a complementary strategy to conventional
therapies, which primarily aim to eradicate leukemic cells. While
conventional treatments mainly focus on eradicating leukemic cells,
APS provides a complementary approach by boosting immune
responses, potentially leading to improved patient outcomes.
However, caution is warranted, due to potential risks such as
autoimmune reactions or cytokine release syndrome arising from
broad immune activation (Cosenza et al., 2021).

There are still some defects in our research. Further research is
needed to optimize APS dosing to balance therapeutic efficacy with

TABLE 2 Result of GO and KEGG enrichment analysis for hub genes.

Ontology ID Description GeneRatio BgRatio p-value p.adjust q-value

BP GO:0002695 Negative regulation of leukocyte activation 4/9 202/18614 1.63E-06 1.07E-03 3.63E-04

BP GO:0050866 Negative regulation of cell activation 4/9 225/18614 2.50E-06 1.07E-03 3.63E-04

BP GO:0002704 Negative regulation of leukocyte mediated immunity 3/9 68/18614 3.86E-06 1.10E-03 3.73E-04

BP GO:0002440 Production of molecular mediator of immune response 4/9 328/18614 1.11E-05 1.89E-03 6.38E-04

BP GO:0071900 Regulation of protein serine/threonine kinase activity 4/9 369/18614 1.77E-05 1.89E-03 6.38E-04

CC GO:0045121 Membrane raft 3/9 323/19518 3.50E-04 1.17E-02 6.88E-03

CC GO:0098857 Membrane microdomain 3/9 324/19518 3.53E-04 1.17E-02 6.88E-03

CC GO:0009898 Cytoplasmic side of plasma membrane 2/9 159/19518 2.29E-03 4.41E-02 2.60E-02

CC GO:0005775 Vacuolar lumen 2/9 176/19518 2.79E-03 4.41E-02 2.60E-02

CC GO:0098562 Cytoplasmic side of membrane 2/9 193/19518 3.35E-03 4.41E-02 2.60E-02

MF GO:0043394 Proteoglycan binding 2/9 36/18369 1.33E-04 8.66E-03 2.67E-03

MF GO:0004175 Endopeptidase activity 3/9 428/18369 9.50E-04 2.53E-02 7.79E-03

MF GO:0004197 Cysteine-type endopeptidase activity 2/9 118/18369 1.43E-03 2.53E-02 7.79E-03

MF GO:0004713 Protein tyrosine kinase activity 2/9 137/18369 1.92E-03 2.53E-02 7.79E-03

MF GO:0002020 Protease binding 2/9 138/18369 1.95E-03 2.53E-02 7.79E-03

KEGG hsa04210 Apoptosis 3/9 136/8662 2.97E-04 1.03E-02 6.33E-03

KEGG hsa05162 Measles 3/9 138/8662 3.10E-04 1.03E-02 6.33E-03

KEGG hsa05418 Fluid shear stress and atherosclerosis 3/9 139/8662 3.16E-04 1.03E-02 6.33E-03

KEGG hsa05161 Hepatitis B 3/9 162/8662 4.97E-04 1.22E-02 7.45E-03

KEGG hsa05340 Primary immunodeficiency 2/9 38/8662 6.62E-04 1.30E-02 7.94E-03

GO, gene ontology; BP, Biological Process; CC, Cellular Component; MF, molecular function; KEGG, kyoto encyclopedia of genes and genomes.
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minimizing immune-related side effects. Clinical trials are essential
to validate APS’s effects on pediatric AML patients and to establish
its safety profile. Additionally, exploring the synergistic potential of
APS in combination with other immunotherapies or targeted
treatments may pave the way for personalized and effective
treatment strategies.

5 Conclusion

In conclusion, this study provides compelling evidence that APS
represents a promising adjunctive therapy for pediatric AML. By
modulating immune cell infiltration and influencing key apoptotic
and immune pathways, APS demonstrates the capacity to enhance

FIGURE 6
GO and KEGG Enrichment Analysis for Hub Genes. (A) The results of GO and KEGG of Hub Genes are shown in bar chart (A) and bubble chart (B)
Biological process (BP), cell component (CC), molecular function (MF) and biological pathway (KEGG), GO terms and KEGG terms are on the ordinate.
(C–F) GO and KEGG results of Hub Genes network diagram: BP (C), CC (D), MF (E) and KEGG (F). The brown nodes represent entries, the green nodes
represent molecules, and the lines represent the relationship between entries and molecules. The bubble size in the bubble plot represents the
number of genes, and the color of the bubble represents the size of the adj. p value, the reder the color, the smaller the adj. p value, and the bluer the color,
the larger the adj. p value. The screening criteria for GO and KEGG were adj. p value < 0.05 and FDR value (q value) < 0.25, and the p value correction
method was Benjamini–Hochberg (BH).
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FIGURE 7
Differential Expression Validation and ROC Curve Analysis. (A) Group comparison diagram of Hub Genes in the PAML and the Control groups of
dataset GSE2191. B-j. ROC curves of Hub Genes AURKA (B), CASP3 (C), CHUK (D), CTSL (E), ELANE (F), FLT1 (G), HMOX1 (H), JAK3 (I), PTPRC (J) in dataset
GSE2191. * stands for p value < 0.05, indicating statistical significance; ** represents p < 0.01, highly statistically significant; *** represents p < 0.001 and
highly statistically significant. When AUC > 0.5, it indicates that the expression of themolecule is a trend to promote the occurrence of the event, and
the closer the AUC is to 1, the better the diagnostic effect. AUC between 0.7 and 0.9 had a certain accuracy, and AUC above 0.9 had a high accuracy. ROC,
Receiver Operating Characteristic; AUC, Area Under the Curve. TPR, True Positive Rate; FPR, False Positive Rate. Gray represents the Control (Control)
group and purple represents the pediatric acute myeloid leukemia (PAML) group.
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anti-tumor immunity, thereby offering a promising avenue for improving
patient outcomes in this challenging disease. Despite these encouraging
findings, further rigorous clinical trials and in-depth mechanistic studies
are imperative to fully elucidate APS’s therapeutic potential and ensure its
safe integration into current treatment protocols.

5.1 Limitations of the study

While this study provides valuable insights into the potential
molecular mechanisms of Astragalus polysaccharide (APS) in

pediatric acute myeloid leukemia (PAML), several limitations
must be acknowledged.

Firstly, while we analyzed the composition of APS and provided
chemical formulas, these formulas represent a simplified version of
the polysaccharide structure. Given that APS is a complex
polysaccharide consisting of multiple monosaccharide units, the
provided chemical formulas do not fully capture the intricate
structure of APS. This simplification may hinder a complete
understanding of the polysaccharide’s biological activity and
function, and further structural elucidation is necessary in future
studies to better characterize its molecular complexity.

FIGURE 8
Correlation and Friends Analysis. (A) Correlation heatmap of Hub Genes in the PAML group and the Control group of dataset GSE2191. (B) Scatter
plot of correlation between Hub Genes HMOX1 and CTSL. (C) Scatter plot of the correlation between the Hub Genes JAK3 and CHUK. (D)Cloud rain plot
of functional similarity (Friends) analysis results of HubGenes. (B) * represents p < 0.05, indicating statistical significance. The absolute value of correlation
coefficient (r value) below 0.3 was weak or no correlation, 0.3 to 0.5 was weak correlation, and 0.5 to 0.8 was moderate correlation. In the group
comparison diagram, purple is the PAML group, and gray is the Control group. In the correlation heat map, red is positive correlation, blue is negative
correlation, and the depth of color represents the strength of correlation.
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Secondly, the sample sources used in this study, specifically the
publicly available GEO dataset (GSE2191), may limit the
generalizability of the findings. The dataset predominantly includes
samples from a specific patient cohort and may not fully represent the
broader spectrum of pediatric AML cases. Future studies should
incorporate a more diverse set of samples, potentially from different
populations and with varying plant sources and extraction methods, to
assess whether the observed findings hold across different clinical and
biological contexts.

Another limitation is the lack of in-depth exploration of the
specific molecular mechanisms of APS in PAML. While we have
provided a bioinformatics analysis of APS-related gene
expression, the precise molecular pathways through which
APS exerts its effects remain unclear. Further research is
needed to specifically elucidate the mechanisms underlying
the biological activities of APS, including its interactions

with immune cells, signaling pathways, and other molecular
macromolecules.

Additionally, although our study leveraged bioinformatics analysis
of publicly available datasets, we recognize that some of these datasets lack
detailed clinical information, such as treatment regimens and patient
outcomes. This absence of clinical data limits the direct clinical
applicability and translation of our findings. However, the primary
goal of this study was to explore the molecular mechanisms of APS
in pediatric AML, rather than conduct a comprehensive clinical
correlation analysis. Despite these limitations, we were able to derive
meaningful conclusions based on rigorous computational methods.

Finally, to strengthen the clinical relevance of our findings,
future research will aim to integrate datasets with more
comprehensive clinical information, allowing for better validation
of our conclusions and exploring the potential clinical applications
of APS in the treatment of pediatric AML.

FIGURE 9
Immune Infiltration Analysis by ssGSEA Algorithm. (A) Grouping comparison diagram of immune cells in the Control group and the PAML group of
dataset GSE2191. (B) Correlation heatmap of immune cell infiltration abundance in dataset GSE2191. (C) Bubble plot of the correlation between Hub
Genes and immune cell infiltration abundance in dataset GSE2191. ssGSEA, single-sample Gene-Set Enrichment Analysis; ns stands for p ≥ 0.05, no
statistical significance; * represents p < 0.05, indicating statistical significance; ** represents p < 0.01 and is highly statistically significant. The
absolute value of correlation coefficient (r value) below 0.3 was weak or no correlation, 0.3 to 0.5 was weak correlation, 0.5 to 0.8 was moderate
correlation, and above 0.8 was strong correlation. Control group (gray), PAML group (purple). Red shows a positive correlation, and blue shows a negative
correlation. The depth of the color represents the strength of the correlation.
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